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Resonance Ultrasound Spectroscopy for Measuring Elastic Constants of Thin Films

Nobutomo NAKAMURA, Hirotsugu OGI and Masahiko HIRAO

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

We show an advanced technique for measuring elastic constants Cij of thin films deposited on substrates. Thin
films often show anisotropy between the in-plane and out-of-plane directions because of their columnar structure,
residual stress, texture, and incohesive bond. Then, thin films show macroscopically transverse isotropy and have
five independent Cij . All the film Cij affect free-vibration resonance frequencies of the film/substrate layered
specimen. Therefore, measuring the resonance frequencies permits us to determine the thin-film Cij with the
other known parameters. In order to yield reliable Cij of thin films, we have to measure the resonance frequencies
with sufficient accuracy and identify vibration modes of the measured resonance frequencies. We overcome these
problems by developing a tripod and using a laser-Doppler interferometer, respectively. We applied the present
technique to a copper thin film. Measured Cij are smaller than those of bulk and show elastic anisotropy. We
attribute these features to the incohesive bond regions.
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1. Introduction

Determination of a thin film’s elastic constants Cij

is an important issue for designing devices such as
surface-acoustic-wave (SAW) devices and microelectro-
mechanical systems (MEMS). In addition, it enables us
to evaluate micro- or nano-scale defects in the film, be-
cause they highly affect the film Cij through elastic soft-
ening.
Thin films often show anisotropy between the in-plane

and out-of-plane directions because of their columnar
structure, residual stress, texture, and incohesive bonds.
Thus, their elastic constants show transverse isotropy (or
hexagonal symmetry) and have five independent elastic
constants. They are denoted by C11, C33, C13, C44, and
C66 when the x3 axis is along the out-of-plane direc-
tion and the x1 and x2 axes lie in the in-plane direction.
Many previous studies assumed that thin films are elas-
tically isotropic and reported only the in-plane Young’s
modulus E1 using the static bending test1) and flexural
vibration of a reed composed of a film/substrate layered
plate.2) These methods always involve ambiguity caused
by the mechanical contacts used to grip the specimen
and to make the acoustic transduction. The Brillouin-
scattering technique3) can deduce all the five elastic con-
stants, but failed to detect the elastic anisotropy because
it is insensitive to non-Rayleigh-wave acoustic modes.
In this study, we propose an acoustic method for

determining thin film Cij , which is a combination of
resonance ultrasound spectroscopy (RUS)4, 5) and laser-
Doppler interferometry. The RUS method deduces thin
film Cij from free-vibration resonance frequencies of a
film/substrate layered specimen. Mode identification for
the measured resonance frequencies is indispensable for
successful determination. However, few studies achieved
correct mode identification. Here, we use laser-Doppler
interferometry to measure the displacement distributions
on the specimen surface and to identify the vibration
modes.
We applied the present method to a copper thin

film deposited on monocrystal silicon. Measured Cij

are smaller than those of bulk copper and show elas-
tic anisotropy (C11 > C33). As the cause, we consider
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Fig. 1. Schematic of the RUS/laser measurement setup.

the effect of texture or incohesive bonds. From the X-
ray-diffraction measurement and micromechanics calcu-
lation, we concluded that the presence of the incohesive
bonds is the principal cause.

2. RUS/Laser Technique

Free-vibration resonance frequencies of a rectangu-
lar parallelepiped specimen depend on dimensions, mass
density, and all independent elastic constants. The elas-
tic constants are inversely determined by measuring
the free-vibration resonance frequencies, dimensions, and
density. This method is called RUS. Similarly, for a
film/substrate layered specimen, the film Cij is deter-
mined from the free-vibration resonance frequencies and
dimensions, mass densities, and Cij of the substrate.
However, because the film Cij contributes weakly to the
resonance frequencies, normally as small as 1%, we must
measure the resonance frequencies with a high accuracy.
Previous RUS studies4, 5) measured the resonance fre-
quencies by sandwiching specimens between two trans-
ducers. This setup constrains the specimen’s deforma-
tion and changes the resonance frequencies from those of
ideal free vibration. In order to minimize this influence,
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Fig. 2. RUS spectra of the monocrystal silicon substrate (12 !_

10 !_0.2 mm3) (solid line) and copper (2.3 µm)/silicon layered
specimen (dashed line).

we developed a piezoelectric tripod,6–8) which consists of
two piezoelectric needle-type transducers and a support
needle as shown in Fig. 1. One needle-type transducer
generates a sinusoidal continuous-wave (cw) vibration in
the specimen and the other needle-type transducer de-
tects the amplitude response. By sweeping the driving
frequency and obtaining the amplitude as a function of
the frequency, we obtain a resonance spectrum as shown
in Fig. 2. The resonance frequencies are determined by
fitting a Lorentzian function around the peaks. Contacts
between the specimen and needle-type transducers are
weak and stable because no coupling material is needed:
only the specimen mass contributes to the acoustic cou-
pling. Thus, the reproducibility of a resonance-frequency
measurement is better than 10−4.
The inverse calculation requires calculation of the reso-

nance frequencies of a solid specimen. For a non-layered
rectangular parallelepiped specimen, we consider mini-
mization of the Lagrangian:

δ

∫

V

LdV = 0 (1)

where

L =
1

2

(

CijSiSj − ρω2uiui

)

(2)

denotes Lagrangian. The integration is taken over the
volume V of the solid. ρ denotes the mass density, ω
the angular frequency, ui the displacement in the xi

axis, and Si the engineering strain. Because no analyti-
cal solution exists for the displacements in a rectangular-
parallelepiped solid subjected to a free vibration, the dis-
placements are approximated by linear combinations of
basis functions Ψk:

ui(x1, x2, x3, t) =
∑

k

U i
kΨ

i
k(x1, x2, x3)e

jωt (3)

Here, U i
k denote the expansion coefficients.

For a layered parallelepiped specimen, the formulation
must include the discontinuous displacement gradients at
the film/substrate interface, arising from their different
moduli. Then, Heyliger9) used different basis functions
for the thickness direction (x3) and in-plane direction
(x1 and x2) as

Ψi
k(x1, x2, x3) = ηim(x3)ζ

i
l (x1, x2), (4)
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Fig. 3. Relationship between the film thickness error and errors
in the resultant film Cij .

where ηim(x3) denotes the one-dimensional Lagrangian
interpolation polynomials and ζil (x1, x2) denotes power
series xp

1x
q
2 (p, q =0,1,2,!D). Substituting eqs. (3) and (4)

into eq. (1) results in the matrix form of

ω2 [M] {U} = [K] {U} . (5)

Here, [M] denotes the mass matrix associated with the
kinetic energy of the system and [K] denotes the stiff-
ness matrix associated with the potential energy of the
system. {U} denotes the eigenvector composed of the ex-
pansion coefficients, which provide the displacement dis-
tributions in the specimen with eq. (3). Thus, the anal-
ysis is formulated in an eigenvalue problem and the res-
onance frequencies are obtained from the eigenvalues of
the system. The thin film elastic constants are inversely
determined by comparing the calculated resonance fre-
quencies with the measurements. We used a standard
least-squares-fitting procedure in Heyliger’s method to
determine a set of elastic constants that minimizes the
differences between measured and calculated resonance
frequencies. Such a calculation method was confirmed
by Ogi et al..10)

To determine the film Cij inversely from the resonance
frequencies, correct correspondence of the observed and
calculated resonance frequencies must be achieved. If the
inverse calculation contains mode misidentification, the
resulting Cij are physically meaningless. However, the
mode identification has never been straightforward, be-
cause the resonance spectrum does not include any in-
formation on modes. We overcome this by mapping the
out-of-plane displacements using a laser-Doppler inter-
ferometer (Fig. 1) and comparing them with the calcu-
lated displacement distributions.

3. Measurement Accuracy

There are two possible error sources in the determined
film Cij ; (i) measurement error of the film thickness
and, (ii) measurement error of the resonance frequencies.
Here, we investigate their influences on the determined
film Cij .
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Table I. Measured and calculated elastic constants (GPa) of copper thin film deposited on a 0.2-mm monocrystal
silicon substrate. C66 = (C11 − C12)/2.

Copper thin film Hill averaging Micromechanics (111)
(2.3 µm) (isotropic) (porosity=6.2x10−4) texture

C11 172.6±13.8 197.7 169.7 213.3
C33 92.0±7.0 197.7 94.8 237.9
C13 134.0±5.1 103.0 49.4 87.1
C12 80.7±15.1 103.0 75.0 111.7
C44 − 47.4 36.1 35.7
C66 45.9±6.1 47.4 47.3 50.8

3.1 Measurement error of dimensions

We determine the film thickness by its cross-sectional
SEM observation. Because the measurement of the film
thickness usually includes the largest error, we estimate
its effect numerically by considering a copper/silicon lay-
ered model. The substrate is a monocrystal silicon sub-
strate, measuring 12.000!_10.000!_0.200 mm3 with the
(100) face normal to the out-of-plane direction. Copper
film is 3 µm thick. We calculated the free-vibration res-
onance frequencies of the layered specimen and deter-
mined the film Cij assuming various film-thickness er-
rors (d +∆d). Figure 3 shows the results. The errors in
the resultant Cij are in proportion to the film thickness
errors. The film-thickness variation in the cross-sectional
observation is approximately 5% at most, indicating that
errors caused by the film-thickness error in the Cij are
less than 5%.

3.2 Measurement errors of resonance frequencies

The measurement errors of the resonance frequencies
significantly affect the resulting film Cij . We estimate
this (∆Cij) from the contributions of the Cij to the res-
onance frequencies (∂f/∂Cij) and measurement errors of
the resonance frequencies (∆f ) as

∆Cij =
1

∂f/∂Cij
∆f, (6)

∂f/∂Cij is obtainable from the inverse calculation.5)

Thus, elastic constants with smaller contribution cannot
be determined accurately.

4. Elastic Constants of Copper Thin Film

We applied the present method to a polycrystalline
copper film deposited on a monocrystal silicon substrate
(12.019 !_10.099 !_0.211 mm3). First, we measured the
resonance frequencies of the substrate alone to determine
the substrate Cij . They agreed with well known values11)

within a 1% difference. Then, we deposited the copper
film by the magnetron-sputtering method and measured
the resonance frequencies of the Cu/Si specimen. The
pressure in the sputtering chamber was kept less than
5 !_10−5 Torr prior to the sputtering; it increased up
to 0.05 Torr during the sputtering because of the addi-
tion of high-purity argon gas. The biasing voltage was
400 V and the current was 200 mA. The deposition rate
was 3 Å/s. The film thickness was 2.3 µm and the X-
ray diffraction spectrum indicates a (111) texture. We
calculated the lattice parameter of the copper thin film
from the X-ray diffraction spectrum, which agreed with
the bulk’s value with a difference of 0.1%. Also, SEM

Calculation Measurement

Fig. 4. Measured (left) and calculated (right) displace-
ment-amplitude distributions of 2.3-µm-thick copper/0.2-mm
silicon vibrating at 151.4 kHz.

observation did not revealed any volume defects. There-
fore, we used the mass density of bulk copper for the
film. After the deposition, the resonance peaks shifted to
lower frequencies as shown in Fig. 2. Figure 4 shows an
example of the comparison between the measured and
computed displacement distributions for the Cu/Si spec-
imen. We see excellent agreement between them, which
ensures correct mode identification. Thus, we identified
more than twenty resonance modes and entered them
into the inverse calculation to determine the film Cij .
Table I shows the determined copper thin film Cij

along with the isotopic Cij calculated by Hill approxi-
mation using monocrystal data. We failed to determine
the film C44 because of its very small contributions to
the resonance frequencies. Significant observations are
(1) the C33 is markedly smaller than C11 and (2) the
film Cij are smaller than those of the ideal isotropic Cij .
As a possible cause of this anisotropy, we consider (i) tex-
ture and (ii) local incohesive bonds. The observed X-ray-
diffraction spectrum indicates the (111) planes oriented
preferentially parallel to the film surface. We calculated
the macroscopic Cij of such a textured microstructure in
which all the (111) planes of grains are aligned parallel
to the x3 surface with a random rotation around the x3

axis. The Hill approximation was used for this calcula-
tion. The calculated Cij values appear in Table I. The
C33 of the copper film is larger than C11 in the case of
the (111) texture; this result is opposite to the observed
results. Thus, the texture cannot be a dominant factor
of the observed anisotropy.
Second, we consider the presence of incohesive bonds

at grain boundaries by micromechanics modeling. For
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copper thin films, Schwaiger et al.12) reported that thin-
ner films are more fatigue-resistant and contain fewer and
smaller extrusions than thicker films. They attributed
this observation to vacancy diffusion and annihilation at
the free surface. We assumed that there are incohesive re-
gions parallel to the in-plane direction and estimate their
effect by replacing them with penny shaped microcracks.
The elastic constants of such a two-phased composite
(Cc) are calculated using Eshelby’s equivalent inclusion
theory13) and Mori-Tanaka’s mean field theory14) as

Cc = CM + [fI (CI −CM)Ad] [fMI+ fIAd]
−1 ,

Ad =
[

SCM
−1 (CI −CM) + I

]

−1
(7)

where CM and CI are elastic-constant tensors of the ma-
trix and inclusions, respectively, and S is Eshelby’s ten-
sor. fM , and fI are volume fractions of the matrix and
inclusion. Eshelby’s tensor depends on the shape of the
inclusion and Poisson’s ratio of the isotropic matrix. We
assumed zero modulus and a1:a2:a3=1:1:0.001 for the in-
clusions (ai are axes of the oblate-ellipsoid inclusions).
When the porosity is 6.2 !_10−4, the calculation gives
the diagonal components of the elastic constants close to
those of the measurements as shown in Table I. Thus,
only the incohesive regions can explain the occurrence of
the C33 smaller than C11 and smaller Cij than those of
the bulk material.

5. Conclusion

In this study, we established the RUS/laser measure-
ment for the thin film Cij and determined the anisotropic
elastic constants of 2.3 µm copper film. The elastic con-
stants of the copper film show anisotropy between the
in-plane and out-of-plane directions. We conclude that
the incohesive bonds caused this anisotropy.

1) A. Rouzaud, E. Barbier, J. Ernoult and E.Quesnel: Thin Solid
Films 270 (1995) 270.

2) S. Sakai, H. Tanimoto and H. Mizubayashi: Acta Mater. 47
(1999) 211.

3) P. Djemia, F. Ganot, P. Moch, V. Branger and P. Goudeau:
J. Appl. Phys. 90 (2001) 756.

4) I. Ohno: J. Phys. Earth 24 (1976) 355.
5) A. Migliori, J.L. Sarrao, W.M. Visscher, T.M. Bell, M. Lei, A.

Fisk and R.G. Leisure: Physica B 183 (1993) 1.
6) H. Ogi, Y. Kawasaki, M. Hirao and H. Ledbetter: J. Appl.

Phys. 92 (2002) 2451.
7) N. Nakamura, H. Ogi, T. Ichitsubo, M. Hirao, N. Tatsumi, T.

Imai and H. Nakahata: J. Appl. Phys. 94 (2003) 6405.
8) N. Nakamura, H. Ogi and M. Hirao: Acta Mater. 52 (2004)

765.
9) P. Heyliger: J. Acoust. Soc. Am. 107 (2000) 1235.

10) H. Ogi, P. Heyliger, H. Ledbetter and S. Kim: J. Acoust. Soc.
Am. 108 (2000) 2829.

11) G. Simmons and H. Wang: Single Crystal Elastic Constants

and Calculated Aggregate Properties : a Handbook (The
M.I.T. PRESS, Cambridge, 1971).

12) R. Schwaiger, G. Dehm and O. Kraft: Philos. Mag. 83 (2003)
693.

13) J.D. Eshelby: Proc. Roy. Soc. London, A241 (1957) 376.
14) T. Mori and K. Tanaka: Acta Metall. 21 (1973) 571.


