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Methodology to trap the vibrational energy of axially polarized surface-shear wave 

(axial-shear wave) in a stepped cylindrical rod is presented.  Central part of the rod had 

slightly larger diameter where the resonance vibration was trapped.  Magnetostriction effect 

of steel allowed us to generate and detect the resonance with noncontacting.  An 

approximated analysis derived a resonance equation and displacement distribution of trapped 

axial-shear-wave modes.  The displacement was measured along the axial direction, which 

exponentially decreased with the distance from the center.  This trend agreed with the 

theoretical calculation. 
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1. Introduction 

Free-vibration resonance frequencies of a solid (or resonator) is changed by a contact 

with another material depending on the mass, elasticity, and electric properties of the 

contacting material.  Thus, measuring resonator’s resonance frequencies allows one to detect 

such properties of the contacting material.  This principle is applicable to gas sensors [1], 

gyro sensors [2], bio-chemical sensors [3], and elastic-constant mapping [4-6].  Developing a 

sensitive, temperature-stable, and high-efficient resonator has been a long-running topic.  

Tow demands to achieve this appear every time; they are (i) trapping of vibrational energy 

and (ii) noncontacting measurement.  All acoustic resonators must be mechanically 

supported and if vibrational amplitudes are significant at the points of contact, there is a 

leakage of acoustic energy into the supporting structure, which causes a decrease in Q.  Also, 

electrodes deposited on a resonator material affects its vibrations and they sometimes 

significantly deteriorate resonator’s sensing ability.   

This study proposes methodology to excite and detect surface-shear-horizontal-wave 

resonance in a ferromagnetic rod with noncontacting and to trap its vibrational energy in the 

rod.  An electromagnetic field applied to a ferromagnetic material can cause ultrasonic 

vibrations via the magnetostriction response [7].  Here, we use an electromagnetic acoustic 

transducer (EMAT) [8] to generate and detect the axial-shear wave in a steel rod.   

Johnson et al. [9] showed that torsional vibrations can be trapped in a stepped rod so as 
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to use such a mode that shows an imaginary wavenumber outside the steps.  They gave an 

approximated theory to calculate the resonance frequencies and displacement distribution of 

the trapped torsional modes.  Following their work, we intend to trap vibrational energy of 

axial-shear-wave resonances between the steps.   

  

2. Trap Modes of Axial-Shear Wave 

An axially polarized shear wave, called axial shear wave, travels in the circumferential 

direction along a cylindrical surface of a circular rod or pipe specimen  [10, 11].  First, we 

consider axial-wave resonances in a non-stepped (usual) cylinder rod.  Considering only the 

nonzero axial displacement in a r-θ-z cylindrical coordinate system, where the z-axis is along 

cylinder’s axial direction, equation of motion yields the displacement uz of axial-shear wave 

of the form: 
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Here, C1 and C2 are arbitrary constants.  a denotes the cylinder radius, Jn the nth Bessel 

function of the first kind, ω the angular frequency, and vs the shear-wave velocity.  

)2/( µ+λµ=p  is given by Lamé’s constants λ and µ.  Integer n represents half node 

number in the circumferential direction.  nη~ denotes the normalized wavenumber along the 
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radial direction and satisfies the boundary condition of the zero stress (σrr=0) on the outer 

surface: 

  

0)~(~)~( 1 =ηη−η + nnnnn JnJ .                                   (3) 

  

κ=0 gives the cutoff frequency )~(0 avsnη=ω .  Frequencies below ω0 provide imaginary 

values of κ and non-propagating modes, which decay with distance from the origin along the 

z axis. 

Second, we consider a stepped cylinder that has a slightly smaller radius a’ outside the 

central region with radius a (>a’) as shown in Fig. 1.  Axial length of the central region is 2l.  

Assuming a common nη~ through the steps, the cutoff frequencies differ from each other at the 

two regions.  Let them be ω0 and ω0’, respectively.  (Johnson et al. [9] proved 

experimentally for torsional modes that this assumption is allowable when the radius 

mismatch is sufficiently small.)  Figure 2 shows dispersion curves calculated near cutoff for 

the two regions for a standard steel rod with a=7 mm and a’=6.875 mm.  Note that the 

frequencies between ω0 and ω0’ will provide real values of κ in the central region and 

imaginary values of κ in the outside region, indicating that the displacement of such a 

resonance mode decreases exponentially with distance from the center in the outside region to 

remain finite at z→±∞.  Thus, the resonance vibration can be trapped at the central region 

with larger radius.   
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We consider only symmetric modes about the z axis because of the EMAT configuration 

shown later.  The displacements uz and u’z in the central and outside regions, respectively, 

are 

( ) ( ) )j(
1 e~cos2 θ+ωηκ= nt

nnz arJzpCu ,                               (4) 
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when z>0.  Here, C3 is a constant and κ’ is given by Eq. (2) with a’ instead of a.  Continuity 

for displacements and three stress components σzz, σzr, and σzθ are required at the step 

boundary (z=l).  However, because no analytical solution achieves these requirements 

simultaneously at every point on the cross-section, we use the weak forms for the boundary 

conditions.  For example, 
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 at z=l.                           (6) 

 

Equations (1) and (6) yields 

 

( ) 1tan =κ
κ′
κ lp .                                                (7) 

 

The weak form for the σzr continuity and continuity of σzθ are reduced to the same form as the 

weak form for displacement continuity.  Thus, Equation (7) determines the resonance 

frequencies of symmetric trapped axial-shear-wave modes and we can calculate their 

displacement distributions by Eqs. (4) and (5).  The validity of adopting the weak forms are 
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confirmed experimentally as shown later. 

Figure 3 shows the surface-displacement distributions of the lowest trapped 

axial-shear-wave mode calculated in three steel rods with a=7 mm and l=15 mm for 

(a−a’)/a=0.10, 0.36, and 1.79%.  The displacements are well trapped in the central region 

and they rapidly decay with the distance from the center in the outside region.  A larger step 

achieves higher degree of energy concentration.  We note that a very small radius mismatch 

(~0.10%) can trap the surface wave in the central region. 

  

3. Measurements 

We used a meander-line coil EMAT shown in Fig. 4 to excite and detect the trapped 

axial-shear-wave resonance with noncontacting and to verify the approximation theory above.  

The EMAT consists of a meander-line coil to induce the dynamic field in the circumferential 

direction.  A static field H0 is applied along the axial direction (Fig. 1).  When a sinusoidal 

current is applied to the meander-line coil to induce the dynamic field Hω along the 

circumferential direction, the total field Ht oscillates about the axial direction at the same 

frequency as the driving current and produces shearing vibration through the magnetostrictive 

effect to excite the axial shear wave propagating along the circumference with axial 

polarization.  The meander-line coil also receives the axial shear wave through the reverse 

magnetostrictive effect.  This noncontacting acoustic-coupling mechanism is explained in 
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detail elsewhere [7, 8].  Received signals were entered to a superheterodyne spectrometer to 

detect the same frequency component of amplitude as the driving frequency [8].  A 

frequency scan provides a resonance spectrum.  Representative resonance spectrum of the 

axial-shear-wave resonance appear elsewhere [12].   

The specimen was 0.45mass%C steel rod with a=7 mm, a’=6.875 mm, and l=15 mm.  

The meander-line period δ was 0.9 mm, which determines n to be n=49 via n≈2πa/δ [11].    

Axial length of the coil was 20 mm.  Because the central part of the meander-line coil was 

located at z=0, the resulting displacement of axial-shear-wave mode is symmetric about z.  

The biasing magnetic field was 2.0x103 A/m. 

To measure the displacement distribution along the z axis, we used a pinducer which 

possesses a needle to contact the specimen surface (see Fig. 1).  (Because the 

axial-shear-wave modes show zero out-of-plane displacement, standard laser measurements 

were unavailable.)  We applied a normal biasing force to the pinducer to detect the in-plane 

deformation via a frictional contact.  Driving the EMAT with the measured resonance 

frequency, we detected the displacement amplitude by the pinducer.  We measured the 

maximum displacement along the circumferential direction at each axial position because the 

displacement depends on θ.  The meander-line coil with 20-mm width prevented us from 

measuring the displacement in the region z<10 mm. 
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4. Results and Discussion 

The shear-wave velocity vs is needed to calculate the resonance frequency of a trapped 

axial-shear-wave mode.  We determined this to be vs=3218.5 m/s by measuring the 

resonance frequency of the non-stepped steel rod of 7-mm radius obtained from the same 

material as the specimen: its resonance frequency can be exactly calculated by Eq. (3).   

The lowest resonance frequency of the trapped axial-shear-wave mode for n=49 

calculated using Eq. (7) is 3.8048 MHz, which agrees well with the measured resonance 

frequency 3.8058 MHz by 0.03%, highly indicating the validity of the approximated theory.   

Figure 5 compares the measured displacement distribution with the calculation.  (Note 

that logarithmic scale is used for the vertical axis.)  Measurement on the non-stepped steel 

rod is also shown for comparison.  Clearly, the axial-shear-wave energy is trapped at the 

central region in the stepped rod: the displacement exponentially decays outside the step.  

The theory successfully explains this trend.  Thus, the approximated theory above is 

applicable to the axial-shear-wave resonance in a stepped rod when ∆a/a is small.  The 

displacement amplitude is decreased almost to noise level within 5 mm outside from the step. 

  

5. Conclusion 

We have presented a surface-shear-wave resonator excited with noncontacting via the 

magnetostriction effect.  The vibrational energy is efficiently trapped at a central part of a 
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cylindrical rod, where the diameter is slightly larger.  An approximated model for the 

trapped axial-shear-wave mode is presented, which showed good agreement with 

measurements.  Because this resonator requires no electrodes on the material and can be 

supported without disturbing the vibration, it can be a candidate for high-sensitive acoustic 

sensor.  This study used the biasing magnetic field, but it will be nonnecessity by replacing 

steel with other ferromagnetic materials showing larger magnetostriction, such as nickel or 

giant magnetostriction materials.  
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Figure captions 
  
Fig. 1  Measurement setup for the displacement distribution along the axial direction of the 
stepped steel rod. 
 
Fig. 2  Dispersion curves of steel rods of radii 7 and 6.875 mm. 
 
Fig. 3  Normalized surface displacements on stepped steel rods with various radius 
mismatches ∆a=a−a’ at the step. 
 
Fig. 4  Magnetostrictive excitation of the axial-shear wave by a meander-line coil and axial 
static magnetic field. 
 
Fig. 5  Calculated and measured surface displacement on the stepped (a=7 mm and a’=6.875 
mm) and non-stepped steel rods (a=7 mm).   
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Fig.1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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