Osaka University Knowledge Archive

Title	Modules with many direct summands
Author(s)	Smith, Patrick F.
Citation	0saka Journal of Mathematics. 1990, 27(2), p. 253-264
Version Type	VoR
URL	https://doi.org/10.18910/8417
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

MODULES WITH MANY DIRECT SUMMANDS

Patrick F. SMITH

(Received May 30, 1989)

Let R be a ring and \mathscr{X} a class of right R-modules. Let M be a right R module such that for every submodule N of M there exists a direct summand K of M such that $N \subseteq K$ and $K / N \in \mathscr{X}$. The structure of M is investigated in the cases that \mathfrak{X} consists of Noetherian right R-modules, right R-modules with Krull dimension and right R-modules with finite uniform dimension, respectively.

1. Classes of modules

Throughout this note, all rings considered have an identity and all modules are unital right modules. Let R be a ring. By a class of R-modules we mean a collection of R-modules containing a zero module such that if $M \in \mathscr{X}$ and $M^{\prime} \cong M$ then $M^{\prime} \in \mathscr{X}$. Any member of \mathfrak{X} will be called an \mathfrak{X}-module. Let

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

be an exact sequence of R-modules. A class \mathfrak{X} of R-modules will be called
S-closed provided $M^{\prime} \in \mathfrak{X}$ whenever $M \in \mathfrak{X}$,
Q-closed provided $M^{\prime \prime} \in \mathscr{X}$ whenever $M \in \mathscr{X}$, and
P-closed provided $M \in \mathscr{X}$ whenever both $M^{\prime} \in \mathscr{X}$ and $M^{\prime \prime} \in \mathscr{X}$.
Moreover, \mathfrak{X} is called $\{P, S\}$-closed provided it is both P-closed and S-closed, and so on (this terminology is taken from [15]).

Let n be a positive integer and $\mathfrak{X}, \mathscr{Z}, \mathfrak{X}_{1}, \cdots, \mathscr{X}_{n}$ classes of R-modules. Then $\mathfrak{X Y}$ is the class of R-modules M which contain a submodule N such that $N \in \mathscr{X}$ and $M / N \in \mathscr{Z}$. In particular \mathscr{X}^{2} will denote $\mathfrak{X X}$. Thus \mathfrak{X} is P-closed if and only if $\mathfrak{X}^{2}=\mathfrak{X}$. Moreover $\mathscr{X}_{1} \oplus \cdots \oplus \mathfrak{X}_{n}$ is the class of R-modules consisting of all R-modules $M_{1} \oplus \cdots \oplus M_{n}$, where $M_{i} \in \mathfrak{X}_{i}(1 \leqslant i \leqslant n)$. In case $\mathfrak{X}=$ $\mathscr{X}_{i}(1 \leqslant i \leqslant n)$ we shall denote $\mathscr{X}_{1} \oplus \cdots \oplus \mathscr{X}_{n}$ by $\mathscr{X}^{(n)}$. It is clear that

$$
\begin{equation*}
\mathfrak{X \cup} \cup \mathscr{X} \subseteq \mathscr{X} \oplus \mathscr{\mathscr { Y }} \tag{1}
\end{equation*}
$$

for any classes \mathscr{X} and \mathscr{Y} of R-modules.

Let \mathfrak{X} be a class of R-modules. Then $H \mathscr{X}$ is the class of R-modules M such that $M / N \in \mathfrak{X}$ for every submodule N of M. On the other hand, $E \mathscr{X}$ is the class of R-modules M such that $M / N \in \mathscr{X}$ for every essential submodule N of M. Moreover, $D \mathfrak{X}$ is the class of R-modules M such that for each submodule N of M there exists a direct summand K of M containing N such that $K / N \in \mathscr{X}$. It is clear that

$$
\begin{equation*}
H \mathscr{X} \subseteq D \mathscr{X} \subseteq E X, \tag{2}
\end{equation*}
$$

for any class \mathfrak{X}. Moreover,

$$
\begin{equation*}
\mathscr{X} \cap E \mathscr{X}=H \mathscr{X}, \tag{3}
\end{equation*}
$$

for any $\{P, S\}$-closed class \mathscr{X}. In order to establish (3) we first recall:
Lemma 1.1. Let R be a ring and N any submodule of an R-module M. Then there exists a submodule K of M such that $N \cap K=0$ and $N \oplus K$ is an essential submodule of M.

Proof. See [1, Proposition 5.21].
Consider (3). Let \mathfrak{X} be any $\{P, S\}$-closed class of R-modules. Note first that, by (2), $H \mathscr{X} \subseteq \mathscr{X} \cap E \mathscr{X}$. Now let $M \in \mathscr{X} \cap E \mathscr{X}$. Let N be any submodule of M. By Lemma 1.1 there exists a submodule N^{\prime} such that $N \cap N^{\prime}=0$ and $N \oplus N^{\prime}$ is an essential submodule of M. Now $N^{\prime} \in \mathscr{X}$ (because \mathfrak{X} is S-closed) and $M /\left(N \oplus N^{\prime}\right) \in \mathscr{X}$ (because $M \in E \mathscr{X}$). Thus $M / N \in \mathscr{X}$, because \mathscr{X} is P closed. It follows that $M \in H \mathscr{X}$. This proves (3).

In this section we shall investigate further relationships between such classes. First of all we shall give examples to show that (3) fails if \mathfrak{X} is not $\{P, S\}$ closed.

Example 1. Let R be a right nonsingular ring which is not semiprime Artinian, and let $\mathscr{I}, \mathcal{I}^{\prime}$ denote the classes of singular R-modules and nonsingular R-modules, respectively. Let $\mathscr{X}=\mathscr{I} \cup \mathscr{I}^{\prime}$. Then \mathfrak{X} is S-closed but not P-closed because if M_{1} is a non-zero \mathcal{I}-module and M_{2} a non-zero \mathfrak{I}^{\prime} module then $M=M_{1} \oplus M_{2}$ does not belong to \mathfrak{X}. Let M^{\prime} denote the R-module $R \oplus R$. Then $M^{\prime} \in \mathscr{X} \cap E \mathscr{X}$. Let E be a proper essential right ideal of R and N the submodule $E \oplus 0$ of M^{\prime}. Then $M^{\prime} \mid N$ does not belong to \mathscr{X}. Thus M^{\prime} does not belong to $H \mathscr{X}$.

Example 2. Let R be any ring and \mathfrak{X} the class of all R-modules of finite (composition) length n, where n is even. Then \mathfrak{X} is P-closed but not S-closed. Let U be any simple R-module. Then $M=U \oplus U \in \mathscr{X} \cap E \mathscr{X}$, but M does not belong to $H \mathscr{X}$.

For any ring R, it will be convenient to denote the classes of zero R-modules,
semisimple R-modules, singular R-modules, nonsingular R-modules, Noetherian R-modules, R-modules with Krull dimension, and R-modules of finite uniform dimension by $\mathscr{L}, \mathcal{C}, \mathcal{I}, \mathscr{I}^{\prime}, \mathfrak{N}, \mathcal{K}$, and \mathcal{G}, respectively. In addition \mathcal{G} will denote the class of all R-modules M such that every submodule is an essential submodule of a direct summand of M. The class g has been studied by a number of authors ([3], [4], [6]-[13]). Note that, for any ring R,

$$
\begin{equation*}
\mathscr{G} \subseteq D \mathscr{I} \text { and } \mathscr{I}^{\prime} \cap D \mathscr{I} \subseteq \mathcal{G} \tag{4}
\end{equation*}
$$

The first statement is clear. For the second, let $M \in \mathscr{I}^{\prime} \cap D \mathscr{Q}$. Let N be a submodule of M. Then there exists a direct summand K of M containing N such that $K / N \in \mathscr{I}$. If L is a submodule of K and $N \cap L=0$ then L embeds in K / N, so that L is singular and hence $L=0$. Thus N is essential in K. It follows that M belongs to g.

Lemma 1.2. Let R be a ring and \mathfrak{X} any class of R-modules. Then
(i) $\mathcal{G} \cap E X \subseteq D X$, and
(ii) if $M \in D \mathfrak{X}$ and M contains no non-zero submodule in \mathfrak{X} then $M \in \mathcal{G}$.

Proof. (i) Let $M \in \mathscr{G} \cap E \mathscr{X}$. Let N be any submodule of M. Then there exist submodules K, K^{\prime} of M such that $M=K \oplus K^{\prime}$ and N is an essential submodule of K. Then $N \oplus K^{\prime}$ is an essential submodule of M and hence $K / N \cong M /\left(N \oplus K^{\prime}\right) \in \mathfrak{X}$. Thus $M \in D \mathscr{X}$. (ii) follows by the proof of (4).

For any R-module M, the socle of M will be denoted soc M. Next we note the following well known result.

Lemma 1.3. Let R be a ring and M an R-module. Then
(a) $\operatorname{soc} M=\cap\{N: N$ is an essential submodule of $M\}$.
(b) The following statements are equivalent.
(i) $M \in \mathcal{C}$ (i.e. M is semisimple).
(ii) Every submodule of M is a direct summand of M.
(iii) M is the only essential submodule of M.

Proof. By [1, Theorem 9.6 and Proposition 9.7].
Lemma 1.3 has the following immediate consequence.
Corollary 1.4. For any ring R and class \mathscr{X} of R-modules, $D \mathscr{Z}=E \mathscr{Z}=$ $\mathcal{C} \subseteq D \mathscr{X}$.

The next result generalises [8, Proposition 4.3] where it is proved that if R is a ring such that $R_{R} \in D C$ (in particular, this implies that R is right Noetherian by [2, Theorem 3.1]) then any cyclic right R-module belongs to \mathcal{G}. (Note that $D \mathcal{C}$ is Q-closed.)

Proposition 1.5. For any ring $R, D \mathcal{C} \subseteq \mathcal{g}$.

Proof. Let $M \in D C$. Let N be a submodule of M and let K be a maximal essential extension of N in M. We shall show that K is a direct summand of M. Since $M \in D \mathcal{C}$ it follow that there exists a direct summand L of M such that $K \subseteq L$ and $L / K \in \mathcal{C}$. There exist an index set Λ and submodules $U_{\lambda}(\lambda \in \Lambda)$ of M, each containing K, such that U_{λ} / K is simple for each λ in Λ and $L=$ $\sum_{\lambda \in \Lambda} U_{\lambda}$. Note that, for each $\lambda \in \Lambda, K$ is not essential in U_{λ} and hence there exists a simple submodule V_{λ} of M such that $U_{\lambda}=K \oplus V_{\lambda}$. Let $V=\sum_{\lambda \in \Delta} V_{\lambda}$. Then $L=K+V$ and V is semisimple. By Lemma 1.3 there exists a submodule W of V such that $V=(K \cap V) \oplus W$, and hence $L=K \oplus W$. Thus K is a direct summand of M. It follows that $M \in \mathcal{g}$.

Combining Lemma 1.2, Proposition 1.5 and (2) we conclude

$$
D C=g \cap E C,
$$

for any ring R. We have already noted that $D \mathcal{C}$ is Q-closed. Now we prove:
Proposition 1.6. Let R be a ring and \mathfrak{X} a class of R-modules. Then
(i) $H \mathscr{X}, E \mathscr{X}$ and $D \mathscr{X}$ are all Q-closed, and
(ii) $H \mathscr{X}$ and $E \mathscr{X}$ are S-closed provided \mathfrak{X} is S-closed.

Proof. (i) Let $M \in E \mathscr{X}$. Let N be any submodule of M. Let K be any essential submodule of M / N. Then $K=L / N$ for some essential submodule L of M containing N. By hypothesis, $M / L \in \mathfrak{X}$, and hence $(M / N) / K \in \mathscr{X}$. It follows that $M \mid N \in E X$. Thus $E X$ is Q-closed. Similarly $H \mathscr{X}$ and $D \mathscr{X}$ are Q-closed.
(ii) Suppose that \mathfrak{X} is S-closed. Let $M \in H \mathscr{X}$. Let N be a submodule of M. Let K be any submodule of N. Then N / K is a submodule of M / K and $M / K \in \mathscr{X}$. Thus $N / K \in \mathscr{X}$. Thus $N \in H \mathscr{X}$.

Now suppose $M \in E \mathscr{X}$. Let N be a submodule of M. Let K be any essential submodule of N. By Lemma 1.1 there exists a submodule L of M such that $K \cap L=0$ and $K \oplus L$ is an essential submodule of M. Note that K essential in N implies $N \cap L=0$ and hence $N / K \cong(N \oplus L) /(K \oplus L)$. But $M /(K \oplus L) \in \mathscr{X}$ and hence so too does $(N \oplus L) /(K \oplus L)$. Thus $N / K \in \mathscr{X}$. It follows that $N \in E \mathscr{X}$.

Next we give an example to show that $D \mathscr{X}$ is not S-closed in general.
Example 3. Let $R=\boldsymbol{Z}[x]$. Then \mathscr{I} consists of all torsion R-modules and \mathscr{I} is $\{P, Q, S\}$-closed. Let $M=R_{R}$. Then $M \in \mathcal{G} \subseteq D \mathcal{I}$, by (4), but $M \oplus M \notin \mathcal{G}$ (see [4, Example 2.4]). Let $E=E(M)$, the injective hull of M. Then $E \oplus E$ is injective and hence $E \oplus E \in \mathcal{G} \subseteq D \mathcal{I}$. Thus $D \mathscr{I}$ is not S-closed and $D \mathscr{I} \oplus D \mathscr{I} \neq D \mathscr{I}$.

Proposition 1.7. Let R be a ring and \mathfrak{X} any class of R-modules. Then (i) $\mathcal{C} \oplus E \mathscr{X}=E \mathfrak{X}$, and
(ii) $\mathcal{C} \oplus D \mathscr{X}=D \mathfrak{X}$.

Proof. (i) Let $M \in \mathcal{C} \oplus E X$. Then there exist submodules M_{1}, M_{2} of M such that $M=M_{1} \oplus M_{2}, M_{1} \in \mathcal{C}$ and $M_{2} \in E X$. Let N be an essential submodule of M. Since M_{1} is semisimple, it follows that $M_{1} \subseteq N$ (Lemma 1.3). Thus $N=M_{1} \oplus\left(N \cap M_{2}\right)$, and

$$
M / N=\left(M_{1} \oplus M_{2}\right) /\left[M_{1} \oplus\left(N \cap M_{2}\right)\right] \cong M_{2} /\left(N \cap M_{2}\right) .
$$

But $N \cap M_{2}$ is an essential submodule of M_{2} and $M_{2} \in E \mathscr{X}$. Thus $M / N \in \mathscr{X}$. It follows that $M \in E \mathscr{X}$.
(ii) Let $M \in \mathcal{C} \oplus D X$. Then there exist submodules M_{1}, M_{2} such that $M=M_{1} \oplus M_{2}, M_{1} \in \mathcal{C}$ and $M_{2} \in D \mathscr{X}$. Let N be any submodule of M. Note that $N+M_{2}=\left[\left(N+M_{2}\right) \cap M_{1}\right] \oplus M_{2}$. Because M_{1} is semisimple, it follows that

$$
M_{1}=\left[\left(N+M_{2}\right) \cap M_{1}\right] \oplus L,
$$

for some submodule L of M_{1} (Lemma 1.3). Thus $N+M_{2}$ is a direct summand of M.

Since $M_{2} \in D X$ it follows that there exist submodules K, K^{\prime} of M_{2} such that $M_{2}=K \oplus K^{\prime}, N \cap M_{2} \subseteq K$ and $K /\left(N \cap M_{2}\right) \in \mathscr{X}$. Now $(K+N) / N \cong$ $K /(K \cap N)$, and $K \cap N=K \cap M_{2} \cap N=N \cap M_{2}$. Thus

$$
\begin{equation*}
(K+N) / N \in \mathscr{X} \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
K^{\prime} \cap(K+N) & =K^{\prime} \cap M_{2} \cap(K+N) \\
& =K^{\prime} \cap\left[K+\left(N \cap M_{2}\right)\right]=K^{\prime} \cap K=0
\end{aligned}
$$

Thus $M_{2}+N=K^{\prime} \oplus(K+N)$, and hence $K+N$ is a direct summand of M. By (5) it follows that $M \in D X$.

Note that $\mathcal{C} \oplus H \mathscr{X}=H \mathscr{X}$ implies $\mathcal{C} \subseteq H \mathscr{X}$ and hence $\mathcal{C} \subseteq \mathscr{X}$. Thus $\mathcal{C} \oplus$ $H \mathscr{X} \neq H \mathscr{X}$ in general. On the other hand, by (2) and Proposition 1.7,

$$
\begin{equation*}
\mathcal{C} \oplus H \mathscr{X} \subseteq D \mathscr{X}, \tag{6}
\end{equation*}
$$

for any class \mathfrak{X}. We have already seen in Example 3 that $D \mathscr{X} \oplus D \mathscr{X} \neq D \mathscr{X}$, even when \mathscr{X} is $\{P, Q, S\}$-closed.

Proposition 1.8. Let R be a ring and \mathfrak{X} a P-closed class of R-modules. Then
(i) $(H \mathfrak{X}) \oplus(H \mathfrak{X})=(H \mathfrak{X})^{2}=H \mathfrak{X}$,
(ii) $(E \mathscr{X}) \oplus(E X)=(E X)(H \mathfrak{X})=E X$, and
(iii) $(H \mathfrak{X}) \oplus(D \mathfrak{X})=(D \mathfrak{X})$.

Proof. (i) By (1), $(H \mathfrak{X}) \oplus(H \mathfrak{X}) \subseteq(H \mathfrak{X})^{2}$, and $H \mathscr{X} \subseteq(H \mathfrak{X}) \oplus(H \mathfrak{X})$ is clear. Let $M \in(H X)^{2}$. Then there exists a submodule N of M such that N
and M / N both belong to $H \mathscr{X}$. Let K be a submodue of M. Then $(N+K) / K$ $\cong N /(N \cap K) \in \mathscr{X}$, and $M /(N+K) \in \mathscr{X}$. Thus M / K belongs to \mathfrak{X}. Thus $M \in H \mathscr{X}$.
(ii) The proof of $(E \mathscr{X})(H \mathfrak{X})=E \mathfrak{X} \subseteq(E \mathscr{X}) \oplus(E \mathscr{X})$ is similar to (i). Let $M \in(E \mathscr{X}) \oplus(E \mathscr{X})$. Then there exist submodules M_{1}, M_{2} of M such that $M=M_{1} \oplus M_{2}$ and $M_{i} \in E \mathscr{X}(\mathrm{i}=1,2)$. Let N be an essential submodule of M. Then $N \cap M_{1}$ is an essential submodule of M_{1} so that $M_{1} /\left(N \cap M_{1}\right) \in \mathscr{X}$. Thus $\left(M_{1}+N\right) / N \in \mathscr{X}$. But $\left.M_{1}+N=M_{1} \oplus\left[M_{1}+N\right) \cap M_{2}\right]$, so that

$$
M /\left(M_{1}+N\right) \cong M_{2}\left[\left(M_{1}+N\right) \cap M_{2}\right]
$$

which belongs to \mathscr{X} since $\left(M_{1}+N\right) \cap M_{2}$ is an essential submodule of M_{2}. Since \mathfrak{X} is P-closed it follows that $M / N \in \mathfrak{X}$. Thus $M \in E \mathscr{X}$.
(iii) Let $M \in(H \mathfrak{X}) \oplus(D X)$. Then there exist submodules M_{1}, M_{2} of M such that $M=M_{1} \oplus M_{2}, M_{1} \in H \mathscr{X}$ and $M_{2} \in D \mathscr{X}$. Let N be any submodule of M. Then $\left(M_{1}+N\right) / N \cong M_{1} /\left(M_{1} \cap N\right) \in \mathscr{X}$. Moreover $M_{1}+N=M_{1} \oplus\left[\left(M_{1}+N\right)\right.$ $\cap M_{2}$]. By hypothesis there exists a direct summand K of M_{2} such that $\left(M_{1}+N\right) \cap M_{2} \subseteq K$ and $K /\left[\left(M_{1}+N\right) \cap M_{2}\right] \in \mathscr{X}$. It follows that $M_{1} \oplus K$ is a direct summand of M and

$$
\left(M_{1} \oplus K\right) /\left(M_{1}+N\right) \cong K /\left[\left(M_{1}+N\right) \cap M_{2}\right] \in \mathscr{X}
$$

Thus $\left(M_{1} \oplus K\right) / N \in \mathscr{X}$. It follows that $M \in D \mathscr{X}$.
Corollary 1.9. Let R be a ring and \mathfrak{X} a P-closed class of R-modules. Then $E \mathfrak{X}=\left[\mathcal{C} \oplus(E X)^{(n)}\right](H \mathfrak{X})$, for any positive integer n.

Proof. By Propositions 1.7 and 1.8.
Note that

$$
\begin{equation*}
\mathcal{C}(H \mathfrak{X}) \subseteq E X \tag{7}
\end{equation*}
$$

for any class \mathfrak{X} of R-modules. For, let $M \in \mathcal{C}(H \mathscr{X})$. Then there exists a submodule N of M such that $N \in \mathcal{C}$ and $M / N \in H \mathscr{X}$. If K is any essential submodule of M then $N \subseteq K$ by Lemma 1.3 and hence $M / K \in \mathscr{X}$. It follows that $M \in E \mathscr{X}$. In general, $(E \mathscr{X})^{2} \neq E \mathscr{X}$ and $(D \mathfrak{X})^{2} \neq D \mathscr{X}$. For example, $\mathcal{C}=E \mathscr{Z}=D \mathscr{L}$ (Corollary 1.4), but $\mathcal{C}^{2} \neq \mathcal{C}$ in generall. (Example 3 also shows $(D \mathfrak{X})^{2} \neq D \mathfrak{X}$.)

The next two examples illustrate Proposition 1.8.
Example 4. Let R be a ring and n any positive integer. Let \mathscr{X} denote the class of R-modules of finite length at most n. Then \mathfrak{X} is $\{S, Q\}$-closed but not P-closed. Thus $H \mathscr{X}=\mathfrak{X}$ and

If $R=\boldsymbol{Z}$ then $\mathfrak{X} \oplus \mathscr{X} \neq \mathfrak{X}^{2}$. Staying with $R=\boldsymbol{Z}$, note that for any prime $p, A=$ $\boldsymbol{Z} \mid \boldsymbol{Z}_{p^{n+1}} \in E \mathscr{X}$ so that $A \oplus A \in E \mathscr{X} \oplus E \mathscr{X}$ but $A \oplus A \oplus E \mathscr{X}$. Also $B=\boldsymbol{Z} \mid \boldsymbol{Z}_{p^{n+2}} \in$ ($E \mathscr{X}$) \mathfrak{X}, but $B \notin E \mathfrak{X}$.

Example 5. Consider the ring \boldsymbol{Z} of rational integers and let \mathscr{I} denote the class of torsion \boldsymbol{Z}-modules. Then $H \mathscr{I}=\mathfrak{I}$, and
(i) $(D \mathscr{I})(H \mathscr{I})=(D \mathscr{I}) \mathscr{I} \subseteq D \mathscr{I}$, and
(ii) $E \mathscr{I} \subseteq(D \mathscr{I})(H \mathscr{I})=(D \mathscr{I}) \mathscr{I}$.

First consider (i). Let \boldsymbol{M} be any \boldsymbol{Z}-module with finite rank. Then there exists a free submodule F of M of finite rank such that $M / F \in \mathscr{I}$. If N is a submodule of F and K / N is the torsion submodule of F / N then F / K is finitely generated torsion free, so free, and hence K is a direct summand of F. Thus $F \in D \mathscr{I}$ and $M \in(D \mathscr{I}) \mathscr{I}$. However, in general, $M \notin D \mathscr{I}$; consider M in \mathscr{I}^{\prime} and use (4) and [9, Theorem 14].

For (ii), let M be any free \boldsymbol{Z}-module of infinite rank. Then $M \in E \mathcal{I}$, because any \boldsymbol{Z}-module belongs to $E \mathcal{I}$, but $M \notin(D \mathcal{I}) \mathcal{I}$, by Lemma 1.2 (ii) and [9, Theorem 5].

We complete this section by giving an example to show that $\mathcal{C N} \subseteq D I$, in contrast to (7).

Example 6. Let $\boldsymbol{Q}, \boldsymbol{R}$ denote the fields of rational and real numbers, respectively, and let R denote the subring of the ring of all 2×2 real matrices consisting of all matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]
$$

where $a \in \boldsymbol{Q}, b \in \boldsymbol{R}$, Then $R_{R} \in \mathcal{C}$ I. However, it can easily be checked that the only idempotents of R are 0,1 , and hence $R_{R} \notin D \eta$.

2. Modules with finite uniform dimension

Let R be a ring. An R-module M has finite uniform (Goldie) dimension provided M does not contain an infinite direct sum of non-zero submodules. The class of all such modules will be denoted \mathcal{Q}. It is well known that a module M is a \mathscr{U}-module if and only if there exist a positive integer n and uniform submodules $U_{i}(1 \leqslant i \leqslant n)$ of M such that $U_{1} \oplus \cdots \oplus U_{n}$ is an essential submodule of M, and in this case n is an invariant of the module called the uniform dimension of M (see, for example, [1, p. 294 ex. 2]). Therefore $\downarrow \oplus \mathcal{}$ $=\mathcal{V}$, for any ring R. Clearly \mathcal{V} is S-closed. Moreover, \mathcal{V} is P-closed. For, let $M \in \mathcal{U}^{2}$. Then there exists a submodule N of M such that both N and M / N belong to \mathcal{U}. By Lemma 1.1. there exists a submodule K of M such that $K \cap N=0$ and $N \oplus K$ in an essential submodule of M. Since K is isomorphic
to a submodule of M / N it follows that $K \in \mathcal{Q}$. Thus $N \oplus K \in \mathcal{V} \oplus \mathcal{Q}=\mathcal{Q}$. It follows that $M \in Q$. Hence Q is P-closed.

Theorem 2.1. For any ring $R, E \mathcal{V}=\mathcal{C}\left(H^{q}\right)$.
Proof. By (7), $\mathcal{C}\left(H^{q}\right) \subseteq E q$. Conversely, suppose that $M \in E \mathcal{V}$. Let N denote the socle of M. Let K be any submodule of M containing N. By Lemma 1.1 there exists a submodule K^{\prime} of M such that $K \cap K^{\prime}=0$ and $K \oplus K^{\prime}$ is an essential submodule of M. Thus

$$
\begin{equation*}
M /\left(K \oplus K^{\prime}\right) \in \mathcal{Q} \tag{8}
\end{equation*}
$$

by hypothesis. Let $L=L_{1} \oplus L_{2} \oplus L_{3} \oplus \cdots$ be a direst sum of non-zero submodules of K^{\prime}. Since $N \cap K^{\prime}=0$ it follows that, for each $i \geqslant 1, L_{i}$ is not semisimple and hence contains a proper essential submodule H_{i} (Lemma 1.3). Let $H=H_{1} \oplus H_{2} \oplus H_{3} \oplus \cdots$. Then H is an essential submodule of L and

$$
L / H \cong\left(L_{1} / H_{1}\right) \oplus\left(L_{2} / H_{2}\right) \oplus\left(L_{3} / H_{3}\right) \oplus \cdots
$$

is an infinite direct sum of non-zero submodules. But the submodule L of M belongs to Eq, by Proposition 1.6, a contradiction. Thus $K^{\prime} \in \mathcal{V}$. Since \mathcal{G} is P-closed it follows, by (8), that $M / K \in Q$. Thus M / N belongs to $H \mathcal{V}$. Hence $M \in \mathcal{C}\left(H^{q}\right)$.

Let \mathfrak{X} be a class of R-modules such that $\mathscr{X} \subseteq \mathcal{Q}$. Then $F \mathscr{X}$ will denote the class consisting of all \mathcal{L}-modules together with all R-modules M such that there exist a positive integer n and uniform submodules $U_{i}(1 \leqslant i \leqslant n)$ of M with $M=U_{1} \oplus \cdots \oplus U_{n}$ and $U_{i} \in E \mathscr{X}(1 \leqslant i \leqslant n)$. Note that a uniform module $U \in E \mathscr{X}$ if and only if $U / V \in \mathscr{X}$ for all non-zero submodules V of U. Note that

$$
\begin{equation*}
F \Re \subseteq \mathscr{N} \text { and } F \mathcal{K} \subseteq \mathcal{K}, \tag{9}
\end{equation*}
$$

for any ring R. For any ordinal $\alpha \geqslant 0$, let \mathcal{K}_{α} denote the class of all R-modules with Krull dimension at most α. Then $F \mathcal{K}_{\alpha} \subseteq \mathcal{K}_{\alpha+1}$, and a module $M \in F \mathcal{K}_{\alpha}$ if and only if M is a direct sum of \mathcal{K}_{α}-submodules and ($\alpha+1$)-critical submodules (see [5]). Note that if \mathfrak{X} is a P-closed class of R-modules then

$$
\begin{equation*}
(\mathcal{C} \oplus F \mathscr{X})(H \mathscr{X}) \subseteq E \mathscr{X}, \tag{10}
\end{equation*}
$$

by Corollary 1.9 .
Corollary 2.2. Let R be a ring and \mathfrak{X} an S-closed class of R-modules such that $\mathfrak{X} \subseteq \mathcal{G}$. Then $E \mathfrak{X} \subseteq[\mathcal{C} \oplus F \mathscr{X}](H \mathfrak{X})$.

Proof. Let $M \in E X$. Then $M \in E Q$. By the theorem there exists a submodule N of M such that $N \in \mathcal{C}$ and $M / N \in \mathcal{Z}$. By Lemma 1.1 there exists a submodule K of M such that $N \cap K=0$ and $N \oplus K$ is an essential submodule
of M. By [1, p. 294 ex. 2], there exist a positive integer n and uniform submodules $U_{i}(1 \leqslant i \leqslant n)$ of K such that $U=U_{1} \oplus \cdots \oplus U_{n}$ is an essential submodule of K. By Proposition 1.6, $U_{i} \in E \mathscr{X}(1 \leqslant i \leqslant n)$ and hence $U \in F \mathscr{X}$. Finally $N \oplus U$ is an essential submodule of M and hence $M /(N \oplus U) \in H \mathscr{X}$.

Note that if \mathscr{X} is a $\{P, S\}$-closed class of R-modules, such that $\mathscr{X} \subseteq \mathcal{Y}$, then

$$
\begin{equation*}
E \mathscr{X}=(\mathcal{C} \oplus F \mathscr{X})(H \mathscr{X}) \tag{11}
\end{equation*}
$$

by (10) and Corollary 2.2. Now suppose further that $F \mathscr{X} \subseteq H \mathscr{X}=\mathfrak{X}$ (for example this happens when $\mathfrak{X}=\mathscr{N}$ or $\mathcal{K})$. Then

$$
\mathcal{C} \mathfrak{X} \subseteq(\mathcal{C} \oplus F \mathscr{X})(H \mathscr{X}) \subseteq(\mathcal{C} \oplus \mathscr{X}) \mathfrak{X} \subseteq \mathcal{C} \mathfrak{X}^{2}=\mathcal{C} \mathfrak{X},
$$

and hence $E \mathscr{X}=\mathcal{C} \mathscr{X}$.
Corollary 2.3. For any ring R and ordinal $\alpha \geqslant 0$,

$$
E \Re=\mathcal{C N}, \quad E \mathcal{K}=\mathcal{C K} \text { and } \quad E \mathcal{K}_{\alpha} \subseteq \mathcal{C} \mathcal{K}_{\alpha+1} .
$$

Proof. $E \Re=\mathcal{C N}$ and $E \mathcal{K}=\mathcal{C K}$ by the above argument. Moreover, by (11),

$$
\begin{aligned}
E \mathcal{K}_{\alpha} & =\left(\mathcal{C} \oplus F \mathcal{K}_{\alpha}\right)\left(H \mathcal{K}_{\alpha}\right)=\left(\mathcal{C} \oplus F \mathcal{K}_{\alpha}\right) \mathcal{K}_{\alpha} \\
& \subseteq\left(\mathcal{C} \oplus \mathcal{K}_{\alpha+1}\right) \mathcal{K}_{\alpha} \subseteq \mathcal{C}\left(\mathcal{K}_{\alpha+1}\right)^{2}=\mathcal{C} \mathcal{K}_{\alpha+1} .
\end{aligned}
$$

3. $D Q$-modules

The main result of this section is the following theorem.
Theorem 3.1. For any ring $R, D Q=\mathcal{C} \oplus H Q$.
In order to prove this result we first establish:
Lemma 3.2. Let $M \in D \cup$. Then $M \in \mathcal{V}$ if and only if the socle of M is contained in a finitely generated submodule of M.

Proof. Let $S=\operatorname{soc} M$, the socle of M. If $M \in \mathcal{U}$ then S is itself finitely generated. Conversely, suppose S is contained in a finitely generated submodule N of M. By (2) and the proof of Theorem 2.1, $M / S \in \mathcal{U}$. We shall prove that $M \in \mathcal{U}$ by induction on the uniform dimension n of M / S. If $n=0$ then $M=S$ and M is finitely generated, so that $M \in \mathcal{V}$. Suppose $n>0$. Suppose M is not a Q -module. Then S is not finitely generated. There exist non-finitely generated submodules S_{1}, S_{2} of S such that $S=S_{1} \oplus S_{2}$. Since M is a $D V$-module it follows that there exist submodules M_{1}, M_{2} of M such that $M=M_{1} \oplus M_{2}, S_{1} \subseteq M_{1}$ and M_{1} / S_{1} belongs to \mathcal{U}. Note that soc $M_{1}=S_{1} \oplus S^{\prime}$ for some submodule S^{\prime} of M_{1}. Since S^{\prime} can be embedded in M_{1} / S_{1} it follows that
$S^{\prime} \in \mathcal{V}$ and hence S^{\prime} is finitely generated. Now

$$
S_{1} \oplus S_{2}=\operatorname{soc} M=\operatorname{soc} M_{1} \oplus \operatorname{soc} M_{2}=S_{1} \oplus S^{\prime} \oplus \operatorname{soc} M_{2}
$$

and this implies $S_{2} \cong S^{\prime} \oplus \operatorname{soc} M_{2}$. Thus $S^{\prime} \oplus \operatorname{soc} M_{2}$, and hence soc M_{2}, is not finitely generated.

Thus $M=M_{1} \oplus M_{2}$ and soc M_{i} is not finitely generated for $i=1,2$. Note that

$$
M / S \cong\left[M_{1} /\left(\operatorname{soc} M_{1}\right)\right] \oplus\left[M_{2} /\left(\operatorname{soc} M_{2}\right)\right]
$$

If $M_{1}=\operatorname{soc} M_{1}$ then $M_{1} \subseteq N$ and hence $N=M_{1} \oplus\left(N \cap M_{2}\right)$. It follows that M_{1}, and hence $\operatorname{soc} M_{1}$, is finitely generated. Thus $M_{1} \neq \operatorname{soc} M_{1}$, and similarly $M_{2} \neq$ $\operatorname{soc} M_{2}$. Therefore the modules $M_{1} /\left(\operatorname{soc} M_{1}\right)$ and $M_{2} /\left(\operatorname{soc} M_{2}\right)$ have smaller uniform dimensions than M / S. By induction on the uniform dimension of M / S it follows that $M_{1} \in \mathcal{Z}$ and $M_{2} \in \mathcal{Z}$. Thus $M \in \mathcal{V}$, a contradiction. Thus $M \in \mathcal{U}$, as required.

Proof of Theorem 3.1. By (6), $\mathcal{C} \oplus H^{〔} \subseteq D^{\mathcal{Q}}$. Conversely, suppose that $M \in D \mathcal{G}$. By (2) and the proof of Theorem 2.1, $M / S \in \mathcal{Q}$, where $S=\operatorname{soc} M$. We shall prove that M belongs to $\mathcal{C} \oplus H \bigvee$ by induction on the uniform dimension n of M / S. If $n=0$ then $M=S \in \mathcal{C} \subseteq \mathcal{C} \oplus H \mathcal{V}$. Suppose $n>0$. Suppose M does not belong to $\mathcal{C} \oplus H^{q}$.

Suppose $M=M_{1} \oplus M_{2}$ for some submodules M_{1}, M_{2} of M. Then $S=$ $\left(\operatorname{soc} M_{1}\right) \oplus\left(\operatorname{soc} M_{2}\right)$, so that

$$
M / S \cong\left[M_{1} /\left(\operatorname{soc} M_{1}\right)\right] \oplus\left[M_{2} /\left(\operatorname{soc} M_{2}\right)\right]
$$

If $M_{1} \neq \operatorname{soc} M_{1}$ and $M_{2} \neq \operatorname{soc} M_{2}$ then both $M_{1} /\left(\operatorname{soc} M_{1}\right)$ and $M_{2} /\left(\operatorname{soc} M_{2}\right)$ have smaller uniform dimensions than M / S, so that both M_{1} and M_{2} belong to $\mathcal{C} \oplus$ H^{q}, and in this case $M \in \mathcal{C} \oplus H^{q}$. Thus $M_{1}=\operatorname{soc} M_{1} \in \mathcal{C}$ or $M_{2}=\operatorname{soc} M_{2} \in \mathcal{C}$.

Because $M \neq S$ there exists $m \in M, m \notin S$. By hypothesis, there exist submodules M_{1}, M_{2} of M such that $M=M_{1} \oplus M_{2}, m R \subseteq M_{1}$ and $M_{1} / m R \in \mathcal{U}$. By the argument in the previous paragraph it follows that $M_{2} \in \mathcal{C}$. Let $S_{1}=\operatorname{soc} M_{1}$. Then $S_{1}=\left(S_{1} \cap m R\right) \oplus S^{\prime}$ for some submodule S^{\prime} of M_{1}. Now $S^{\prime} \cong\left(S_{1}+m R\right) / m R$, a submodule of $M_{1} / m R$, so that $S^{\prime} \in \mathcal{G}$ and hence S^{\prime} is finitely generated. Thus $S_{1} \subseteq m R+S^{\prime}$, a finitely generated submodule of M_{1}. By Proposition 1.6 and Lemma 3.2 it follows that $M_{1} \in \mathcal{U}$. Now $M_{1} \in \mathcal{V} \cap E \mathcal{V}=H^{\mathcal{V}}$ by (3). Hence $M=M_{1} \oplus M_{2} \in \mathcal{C} \oplus H \mathcal{Z}$, a contradiction. Thus $M \in \mathcal{C} \oplus H \bigvee$.

Corollary 3.3. Let R be a ring and \mathfrak{X} a $\{P, S\}$-closed class of R-modules contained in \mathcal{U}. Then $D \mathfrak{X}=\mathcal{C} \oplus(H \mathfrak{X}) \oplus(\mathscr{G} \cap E \mathscr{X})$.

Proof. Let $M \in D \mathfrak{X}$. In particular, this means that $M \in D \mathcal{Q}$, so that $M \in \mathcal{C} \oplus \mathcal{G}$, by Theorem 3.1. Thus we can suppose, without loss of generality,
that $M \in \mathcal{Q}$. We claim that

$$
\begin{equation*}
M \in(H \mathscr{X}) \oplus(\mathscr{G} \cap E \mathscr{X}) . \tag{12}
\end{equation*}
$$

We shall prove (12) by induction on the uniform dimension of M. Suppose first that there exists a non-zero submodule N of M such that $N \in \mathscr{X}$. By hypothesis, there exist submodules K, K^{\prime} of M such that $M=K \oplus K^{\prime}, N \subseteq K$ and $K / N \in \mathscr{X}$. Since \mathscr{X} is P-closed it follows that $K \in \mathscr{X}$. By Proposition 1.6, K and K^{\prime} both belong to $D \mathscr{X}$. By (2) and (3), $K \in H \mathscr{X}$. Moreover, K^{\prime} has smaller uniform dimension than M so that, by induction, $K^{\prime} \in(H \mathscr{X}) \oplus(g \cap E X)$. It follows that $M \in(H \mathfrak{X}) \oplus(H \mathscr{X}) \oplus(\mathscr{g} \cap E \mathfrak{X})=(H \mathfrak{X}) \oplus(\mathscr{g} \cap E \mathscr{X})$, by Proposition 1.8. Now suppose that M does not contain any non-zero submodule in \mathscr{X}. By (2) and Lemma 1.2, $M \in \mathcal{G} \cap E \mathscr{X}$. This proves (12).

Conversely, note that $\mathcal{G} \cap E \mathscr{X} \subseteq D \mathscr{X}$, by Lemma 1.2, and hence

$$
\mathcal{C} \oplus(H \mathfrak{X}) \oplus(\mathscr{g} \cap E \mathscr{X}) \subseteq \mathcal{C} \oplus(H \mathscr{X}) \oplus(D \mathfrak{X}) \subseteq \mathcal{C} \oplus(D \mathfrak{X}) \subseteq D \mathscr{X},
$$

by Propositions 1.7 and 1.8.
Note that, in fact, the proof of Corollary 3.3, gives:

$$
\begin{equation*}
D \mathscr{X}=\mathcal{C} \oplus(\mathscr{U} \cap H \mathscr{X}) \oplus(\mathscr{U} \cap \mathcal{G} \cap E \mathscr{X}), \tag{13}
\end{equation*}
$$

for any $\{P, S\}$-closed class \mathfrak{X} of R-modules such that $\mathfrak{X} \subseteq \mathcal{G}$. Let $M \in \mathcal{G} \cap \mathcal{G}$. Let V be any uniform submodule of M. Because $M \in \mathcal{G}$, there exists a direct summand K of M such that V is an essential submodule of K. It follows that K is uniform. Thus, by induction on the uniform dimension of M, M is a finite direct sum of uniform submodules. Thus, (13) gives

$$
\begin{equation*}
D \mathscr{X} \subseteq \mathcal{C} \oplus(q \cap H \mathscr{X}) \oplus(F \mathscr{X}) \tag{14}
\end{equation*}
$$

for any $\{P, S\}$-closed class \mathfrak{X} of R-modules such that $\mathfrak{X} \subseteq \mathscr{Q}$, by Proposition 1.6.

Combining (9), (13), and (14), the above discussion gives, at once, the following theorem which extends [2, Theorems 3.1 and 4.1] and [15, Corollary 2.8].

Theorem 3.4. For any ring R and ordinal $\alpha \geqslant 0$,

$$
D \Re=\mathcal{C} \oplus \Im, \quad D \mathcal{K}=\mathcal{C} \oplus \mathcal{K}, \quad \text { and } \quad D \mathcal{K}_{\alpha} \subseteq \mathcal{C} \oplus \mathcal{K}_{\alpha+1}
$$

References

[1] F.W. Anderson and K.R. Fuller: Rings and categories of modules, SpringerVerlag, 1974.
[2] A.W. Chatters: A characterization of right Noetherian rings, Quart. J. Math. Oxford (2) 33 (1982), 65-69.
[3] A.W. Chatters and C.R. Hajarnavis: Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford (2) 28 (1977), 61-80.
[4] A.W. Chatters and S.M. Khuri: Endomorphism rings of modules over non-singular CS rings, J. London Math. Soc. (2) 21 (1980), 434-444.
[5] R. Gordon and J.C. Robson: Krull dimension, Amer. Math. Soc. Memoirs 133 (1973).
[6] M. Harada: On modules with extending properties, Osaka J. Math. 19 (1982), 203215.
[7] M. Harada and K. Oshiro: Extending property on direct sum of uniform modules, Osaka J. Math. 18 (1981), 767-785.
[8] D. van Huynh and P. Dan: On rings with restricted minimum condition, to appear in Archiv der Math.
[9] M.A. Kamal and B.J. Muller: Extending modules over commutative domains, Osaka J. Math. 25 (1988), 531-538.
[10] M.A. Kamal and B.J. Muller: The structure of extending modules over Noetherian rings, Osaka J. Math. 25 (1988), 539-551.
[11] M.A. Kamal and B.J. Muller: Torsionfree extending modules, Osaka J. Math. 25 (1988), 825-832.
[12] M. Okeda: On the decomposition of extending modules, Math. Japonica 29 (1984), 939-941.
[13] K. Oshiro: Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310-338.
[14] P.F. Smith: Some rings which are characterised by their finitely generated modules, Quart. J. Math. Oxford (2) 29 (1978), 101-109.
[15] P.F. Smith, D. van Huynh and N.V. Dung: A characterisation of Noetherian modules, Quart. J. Math. Oxford (2) 41 (1990), 225-235.

Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland UK

