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The elastic constants of crystalline Si2N2O remain unknown since it was discovered in 1960s. We determine

the nine independent elastic constants of orthorhombic Si2N2O by ab-initio calculations. We applied various

deformation modes with strains up to ±0.01 to the unit cell, calculated the energy-strain relationships, and de-

duced all the elastic constants by fitting the harmonic-oscillation function. Our results are as follows: C11=311.1,

C22=238.5, C33=317.9, C44=136.1, C55=57.6, C66=73.9, C12=79.6, C13=52.2, and C23=33.6 GPa. Despite dif-

ferent crystal structures and symmetries, the direction-over-averaged Young’s modulus of Si2N2O is well ex-

plained by the nitrogen content and Young’s moduli of α-SiO2 and β-Si3N4. Anisotropy of sound-wave velocity

was investigated, and its origin was discussed by the crystallographic structure. The quasi-isotropic plane for

the longitudinal-wave propagation was identified.

1. Introduction

The word silicon oxynitride normally indicates non-crystalline silicon-nitrogen-oxygen com-

pounds in the field of electronics devices. It exhibits amorphous structure with various nitrogen com-

positions between amorphous SiO2 and amorphous Si3N4. The amorphous silicon oxynitride has been

attracted as optical elements because its refractive index also changes between SiO2 and Si3N4 in re-

sponse to its composition.1–4) On the other hand, silicon oxynitride occasionally represents crystalline

silicon-nitrogen-oxygen compounds with chemical formula of Si2N2O. It was discovered in 1960s5)

and is the only stable crystalline compound between SiO2 and Si3N4.

The crystalline Si2N2O can be synthesized by heating silicon and quartz powder in nitrogen at-

mosphere at 1,450◦C.5) It is an important high-temperature material because of its promising heat

characteristics: It exhibits high flexural strength up to 1,300◦C in addition to strong resistance to ox-

idation and thermal shock.6) On the other hand, elastic properties of Si2N2O have not been studied

in detail. It is well recognized that amorphous SiO2 shows the positive temperature coefficient of

velocity (TCV) near room temperature,7) which is the opposite trend to usual materials, and used for

temperature compensation in acoustic resonator devices.8–13) On the other hand, Si3N4 shows ordinary

(negative) TCV.14) The crystalline Si2N2O could be then a promising material for acoustic resonators

because its TCV is expected to be very small. Therefore, it is highly important to elucidate its elastic

constants and sound propagation behavior. However, there is no report on experimental nor theoretical
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study of the elastic constants of the crystalline Si2N2O.

Here, we determine all of the independent elastic constants of Si2N2O using ab-initio calcula-

tions along with those of α-SiO2 and β-Si3N4 for comparison and investigate the sound propagation

behavior in various directions.

2. Calculation Method

2.1 Materials

Si2N2O belongs to the space group Cmc21,5) showing orthorhombic symmetry. It then exhibits

nine independent elastic constants:

Ci j =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(1)

As shown in Fig. 1(a), Si2N2O consists of Si centered [SiN3O] tetrahedrons connecting with each

other via shared vertices.15)

Crystalline α-SiO2 is composed of [SiO4] tetrahedrons. As shown in Fig. 1(b), its symmetry and

space group are trigonal and P3121, respectively, showing six independent elastic constants (C11, C12,

C13, C14, C33, and C44).

Si3N4 takes two principal types of crystal structures (α-Si3N4 or β-Si3N4). We chose β-Si3N4

as the calculation target because of its stability at a temperature range, including room temperature.

It shows hexagonal symmetry with five independent elastic constants (C11, C12, C13, C33, and C44).

Space group of β-Si3N4 is controversial and possibly be P63/m or P63.16) We performed the calcula-

tion using P63, which allows successful calculation results as will be shown.

We performed calculations of lattice parameters and the elastic constants of the three types of

Si-O-N compounds, which have similar structures in terms of being made of tetrahedron centering

around Si atoms.

2.2 Calculation details

We used the Vienna Ab-initio Simulation Package (VASP),17) which calculates total energy based

on the density functional theory. The VASP works as if it calculated all electrons, including core

electrons, due to the projector-augmented-wave (PAW) method. For the exchange correlation poten-

tial, we employed the local-density-approximation (LDA)18) and generalized-gradient-approximation

(GGA)19) methods. We set k-point meshes and the energy cutoff to be 10×10×10 and 1,000 eV, re-

spectively. The computation was carried out using the computer facilities at Research Institute of

Information Technology, Kyushu University.

First, we determined the lattice constants and atomic sites at the ground state by minimizing the
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total energy and the internal stresses, varying the cell volume, shape, and atomic positions.

Next, the elastic constants Ci j were determined by applying various deformations to the unit cell,

calculating changes in the total energy, and fitting the harmonic function to the relationships between

the energy and the strain. We applied the representative strain up to ±0.01 in each deformation mode,

where the system was relaxed at individual strain state and the energy was determined.20–23) The total

energy can be written as follows, ignoring the higher order terms:24)

E (V, S ) = E (V0, 0) + V0

∑
I

τIS I +
1
2

∑
I,J

CIJS IS J

 . (2)

Here, V , V0, τ and S denote the cell volume, that at the ground state, residual stress, and the engineering

strain, respectively. The elastic constants are then deduced by fitting the quadratic function to Eq. (2).

3. Results and discussions

The lattice constants determined in this study are compared with experiments in Table I.15) Dif-

ferences between our calculations and reported experimental values are less than 0.32%, 0.63%, and

0.55% for Si2N2O, α-SiO2, and β-Si3N4, respectively, in case of LDA potentials. As to GGA, they

are up to 1.4%, 2.524%, and 0.90% for Si2N2O, α-SiO2, and β-Si3N4, respectively. It is, therefore,

notable that LDA potentials are more proper for theoretically calculating properties of these Si-O-N

compounds, and we determined the elastic constants using LDA exchange correlation potentials.

Figure 2 shows examples of the relationships between the total energy and the applied strain

for Si2N2O together with the fitted solid curves, which indicates significant anisotropy between C22

and C33, and between C44 and C55: The energy increase becomes larger by applying S 4(=2ε23) than

S 5(=2ε13), for example. Favorable fitting results confirm the reliability of the determined values. Our

values and reported experimental values are compared in Table II. Concerning β-Si3N4, our calcula-

tions agree with measurements within 10%, even for the off-diagonal components, which are usually

less accurately determined because of weak contribution to deformation. As for α-SiO2, our calcu-

lations are favorably compared with measurements except for C14. The discrepancy in C14 may be

acceptable, because both in calculation and experiment, C14 is inherently inaccurately determined be-

cause of its very low sensitivity to deformation. Because of higher symmetry of Si2N2O (C14=0) than

α-SiO2, we expect that the Ci j of Si2N2O are determined within ∼10% error.

Using the obtained Ci j values, we calculated the Young moduli Ei and the Poisson ratios νi j in

the principal directions, and the Bulk modulus B (Table III). It is not straightforward to compare these

values among the different-symmetry crystals. We then computed the direction-over-averaged elas-

tic constants (isotropic C11 and C12, Young modulus Eave., and Bulk modulus Bave.) using the Hill

approximation method,29–31) which are also given in Table III. Surprisingly, the averaged elastic con-

stants of Si2N2O are accurately estimated by those of α-SiO2 and β-Si3N4, and the nitrogen content,

despite their different crystallographic symmetry. For example, Figure 3 shows such a relationship for

Eave., where the averaged Young moduli of the three crystals are connected by a straight line with the
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correlation coefficient of 0.9991.15) This is a very important finding because many other properties

(mechanical, electric, ...) of Si2N2O could be accurately estimated from those of α-SiO2 and β-Si3N4.

Next, we discuss the sound-velocity anisotropy in Si2N2O. We calculated velocities of ultrasound

propagating in various directions by solving the Christofell equation using obtained Ci j and mass

density ρ =2826 kg/m3. Figure 4 shows propagation behaviors in the three orthogonal planes and cor-

responding projection crystal structures. The longitudinal-wave velocity in the Y axis is smaller than

those in X and Z axes (Fig. 4(a) and (b)) because of significantly smaller C22. This can be explained

by the bending of the tetrahedron at the nitrogen vertex: Si2N2O consists of the network structure of

silicon-centered tetrahedrons, sharing nitrogen and oxygen vertexes. Each tetrahedron is stable and

will be rigid-like unit. Thus, the bending at the vertex will dominate crystal’s deformation. Structures

in Figs. 4(a) and (b) indicate that the longitudinal loading along the Y axis will induce the network

bending at the nitrogen vertexes, leading to slow velocity. The velocity anisotropy becomes more sig-

nificant for shear waves. Figure 4 shows shear-wave propagation behaviors on the orthogonal planes;

blue lines denote in-plane and out-of-plane polarized shear waves. Shear waves polarized in the YZ

plane show markedly larger velocities, and this trend is caused by significantly larger C44 than C55

and C66. This anisotropy for shear deformation is also attributed to the bending of the tetrahedron

at the shearing vertex. The crystal structure in the YZ plane (Fig. 4(b)) suggests high rigidity to the

shear deformation in the YZ plane. On the other hand, the projection structures in XY (Fig. 4(a)) and

ZX (Fig. 4(c)) planes indicate that the shear deformation in these planes will be easily caused by the

bending of the tetrahedron network at the oxygen vertexes.

Finally, we propose a specific plane (9 0 20), on which longitudinal waves travel with nearly the

same velocity, as if the crystal were isotropic (Fig. 5). This characteristic will be useful in designing

acoustic devices such as resonators.

4. Conclusion

We determined the complete set of elastic constants of Si2N2O by ab-initio calculations, where it

is revealed that LDA exchange correlation potentials are more suitable. The direction-over-averaged

elastic constants are surprisingly accurately estimated by those of α-SiO2 and β-Si3N4, and the ni-

trogen content. In particular, averaged Young’s modulus nearly lays on the line connecting those of

α-SiO2 and β-Si3N4. Thus, any properties of Si2N2O are expected to be estimated by correspond-

ing properties of α-SiO2 and β-Si3N4, and the nitrogen content. The sound-wave anisotropy was in-

vestigated, and its origin was explained in the crystallographic view by the bending behavior of the

Si-centered tetrahedron network at the nitrogen and oxygen vertexes. Furthermore, we find a specific

plane (9 0 20), on which the longitudinal wave propagates without direction anisotorpy.
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Table I. Lattice constants obtained by the relaxation calculation and reported values (in units of Å).

a b c

LDA 8.871 5.489 4.838

Si2N2O GGA 8.967 5.550 4.898

Experimental5) 8.843 5.473 4.835

LDA 4.882 a = b 5.381

α-SiO2 GGA 5.037 a = b 5.525

Experimental25) 4.913 a = b 5.405

LDA 7.578 a = b 2.893

β-Si3N4 GGA 7.663 a = b 2.926

Experimental26) 7.595 a = b 2.902
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Table II. Elastic constants calculated with LDA potentials and those reported (in units of GPa).

Si2N2O α-SiO2 β-Si3N4

this work this work Experimental27) this work Experimental28)

C11 311.1 72.9 86.76 422.9 433

C22 238.5 - - - -

C33 317.9 96.6 105.41 553.9 574

C44 136.1 52.2 58.27 99.1 108

C55 57.6 - - - -

C66 73.9 - - - -

C12 79.6 7.6 7.06 199.3 195

C13 52.2 7.8 11.90 117.7 127

C23 33.6 - - - -

C14 - −0.1 −17.98 - -
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Table III. Young modulus Ei [GPa], Bulk modulus B [GPa], Poisson ratio νi j, direction-averaged elastic con-

stants Cave.
i j [GPa], averaged Young modulus Eave. [GPa] and averaged Bulk modulus Bave. [GPa]

Si2N2O α-SiO2 β-Si3N4

E1 279.4 71.5 321.5

E2 216.8 E1 E1

E3 307.3 95.1 509.3

B 130.7 31.6 251.7

ν12 0.3152 0.0970 0.4380

ν13 0.1307 0.0730 0.1195

ν21 0.2447 ν12 ν12

ν23 0.0656 ν13 ν13

ν31 0.1439 0.0971 0.1892

ν32 0.0930 ν31 ν31

Cave.
11 258.3 86.5 413.9

Cave.
12 68.8 4.5 170.9

Eave. 229.4 86.1 314.0

Bave. 131.9 31.8 251.9
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Figure Captions

Fig. 1. (Color online) The crystal structures of (a) Si2N2O, (b) α-SiO2 and (c) β-Si3N4. The blue,

silver and red balls represent silicon, nitrogen and oxygen atoms, respectively.

Fig. 2. Relationships between the total energy and applied strain when (a) ε33 and ε22 are applied and

when (b) ε23 and ε13 are applied.

Fig. 3. Relationship between nitrogen atom content and the averaged Young modulus.

Fig. 4. (Color online)Sound-velocity mappings (left) in (a)XY-, (b)YZ-, and (c)ZX-planes, and corre-

sponding crystal structures (right). Red and blue lines represent the longitudinal and shear waves.

Blue tetrahedron represents the Si-centered tetrahedron, and red and silver balls denote oxygen

and nitrogen atoms, respectively.

Fig. 5. (Color online) Directional dependence of sound velocities propagating along (9 0 20) plane.

Red and blue lines represent longitudinal and shear waves.
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Fig. 1.
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Fig. 2.
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