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MODULES WITH MANY DIRECT SUMMANDS

PATRICK F. SMITH
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Let R be a ring and 3C a class of right J?-modules. Let M be a right JR-
module such that for every submodule N of M there exists a direct summand
K of M such that Nc:K and K/N&3C. The structure of M is investigated
in the cases that 3C consists of Noetherian right i?-modules, right Λ-modules
with Krull dimension and right /?-modules with finite uniform dimension, re-
spectively.

1. Classes of modules

Throughout this note, all rings considered have an identity and all modules
are unital right modules. Let R be a ring. By a class of R-modules we mean
a collection of i?-modules containing a zero module such that if Me.3? and
M'^M then M'^SC. Any member of 3£ will be called an 3C-module. Let

0 - > M ' - * M - ^ M " - > 0

be an exact sequence of i?-modules. A class 3£ of i?-modules will be called

S-closed provided M ' e 3 ? whenever M^3C,

O-closed provided M"&3£ whenever M e 3 ? , and

P-closed provided M <=3C whenever both M'(=3£ and M"<=3C.

Moreover, 3C is called {P, S} -closed provided it is both P-closed and iS-closed,
and so on (this terminology is taken from [15]).

Let K be a positive integer and 3£y Q}, 3£19 ~,2£n classes of i?-modules.
Then Sf̂ y is the class of i?-modules M which contain a submodule N such that
N e 3£ and MjN e <*}. In particular 3P will denote 3£3£. Thus X is P-closed
if and only if 3 ? 2 = X Moreover aSΊΘ — 0 X is the class of ^-modules con-
sisting of all i?-modules Λfiθ ΘΛf,, where M^Xi ( l < ί <n). In case 3£=
%i (Ki<n) we shall denote ^ Θ Θ X , by 3£™. It is clear that

( 1 )

for any classes 3? and ^ of i?-modules.
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Let X be a class of jR-modules. Then HX is the class of iί-modules M

such that M/N^X for every submodule JV of M. On the other hand, EX is

the class of i?-modules M such that MjN^X for every essential submodule JV

of M. Moreover, DX is the class of i?-modules M such that for each sub-

module JV of M there exists a direct summand K of M containing JV such that

K/NeiX. It is clear that

(2)

for any class X. Moreover,

Xf]EX = HXi ( 3 )

for any {P, 5}-closed class 3?. In order to establish (3) we first recall:

Lemma 1.1. Let R be a ring and N any submodule of an R-module M.

Then there exists a submodule K of M such that JV f]K=0 and Nξ&K is an

essential submodule of M.

Proof. See [1, Proposition 5.21].

Consider (3). Let DC be any {P, S} -closed class of i?-modules. Note first

that, by (2), H3E^3EnE3e. Now let M<=3£ Π EX. Let iV be any submodule

of M. By Lemma 1.1 there exists a submodule N' such that N Π JV' = 0 and

N@Nf is an essential submodule of M. Now N'^3C (because 3C is S-closed)

and MI(Ne>N')<Ξ3C (because MZΞE3£). Thus MIN(Ξ3Cy because X is P-

closed. It follows that M (=HX. This proves (3).

In this section we shall investigate further relationships between such classes.

First of all we shall give examples to show that (3) fails if X is not {P, S}-

closed.

EXAMPLE 1. Let R be a right nonsingular ring which is not semiprime

Artinian, and let 2, 3' denote the classes of singular jR-modules and nonsin-

gular i?-modules, respectively. Let X=3U3'. Then X is 5-closed but

not P-closed because if Mx is a non-zero 2-module and M2 a non-zero 3'-

module then M=M}®M2 does not belong to X. Let Mf denote the Λ-module

R@R. Then M'&XΓiEX. Let E be a proper essential right ideal of R and

JV the submodule £ 0 0 of M'. Then M'/N does not belong to X. Thus Mf

does not belong to HX.

EXAMPLE 2. Let R be any ring and X the class of all i?-modules of finite

(composition) length n, where n is even. Then X is P-closed but not S-closed.

Let U be any simple i?-module. Then M= U®U(EXf)EX, but M does

not belong to HX.

For any ring i?, it will be convenient to denote the classes of zero i?-modules,
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semisimple .R-modules, singular i?-modules, nonsingular .R-modules, Noetherian
i?-modules, .R-modules with Krull dimension, and .R-modules of finite uniform
dimension by 2 , Cy 3, £?', tJΊ, JC, and ΊJ, respectively. In addition £ will
denote the class of all .R-modules M such that every submodule is an essential
submodule of a direct summand of M. The class Jf has been studied by a
number of authors ([3], [4], [6]—[13]). Note that, for any ring R,

^ c D 2 and ffnΰSc^, ( 4 )

The first statement is clear. For the second, let M G 3 ' Π D 3 . Let N be a
submodule of M. Then there exists a direct summand K of M containing N
such that KjN G 3 . If L is a submodule of K and N Π L=0 then L embeds in
K/N, so that L is singular and hence L=0. Thus N is essential in K. It fol-
lows that M belongs to £.

Lemma 1.2. Let R be a ring and 3C any class of R-modules. Then
(i) gOE3£^D3C,and

(ii) if M^D3£ and M contains no non-zero submodule in 3C then

Proof, (i) Let M G ^ Π K . Let N be any submodule of M. Then
there exist submodules K, Kf of M such that M=Kζ&K' and N is an essential
submodule of K. Then N@Kf is an essential submodule of M and hence
KIN^Mj(N®K')<=ΞT. T h u s M G ΰ X (ii) follows by the proof of (4).

For any i?-module M, the socle of M will be denoted soc M. Next we
note the following well known result.

Lemma 1.3. Let R be a ring and M an R-module. Then
(a) soc M= Π {N: N is an essential submodule of M).
(b) The following statements are equivalent.

(i) i l ί G ί (i.e. M is semisimple).
(ii) Every submodule of M is a direct summand of M.

(iii) M is the only essential submodule of M.

Proof. By [1, Theorem 9.6 and Proposition 9.7].

Lemma 1.3 has the following immediate consequence.

Corollary 1.4. For any ring R and class 2£ of R-modules, DZ=EZ=

The next result generalises [8, Proposition 4.3] where it is proved that if
R is a ring such that RR^DC (in particular, this implies that R is right Noe-
therian by [2, Theorem 3.1]) then any cyclic right i?-module belongs to £.
(Note that DC is ^-closed.)

Proposition 1.5. For any ring R} DC^3-



256 P.F. SMITH

Proof. Let M^DC. Let JV be a submodule of M and let K be a maximal
essential extension of JV in M. We shall show that K is a direct summand of
M. Since M e DC it follow that there exists a direct summand L of Msuch
that KQ L and L/JK e C There exist an index set Λ and submodules £/λ(λeΛ)
of M9 each containing K, such that UJK is simple for each λ in Λ and L =
ΣλeΛ ϋχ Note that, for each λGΛ, K is not essential in ?7λ and hence there
exists a simple submodule F λ of Msuch that Uλ=KξBVλ. Let F = Σ λ e Δ ^ λ
Then L=K-{-V and F is semisimple. By Lemma 1.3 there exists a submodule
W of F such that F=(i f Π F ) 0 W, and hence L - i f 0 W. Thus if is a direct
summand of M. It follows that M^£.

Combining Lemma 1.2, Proposition 1.5 and (2) we conclude

for any ring 22. We have already noted that DC is ^-closed. Now we prove:

Proposition 1.6. Let R be a ring and 3£ a class of R-modules. Then

(i) HDS, E3£ and D3C are all Q-closed, and

(ii) H3C and E3C are S-closed provided X is S-closed.

Proof, (i) Let M e E3C. Let N be any submodule of M. Let K be any
essential submodule of MjN, Then K=L/N for some essential submodule L
of M containing N. By hypothesis, M/L(Ξ3Cy and hence {MjN)jK^!£. It
follows that MINUET. Thus EX is Q-closed. Similarly # 3 ? and DX are
Q-closed.

(ii) Suppose that X is S-closed. Let M^HX. Let JV be a submodule
of M. Let K be any submodule of N. Then ΛΓ/X" is a submodule of MjK and
M/K^X. Thus N/K^X. Thus NΪΞHX.

Now suppose M^EX. Let JV be a submodule of ikf. Let if be any
essential submodule of JV. By Lemma 1.1 there exists a submodule L of M
such that KΠL=0 and K@L is an essential submodule of M. Note that if
essential in JV implies NΓ[L = 0 and hence NIK^(N®L)I(K®L). But
MI(K®L)(=X and hence so too does (JV0L)/(J?0L). Thus N/K<=X. It
follows that N(=EX.

Next we give an example to show that Zλ3f is not S-closed in general.

EXAMPLE 3. Let R = Z[x], Then 3 consists of all torsion i?-modules
and 3 is {P, Qy S}-closed. Let M=RR. Then M G ^ C D 3 , by (4), but
M®M&3 (see [4, Example 2.4]). Let E=E(M), the injective hull of M.
Then E@E is injective and hence E®E<=g^D3. Thus Z>2 is not S-closed
and D3ΦD3ΦD3.

Proposition 1.7. Let R be a ring and X any class of R-modules. Then
(i) C®EX=EX,and
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(ϋ) C@DX=D3C.

Proof, (i) Let M<=C®E3£. Then there exist submodules M19 M2 of
M such that M=M1®M2, M^C and M2<=E3£. Let N be an essential sub-
module of M. Since M1 is semisimple, it follows that M^N (Lemma 1.3).
Thus N=M1φ(N Π M2), and

M/N = (M&MJUM&iN Π M2)] ̂ M2/{N n M 2).

But N f]M2is an essential submodule of M2 and M2eE3C. Thus
It follows that M<ΞE3£.

(ii) Let Λf < Ξ £ © D X Then there exist submodules Mx, M2 such that
M^Λ^ΘM,, Λ^GΞC and M 2 G ΰ X Let N be any submodule of M. Note
that Λ/r+M2=[(ΛΓ+M2)nΛf1]0Λf2. Because Mx is semisimple, it follows that

for some submodule L of Mx (Lemma 1.3). Thus ΛΓ+M2 is a direct summand
ofM.

Since M2^D3C it follows that there exist submodules K, Kr of M2

such that M2=K®K\ N Π M2^K and K/(N Π J l f J e X Now
K/(K n iV), and K Π iV--X Π M2 Π N=N Π M2. Thus

( 5 )

Moreover,

iΓ n (κ+N) =

Thus M2+N=K'φ(K+N), and hence i^+iV is a direct summand of M. By
(5) it follows that M^D3C.

Note that C®H3C=H3C implies C^H3C and hence C e X Thus C@
HXΦH3C in general. On the other hand, by (2) and Proposition 1.7,

C®H3£ςzD3£, ( 6 )

for any class X We have already seen in Example 3 that D3C®D3£*D3C,

even when DC is {P, Q, S} -closed.

Proposition 1.8. Let R be a ring and 3C a P-closed class of R-modules.

Then
(i) (HX)®{HX)=(HX)2^H3C,

(ϋ) (E3C)®(E3C)=(E3C)(H3C)=E3Cf and
(iii) (HX)@(D3C)=(D3£).

Proof, (i) By (1), (H3C)®(H3C)Q(H3C)2

9 and H2£^{HT)φ(H3£) is

clear. Let M^(H3C)2. Then there exists a submodule N of M such that N
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and MjN both belong to H3£. Let K be a submodue of M. Then (N+K)/K
and Mj(N+K)^X. Thus M\K belongs to X. Thus

(ii) The proof of (E3C){H3C)=E3C^(E3C)®(E3C) is similar to (i). Let
M(=(E3£)(B(E3C). Then there exist submodules Mu M2 of M such that
M=M1®M2 and M^EJE ( i=l , 2). Let JV be an essential submodule of M.
Then iV Π Λfx is an essential submodule of Mλ so that MJ(N Π I J e f . Thus

But M i + i V ^ M ^ ^ + i V ) ΠM2] , so that

Mj(M1+N)^M2[(M1+N)nM2],

which belongs to 3£ since (M1-{-N)f)M2 is an essential submodule of M2.
Since 3? is P-closed it follows that M/NΪΞX. Thus M G f ϊ

(iii) Let Me(2ϊ3?)0(I>3?). Then there exist submodules M19 M2 of M
such that M=M1®M2, M^HDC and M2<=D3C. Let ΛΓbe any submodule of
M. Then {Mι+N)jN^Mιl(Mι Π ΛΓ)eX Moreover M1+JV=M1Θ[(M1+ΛΓ)
ΠMJ. By hypothesis there exists a direct summand i£ of M2 such that
(Mi+JVJΠ^cX; and JSΓ/KMx+JVjnMJeX It follows that M j φ i ί is a
direct summand of M and

Thus {Mx®K)jN e X It follows that M eD5C.

Corollary 1.9. Let Rbe a ring and 3C a P-closed class of R-modules. Then
E3C=[C®(E3£)M](H3C)Jor any positive integer n.

Proof. By Propositions 1.7 and 1.8.

Note that

(7)

for any class X of i?-modules. For, let M(=C(H3£). Then there exists a
submodule N of M such that N^C and M/N^HDC. If i£ is any essential
submodule of M then N^K by Lemma 1.3 and hence M/K^3C. It follows
that M G £ X In general, {E3£)2*E3C and (DJE f Φ ΰ X For example,
C=EZ=DZ (Corollary 1.4), but C2=tC in generall. (Example 3 also shows

The next two examples illustrate Proposition 1.8.

EXAMPLE 4. Let R be a ring and n any positive integer. Let 3C denote
the class of i?-modules of finite length at most n. Then 3? is {5, Q} -closed but
not P-closed. Thus HX=X and
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If R=Z then 3C<§>3£Φ3?2. Staying with R=Z, note that for any prime p, A=
Z/Zpn+i^E3C so that A®A^E3CφE3C but A®A$E3C. Also B=
(E3£)3£, but

EXAMPLE 5. Consider the ring Z of rational integers and let 2 denote
the class of torsion ^-modules. Then # 2 = 2 , and

(i) (D2)(H3)={D3)2^D3, and
(ii) E3^(D3)(H3)=(D3)3.

First consider (i). Let M be any 2Γ-module with finite rank. Then there
exists a free submodule F of M of finite rank such that MjF e 2. If iV is a
submodule of F and ίΓ/iV is the torsion submodule of F/N then FJK is finitely
generated torsion free, so free, and hence K is a direct summand of F. Thus
JFGΞZ)2 and MEE(Z>2)2. However, in general, M φ D 2 ; consider M in 3'
and use (4) and [9, Theorem 14].

For (ii), let M be any free Z-module of infinite rank. Then M G B 9 , be-
cause any Z-module belongs to E3y but M $ ( D 2 ) 2 , by Lemma 1.2 (ii) and
[9, Theorem 5].

We complete this section by giving an example to show that CJl&DJl,
in contrast to (7).

EXAMPLE 6. Let Q, R denote the fields of rational and real numbers,
respectively, and let R denote the subring of the ring of all 2 X 2 real matrices
consisting of all matrices of the form

Lθ a]

where αGQ, J G Λ , Then RR^C3Ί. However, it can easily be checked that
the only idempotents of R are 0, 1, and hence

2. Modules with finite uniform dimension

Let R be a ring. An i?-module M has finite uniform (Goldie) dimension
provided M does not contain an infinite direct sum of non-zero submodules.
The class of all such modules will be denoted HJ. It is well known that a
module M is a ^-module if and only if there exist a positive integer n and
uniform submodules Ut (1 < i < » ) of M such that ΪΛ® •••©£/„ is an essential
submodule of M, and in this case n is an invariant of the module called the
uniform dimension of M (see, for example, [1, p. 294 ex. 2]). Therefore HJφHJ
=cϋy for any ring R. Clearly HJ is S-closed. Moreover, °O is P-closed. For,
let M^HJ2. Then there exists a submodule N of M such that both N and
M/N belong to HJ. By Lemma 1.1. there exists a submodule K of M such that
K Π JV=O and N@K in an essential submodule of M. Since K is isomorphic
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to a submodule of MjN it follows that KeHJ. Thus
It follows that MfΞHJ. Hence ΊJ is P-closed.

Theorem 2.1. For any ring R, ECΌ=C{HCU).

Proof. By (7), CiHty^EHJ. Conversely, suppose that MeΞEHJ. Let
N denote the socle of M. Let K be any submodule of M containing N. By
Lemma 1.1 there exists a submodule K' of Msuch that Kf]Kf=0 and K®K'
is an essential submodule of M. Thus

MKKφK^tΞHJ, ( 8 )

by hypothesis. Let L = L 1 φ L 2 φ L 3 0 be a direst sum of non-zero sub-
modules of K'. Since iVni£'=0 it follows that, for each i>l, Lt is not semi-
simple and hence contains a proper essential submodule H{ (Lemma 1.3).
Let H=Hγ@H2®Hz®~. Then H is an essential submodule of L and

is an infinite direct sum of non-zero submodules. But the submodule L of M
belongs to EHJ, by Proposition 1.6, a contradiction. Thus K'&HJ. Since V
is P-closed it follows, by (8), that M/KeHJ. Thus MjN belongs to HHJ.
Hence M^C{HHJ).

Let 3? be a class of Λ-modules such that T^V. Then F3C will denote
the class consisting of all 2-modules together with all i?-modules M such that
there exist a positive integer n and uniform submodules U{ ( K / < w ) of M with
^ = ^ i θ θf/n and Ui^ESCiKi^n). Note that a uniform module U<=EX
if and only if U/V^3£ for all non-zero submodules F of U. Note that

racfΓZ and FJC^JC, ( 9 )

for any ring R. For any ordinal ar>0, let JCΛ denote the class of all Λ-modules
with Krull dimension at most a. Then FJCΛc:JCΛ+1, and a module M^FJίΛ

if and only if M is a direct sum of cXΛ-submodules and (a-\- l)-critical submodules
(see [5]). Note that if 3? is a P-closed class of iί-modules then

(10)

by Corollary 1.9.

Corollary 2.2. Let R be a ring and 3C an S-closed class of R-modules such
that Xc V. Then E3C^ [C®FX](H3C).

Proof. Let M(ΞE3£. Then M^EHJ. By the theorem there exists a
submodule Nof M such that N^C and MjN ^ΊJ. By Lemma 1.1 there exists
a submodule K of Msuch that ΛΓ Γ) i£=0 and N(&K is an essential submodule
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of M. By [1, p. 294 ex. 2], there exist a positive integer n and uniform sub-
modules Uj (1 < ί <#) of K such that U= t/j® © Un is an essential submodule
of K. By Proposition 1.6, U^ET ( l < i < a ) and hence U(ΞFT. Finally
Nξ&U is an essential submodule of M and hence

Note that if IF is a {P, 5}-closed class of i?-modules, such that DC^V, then

EX=(C@F3C)(H3ί) (11)

by (10) and Corollary 2.2. Now suppose further that F3C^H3C=3C (for
example this happens when 3£=J7 or Jζ). Then

^C3£2 = C3C,

and hence E3£=C3C.

Corollary 2.3. jFor ΛΛJ; ring R and ordinal a>0,

Em = Cm, EJC^CJC and EJC^CJCΛ+ι.

Proof. EIJl^CJl and EJC=CJC by the above argument. Moreover, by

EJCΛ = {C®FJίΛ)(HJiΛ) =

3. Z^^-modules

The main result of this section is the following theorem.

Theorem 3.1. For any ring R, DHJ^CφHHJ.

In order to prove this result we first establish:

Lemma 3.2. Let M e DΊJ. Then M <Ξ <U if and only if the socle of M is
contained in a finitely generated submodule of M.

Proof. Let 5=socM, the socle of M. If M^HJ then S is itself finitely
generated. Conversely, suppose S is contained in a finitely generated sub-
module N of M. By (2) and the proof of Theorem 2.1, M/SGHJ. We shall
prove that M^ΊJ by induction on the uniform dimension n of MjS. If n=0
then M=S and M is finitely generated, so that M^V. Suppose n>0. Sup-
pose M is not a ^-module. Then S is not finitely generated. There exist
non-finitely generated submodules S19 S2 of S such that S—S1®S2. Since M is
a D^-module it follows that there exist submodules Mx, M2 of M such that
M=M1®M2, S1ZM1 and M ^ belongs to ΊJ. Note that soc M^S&S' for
some submodule 5 ' of Mv Since 5" can be embedded in MJS1 it follows that
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and hence S' is finitely generated. Now

Λf2=510*S'0soc M2,

and this implies S2^S'®socM2. Thus S'0socM 2, and hence socM2, is not

finitely generated.

Thus M=M1(BM2 and soc M t is not finitely generated for i = l , 2. Note

that

M / 5 ^ [MJ(soc M1)]θ[M2/(soc M2)].

If M ^ s o c Mx then M^N and hence N=M1®(N Π Λf2). It follows that Mx,
and hence soc Ml9 is finitely generated. Thus MjΦsoc Mί9 and similarly Λf2=t=
soc Λf2. Therefore the modules MJ(soc M^ and M2/(soc M2) have smaller
uniform dimensions than Λf/S. By induction on the uniform dimension of Λf/S
it follows that i l ί ^ ί ] and M^HJ. Thus M e U a contradiction. Thus
M&HJ, as required.

Proo/ 0/ Theorem 3.1. By (6), C^HΊJ^DHJ. Conversely, suppose that
M<=DΊJ. By (2) and the proof of Theorem 2.1, M/S^HJ, where S=soc M.
We shall prove that M belongs to Cζ&HHJ by induction on the uniform dimen-
sion n of M/S. If n=0 then M=S ^C^CΘHV. Suppose w>0. Suppose
M does not belong to Cξ&HHJ.

Suppose M=M1@M2 for some submodules Mv M2 of M. Then 5 =
(soc Mj)0(soc Λf2), so that

M / 5 ^ [M^soc MJIΘtΛίi/ίsoc M 2)].

If MjΦsocMi and M2ΦsocM2 then both MJ(soc M^ and M2/(socM2) have
smaller uniform dimensions. than MjSy so that both Mx and M2 belong to £ 0
HΊJ, and in this case M^CφHHJ. Thus Mx=soc M^C or M2=soc Λf2eC.

Because MΦS there exists m^M, m<£S. By hypothesis, there exist sub-
modules M19 M2 of M such that M=Λί 1 0M 2 , mR<^Mι and MJmR^HJ. By
the argument in the previous paragraph it follows that M 2 G C . Let S1=socM1.
Then ^ ( S Ί Π mR)®S' for some submodule 5 ' of Mx. Now S'^Si+mR^mR,
a submodule of MJmR9 so that 5"G°U and hence 5" is finitely generated. Thus
S^mR+S', a finitely generated submodule of Mv By Proposition 1.6 and
Lemma 3.2 it follows that M^HJ. Now M ^ V n ^ ^ H H J by (3). Hence

a contradiction. Thus

Corollary 3.3. Let R be a ring and DC a {P, S} -closed class of R-modules

contained in HJ. Then D3C=C®(H3C)®(gΠ E3£).

Proof. Let M^DX. In particular, this means that M^DHJ, so that
M ^CφΊJj by Theorem 3.1. Thus we can suppose, without loss of generality,
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that M^RJ. We claim that

Me(H3S)WnE3£). (12)

We shall prove (12) by induction on the uniform dimension of M. Suppose
first that there exists a non-zero submodule N of M such that N&.X. By-
hypothesis, there exist submodules K, K' of M such that M=K(BK\ NciK
and K/N e X. Since X is P-closed it follows that K <Ξ X. By Proposition 1.6,
Kand K' both belong to DX. By (2) and (3),K<=H3C. Moreover, K' has
smaller uniform dimension than M so that, by induction, K'^L(HX)®(£ ΓΊ EX).
It follows UιztMςΞ(HX)e(HX)®(gΓ\EX)=(HX)e{gnEX)y by Proposi-
tion 1.8. Now suppose that M does not contain any non-zero submodule in X.
By (2) and Lemma 1 . 2 , M G ^ n £ X This proves (12).

Conversely, note that gf)EXc:DX, by Lemma 1.2, and hence

by Propositions 1.7 and 1.8.

Note that, in fact, the proof of Corollary 3.3, gives:

for any {P, 5} -closed class 2C of i?-modules such that Xc CU. Let M e "U Π ̂ .
Let F" be any uniform submodule of Λf. Because M G ^ , there exists a direct
summand K of M such that V is an essential submodule of K. It follows that
K is uniform. Thus, by induction on the uniform dimension of M, M is a
finite direct sum of uniform submodules. Thus, (13) gives

DX^C®(HJ Π HX)®{FX), (14)

for any {P, S}-closed class X of Λ-modules such that X^HJ, by Proposition

1.6.

Combining (9), (13), and (14), the above discussion gives, at once, the fol-

lowing theorem which extends [2, Theorems 3.1 and 4.1] and [15, Corollary

2.8].

Theorem 3.4. For any ring R and ordinal

and
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