

Title	Modules with many direct summands
Author(s)	Smith, Patrick F.
Citation	Osaka Journal of Mathematics. 1990, 27(2), p. 253-264
Version Type	VoR
URL	https://doi.org/10.18910/8417
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Smith, P.F.
Osaka J. Math.
27 (1990), 253-264

MODULES WITH MANY DIRECT SUMMANDS

PATRICK F. SMITH

(Received May 30, 1989)

Let R be a ring and \mathcal{X} a class of right R -modules. Let M be a right R -module such that for every submodule N of M there exists a direct summand K of M such that $N \subseteq K$ and $K/N \in \mathcal{X}$. The structure of M is investigated in the cases that \mathcal{X} consists of Noetherian right R -modules, right R -modules with Krull dimension and right R -modules with finite uniform dimension, respectively.

1. Classes of modules

Throughout this note, all rings considered have an identity and all modules are unital right modules. Let R be a ring. By a *class of R -modules* we mean a collection of R -modules containing a zero module such that if $M \in \mathcal{X}$ and $M' \cong M$ then $M' \in \mathcal{X}$. Any member of \mathcal{X} will be called an *\mathcal{X} -module*. Let

$$0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$$

be an exact sequence of R -modules. A class \mathcal{X} of R -modules will be called

S-closed provided $M' \in \mathcal{X}$ whenever $M \in \mathcal{X}$,

Q-closed provided $M'' \in \mathcal{X}$ whenever $M \in \mathcal{X}$, and

P-closed provided $M \in \mathcal{X}$ whenever both $M' \in \mathcal{X}$ and $M'' \in \mathcal{X}$.

Moreover, \mathcal{X} is called *{P, S}-closed* provided it is both *P*-closed and *S*-closed, and so on (this terminology is taken from [15]).

Let n be a positive integer and $\mathcal{X}, \mathcal{Y}, \mathcal{X}_1, \dots, \mathcal{X}_n$ classes of R -modules. Then $\mathcal{X}\mathcal{Y}$ is the class of R -modules M which contain a submodule N such that $N \in \mathcal{X}$ and $M/N \in \mathcal{Y}$. In particular \mathcal{X}^2 will denote $\mathcal{X}\mathcal{X}$. Thus \mathcal{X} is *P*-closed if and only if $\mathcal{X}^2 = \mathcal{X}$. Moreover $\mathcal{X}_1 \oplus \dots \oplus \mathcal{X}_n$ is the class of R -modules consisting of all R -modules $M_1 \oplus \dots \oplus M_n$, where $M_i \in \mathcal{X}_i$ ($1 \leq i \leq n$). In case $\mathcal{X} = \mathcal{X}_i$ ($1 \leq i \leq n$) we shall denote $\mathcal{X}_1 \oplus \dots \oplus \mathcal{X}_n$ by $\mathcal{X}^{(n)}$. It is clear that

$$\mathcal{X} \cup \mathcal{Y} \subseteq \mathcal{X} \oplus \mathcal{Y} \subseteq \mathcal{X}\mathcal{Y}, \quad (1)$$

for any classes \mathcal{X} and \mathcal{Y} of R -modules.

Let \mathcal{X} be a class of R -modules. Then $H\mathcal{X}$ is the class of R -modules M such that $M/N \in \mathcal{X}$ for every submodule N of M . On the other hand, $E\mathcal{X}$ is the class of R -modules M such that $M/N \in \mathcal{X}$ for every essential submodule N of M . Moreover, $D\mathcal{X}$ is the class of R -modules M such that for each submodule N of M there exists a direct summand K of M containing N such that $K/N \in \mathcal{X}$. It is clear that

$$H\mathcal{X} \subseteq D\mathcal{X} \subseteq E\mathcal{X}, \quad (2)$$

for any class \mathcal{X} . Moreover,

$$\mathcal{X} \cap E\mathcal{X} = H\mathcal{X}, \quad (3)$$

for any $\{P, S\}$ -closed class \mathcal{X} . In order to establish (3) we first recall:

Lemma 1.1. *Let R be a ring and N any submodule of an R -module M . Then there exists a submodule K of M such that $N \cap K = 0$ and $N \oplus K$ is an essential submodule of M .*

Proof. See [1, Proposition 5.21].

Consider (3). Let \mathcal{X} be any $\{P, S\}$ -closed class of R -modules. Note first that, by (2), $H\mathcal{X} \subseteq \mathcal{X} \cap E\mathcal{X}$. Now let $M \in \mathcal{X} \cap E\mathcal{X}$. Let N be any submodule of M . By Lemma 1.1 there exists a submodule N' such that $N \cap N' = 0$ and $N \oplus N'$ is an essential submodule of M . Now $N' \in \mathcal{X}$ (because \mathcal{X} is S -closed) and $M/(N \oplus N') \in \mathcal{X}$ (because $M \in E\mathcal{X}$). Thus $M/N \in \mathcal{X}$, because \mathcal{X} is P -closed. It follows that $M \in H\mathcal{X}$. This proves (3).

In this section we shall investigate further relationships between such classes. First of all we shall give examples to show that (3) fails if \mathcal{X} is not $\{P, S\}$ -closed.

EXAMPLE 1. Let R be a right nonsingular ring which is not semiprime Artinian, and let $\mathcal{I}, \mathcal{I}'$ denote the classes of singular R -modules and nonsingular R -modules, respectively. Let $\mathcal{X} = \mathcal{I} \cup \mathcal{I}'$. Then \mathcal{X} is S -closed but not P -closed because if M_1 is a non-zero \mathcal{I} -module and M_2 a non-zero \mathcal{I}' -module then $M = M_1 \oplus M_2$ does not belong to \mathcal{X} . Let M' denote the R -module $R \oplus R$. Then $M' \in \mathcal{X} \cap E\mathcal{X}$. Let E be a proper essential right ideal of R and N the submodule $E \oplus 0$ of M' . Then M'/N does not belong to \mathcal{X} . Thus M' does not belong to $H\mathcal{X}$.

EXAMPLE 2. Let R be any ring and \mathcal{X} the class of all R -modules of finite (composition) length n , where n is even. Then \mathcal{X} is P -closed but not S -closed. Let U be any simple R -module. Then $M = U \oplus U \in \mathcal{X} \cap E\mathcal{X}$, but M does not belong to $H\mathcal{X}$.

For any ring R , it will be convenient to denote the classes of zero R -modules,

semisimple R -modules, singular R -modules, nonsingular R -modules, Noetherian R -modules, R -modules with Krull dimension, and R -modules of finite uniform dimension by \mathcal{Z} , \mathcal{C} , \mathcal{Q} , \mathcal{Q}' , \mathcal{N} , \mathcal{K} , and \mathcal{U} , respectively. In addition \mathcal{J} will denote the class of all R -modules M such that every submodule is an essential submodule of a direct summand of M . The class \mathcal{J} has been studied by a number of authors ([3], [4], [6]–[13]). Note that, for any ring R ,

$$\mathcal{J} \subseteq D\mathcal{Q} \quad \text{and} \quad \mathcal{Q}' \cap D\mathcal{Q} \subseteq \mathcal{J}. \quad (4)$$

The first statement is clear. For the second, let $M \in \mathcal{Q}' \cap D\mathcal{Q}$. Let N be a submodule of M . Then there exists a direct summand K of M containing N such that $K/N \in \mathcal{Q}$. If L is a submodule of K and $N \cap L = 0$ then L embeds in K/N , so that L is singular and hence $L = 0$. Thus N is essential in K . It follows that M belongs to \mathcal{J} .

Lemma 1.2. *Let R be a ring and \mathcal{X} any class of R -modules. Then*

- (i) $\mathcal{J} \cap E\mathcal{X} \subseteq D\mathcal{X}$, and
- (ii) if $M \in D\mathcal{X}$ and M contains no non-zero submodule in \mathcal{X} then $M \in \mathcal{J}$.

Proof. (i) Let $M \in \mathcal{J} \cap E\mathcal{X}$. Let N be any submodule of M . Then there exist submodules K, K' of M such that $M = K \oplus K'$ and N is an essential submodule of K . Then $N \oplus K'$ is an essential submodule of M and hence $K/N \cong M/(N \oplus K') \in \mathcal{X}$. Thus $M \in D\mathcal{X}$. (ii) follows by the proof of (4).

For any R -module M , the socle of M will be denoted $\text{soc } M$. Next we note the following well known result.

Lemma 1.3. *Let R be a ring and M an R -module. Then*

- (a) $\text{soc } M = \bigcap \{N : N \text{ is an essential submodule of } M\}$.
- (b) The following statements are equivalent.
 - (i) $M \in \mathcal{C}$ (i.e. M is semisimple).
 - (ii) Every submodule of M is a direct summand of M .
 - (iii) M is the only essential submodule of M .

Proof. By [1, Theorem 9.6 and Proposition 9.7].

Lemma 1.3 has the following immediate consequence.

Corollary 1.4. *For any ring R and class \mathcal{X} of R -modules, $D\mathcal{Z} = E\mathcal{Z} = \mathcal{C} \subseteq D\mathcal{X}$.*

The next result generalises [8, Proposition 4.3] where it is proved that if R is a ring such that $R_R \in DC$ (in particular, this implies that R is right Noetherian by [2, Theorem 3.1]) then any cyclic right R -module belongs to \mathcal{J} . (Note that DC is Q -closed.)

Proposition 1.5. *For any ring R , $DC \subseteq \mathcal{J}$.*

Proof. Let $M \in DC$. Let N be a submodule of M and let K be a maximal essential extension of N in M . We shall show that K is a direct summand of M . Since $M \in DC$ it follows that there exists a direct summand L of M such that $K \subseteq L$ and $L/K \in \mathcal{C}$. There exist an index set Λ and submodules $U_\lambda (\lambda \in \Lambda)$ of M , each containing K , such that U_λ/K is simple for each λ in Λ and $L = \sum_{\lambda \in \Lambda} U_\lambda$. Note that, for each $\lambda \in \Lambda$, K is not essential in U_λ and hence there exists a simple submodule V_λ of M such that $U_\lambda = K \oplus V_\lambda$. Let $V = \sum_{\lambda \in \Lambda} V_\lambda$. Then $L = K + V$ and V is semisimple. By Lemma 1.3 there exists a submodule W of V such that $V = (K \cap V) \oplus W$, and hence $L = K \oplus W$. Thus K is a direct summand of M . It follows that $M \in \mathcal{J}$.

Combining Lemma 1.2, Proposition 1.5 and (2) we conclude

$$DC = \mathcal{J} \cap EC,$$

for any ring R . We have already noted that DC is Q -closed. Now we prove:

Proposition 1.6. *Let R be a ring and \mathcal{X} a class of R -modules. Then*

- (i) $H\mathcal{X}$, $E\mathcal{X}$ and $D\mathcal{X}$ are all Q -closed, and
- (ii) $H\mathcal{X}$ and $E\mathcal{X}$ are S -closed provided \mathcal{X} is S -closed.

Proof. (i) Let $M \in E\mathcal{X}$. Let N be any submodule of M . Let K be any essential submodule of M/N . Then $K = L/N$ for some essential submodule L of M containing N . By hypothesis, $M/L \in \mathcal{X}$, and hence $(M/N)/K \in \mathcal{X}$. It follows that $M/N \in E\mathcal{X}$. Thus $E\mathcal{X}$ is Q -closed. Similarly $H\mathcal{X}$ and $D\mathcal{X}$ are Q -closed.

(ii) Suppose that \mathcal{X} is S -closed. Let $M \in H\mathcal{X}$. Let N be a submodule of M . Let K be any submodule of N . Then N/K is a submodule of M/K and $M/K \in \mathcal{X}$. Thus $N/K \in \mathcal{X}$. Thus $N \in H\mathcal{X}$.

Now suppose $M \in E\mathcal{X}$. Let N be a submodule of M . Let K be any essential submodule of N . By Lemma 1.1 there exists a submodule L of M such that $K \cap L = 0$ and $K \oplus L$ is an essential submodule of M . Note that K essential in N implies $N \cap L = 0$ and hence $N/K \cong (N \oplus L)/(K \oplus L)$. But $M/(K \oplus L) \in \mathcal{X}$ and hence so too does $(N \oplus L)/(K \oplus L)$. Thus $N/K \in \mathcal{X}$. It follows that $N \in E\mathcal{X}$.

Next we give an example to show that $D\mathcal{X}$ is not S -closed in general.

EXAMPLE 3. Let $R = \mathbb{Z}[x]$. Then \mathcal{I} consists of all torsion R -modules and \mathcal{I} is $\{P, Q, S\}$ -closed. Let $M = R_R$. Then $M \in \mathcal{J} \subseteq D\mathcal{I}$, by (4), but $M \oplus M \notin \mathcal{J}$ (see [4, Example 2.4]). Let $E = E(M)$, the injective hull of M . Then $E \oplus E$ is injective and hence $E \oplus E \in \mathcal{J} \subseteq D\mathcal{I}$. Thus $D\mathcal{I}$ is not S -closed and $D\mathcal{I} \oplus D\mathcal{I} \neq D\mathcal{I}$.

Proposition 1.7. *Let R be a ring and \mathcal{X} any class of R -modules. Then*

- (i) $\mathcal{C} \oplus E\mathcal{X} = E\mathcal{X}$, and

(ii) $\mathcal{C} \oplus D\mathcal{X} = D\mathcal{X}$.

Proof. (i) Let $M \in \mathcal{C} \oplus E\mathcal{X}$. Then there exist submodules M_1, M_2 of M such that $M = M_1 \oplus M_2$, $M_1 \in \mathcal{C}$ and $M_2 \in E\mathcal{X}$. Let N be an essential submodule of M . Since M_1 is semisimple, it follows that $M_1 \subseteq N$ (Lemma 1.3). Thus $N = M_1 \oplus (N \cap M_2)$, and

$$M/N = (M_1 \oplus M_2)/[M_1 \oplus (N \cap M_2)] \cong M_2/(N \cap M_2).$$

But $N \cap M_2$ is an essential submodule of M_2 and $M_2 \in E\mathcal{X}$. Thus $M/N \in \mathcal{X}$. It follows that $M \in E\mathcal{X}$.

(ii) Let $M \in \mathcal{C} \oplus D\mathcal{X}$. Then there exist submodules M_1, M_2 such that $M = M_1 \oplus M_2$, $M_1 \in \mathcal{C}$ and $M_2 \in D\mathcal{X}$. Let N be any submodule of M . Note that $N + M_2 = [(N + M_2) \cap M_1] \oplus M_2$. Because M_1 is semisimple, it follows that

$$M_1 = [(N + M_2) \cap M_1] \oplus L,$$

for some submodule L of M_1 (Lemma 1.3). Thus $N + M_2$ is a direct summand of M .

Since $M_2 \in D\mathcal{X}$ it follows that there exist submodules K, K' of M_2 such that $M_2 = K \oplus K'$, $N \cap M_2 \subseteq K$ and $K/(N \cap M_2) \in \mathcal{X}$. Now $(K + N)/N \cong K/(K \cap N)$, and $K \cap N = K \cap M_2 \cap N = N \cap M_2$. Thus

$$(K + N)/N \in \mathcal{X}. \quad (5)$$

Moreover,

$$\begin{aligned} K' \cap (K + N) &= K' \cap M_2 \cap (K + N) \\ &= K' \cap [K + (N \cap M_2)] = K' \cap K = 0. \end{aligned}$$

Thus $M_2 + N = K' \oplus (K + N)$, and hence $K + N$ is a direct summand of M . By (5) it follows that $M \in D\mathcal{X}$.

Note that $\mathcal{C} \oplus H\mathcal{X} = H\mathcal{X}$ implies $\mathcal{C} \subseteq H\mathcal{X}$ and hence $\mathcal{C} \subseteq \mathcal{X}$. Thus $\mathcal{C} \oplus H\mathcal{X} \neq H\mathcal{X}$ in general. On the other hand, by (2) and Proposition 1.7,

$$\mathcal{C} \oplus H\mathcal{X} \subseteq D\mathcal{X}, \quad (6)$$

for any class \mathcal{X} . We have already seen in Example 3 that $D\mathcal{X} \oplus D\mathcal{X} \neq D\mathcal{X}$, even when \mathcal{X} is $\{P, Q, S\}$ -closed.

Proposition 1.8. *Let R be a ring and \mathcal{X} a P -closed class of R -modules. Then*

- (i) $(H\mathcal{X}) \oplus (H\mathcal{X}) = (H\mathcal{X})^2 = H\mathcal{X}$,
- (ii) $(E\mathcal{X}) \oplus (E\mathcal{X}) = (E\mathcal{X})(H\mathcal{X}) = E\mathcal{X}$, and
- (iii) $(H\mathcal{X}) \oplus (D\mathcal{X}) = (D\mathcal{X})$.

Proof. (i) By (1), $(H\mathcal{X}) \oplus (H\mathcal{X}) \subseteq (H\mathcal{X})^2$, and $H\mathcal{X} \subseteq (H\mathcal{X}) \oplus (H\mathcal{X})$ is clear. Let $M \in (H\mathcal{X})^2$. Then there exists a submodule N of M such that N

and M/N both belong to $H\mathcal{X}$. Let K be a submodule of M . Then $(N+K)/K \cong N/(N \cap K) \in \mathcal{X}$, and $M/(N+K) \in \mathcal{X}$. Thus M/K belongs to \mathcal{X} . Thus $M \in H\mathcal{X}$.

(ii) The proof of $(E\mathcal{X})(H\mathcal{X}) = E\mathcal{X} \subseteq (E\mathcal{X}) \oplus (E\mathcal{X})$ is similar to (i). Let $M \in (E\mathcal{X}) \oplus (E\mathcal{X})$. Then there exist submodules M_1, M_2 of M such that $M = M_1 \oplus M_2$ and $M_i \in E\mathcal{X}$ ($i = 1, 2$). Let N be an essential submodule of M . Then $N \cap M_1$ is an essential submodule of M_1 so that $M_1/(N \cap M_1) \in \mathcal{X}$. Thus $(M_1+N)/N \in \mathcal{X}$. But $M_1+N = M_1 \oplus [M_1+N] \cap M_2$, so that

$$M/(M_1+N) \cong M_2[(M_1+N) \cap M_2],$$

which belongs to \mathcal{X} since $(M_1+N) \cap M_2$ is an essential submodule of M_2 . Since \mathcal{X} is P -closed it follows that $M/N \in \mathcal{X}$. Thus $M \in E\mathcal{X}$.

(iii) Let $M \in (H\mathcal{X}) \oplus (D\mathcal{X})$. Then there exist submodules M_1, M_2 of M such that $M = M_1 \oplus M_2$, $M_1 \in H\mathcal{X}$ and $M_2 \in D\mathcal{X}$. Let N be any submodule of M . Then $(M_1+N)/N \cong M_1/(M_1 \cap N) \in \mathcal{X}$. Moreover $M_1+N = M_1 \oplus [(M_1+N) \cap M_2]$. By hypothesis there exists a direct summand K of M_2 such that $(M_1+N) \cap M_2 \subseteq K$ and $K/[(M_1+N) \cap M_2] \in \mathcal{X}$. It follows that $M_1 \oplus K$ is a direct summand of M and

$$(M_1 \oplus K)/(M_1+N) \cong K/[(M_1+N) \cap M_2] \in \mathcal{X}.$$

Thus $(M_1 \oplus K)/N \in \mathcal{X}$. It follows that $M \in D\mathcal{X}$.

Corollary 1.9. *Let R be a ring and \mathcal{X} a P -closed class of R -modules. Then $E\mathcal{X} = [\mathcal{C} \oplus (E\mathcal{X})^{(n)}](H\mathcal{X})$, for any positive integer n .*

Proof. By Propositions 1.7 and 1.8.

Note that

$$\mathcal{C}(H\mathcal{X}) \subseteq E\mathcal{X} \tag{7}$$

for any class \mathcal{X} of R -modules. For, let $M \in \mathcal{C}(H\mathcal{X})$. Then there exists a submodule N of M such that $N \in \mathcal{C}$ and $M/N \in H\mathcal{X}$. If K is any essential submodule of M then $N \subseteq K$ by Lemma 1.3 and hence $M/K \in \mathcal{X}$. It follows that $M \in E\mathcal{X}$. In general, $(E\mathcal{X})^2 \neq E\mathcal{X}$ and $(D\mathcal{X})^2 \neq D\mathcal{X}$. For example, $\mathcal{C} = E\mathcal{Z} = D\mathcal{Z}$ (Corollary 1.4), but $\mathcal{C}^2 \neq \mathcal{C}$ in general. (Example 3 also shows $(D\mathcal{X})^2 \neq D\mathcal{X}$.)

The next two examples illustrate Proposition 1.8.

EXAMPLE 4. Let R be a ring and n any positive integer. Let \mathcal{X} denote the class of R -modules of finite length at most n . Then \mathcal{X} is $\{S, Q\}$ -closed but not P -closed. Thus $H\mathcal{X} = \mathcal{X}$ and

$$\mathcal{X} \subset \mathcal{X} \oplus \mathcal{X} \subseteq \mathcal{X}^2.$$

If $R=\mathbf{Z}$ then $\mathcal{X} \oplus \mathcal{X} \neq \mathcal{X}^2$. Staying with $R=\mathbf{Z}$, note that for any prime p , $A=\mathbf{Z}/\mathbf{Z}_{p^{n+1}} \in E\mathcal{X}$ so that $A \oplus A \in E\mathcal{X} \oplus E\mathcal{X}$ but $A \oplus A \notin E\mathcal{X}$. Also $B=\mathbf{Z}/\mathbf{Z}_{p^{n+2}} \in (E\mathcal{X})\mathcal{X}$, but $B \notin E\mathcal{X}$.

EXAMPLE 5. Consider the ring \mathbf{Z} of rational integers and let \mathcal{I} denote the class of torsion \mathbf{Z} -modules. Then $H\mathcal{I}=\mathcal{I}$, and

- (i) $(D\mathcal{I})(H\mathcal{I})=(D\mathcal{I})\mathcal{I} \subseteq D\mathcal{I}$, and
- (ii) $E\mathcal{I} \subseteq (D\mathcal{I})(H\mathcal{I})=(D\mathcal{I})\mathcal{I}$.

First consider (i). Let M be any \mathbf{Z} -module with finite rank. Then there exists a free submodule F of M of finite rank such that $M/F \in \mathcal{I}$. If N is a submodule of F and K/N is the torsion submodule of F/N then F/K is finitely generated torsion free, so free, and hence K is a direct summand of F . Thus $F \in D\mathcal{I}$ and $M \in (D\mathcal{I})\mathcal{I}$. However, in general, $M \notin D\mathcal{I}$; consider M in \mathcal{I}' and use (4) and [9, Theorem 14].

For (ii), let M be any free \mathbf{Z} -module of infinite rank. Then $M \in E\mathcal{I}$, because any \mathbf{Z} -module belongs to $E\mathcal{I}$, but $M \notin (D\mathcal{I})\mathcal{I}$, by Lemma 1.2 (ii) and [9, Theorem 5].

We complete this section by giving an example to show that $C\mathcal{N} \notin D\mathcal{N}$, in contrast to (7).

EXAMPLE 6. Let \mathbf{Q} , \mathbf{R} denote the fields of rational and real numbers, respectively, and let R denote the subring of the ring of all 2×2 real matrices consisting of all matrices of the form

$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$

where $a \in \mathbf{Q}$, $b \in \mathbf{R}$. Then $R_R \in C\mathcal{N}$. However, it can easily be checked that the only idempotents of R are 0, 1, and hence $R_R \notin D\mathcal{N}$.

2. Modules with finite uniform dimension

Let R be a ring. An R -module M has *finite uniform (Goldie) dimension* provided M does not contain an infinite direct sum of non-zero submodules. The class of all such modules will be denoted \mathcal{U} . It is well known that a module M is a \mathcal{U} -module if and only if there exist a positive integer n and uniform submodules U_i ($1 \leq i \leq n$) of M such that $U_1 \oplus \dots \oplus U_n$ is an essential submodule of M , and in this case n is an invariant of the module called the *uniform dimension* of M (see, for example, [1, p. 294 ex. 2]). Therefore $\mathcal{U} \oplus \mathcal{U} = \mathcal{U}$, for any ring R . Clearly \mathcal{U} is S -closed. Moreover, \mathcal{U} is P -closed. For, let $M \in \mathcal{U}^2$. Then there exists a submodule N of M such that both N and M/N belong to \mathcal{U} . By Lemma 1.1, there exists a submodule K of M such that $K \cap N = 0$ and $N \oplus K$ is an essential submodule of M . Since K is isomorphic

to a submodule of M/N it follows that $K \in \mathcal{U}$. Thus $N \oplus K \in \mathcal{U} \oplus \mathcal{U} = \mathcal{U}$. It follows that $M \in \mathcal{U}$. Hence \mathcal{U} is P -closed.

Theorem 2.1. *For any ring R , $E\mathcal{U} = \mathcal{C}(H\mathcal{U})$.*

Proof. By (7), $\mathcal{C}(H\mathcal{U}) \subseteq E\mathcal{U}$. Conversely, suppose that $M \in E\mathcal{U}$. Let N denote the socle of M . Let K be any submodule of M containing N . By Lemma 1.1 there exists a submodule K' of M such that $K \cap K' = 0$ and $K \oplus K'$ is an essential submodule of M . Thus

$$M/(K \oplus K') \in \mathcal{U}, \quad (8)$$

by hypothesis. Let $L = L_1 \oplus L_2 \oplus L_3 \oplus \dots$ be a direct sum of non-zero submodules of K' . Since $N \cap K' = 0$ it follows that, for each $i \geq 1$, L_i is not semi-simple and hence contains a proper essential submodule H_i (Lemma 1.3). Let $H = H_1 \oplus H_2 \oplus H_3 \oplus \dots$. Then H is an essential submodule of L and

$$L/H \cong (L_1/H_1) \oplus (L_2/H_2) \oplus (L_3/H_3) \oplus \dots$$

is an infinite direct sum of non-zero submodules. But the submodule L of M belongs to $E\mathcal{U}$, by Proposition 1.6, a contradiction. Thus $K' \in \mathcal{U}$. Since \mathcal{U} is P -closed it follows, by (8), that $M/K \in \mathcal{U}$. Thus M/N belongs to $H\mathcal{U}$. Hence $M \in \mathcal{C}(H\mathcal{U})$.

Let \mathcal{X} be a class of R -modules such that $\mathcal{X} \subseteq \mathcal{U}$. Then $F\mathcal{X}$ will denote the class consisting of all \mathcal{Z} -modules together with all R -modules M such that there exist a positive integer n and uniform submodules U_i ($1 \leq i \leq n$) of M with $M = U_1 \oplus \dots \oplus U_n$ and $U_i \in E\mathcal{X}$ ($1 \leq i \leq n$). Note that a uniform module $U \in E\mathcal{X}$ if and only if $U/V \in \mathcal{X}$ for all non-zero submodules V of U . Note that

$$F\mathcal{N} \subseteq \mathcal{N} \quad \text{and} \quad F\mathcal{K} \subseteq \mathcal{K}, \quad (9)$$

for any ring R . For any ordinal $\alpha \geq 0$, let \mathcal{K}_α denote the class of all R -modules with Krull dimension at most α . Then $F\mathcal{K}_\alpha \subseteq \mathcal{K}_{\alpha+1}$, and a module $M \in F\mathcal{K}_\alpha$ if and only if M is a direct sum of \mathcal{K}_α -submodules and $(\alpha+1)$ -critical submodules (see [5]). Note that if \mathcal{X} is a P -closed class of R -modules then

$$(\mathcal{C} \oplus F\mathcal{X})(H\mathcal{X}) \subseteq E\mathcal{X}, \quad (10)$$

by Corollary 1.9.

Corollary 2.2. *Let R be a ring and \mathcal{X} an S -closed class of R -modules such that $\mathcal{X} \subseteq \mathcal{U}$. Then $E\mathcal{X} \subseteq [\mathcal{C} \oplus F\mathcal{X}](H\mathcal{X})$.*

Proof. Let $M \in E\mathcal{X}$. Then $M \in E\mathcal{U}$. By the theorem there exists a submodule N of M such that $N \in \mathcal{C}$ and $M/N \in \mathcal{U}$. By Lemma 1.1 there exists a submodule K of M such that $N \cap K = 0$ and $N \oplus K$ is an essential submodule

of M . By [1, p. 294 ex. 2], there exist a positive integer n and uniform submodules U_i ($1 \leq i \leq n$) of K such that $U = U_1 \oplus \cdots \oplus U_n$ is an essential submodule of K . By Proposition 1.6, $U_i \in E\mathcal{X}$ ($1 \leq i \leq n$) and hence $U \in F\mathcal{X}$. Finally $N \oplus U$ is an essential submodule of M and hence $M/(N \oplus U) \in H\mathcal{X}$.

Note that if \mathcal{X} is a $\{P, S\}$ -closed class of R -modules, such that $\mathcal{X} \subseteq \mathcal{U}$, then

$$E\mathcal{X} = (\mathcal{C} \oplus F\mathcal{X})(H\mathcal{X}) \quad (11)$$

by (10) and Corollary 2.2. Now suppose further that $F\mathcal{X} \subseteq H\mathcal{X} = \mathcal{X}$ (for example this happens when $\mathcal{X} = \mathcal{N}$ or \mathcal{K}). Then

$$\mathcal{C}\mathcal{X} \subseteq (\mathcal{C} \oplus F\mathcal{X})(H\mathcal{X}) \subseteq (\mathcal{C} \oplus \mathcal{X})\mathcal{X} \subseteq \mathcal{C}\mathcal{X}^2 = \mathcal{C}\mathcal{X},$$

and hence $E\mathcal{X} = \mathcal{C}\mathcal{X}$.

Corollary 2.3. *For any ring R and ordinal $\alpha \geq 0$,*

$$E\mathcal{N} = \mathcal{C}\mathcal{N}, \quad E\mathcal{K} = \mathcal{C}\mathcal{K} \quad \text{and} \quad E\mathcal{K}_\alpha \subseteq \mathcal{C}\mathcal{K}_{\alpha+1}.$$

Proof. $E\mathcal{N} = \mathcal{C}\mathcal{N}$ and $E\mathcal{K} = \mathcal{C}\mathcal{K}$ by the above argument. Moreover, by (11),

$$\begin{aligned} E\mathcal{K}_\alpha &= (\mathcal{C} \oplus F\mathcal{K}_\alpha)(H\mathcal{K}_\alpha) = (\mathcal{C} \oplus F\mathcal{K}_\alpha)\mathcal{K}_\alpha \\ &\subseteq (\mathcal{C} \oplus \mathcal{K}_{\alpha+1})\mathcal{K}_\alpha \subseteq \mathcal{C}(\mathcal{K}_{\alpha+1})^2 = \mathcal{C}\mathcal{K}_{\alpha+1}. \end{aligned}$$

3. $D\mathcal{U}$ -modules

The main result of this section is the following theorem.

Theorem 3.1. *For any ring R , $D\mathcal{U} = \mathcal{C} \oplus H\mathcal{U}$.*

In order to prove this result we first establish:

Lemma 3.2. *Let $M \in D\mathcal{U}$. Then $M \in \mathcal{U}$ if and only if the socle of M is contained in a finitely generated submodule of M .*

Proof. Let $S = \text{soc } M$, the socle of M . If $M \in \mathcal{U}$ then S is itself finitely generated. Conversely, suppose S is contained in a finitely generated submodule N of M . By (2) and the proof of Theorem 2.1, $M/S \in \mathcal{U}$. We shall prove that $M \in \mathcal{U}$ by induction on the uniform dimension n of M/S . If $n=0$ then $M=S$ and M is finitely generated, so that $M \in \mathcal{U}$. Suppose $n>0$. Suppose M is not a \mathcal{U} -module. Then S is not finitely generated. There exist non-finitely generated submodules S_1, S_2 of S such that $S = S_1 \oplus S_2$. Since M is a $D\mathcal{U}$ -module it follows that there exist submodules M_1, M_2 of M such that $M = M_1 \oplus M_2$, $S_1 \subseteq M_1$ and M_1/S_1 belongs to \mathcal{U} . Note that $\text{soc } M_1 = S_1 \oplus S'$ for some submodule S' of M_1 . Since S' can be embedded in M_1/S_1 it follows that

$S' \in \mathcal{U}$ and hence S' is finitely generated. Now

$$S_1 \oplus S_2 = \text{soc } M = \text{soc } M_1 \oplus \text{soc } M_2 = S_1 \oplus S' \oplus \text{soc } M_2,$$

and this implies $S_2 \cong S' \oplus \text{soc } M_2$. Thus $S' \oplus \text{soc } M_2$, and hence $\text{soc } M_2$, is not finitely generated.

Thus $M = M_1 \oplus M_2$ and $\text{soc } M_i$ is not finitely generated for $i=1, 2$. Note that

$$M/S \cong [M_1/(\text{soc } M_1)] \oplus [M_2/(\text{soc } M_2)].$$

If $M_1 = \text{soc } M_1$ then $M_1 \subseteq N$ and hence $N = M_1 \oplus (N \cap M_2)$. It follows that M_1 , and hence $\text{soc } M_1$, is finitely generated. Thus $M_1 \neq \text{soc } M_1$, and similarly $M_2 \neq \text{soc } M_2$. Therefore the modules $M_1/(\text{soc } M_1)$ and $M_2/(\text{soc } M_2)$ have smaller uniform dimensions than M/S . By induction on the uniform dimension of M/S it follows that $M_1 \in \mathcal{U}$ and $M_2 \in \mathcal{U}$. Thus $M \in \mathcal{U}$, a contradiction. Thus $M \in \mathcal{U}$, as required.

Proof of Theorem 3.1. By (6), $\mathcal{C} \oplus H\mathcal{U} \subseteq D\mathcal{U}$. Conversely, suppose that $M \in D\mathcal{U}$. By (2) and the proof of Theorem 2.1, $M/S \in \mathcal{U}$, where $S = \text{soc } M$. We shall prove that M belongs to $\mathcal{C} \oplus H\mathcal{U}$ by induction on the uniform dimension n of M/S . If $n=0$ then $M=S \in \mathcal{C} \subseteq \mathcal{C} \oplus H\mathcal{U}$. Suppose $n>0$. Suppose M does not belong to $\mathcal{C} \oplus H\mathcal{U}$.

Suppose $M = M_1 \oplus M_2$ for some submodules M_1, M_2 of M . Then $S = (\text{soc } M_1) \oplus (\text{soc } M_2)$, so that

$$M/S \cong [M_1/(\text{soc } M_1)] \oplus [M_2/(\text{soc } M_2)].$$

If $M_1 \neq \text{soc } M_1$ and $M_2 \neq \text{soc } M_2$ then both $M_1/(\text{soc } M_1)$ and $M_2/(\text{soc } M_2)$ have smaller uniform dimensions than M/S , so that both M_1 and M_2 belong to $\mathcal{C} \oplus H\mathcal{U}$, and in this case $M \in \mathcal{C} \oplus H\mathcal{U}$. Thus $M_1 = \text{soc } M_1 \in \mathcal{C}$ or $M_2 = \text{soc } M_2 \in \mathcal{C}$.

Because $M \neq S$ there exists $m \in M, m \notin S$. By hypothesis, there exist submodules M_1, M_2 of M such that $M = M_1 \oplus M_2$, $mR \subseteq M_1$ and $M_1/mR \in \mathcal{U}$. By the argument in the previous paragraph it follows that $M_2 \in \mathcal{C}$. Let $S_1 = \text{soc } M_1$. Then $S_1 = (S_1 \cap mR) \oplus S'$ for some submodule S' of M_1 . Now $S' \cong (S_1 + mR)/mR$, a submodule of M_1/mR , so that $S' \in \mathcal{U}$ and hence S' is finitely generated. Thus $S_1 \subseteq mR + S'$, a finitely generated submodule of M_1 . By Proposition 1.6 and Lemma 3.2 it follows that $M_1 \in \mathcal{U}$. Now $M_1 \in \mathcal{U} \cap E\mathcal{U} = H\mathcal{U}$ by (3). Hence $M = M_1 \oplus M_2 \in \mathcal{C} \oplus H\mathcal{U}$, a contradiction. Thus $M \in \mathcal{C} \oplus H\mathcal{U}$.

Corollary 3.3. *Let R be a ring and \mathcal{X} a $\{P, S\}$ -closed class of R -modules contained in \mathcal{U} . Then $D\mathcal{X} = \mathcal{C} \oplus (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X})$.*

Proof. Let $M \in D\mathcal{X}$. In particular, this means that $M \in D\mathcal{U}$, so that $M \in \mathcal{C} \oplus \mathcal{U}$, by Theorem 3.1. Thus we can suppose, without loss of generality,

that $M \in \mathcal{U}$. We claim that

$$M \in (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X}). \quad (12)$$

We shall prove (12) by induction on the uniform dimension of M . Suppose first that there exists a non-zero submodule N of M such that $N \in \mathcal{X}$. By hypothesis, there exist submodules K, K' of M such that $M = K \oplus K', N \subseteq K$ and $K/N \in \mathcal{X}$. Since \mathcal{X} is P -closed it follows that $K \in \mathcal{X}$. By Proposition 1.6, K and K' both belong to $D\mathcal{X}$. By (2) and (3), $K \in H\mathcal{X}$. Moreover, K' has smaller uniform dimension than M so that, by induction, $K' \in (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X})$. It follows that $M \in (H\mathcal{X}) \oplus (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X}) = (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X})$, by Proposition 1.8. Now suppose that M does not contain any non-zero submodule in \mathcal{X} . By (2) and Lemma 1.2, $M \in \mathcal{J} \cap E\mathcal{X}$. This proves (12).

Conversely, note that $\mathcal{J} \cap E\mathcal{X} \subseteq D\mathcal{X}$, by Lemma 1.2, and hence

$$\mathcal{C} \oplus (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X}) \subseteq \mathcal{C} \oplus (H\mathcal{X}) \oplus (D\mathcal{X}) \subseteq \mathcal{C} \oplus (D\mathcal{X}) \subseteq D\mathcal{X},$$

by Propositions 1.7 and 1.8.

Note that, in fact, the proof of Corollary 3.3, gives:

$$D\mathcal{X} = \mathcal{C} \oplus (\mathcal{U} \cap H\mathcal{X}) \oplus (\mathcal{U} \cap \mathcal{J} \cap E\mathcal{X}), \quad (13)$$

for any $\{P, S\}$ -closed class \mathcal{X} of R -modules such that $\mathcal{X} \subseteq \mathcal{U}$. Let $M \in \mathcal{U} \cap \mathcal{J}$. Let V be any uniform submodule of M . Because $M \in \mathcal{J}$, there exists a direct summand K of M such that V is an essential submodule of K . It follows that K is uniform. Thus, by induction on the uniform dimension of M , M is a finite direct sum of uniform submodules. Thus, (13) gives

$$D\mathcal{X} \subseteq \mathcal{C} \oplus (\mathcal{U} \cap H\mathcal{X}) \oplus (F\mathcal{X}), \quad (14)$$

for any $\{P, S\}$ -closed class \mathcal{X} of R -modules such that $\mathcal{X} \subseteq \mathcal{U}$, by Proposition 1.6.

Combining (9), (13), and (14), the above discussion gives, at once, the following theorem which extends [2, Theorems 3.1 and 4.1] and [15, Corollary 2.8].

Theorem 3.4. *For any ring R and ordinal $\alpha \geq 0$,*

$$D\mathcal{N} = \mathcal{C} \oplus \mathcal{N}, \quad D\mathcal{K} = \mathcal{C} \oplus \mathcal{K}, \quad \text{and} \quad D\mathcal{K}_\alpha \subseteq \mathcal{C} \oplus \mathcal{K}_{\alpha+1}.$$

References

[1] F.W. Anderson and K.R. Fuller: Rings and categories of modules, Springer-Verlag, 1974.

- [2] A.W. Chatters: *A characterization of right Noetherian rings*, Quart. J. Math. Oxford (2) **33** (1982), 65–69.
- [3] A.W. Chatters and C.R. Hajarnavis: *Rings in which every complement right ideal is a direct summand*, Quart. J. Math. Oxford (2) **28** (1977), 61–80.
- [4] A.W. Chatters and S.M. Khuri: *Endomorphism rings of modules over non-singular CS rings*, J. London Math. Soc. (2) **21** (1980), 434–444.
- [5] R. Gordon and J.C. Robson: Krull dimension, Amer. Math. Soc. Memoirs 133 (1973).
- [6] M. Harada: *On modules with extending properties*, Osaka J. Math. **19** (1982), 203–215.
- [7] M. Harada and K. Oshiro: *Extending property on direct sum of uniform modules*, Osaka J. Math. **18** (1981), 767–785.
- [8] D. van Huynh and P. Dan: *On rings with restricted minimum condition*, to appear in Archiv der Math.
- [9] M.A. Kamal and B.J. Muller: *Extending modules over commutative domains*, Osaka J. Math. **25** (1988), 531–538.
- [10] M.A. Kamal and B.J. Muller: *The structure of extending modules over Noetherian rings*, Osaka J. Math. **25** (1988), 539–551.
- [11] M.A. Kamal and B.J. Muller: *Torsionfree extending modules*, Osaka J. Math. **25** (1988), 825–832.
- [12] M. Okeda: *On the decomposition of extending modules*, Math. Japonica **29** (1984), 939–941.
- [13] K. Oshiro: *Lifting modules, extending modules and their applications to QF-rings*, Hokkaido Math. J. **13** (1984), 310–338.
- [14] P.F. Smith: *Some rings which are characterised by their finitely generated modules*, Quart. J. Math. Oxford (2) **29** (1978), 101–109.
- [15] P.F. Smith, D. van Huynh and N.V. Dung: *A characterisation of Noetherian modules*, Quart. J. Math. Oxford (2) **41** (1990), 225–235.

Department of Mathematics
 University of Glasgow
 Glasgow G12 8QW
 Scotland UK