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Resonant Ultrasound Microscopy with Isolated Langasite Oscillator for Quantitative

Evaluation of Local Elastic Constant

Hirotsugu OGI, Jiayong Tian, Toyokazu Tada and Masahiko HIRAO

Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

A resonant-ultrasound-microscopy method has been developed for measuring the local Young’s modulus of a
material. This method detects the effective Young’s modulus through the resonance frequency of a langasite
(La3Ga5SiO14) oscillator touching the specimen. Because the vibration of the oscillator is induced and detected
with a solenoid coil in noncontacting, wireless, and electrodeless way, it is affected only by its contact with the
specimen, achieving an absolute measurement. Elastic-constant mapping was performed on cross sections of a
duplex stainless steel and a NbTi/Cu superconducting wire. Analysis with the static contact stiffness predicts the
frequency change smaller than that measured, and the necessity of considering the dynamic contact stiffness is
discussed.
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1. Introduction

Measurement of the elastic constants of solids in micro-
and nanoscale regions has been an important issue be-
cause of three requirements: (i) The elastic constants are
needed to calculate residual stresses in multiphase com-
posites caused by lattice misfit and different thermal-
expansion coefficients among different elements. (ii) They
are indispensable for the calculation of the strain-energy
distribution to find the minimum of the free energy to es-
timate possible lattice structures. (iii) They can be used
for evaluating defects because defects such as vacancies,
dislocations, and microcrackings affect elastic constants
in a local area and we can evaluate the material’s dete-
rioration by measuring the local elastic constants.

Elastic-stiffness mapping has been achieved by
ultrasound-atomic-force microscopy (UAFM).1–6) It uti-
lizes the vibration of an atomic-force-microscopy (AFM)
cantilever contacting the material at the free end through
a needle tip. This technique yields an image reflecting
the material’s elastic property in a nanoscale region from
the change in the resonance frequency of the cantilever.
The UAFM method has made it possible to quantita-
tively evaluate the effective Young’s modulus of a solid
after a calibration measurement. However, this method
may include difficulties for achieving an absolute deter-
mination of a material’s stiffness because contact to the
vibrating cantilever occurs not only with the specimen
but also with the attached piezoelectric oscillator and
the fixed end. To calculate the resonance frequencies of
such a composite system, we need exact values of the
dimensions, elastic constants, and mass densities of all
the participating components. Rigidity at the fixed end
will also affect the measurements because the maximum
bending and torsional stresses appear on the surface at
the fixed end. To overcome these problems, we must iso-
late the vibration of the oscillator so that it makes only
one-point contact with the specimen.

Here, we propose a resonant-ultrasound microscopy
technique for measuring the local elastic constants of
materials. This method adopts a monocrystal langasite
(La3Ga5SiO14) as an oscillator. Langasite belongs to
the group of materials with 32-point-group symmetry

(trigonal) that show six independent elastic constants
Cijkl, two piezoelectric coefficients eijk, and two dielec-
tric coefficients εij .

7,8) Because the normalized tempera-
ture derivatives of Cijkl are small, of the order of 10−5-
10−6, the resonance frequencies of a langasite oscillator
are insensitive to temperature change. Also, langasite
shows good piezoelectricity, which allows one to oscil-
late the crystal in a noncontacting manner using a dy-
namic electric field.8) Neither wires nor electrodes are
needed. Thus, the contact to the crystal is made only
with the specimen and any other acoustical contacts can
be eliminated. This technique, therefore, negligibly in-
cludes the measurement errors associated with contact
coupling and ambiguous boundary conditions. Measuring
the resonance frequency and scanning the object surface
then provide us with an image of elastic-stiffness distri-
bution. Further advantages include the high accuracy of
the vibrational analysis because of the simple vibrational
system. We show elastic-constant images for a duplex
stainless steel and a superconducting wire. Our measure-
ments indicate the necessity of the consideration of the
dynamic contact stiffness in this field of study.

2. Isolation of Langasite Crystal

Figure 1 shows the measurement setup.9) An oriented
rectangular parallelepiped langasite is located inside the
solenoid coil. The principal lengths of the crystal along
the x1, x2, and x3 axes are 4.954, 5.769, and 4.016 mm,
respectively. We took x1 and x3 axes as the two-fold
and three-fold axes, respectively. A surface normal to the
x1 axis contacts a specimen surface through a tungsten-
carbide bearing ball attached to the center of the bottom
surface of the crystal. When a sinusoidal tone-burst cur-
rent is applied to the solenoid coil, an oscillating quasi-
static electric field arises along the axial direction of the
coil that vibrates the crystal via the converse piezoelec-
tric effect. After the excitation, the same coil receives
the vibration through the piezoelectric effect.8) The re-
ceived signals enter a superheterodyne spectrometer and
the amplitude component with the same frequency as
the driving current is extracted.10–12) A frequency scan
provides the resonance spectrum. Fitting a Lorentzian
function yields the resonance frequency.
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Fig. 1. Measurement setup of resonant-ultrasound microscopy

with rectangular-parallelepiped langasite oscillator.

There are numerous vibration modes and we select a
mode that shows a center antinode spot on the bottom
surface and a nodal line on the top surface of the oscilla-
tor as shown in the following section in detail. A biasing
force F0 is applied to support the crystal and to make the
sensitivity to the contact stiffness higher through three
pins touching the vibrational nodes on the top surface.
Thus, the acoustic coupling only occurs at the specimen
surface and the vibration of the crystal is isolated from
any other contacts, realizing high sensitivity and repro-
ducibility of the measurement.

3. Analysis of Vibration by Rayleigh-Ritz
Method

There are four groups of the natural vibrations of
an oriented rectangular-parallelepiped crystal with 32-
point-group symmetry. They are denoted as Ag, Bg, Au,
and Bu, according to the deformation symmetry as tab-
ulated by Ohno.13) Resonance frequencies and vibra-
tion modes are calculated using Lagrangian minimiza-
tion and the Rayleigh-Ritz method.13–15) When there is
contact on the surface of the crystal, resonance frequen-
cies change from those under free vibration. According
to the Hertzian-contact model, the contact between the
bearing ball and specimen can be regarded as an elas-
tic spring. The equivalent static spring constant for an
isotropic material is given by6,16)

k = 3
√

6E∗2RF0. (1)

Here, E∗ denotes the effective Young’s modulus of the
specimen:

1

E∗ =
1− ν21
E1

+
1− ν22
E2

. (2)

E and ν denote Young’s modulus and Poisson’s ratio.
Subscripts 1 and 2 denote the bearing ball and speci-
men, respectively. For the bearing ball, E1=630 GPa and
ν1=0.2. The Lagrangian of the vibration system can be
expressed by
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Fig. 2. Measured and calculated resonance frequencies of rectan-

gular-parallelepiped langasite oscillators. Results for five oscilla-
tors with different volumes are shown together. The rms differ-

ence between them is 0.065%.
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Here, ui and Sij denote displacements and the strain
tensor, respectively. φ, ρ, and ω are the electric poten-
tial, the mass density of langasite, and the angular res-
onance frequency of the system, respectively. ũ denotes
the out-of-plane displacement of the oscillator at the con-
tact point. m is the mass of the bearing ball; attachment
of the bearing ball is equivalent to an addition of a point
mass on the oscillator surface. Thus, the first term on
the right-hand side of eq. (3) denotes the Lagrangian of
the langasite crystal consisting of the elastic-strain en-
ergy, the coupling energy, the electric energy, and the
kinetic energy. The second term expresses the kinetic en-
ergy of the bearing ball, and the last term denotes the
elastic energy caused by the contact stiffness. Because
the displacements and electric potential are analytically
unavailable, we approximated them with linear combi-
nations of the basis functions consisting of normalized
Legendre polynomials (Rayleigh-Ritz approach):

ui (x1, x2, x3) =
∑
k

aikΨi
k (x1, x2, x3) , (4)

φ (x1, x2, x3) =
∑
k

aφkΨφ
k (x1, x2, x3) . (5)

Here,

Ψk (x1, x2, x3) =
1√

L1L2L3

√
2l + 1

2

√
2m+ 1

2
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Fig. 3. Dependences of resonance frequencies in Ag vibration

group on static contact stiffness. f0 denotes frequencies under

free vibrations.
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Li denotes the edge length along the xi axis of the
rectangular-parallelepiped crystal. The stationary point
of the Lagrangian (δL = 0) yields the resonance frequen-
cies of the system and the corresponding sets of expan-
sion coefficients aik through the solving of an eigenvalue
problem. The maximum order of the Legendre polynomi-
als used in the calculation was twelve and the total num-
ber of basis functions was 455 for each vibration group.
Figure 2 shows a comparison of the calculated resonance
frequencies with measured values for five langasite crys-
tals with different volumes ranging between 44.6 and
1442 mm3 when there is no contact. They show excellent
agreement; their rms difference was 0.065%. Thus, the
resonance frequencies are accurately calculated because
of the use of a simple vibrational system utilizing the
noncontact excitation and detection of vibration. This is
a great advantage because the analysis only requires the
crystal’s dimensions, and its elastic, piezoelectric, and
dielectric coefficients, and the mass of the bearing ball,
which are all unambiguously known.

We used the Ag-1 mode (fundamental mode of breath-
ing vibration) because it shows high sensitivity to the
contact stiffness. Figure 3 shows the relationship between
the resonance-frequency shift and the contact stiffness.
The Ag-1 mode shows the highest sensitivity to the con-
tact stiffness because it has a large out-of-plane ampli-
tude at the contact point. Also, this mode is ideal because
it provides an antinode point at the center of the bot-
tom surface for the out-of-plane displacement and nodal
lines on the top surface for the in-plane displacements, as
shown in Fig. 4. Thus, this mode is sensitive to the nor-
mal Young’s modulus. We applied a biasing force on the
nodal lines through three needles so that these contacts
did not affect the vibration.
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Fig. 4. Distributions of displacements on the bottom surface of

the langasite crystal for Ag-1 mode. (a), (b), and (c) are distri-

butions for out-of-plane displacement and two in-plane displace-
ments, respectively.

4. Microscopy

We scanned the cross sections of two materials by mea-
suring the resonance frequency every 5 µm. We used a
weight to cause a constant biasing force (F0=0.13 N).
The measurements were performed in a vacuum (∼1 Pa)
to avoid acoustic noise. The first material tested was a
duplex stainless steel (JIS-SCS13A). It consists of a fer-
rite phase (α phase) with 17.2% volume fraction and an
austenitic phase (γ phase) with 82.8% volume fraction.
Content of chromium is 20.56 mass%. γ-phase grains pre-
cipitate in α-phase matrix grains. Figure 5 shows the
elastic-mapping image together with a line trace of the
resonance frequency. Within this image, the resonance
frequency changed about 0.06%, which is much larger
than the accuracy of the resonance-frequency measure-
ment (∼ 0.0001%). The linear trace of the resonance fre-
quency shows that the α-phase modulus is larger than
the γ-phase modulus in the region between 220-930 µm,
but this relationship is reversed outside this region. Our
view of this observation is as follows. The orientation of
the γ-phase grain is determined by that of the α-phase
grain before precipitation. Precipitation occurs so as to
cause minimum elastic-strain energy due to lattice misfit
and there should be specific orientation relationships be-
tween the α and γ grains. Thus, γ-phase grains with sim-
ilar resonance frequencies were precipitated in the same
α-phase grain. Vertical broken lines in Fig. 5 indicate
possible grain boundaries in the α phase.

The second material tested was a superconducting wire
consisting of an oxygen-free copper matrix and embed-
ded NbTi filaments of 32 µm diameter.17,18) Figure 6
shows the cross sections observed by optical microscopy,
resonance-ultrasound microscopy, and a line trace of the
frequency. The direction-over-averaged Young’s moduli
of copper and NbTi are 128.7 GPa17) and 84.3 GPa,19)

respectively. Thus, the resonance frequency on copper
is larger than that on NbTi, being consistent with our
results. We compare the measured resonance-frequency
shift with that calculated using the static Hertzian-
contact model in Fig. 7. The scatterings of measured
frequencies are caused by different grain orientations:
Young’s modulus of copper can vary between 66.7 GPa
and 190.8 GPa depending on the grain orientation be-
cause of its high anisotropy. Also, Young’s modulus of
NbTi (bcc. phase at room temperature) varies between
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Fig. 5. Resonance-frequency image (top side) and the change in the resonance frequency along the white broken line

in the image (lower side) observed for a duplex stainless steel (JIS-SCS13A). Vertical broken lines indicate grain

boundaries of α phase.
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Fig. 6. Microstructure of a NbTi/Cu superconducting wire ob-

served by optical microscopy (left) and resonant-ultrasound mi-
croscopy RUM (right). The change in the resonance frequency
along the white broken line is also shown.

63.6 GPa and 107.6 GPa. The static contact-stiffness
model obviously underestimates the frequency shift by
a factor of 3-4, although the trend agrees with the mea-
sured values.

We attribute this disagreement to omission of the dy-
namic effect. The static Hertzian-contact model assumes
a flat contact interface, but the actual interface shows
curvature. It also neglects the mass density and viscosity
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Fig. 7. Resonance-frequency shift versus Young’s modulus of con-

tact material. Broken and solid curves are results predicted with
the static and dynamic contact stiffnesses, respectively. Solid cir-
cles denote measured values.

of the specimen. However, the contact interface vibrates
with the langasite crystal at high frequencies and the
contact stiffness should be affected by the mass density
and viscosity of the specimen. In particular, the inertia
resistance of the specimen should increase the dynamic
contact stiffness. The analytical approach for calculating
the dynamic contact stiffness including the nonflat con-
tact interface is possible by applying an elastic-wave field
in the specimen, which is launched at the contact area
by the oscillator, to the boundary condition of the os-
cillator’s oscillation. Indeed, our previous study predicts
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that the contact stiffness increases by a factor 2.4 for an
isotropic sphere oscillator.20) Thus, it is predicted that
the dynamic contact stiffness is usually larger than the
static contact stiffness. The dynamic contact stiffness for
a nonspherical oscillator is unavailable theoretically and
a numerical approach is needed, which will be the focus
of our future work. Here, we roughly estimated the ratio
between the static and dynamic stiffnesses to be 3.3 for
the present oscillator by comparing the measured and
calculated values as shown in Fig. 7.

5. Conclusion

We developed one-point-contact resonance-ultrasound
microscopy for evaluating Young’s modulus in a local
surface region of solids. The vibration of the langa-
site crystal is isolated using noncont excitation and de-
tection through a quasi-static electric field. The Ag-1
mode showed the highest sensitivity to the material’s
Young’s modulus. The measured frequency shifts were
larger than those predicted by the static contact-stiffness
model based on the Hertzian contact and the necessity of
including consideration of the dynamic contact stiffness
is suggested. RUM yielded elastic mappings on a duplex
stainless steel and a NbTi/Cu superconducting wire.
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