

Title	Modules with many direct summands
Author(s)	Smith, Patrick F.
Citation	Osaka Journal of Mathematics. 1990, 27(2), p. 253–264
Version Type	VoR
URL	https://doi.org/10.18910/8417
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Smith, P.F. Osaka J. Math. 27 (1990), 253-264

MODULES WITH MANY DIRECT SUMMANDS

PATRICK F. SMITH

(Received May 30, 1989)

Let R be a ring and \mathfrak{X} a class of right R-modules. Let M be a right R-module such that for every submodule N of M there exists a direct summand K of M such that $N \subseteq K$ and $K/N \in \mathfrak{X}$. The structure of M is investigated in the cases that \mathfrak{X} consists of Noetherian right R-modules, right R-modules with Krull dimension and right R-modules with finite uniform dimension, respectively.

1. Classes of modules

Throughout this note, all rings considered have an identity and all modules are unital right modules. Let R be a ring. By a *class of R-modules* we mean a collection of *R*-modules containing a zero module such that if $M \in \mathcal{X}$ and $M' \simeq M$ then $M' \in \mathcal{X}$. Any member of \mathcal{X} will be called an \mathcal{X} -module. Let

 $0 \to M' \to M \to M'' \to 0$

be an exact sequence of R-modules. A class $\mathfrak X$ of R-modules will be called

S-closed provided $M' \in \mathfrak{X}$ whenever $M \in \mathfrak{X}$, Q-closed provided $M'' \in \mathfrak{X}$ whenever $M \in \mathfrak{X}$, and P-closed provided $M \in \mathfrak{X}$ whenever both $M' \in \mathfrak{X}$ and $M'' \in \mathfrak{X}$.

Moreover, \mathcal{X} is called $\{P, S\}$ -closed provided it is both *P*-closed and *S*-closed, and so on (this terminology is taken from [15]).

Let *n* be a positive integer and $\mathfrak{X}, \mathfrak{Y}, \mathfrak{X}_1, \dots, \mathfrak{X}_n$ classes of *R*-modules. Then $\mathfrak{X}\mathfrak{Y}$ is the class of *R*-modules *M* which contain a submodule *N* such that $N \in \mathfrak{X}$ and $M/N \in \mathfrak{Y}$. In particular \mathfrak{X}^2 will denote $\mathfrak{X}\mathfrak{X}$. Thus \mathfrak{X} is *P*-closed if and only if $\mathfrak{X}^2 = \mathfrak{X}$. Moreover $\mathfrak{X}_1 \oplus \cdots \oplus \mathfrak{X}_n$ is the class of *R*-modules consisting of all *R*-modules $M_1 \oplus \cdots \oplus M_n$, where $M_i \in \mathfrak{X}_i$ $(1 \leq i \leq n)$. In case $\mathfrak{X} = \mathfrak{X}_i$ $(1 \leq i \leq n)$ we shall denote $\mathfrak{X}_1 \oplus \cdots \oplus \mathfrak{X}_n$ by $\mathfrak{X}^{(n)}$. It is clear that

$$\mathfrak{X} \cup \mathfrak{Y} \subseteq \mathfrak{X} \oplus \mathfrak{Y} \subseteq \mathfrak{X} \mathfrak{Y}, \tag{1}$$

for any classes \mathcal{X} and \mathcal{Y} of *R*-modules.

Let \mathfrak{X} be a class of *R*-modules. Then $H\mathfrak{X}$ is the class of *R*-modules *M* such that $M/N \in \mathfrak{X}$ for every submodule *N* of *M*. On the other hand, $E\mathfrak{X}$ is the class of *R*-modules *M* such that $M/N \in \mathfrak{X}$ for every essential submodule *N* of *M*. Moreover, $D\mathfrak{X}$ is the class of *R*-modules *M* such that for each submodule *N* of *M* there exists a direct summand *K* of *M* containing *N* such that $K/N \in \mathfrak{X}$. It is clear that

$$H\mathfrak{X}\subseteq D\mathfrak{X}\subseteq E\mathfrak{X},\tag{2}$$

for any class \mathfrak{X} . Moreover,

$$\mathfrak{X} \cap E \mathfrak{X} = H \mathfrak{X}, \qquad (3)$$

for any $\{P, S\}$ -closed class \mathcal{X} . In order to establish (3) we first recall:

Lemma 1.1. Let R be a ring and N any submodule of an R-module M. Then there exists a submodule K of M such that $N \cap K=0$ and $N \oplus K$ is an essential submodule of M.

Proof. See [1, Proposition 5.21].

Consider (3). Let \mathscr{X} be any $\{P, S\}$ -closed class of R-modules. Note first that, by (2), $H\mathscr{X} \subseteq \mathscr{X} \cap E\mathscr{X}$. Now let $M \in \mathscr{X} \cap E\mathscr{X}$. Let N be any submodule of M. By Lemma 1.1 there exists a submodule N' such that $N \cap N' = 0$ and $N \oplus N'$ is an essential submodule of M. Now $N' \in \mathscr{X}$ (because \mathscr{X} is S-closed) and $M/(N \oplus N') \in \mathscr{X}$ (because $M \in E\mathscr{X}$). Thus $M/N \in \mathscr{X}$, because \mathscr{X} is P-closed. It follows that $M \in H\mathscr{X}$. This proves (3).

In this section we shall investigate further relationships between such classes. First of all we shall give examples to show that (3) fails if \mathcal{X} is not $\{P, S\}$ -closed.

EXAMPLE 1. Let R be a right nonsingular ring which is not semiprime Artinian, and let $\mathcal{I}, \mathcal{I}'$ denote the classes of singular R-modules and nonsingular R-modules, respectively. Let $\mathfrak{X} = \mathcal{I} \cup \mathcal{I}'$. Then \mathfrak{X} is S-closed but not P-closed because if M_1 is a non-zero \mathcal{I} -module and M_2 a non-zero \mathcal{I}' module then $M = M_1 \oplus M_2$ does not belong to \mathfrak{X} . Let M' denote the R-module $R \oplus R$. Then $M' \in \mathfrak{X} \cap E\mathfrak{X}$. Let E be a proper essential right ideal of R and N the submodule $E \oplus 0$ of M'. Then M'/N does not belong to \mathfrak{X} . Thus M'does not belong to $H\mathfrak{X}$.

EXAMPLE 2. Let R be any ring and \mathfrak{X} the class of all R-modules of finite (composition) length n, where n is even. Then \mathfrak{X} is P-closed but not S-closed. Let U be any simple R-module. Then $M = U \oplus U \in \mathfrak{X} \cap E\mathfrak{X}$, but M does not belong to $H\mathfrak{X}$.

For any ring R, it will be convenient to denote the classes of zero R-modules,

semisimple *R*-modules, singular *R*-modules, nonsingular *R*-modules, Noetherian *R*-modules, *R*-modules with Krull dimension, and *R*-modules of finite uniform dimension by $\mathcal{Z}, \mathcal{C}, \mathcal{D}, \mathcal{D}', \mathcal{N}, \mathcal{K}$, and \mathcal{V} , respectively. In addition \mathcal{J} will denote the class of all *R*-modules *M* such that every submodule is an essential submodule of a direct summand of *M*. The class \mathcal{J} has been studied by a number of authors ([3], [4], [6]-[13]). Note that, for any ring *R*,

$$\mathcal{J}\subseteq D\mathcal{I} \quad \text{and} \quad \mathcal{I}' \cap D\mathcal{I}\subseteq \mathcal{J}.$$
 (4)

The first statement is clear. For the second, let $M \in \mathfrak{I}' \cap D\mathfrak{G}$. Let N be a submodule of M. Then there exists a direct summand K of M containing N such that $K/N \in \mathfrak{G}$. If L is a submodule of K and $N \cap L=0$ then L embeds in K/N, so that L is singular and hence L=0. Thus N is essential in K. It follows that M belongs to \mathfrak{G} .

Lemma 1.2. Let R be a ring and \mathfrak{X} any class of R-modules. Then

- (i) $\mathcal{J} \cap E \mathfrak{X} \subseteq D \mathfrak{X}$, and
- (ii) if $M \in D\mathfrak{X}$ and M contains no non-zero submodule in \mathfrak{X} then $M \in \mathcal{J}$.

Proof. (i) Let $M \in \mathcal{J} \cap E \mathfrak{X}$. Let N be any submodule of M. Then there exist submodules K, K' of M such that $M = K \oplus K'$ and N is an essential submodule of K. Then $N \oplus K'$ is an essential submodule of M and hence $K/N \cong M/(N \oplus K') \in \mathfrak{X}$. Thus $M \in D\mathfrak{X}$. (ii) follows by the proof of (4).

For any R-module M, the socle of M will be denoted soc M. Next we note the following well known result.

Lemma 1.3. Let R be a ring and M an R-module. Then

- (a) soc $M = \cap \{N: N \text{ is an essential submodule of } M\}$.
- (b) The following statements are equivalent.
- (i) $M \in \mathcal{C}$ (i.e. M is semisimple).
- (ii) Every submodule of M is a direct summand of M.
- (iii) M is the only essential submodule of M.

Proof. By [1, Theorem 9.6 and Proposition 9.7].

Lemma 1.3 has the following immediate consequence.

Corollary 1.4. For any ring R and class \mathfrak{X} of R-modules, $D\mathfrak{Z} = E\mathfrak{Z} = C \subseteq D\mathfrak{X}$.

The next result generalises [8, Proposition 4.3] where it is proved that if R is a ring such that $R_R \in DC$ (in particular, this implies that R is right Noe-therian by [2, Theorem 3.1]) then any cyclic right R-module belongs to \mathcal{J} . (Note that DC is Q-closed.)

Proposition 1.5. For any ring R, $DC \subseteq \mathcal{G}$.

P.F. SMITH

Proof. Let $M \in DC$. Let N be a submodule of M and let K be a maximal essential extension of N in M. We shall show that K is a direct summand of M. Since $M \in DC$ it follow that there exists a direct summand L of M such that $K \subseteq L$ and $L/K \in C$. There exist an index set Λ and submodules $U_{\lambda}(\lambda \in \Lambda)$ of M, each containing K, such that U_{λ}/K is simple for each λ in Λ and L= $\sum_{\lambda \in \Lambda} U_{\lambda}$. Note that, for each $\lambda \in \Lambda$, K is not essential in U_{λ} and hence there exists a simple submodule V_{λ} of M such that $U_{\lambda} = K \oplus V_{\lambda}$. Let $V = \sum_{\lambda \in \Lambda} V_{\lambda}$. Then L = K + V and V is semisimple. By Lemma 1.3 there exists a submodule W of V such that $V = (K \cap V) \oplus W$, and hence $L = K \oplus W$. Thus K is a direct summand of M. It follows that $M \in \mathcal{J}$.

Combining Lemma 1.2, Proposition 1.5 and (2) we conclude

$$D\mathcal{C} = \mathcal{J} \cap E\mathcal{C}$$

for any ring R. We have already noted that DC is Q-closed. Now we prove:

Proposition 1.6. Let R be a ring and \mathfrak{X} a class of R-modules. Then

(i) HX, EX and DX are all Q-closed, and

(ii) $H \mathfrak{X}$ and $E \mathfrak{X}$ are S-closed provided \mathfrak{X} is S-closed.

Proof. (i) Let $M \in \mathcal{EX}$. Let N be any submodule of M. Let K be any essential submodule of M/N. Then K=L/N for some essential submodule L of M containing N. By hypothesis, $M/L \in \mathcal{X}$, and hence $(M/N)/K \in \mathcal{X}$. It follows that $M/N \in \mathcal{EX}$. Thus \mathcal{EX} is Q-closed. Similarly \mathcal{HX} and \mathcal{DX} are Q-closed.

(ii) Suppose that \mathfrak{X} is S-closed. Let $M \in H\mathfrak{X}$. Let N be a submodule of M. Let K be any submodule of N. Then N/K is a submodule of M/K and $M/K \in \mathfrak{X}$. Thus $N/K \in \mathfrak{X}$. Thus $N/K \in \mathfrak{X}$.

Now suppose $M \in E\mathfrak{X}$. Let N be a submodule of M. Let K be any essential submodule of N. By Lemma 1.1 there exists a submodule L of M such that $K \cap L = 0$ and $K \oplus L$ is an essential submodule of M. Note that K essential in N implies $N \cap L = 0$ and hence $N/K \cong (N \oplus L)/(K \oplus L)$. But $M/(K \oplus L) \in \mathfrak{X}$ and hence so too does $(N \oplus L)/(K \oplus L)$. Thus $N/K \in \mathfrak{X}$. It follows that $N \in E\mathfrak{X}$.

Next we give an example to show that $D\mathcal{X}$ is not S-closed in general.

EXAMPLE 3. Let $R = \mathbb{Z}[x]$. Then \mathcal{D} consists of all torsion R-modules and \mathcal{D} is $\{P, Q, S\}$ -closed. Let $M = R_R$. Then $M \in \mathcal{J} \subseteq D\mathcal{D}$, by (4), but $M \oplus M \notin \mathcal{J}$ (see [4, Example 2.4]). Let E = E(M), the injective hull of M. Then $E \oplus E$ is injective and hence $E \oplus E \in \mathcal{J} \subseteq D\mathcal{D}$. Thus $D\mathcal{D}$ is not S-closed and $D\mathcal{D} \oplus D\mathcal{D} \neq D\mathcal{D}$.

Proposition 1.7. Let R be a ring and \mathfrak{X} any class of R-modules. Then (i) $C \oplus E \mathfrak{X} = E \mathfrak{X}$, and (ii) $\mathcal{C} \oplus D\mathfrak{X} = D\mathfrak{X}$.

Proof. (i) Let $M \in \mathcal{C} \oplus \mathcal{EX}$. Then there exist submodules M_1 , M_2 of M such that $M = M_1 \oplus M_2$, $M_1 \in \mathcal{C}$ and $M_2 \in \mathcal{EX}$. Let N be an essential submodule of M. Since M_1 is semisimple, it follows that $M_1 \subseteq N$ (Lemma 1.3). Thus $N = M_1 \oplus (N \cap M_2)$, and

$$M/N = (M_1 \oplus M_2)/[M_1 \oplus (N \cap M_2)] \simeq M_2/(N \cap M_2)$$

But $N \cap M_2$ is an essential submodule of M_2 and $M_2 \in E\mathfrak{X}$. Thus $M/N \in \mathfrak{X}$. It follows that $M \in E\mathfrak{X}$.

(ii) Let $M \in \mathcal{C} \oplus D\mathfrak{X}$. Then there exist submodules M_1 , M_2 such that $M = M_1 \oplus M_2$, $M_1 \in \mathcal{C}$ and $M_2 \in D\mathfrak{X}$. Let N be any submodule of M. Note that $N + M_2 = [(N + M_2) \cap M_1] \oplus M_2$. Because M_1 is semisimple, it follows that

$$M_1 = [(N + M_2) \cap M_1] \oplus L,$$

for some submodule L of M_1 (Lemma 1.3). Thus $N+M_2$ is a direct summand of M.

Since $M_2 \in D\mathfrak{X}$ it follows that there exist submodules K, K' of M_2 such that $M_2 = K \oplus K', N \cap M_2 \subseteq K$ and $K/(N \cap M_2) \in \mathfrak{X}$. Now $(K+N)/N \cong K/(K \cap N)$, and $K \cap N = K \cap M_2 \cap N = N \cap M_2$. Thus

$$(K+N)/N \in \mathcal{X}. \tag{5}$$

Moreover,

$$\begin{aligned} K' \cap (K+N) &= K' \cap M_2 \cap (K+N) \\ &= K' \cap [K+(N \cap M_2)] = K' \cap K = 0 \,. \end{aligned}$$

Thus $M_2+N=K'\oplus(K+N)$, and hence K+N is a direct summand of M. By (5) it follows that $M \in D\mathfrak{X}$.

Note that $\mathcal{C} \oplus H\mathfrak{X} = H\mathfrak{X}$ implies $\mathcal{C} \subseteq H\mathfrak{X}$ and hence $\mathcal{C} \subseteq \mathfrak{X}$. Thus $\mathcal{C} \oplus H\mathfrak{X} = H\mathfrak{X}$ in general. On the other hand, by (2) and Proposition 1.7,

$$\mathcal{C} \oplus H \mathfrak{X} \subseteq D \mathfrak{X}, \tag{6}$$

for any class \mathcal{X} . We have already seen in Example 3 that $D\mathcal{X} \oplus D\mathcal{X} = D\mathcal{X}$, even when \mathcal{X} is $\{P, Q, S\}$ -closed.

Proposition 1.8. Let R be a ring and \mathcal{X} a P-closed class of R-modules. Then

- (i) $(H\mathfrak{X})\oplus(H\mathfrak{X})=(H\mathfrak{X})^2=H\mathfrak{X},$
- (ii) $(E\mathfrak{X}) \oplus (E\mathfrak{X}) = (E\mathfrak{X})(H\mathfrak{X}) = E\mathfrak{X}$, and
- (iii) $(H\mathfrak{X}) \oplus (D\mathfrak{X}) = (D\mathfrak{X}).$

Proof. (i) By (1), $(H\mathscr{X}) \oplus (H\mathscr{X}) \subseteq (H\mathscr{X})^2$, and $H\mathscr{X} \subseteq (H\mathscr{X}) \oplus (H\mathscr{X})$ is clear. Let $M \in (H\mathscr{X})^2$. Then there exists a submodule N of M such that N

P.F. SMITH

and M/N both belong to $H\mathfrak{X}$. Let K be a submodue of M. Then $(N+K)/K \cong N/(N \cap K) \in \mathfrak{X}$, and $M/(N+K) \in \mathfrak{X}$. Thus M/K belongs to \mathfrak{X} . Thus $M \in H\mathfrak{X}$.

(ii) The proof of $(E\mathfrak{X})(H\mathfrak{X}) = E\mathfrak{X} \subseteq (E\mathfrak{X}) \oplus (E\mathfrak{X})$ is similar to (i). Let $M \in (E\mathfrak{X}) \oplus (E\mathfrak{X})$. Then there exist submodules M_1, M_2 of M such that $M = M_1 \oplus M_2$ and $M_i \in E\mathfrak{X}$ (i=1, 2). Let N be an essential submodule of M. Then $N \cap M_1$ is an essential submodule of M_1 so that $M_1/(N \cap M_1) \in \mathfrak{X}$. Thus $(M_1+N)/N \in \mathfrak{X}$. But $M_1+N=M_1 \oplus [M_1+N) \cap M_2$], so that

$$M/(M_1+N) \cong M_2[(M_1+N) \cap M_2],$$

which belongs to \mathscr{X} since $(M_1+N)\cap M_2$ is an essential submodule of M_2 . Since \mathscr{X} is *P*-closed it follows that $M/N \in \mathscr{X}$. Thus $M \in E\mathscr{X}$.

(iii) Let $M \in (H\mathfrak{X}) \oplus (D\mathfrak{X})$. Then there exist submodules M_1, M_2 of M such that $M = M_1 \oplus M_2, M_1 \in H\mathfrak{X}$ and $M_2 \in D\mathfrak{X}$. Let N be any submodule of M. Then $(M_1+N)/N \cong M_1/(M_1 \cap N) \in \mathfrak{X}$. Moreover $M_1+N=M_1 \oplus [(M_1+N) \cap M_2]$. By hypothesis there exists a direct summand K of M_2 such that $(M_1+N) \cap M_2 \subseteq K$ and $K/[(M_1+N) \cap M_2] \in \mathfrak{X}$. It follows that $M_1 \oplus K$ is a direct summand of M and

$$(M_1 \oplus K)/(M_1 + N) \simeq K/[(M_1 + N) \cap M_2] \in \mathcal{X}.$$

Thus $(M_1 \oplus K)/N \in \mathfrak{X}$. It follows that $M \in D\mathfrak{X}$.

Corollary 1.9. Let R be a ring and \mathfrak{X} a P-closed class of R-modules. Then $E\mathfrak{X}=[\mathcal{C}\oplus(E\mathfrak{X})^{(n)}](H\mathfrak{X})$, for any positive integer n.

Proof. By Propositions 1.7 and 1.8.

Note that

$$\mathcal{C}(H\mathfrak{X}) \subseteq E\mathfrak{X} \tag{7}$$

for any class \mathscr{X} of *R*-modules. For, let $M \in \mathcal{C}(H\mathscr{X})$. Then there exists a submodule *N* of *M* such that $N \in \mathcal{C}$ and $M/N \in H\mathscr{X}$. If *K* is any essential submodule of *M* then $N \subseteq K$ by Lemma 1.3 and hence $M/K \in \mathscr{X}$. It follows that $M \in E\mathscr{X}$. In general, $(E\mathscr{X})^2 \neq E\mathscr{X}$ and $(D\mathscr{X})^2 \neq D\mathscr{X}$. For example, $\mathcal{C}=E\mathscr{Z}=D\mathscr{Z}$ (Corollary 1.4), but $\mathcal{C}^2 \neq \mathcal{C}$ in generall. (Example 3 also shows $(D\mathscr{X})^2 \neq D\mathscr{X}$.)

The next two examples illustrate Proposition 1.8.

EXAMPLE 4. Let R be a ring and n any positive integer. Let \mathcal{X} denote the class of R-modules of finite length at most n. Then \mathcal{X} is $\{S, Q\}$ -closed but not P-closed. Thus $H\mathcal{X}=\mathcal{X}$ and

$$\mathfrak{X} \subset \mathfrak{X} \oplus \mathfrak{X} \subseteq \mathfrak{X}^2$$
 .

258

If $R = \mathbb{Z}$ then $\mathfrak{X} \oplus \mathfrak{X} \neq \mathfrak{X}^2$. Staying with $R = \mathbb{Z}$, note that for any prime $p, A = \mathbb{Z}/\mathbb{Z}_{p^{n+1}} \in E\mathfrak{X}$ so that $A \oplus A \in E\mathfrak{X} \oplus E\mathfrak{X}$ but $A \oplus A \notin E\mathfrak{X}$. Also $B = \mathbb{Z}/\mathbb{Z}_{p^{n+2}} \in (E\mathfrak{X})\mathfrak{X}$, but $B \notin E\mathfrak{X}$.

EXAMPLE 5. Consider the ring Z of rational integers and let \mathcal{I} denote the class of torsion Z-modules. Then $H\mathcal{I}=\mathcal{I}$, and

- (i) $(D\mathcal{G})(H\mathcal{G}) = (D\mathcal{G})\mathcal{G} \subseteq D\mathcal{G}$, and
- (ii) $E\mathcal{I}\subseteq (D\mathcal{I})(H\mathcal{I})=(D\mathcal{I})\mathcal{I}.$

First consider (i). Let M be any Z-module with finite rank. Then there exists a free submodule F of M of finite rank such that $M/F \in \mathcal{I}$. If N is a submodule of F and K/N is the torsion submodule of F/N then F/K is finitely generated torsion free, so free, and hence K is a direct summand of F. Thus $F \in D\mathcal{I}$ and $M \in (D\mathcal{I})\mathcal{I}$. However, in general, $M \notin D\mathcal{I}$; consider M in \mathcal{I}' and use (4) and [9, Theorem 14].

For (ii), let M be any free \mathbb{Z} -module of infinite rank. Then $M \in E\mathfrak{A}$, because any \mathbb{Z} -module belongs to $E\mathfrak{A}$, but $M \notin (D\mathfrak{A})\mathfrak{A}$, by Lemma 1.2 (ii) and [9, Theorem 5].

We complete this section by giving an example to show that $C\mathcal{N} \oplus D\mathcal{N}$, in contrast to (7).

EXAMPLE 6. Let Q, R denote the fields of rational and real numbers, respectively, and let R denote the subring of the ring of all 2×2 real matrices consisting of all matrices of the form

$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$

where $a \in \mathbf{Q}$, $b \in \mathbf{R}$, Then $R_R \in C\mathcal{N}$. However, it can easily be checked that the only idempotents of R are 0, 1, and hence $R_R \notin D\mathcal{N}$.

2. Modules with finite uniform dimension

Let R be a ring. An R-module M has finite uniform (Goldie) dimension provided M does not contain an infinite direct sum of non-zero submodules. The class of all such modules will be denoted \mathcal{U} . It is well known that a module M is a \mathcal{U} -module if and only if there exist a positive integer n and uniform submodules U_i $(1 \le i \le n)$ of M such that $U_1 \oplus \cdots \oplus U_n$ is an essential submodule of M, and in this case n is an invariant of the module called the uniform dimension of M (see, for example, [1, p. 294 ex. 2]). Therefore $\mathcal{U} \oplus \mathcal{U}$ $= \mathcal{U}$, for any ring R. Clearly \mathcal{U} is S-closed. Moreover, \mathcal{U} is P-closed. For, let $M \in \mathcal{U}^2$. Then there exists a submodule N of M such that both N and M/N belong to \mathcal{U} . By Lemma 1.1. there exists a submodule K of M such that $K \cap N=0$ and $N \oplus K$ in an essential submodule of M. Since K is isomorphic P.F. Smith

to a submodule of M/N it follows that $K \in \mathcal{U}$. Thus $N \oplus K \in \mathcal{U} \oplus \mathcal{U} = \mathcal{U}$. It follows that $M \in \mathcal{U}$. Hence \mathcal{U} is *P*-closed.

Theorem 2.1. For any ring R, EU = C(HU).

Proof. By (7), $\mathcal{C}(H\mathcal{Q}) \subseteq E\mathcal{Q}$. Conversely, suppose that $M \in E\mathcal{Q}$. Let N denote the socle of M. Let K be any submodule of M containing N. By Lemma 1.1 there exists a submodule K' of M such that $K \cap K' = 0$ and $K \oplus K'$ is an essential submodule of M. Thus

$$M/(K \oplus K') \in \mathcal{U}, \qquad (8)$$

by hypothesis. Let $L=L_1\oplus L_2\oplus L_3\oplus \cdots$ be a direct sum of non-zero submodules of K'. Since $N\cap K'=0$ it follows that, for each $i \ge 1$, L_i is not semisimple and hence contains a proper essential submodule H_i (Lemma 1.3). Let $H=H_1\oplus H_2\oplus H_3\oplus \cdots$. Then H is an essential submodule of L and

$$L/H \simeq (L_1/H_1) \oplus (L_2/H_2) \oplus (L_3/H_3) \oplus \cdots$$

is an infinite direct sum of non-zero submodules. But the submodule L of M belongs to $E\mathcal{U}$, by Proposition 1.6, a contradiction. Thus $K' \in \mathcal{U}$. Since \mathcal{U} is *P*-closed it follows, by (8), that $M/K \in \mathcal{U}$. Thus M/N belongs to $H\mathcal{U}$. Hence $M \in \mathcal{C}(H\mathcal{U})$.

Let \mathfrak{X} be a class of *R*-modules such that $\mathfrak{X} \subseteq \mathcal{U}$. Then $F\mathfrak{X}$ will denote the class consisting of all \mathfrak{Z} -modules together with all *R*-modules *M* such that there exist a positive integer *n* and uniform submodules U_i $(1 \leq i \leq n)$ of *M* with $M = U_1 \oplus \cdots \oplus U_n$ and $U_i \in E\mathfrak{X}$ $(1 \leq i \leq n)$. Note that a uniform module $U \in E\mathfrak{X}$ if and only if $U/V \in \mathfrak{X}$ for all non-zero submodules *V* of *U*. Note that

$$F\mathcal{N}\subseteq\mathcal{N}$$
 and $F\mathcal{K}\subseteq\mathcal{K}$, (9)

for any ring R. For any ordinal $\alpha \ge 0$, let \mathcal{K}_{α} denote the class of all R-modules with Krull dimension at most α . Then $F\mathcal{K}_{\alpha}\subseteq \mathcal{K}_{\alpha+1}$, and a module $M \in F\mathcal{K}_{\alpha}$ if and only if M is a direct sum of \mathcal{K}_{α} -submodules and $(\alpha+1)$ -critical submodules (see [5]). Note that if \mathcal{X} is a P-closed class of R-modules then

$$(\mathcal{C} \oplus F\mathfrak{X})(H\mathfrak{X}) \subseteq E\mathfrak{X}, \tag{10}$$

by Corollary 1.9.

Corollary 2.2. Let R be a ring and \mathfrak{X} an S-closed class of R-modules such that $\mathfrak{X} \subseteq \mathfrak{V}$. Then $E\mathfrak{X} \subseteq [C \oplus F\mathfrak{X}](H\mathfrak{X})$.

Proof. Let $M \in E\mathcal{X}$. Then $M \in E\mathcal{U}$. By the theorem there exists a submodule N of M such that $N \in \mathcal{C}$ and $M/N \in \mathcal{U}$. By Lemma 1.1 there exists a submodule K of M such that $N \cap K = 0$ and $N \oplus K$ is an essential submodule

260

of M. By [1, p. 294 ex. 2], there exist a positive integer n and uniform submodules U_i $(1 \le i \le n)$ of K such that $U = U_1 \oplus \cdots \oplus U_n$ is an essential submodule of K. By Proposition 1.6, $U_i \in E\mathcal{X}$ $(1 \le i \le n)$ and hence $U \in F\mathcal{X}$. Finally $N \oplus U$ is an essential submodule of M and hence $M/(N \oplus U) \in H\mathcal{X}$.

Note that if \mathfrak{X} is a $\{P, S\}$ -closed class of *R*-modules, such that $\mathfrak{X} \subseteq \mathcal{O}$, then

$$E\mathfrak{X} = (\mathcal{C} \oplus F\mathfrak{X})(H\mathfrak{X}) \tag{11}$$

by (10) and Corollary 2.2. Now suppose further that $F \mathcal{X} \subseteq H \mathcal{X} = \mathcal{X}$ (for example this happens when $\mathcal{X} = \mathcal{N}$ or \mathcal{K}). Then

$$\mathcal{CX} \subseteq (\mathcal{C} \oplus F\mathcal{X})(H\mathcal{X}) \subseteq (\mathcal{C} \oplus \mathcal{X})\mathcal{X} \subseteq \mathcal{CX}^2 = \mathcal{CX}$$

and hence $E \mathcal{X} = C \mathcal{X}$.

Corollary 2.3. For any ring R and ordinal $\alpha \ge 0$,

$$E\mathcal{N} = \mathcal{C}\mathcal{N}, \quad E\mathcal{K} = \mathcal{C}\mathcal{K} \quad and \quad E\mathcal{K}_{a} \subseteq \mathcal{C}\mathcal{K}_{a+1},$$

Proof. $E\mathcal{N}=C\mathcal{N}$ and $E\mathcal{K}=C\mathcal{K}$ by the above argument. Moreover, by (11),

$$E\mathcal{K}_{\boldsymbol{\alpha}} = (\mathcal{C} \oplus F\mathcal{K}_{\boldsymbol{\alpha}})(H\mathcal{K}_{\boldsymbol{\alpha}}) = (\mathcal{C} \oplus F\mathcal{K}_{\boldsymbol{\alpha}})\mathcal{K}_{\boldsymbol{\alpha}}$$
$$\subseteq (\mathcal{C} \oplus \mathcal{K}_{\boldsymbol{\alpha}+1})\mathcal{K}_{\boldsymbol{\alpha}} \subseteq \mathcal{C}(\mathcal{K}_{\boldsymbol{\alpha}+1})^2 = \mathcal{C}\mathcal{K}_{\boldsymbol{\alpha}+1} \,.$$

3. DU-modules

The main result of this section is the following theorem.

Theorem 3.1. For any ring R, $DU = C \oplus HU$.

In order to prove this result we first establish:

Lemma 3.2. Let $M \in DU$. Then $M \in U$ if and only if the socle of M is contained in a finitely generated submodule of M.

Proof. Let $S=\operatorname{soc} M$, the socle of M. If $M \in \mathcal{V}$ then S is itself finitely generated. Conversely, suppose S is contained in a finitely generated submodule N of M. By (2) and the proof of Theorem 2.1, $M/S \in \mathcal{V}$. We shall prove that $M \in \mathcal{V}$ by induction on the uniform dimension n of M/S. If n=0then M=S and M is finitely generated, so that $M \in \mathcal{V}$. Suppose n>0. Suppose M is not a \mathcal{V} -module. Then S is not finitely generated. There exist non-finitely generated submodules S_1, S_2 of S such that $S=S_1\oplus S_2$. Since M is a $D\mathcal{V}$ -module it follows that there exist submodules M_1, M_2 of M such that $M=M_1\oplus M_2, S_1\subseteq M_1$ and M_1/S_1 belongs to \mathcal{V} . Note that soc $M_1=S_1\oplus S'$ for some submodule S' of M_1 . Since S' can be embedded in M_1/S_1 it follows that P.F. SMITH

 $S' \in \mathcal{O}$ and hence S' is finitely generated. Now

 $S_1 \oplus S_2 = \operatorname{soc} M = \operatorname{soc} M_1 \oplus \operatorname{soc} M_2 = S_1 \oplus S' \oplus \operatorname{soc} M_2$,

and this implies $S_2 \cong S' \oplus \text{soc } M_2$. Thus $S' \oplus \text{soc } M_2$, and hence soc M_2 , is not finitely generated.

Thus $M = M_1 \oplus M_2$ and soc M_i is not finitely generated for i=1, 2. Note that

$$M/S \simeq [M_1/(\operatorname{soc} M_1)] \oplus [M_2/(\operatorname{soc} M_2)].$$

If $M_1 = \operatorname{soc} M_1$ then $M_1 \subseteq N$ and hence $N = M_1 \oplus (N \cap M_2)$. It follows that M_1 , and hence $\operatorname{soc} M_1$, is finitely generated. Thus $M_1 \neq \operatorname{soc} M_1$, and similarly $M_2 \neq$ $\operatorname{soc} M_2$. Therefore the modules $M_1/(\operatorname{soc} M_1)$ and $M_2/(\operatorname{soc} M_2)$ have smaller uniform dimensions than M/S. By induction on the uniform dimension of M/Sit follows that $M_1 \in \mathcal{V}$ and $M_2 \in \mathcal{V}$. Thus $M \in \mathcal{V}$, a contradiction. Thus $M \in \mathcal{V}$, as required.

Proof of Theorem 3.1. By (6), $C \oplus H \mathcal{U} \subseteq D\mathcal{U}$. Conversely, suppose that $M \in D\mathcal{U}$. By (2) and the proof of Theorem 2.1, $M/S \in \mathcal{U}$, where $S = \operatorname{soc} M$. We shall prove that M belongs to $C \oplus H \mathcal{U}$ by induction on the uniform dimension n of M/S. If n=0 then $M=S \in C \subseteq C \oplus H\mathcal{U}$. Suppose n>0. Suppose M does not belong to $C \oplus H\mathcal{U}$.

Suppose $M = M_1 \oplus M_2$ for some submodules M_1 , M_2 of M. Then $S = (\text{soc } M_1) \oplus (\text{soc } M_2)$, so that

$$M/S \simeq [M_1/(\operatorname{soc} M_1)] \oplus [M_2/(\operatorname{soc} M_2)]$$

If $M_1 \pm \operatorname{soc} M_1$ and $M_2 \pm \operatorname{soc} M_2$ then both $M_1/(\operatorname{soc} M_1)$ and $M_2/(\operatorname{soc} M_2)$ have smaller uniform dimensions than M/S, so that both M_1 and M_2 belong to $\mathcal{C} \oplus$ $H\mathcal{V}$, and in this case $M \in \mathcal{C} \oplus H\mathcal{V}$. Thus $M_1 = \operatorname{soc} M_1 \in \mathcal{C}$ or $M_2 = \operatorname{soc} M_2 \in \mathcal{C}$.

Because $M \neq S$ there exists $m \in M$, $m \notin S$. By hypothesis, there exist submodules M_1 , M_2 of M such that $M = M_1 \oplus M_2$, $mR \subseteq M_1$ and $M_1/mR \in \mathcal{V}$. By the argument in the previous paragraph it follows that $M_2 \in \mathcal{C}$. Let $S_1 = \operatorname{soc} M_1$. Then $S_1 = (S_1 \cap mR) \oplus S'$ for some submodule S' of M_1 . Now $S' \cong (S_1 + mR)/mR$, a submodule of M_1/mR , so that $S' \in \mathcal{V}$ and hence S' is finitely generated. Thus $S_1 \subseteq mR + S'$, a finitely generated submodule of M_1 . By Proposition 1.6 and Lemma 3.2 it follows that $M_1 \in \mathcal{V}$. Now $M_1 \in \mathcal{V} \cap E\mathcal{V} = H\mathcal{V}$ by (3). Hence $M = M_1 \oplus M_2 \in \mathcal{C} \oplus H\mathcal{V}$, a contradiction. Thus $M \in \mathcal{C} \oplus H\mathcal{V}$.

Corollary 3.3. Let R be a ring and \mathfrak{X} a $\{P, S\}$ -closed class of R-modules contained in U. Then $D\mathfrak{X}=C\oplus(H\mathfrak{X})\oplus(\mathcal{J}\cap E\mathfrak{X})$.

Proof. Let $M \in D\mathcal{X}$. In particular, this means that $M \in D\mathcal{U}$, so that $M \in C \oplus \mathcal{U}$, by Theorem 3.1. Thus we can suppose, without loss of generality,

262

that $M \in \mathcal{U}$. We claim that

$$M \in (H\mathfrak{X}) \oplus (\mathcal{J} \cap E\mathfrak{X}) . \tag{12}$$

We shall prove (12) by induction on the uniform dimension of M. Suppose first that there exists a non-zero submodule N of M such that $N \in \mathcal{X}$. By hypothesis, there exist submodules K, K' of M such that $M = K \oplus K', N \subseteq K$ and $K/N \in \mathcal{X}$. Since \mathcal{X} is *P*-closed it follows that $K \in \mathcal{X}$. By Proposition 1.6, K and K' both belong to $D\mathcal{X}$. By (2) and (3), $K \in H\mathcal{X}$. Moreover, K' has smaller uniform dimension than M so that, by induction, $K' \in (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X})$. It follows that $M \in (H\mathcal{X}) \oplus (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X}) = (H\mathcal{X}) \oplus (\mathcal{J} \cap E\mathcal{X})$, by Proposition 1.8. Now suppose that M does not contain any non-zero submodule in \mathcal{X} . By (2) and Lemma 1.2, $M \in \mathcal{J} \cap E\mathcal{X}$. This proves (12).

Conversely, note that $\mathcal{J} \cap E \mathfrak{X} \subseteq D \mathfrak{X}$, by Lemma 1.2, and hence

$$\mathcal{C} \oplus (H\mathfrak{X}) \oplus (\mathcal{J} \cap E\mathfrak{X}) \subseteq \mathcal{C} \oplus (H\mathfrak{X}) \oplus (D\mathfrak{X}) \subseteq \mathcal{C} \oplus (D\mathfrak{X}) \subseteq D\mathfrak{X}$$

by Propositions 1.7 and 1.8.

Note that, in fact, the proof of Corollary 3.3, gives:

$$D\mathfrak{X} = \mathcal{C} \oplus (\mathcal{U} \cap H\mathfrak{X}) \oplus (\mathcal{U} \cap \mathcal{J} \cap E\mathfrak{X}), \qquad (13)$$

for any $\{P, S\}$ -closed class \mathcal{X} of R-modules such that $\mathcal{X} \subseteq \mathcal{Y}$. Let $M \in \mathcal{Y} \cap \mathcal{J}$. Let V be any uniform submodule of M. Because $M \in \mathcal{J}$, there exists a direct summand K of M such that V is an essential submodule of K. It follows that K is uniform. Thus, by induction on the uniform dimension of M, M is a finite direct sum of uniform submodules. Thus, (13) gives

$$D\mathfrak{X} \subseteq \mathcal{C} \oplus (\mathcal{U} \cap H\mathfrak{X}) \oplus (F\mathfrak{X}), \qquad (14)$$

for any $\{P, S\}$ -closed class \mathcal{X} of *R*-modules such that $\mathcal{X} \subseteq \mathcal{U}$, by Proposition 1.6.

Combining (9), (13), and (14), the above discussion gives, at once, the following theorem which extends [2, Theorems 3.1 and 4.1] and [15, Corollary 2.8].

Theorem 3.4. For any ring R and ordinal $\alpha \ge 0$,

 $D\mathcal{N} = \mathcal{C} \oplus \mathcal{N}$, $D\mathcal{K} = \mathcal{C} \oplus \mathcal{K}$, and $D\mathcal{K}_{\alpha} \subseteq \mathcal{C} \oplus \mathcal{K}_{\alpha+1}$.

References

 F.W. Anderson and K.R. Fuller: Rings and categories of modules, Springer-Verlag, 1974.

P.F. Smith

- [2] A.W. Chatters: A characterization of right Noetherian rings, Quart. J. Math. Oxford (2) 33 (1982), 65-69.
- [3] A.W. Chatters and C.R. Hajarnavis: Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford (2) 28 (1977), 61-80.
- [4] A.W. Chatters and S.M. Khuri: Endomorphism rings of modules over non-singular CS rings, J. London Math. Soc. (2) 21 (1980), 434-444.
- [5] R. Gordon and J.C. Robson: Krull dimension, Amer. Math. Soc. Memoirs 133 (1973).
- [6] M. Harada: On modules with extending properties, Osaka J. Math. 19 (1982), 203-215.
- [7] M. Harada and K. Oshiro: Extending property on direct sum of uniform modules, Osaka J. Math. 18 (1981), 767-785.
- [8] D. van Huynh and P. Dan: On rings with restricted minimum condition, to appear in Archiv der Math.
- M.A. Kamal and B.J. Muller: Extending modules over commutative domains, Osaka J. Math. 25 (1988), 531-538.
- [10] M.A. Kamal and B.J. Muller: The structure of extending modules over Noetherian rings, Osaka J. Math. 25 (1988), 539-551.
- [11] M.A. Kamal and B.J. Muller: Torsionfree extending modules, Osaka J. Math. 25 (1988), 825-832.
- [12] M. Okeda: On the decomposition of extending modules, Math. Japonica 29 (1984), 939-941.
- K. Oshiro: Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310-338.
- [14] P.F. Smith: Some rings which are characterised by their finitely generated modules, Quart. J. Math. Oxford (2) 29 (1978), 101-109.
- [15] P.F. Smith, D. van Huynh and N.V. Dung: A characterisation of Noetherian modules, Quart. J. Math. Oxford (2) 41 (1990), 225-235.

Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland UK