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Elastic-stiffness distribution on polycrystalline Cu studied by resonance ultrasound microscopy:
Young’s modulus microscopy
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We study an elastic-constant distribution on a polycrystalline Cu using resonant ultrasound microscopy with
a wireless-electrodeless langasite oscillator, which we originally developed for absolute quantitative determi-
nation of local stiffness of a material. We formulate the relationship between the resonance frequency of the
oscillator and material’s elastic constants. Our microscopy results on each crystallite agree with those from
electron-backscattering-pattern measurements except for some small grains. A softening is observed on grain
boundaries, partially explaining softened small grains.
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I. INTRODUCTION

Material’s elastic constants reflects strengths of inter-
atomic bond stretching and bond bending. They provide im-
portant knowledge of the solid’s thermodynamic features,
such as the Debye temperature and the Grünisen param-
eter.1,2 Macroscopically, the elastic constants reflect defects
through elastic softening and elastic anisotropy.3–5 Thus, lo-
cal elastic constants serve two purposes; �i� the study of mi-
croscale and nanoscale solid-state physics, and �ii� a nonde-
structive evaluation of solids with damages.

An estimation of local elastic properties has become
possible through atomic-force-acoustic microscopy.6–8 This
method estimates the effective stiffness in a local area from
the resonance frequency of an atomic-force-microscopy can-
tilever contacting the material with a needle tip’s free end. It
achieves a high-resolution microscopy, but it is limited to
relative stiffness microscopy because the vibrating cantilever
contacts not only the specimen but also the attached piezo-
electric oscillator and the fixed end. The key for absolute
quantitative stiffness microscopy is that the oscillator vibra-
tion must be isolated from any other acoustical contacts on
the oscillator’s surfaces except the specimen contact. Neither
wire nor electrode must be involved.

Recently, we developed a wireless-electrodeless stiffness
microscopy with a monocrystal langasite oscillator.9,10 It
showed great potential for evaluating the local elastic con-
stant, but remained providing relative values because of the
low sensitivity of the frequency to the modulus and unfavor-
able contacts between the crystal’s side faces and the sur-
rounding fixture walls, which prohibited extracting the fre-
quency change caused only by the contact with the speci-
men.

Here, we further develop an oscillator for realizing a
much higher sensitivity and making it completely isolated,
and we propose a vibrational analysis by incorporating the
contact between anisotropic materials to calculate the mate-
rials stiffness from the measured frequency. The microscopy

method is applied to study the elastic-stiffness distribution on
polycrystalline copper and it finds out softened crystallites.

II. MEASUREMENT

Our homebuilt microscopy consists of a monocrystal lan-
gasite �La3Ga5SiO14� oscillator, diamond tip �12-�m diam-
eter� attached to the bottom surface of the crystal, the sur-
rounding solenoid-coil antenna, epoxy fixture for the crystal,
and an XYZ stage on which a specimen is put. All the com-
ponents are placed in a vacuum chamber ��1 Pa� to avoid
acoustic noise. Langasite shows low temperature derivatives
of the elastic constants, of the order of 10−6–10−5, requiring
no temperature controlling. It also shows high piezoelectric-
ity, allowing us to generate and detect vibrations contact-
lessly by the solenoid-coil antenna.11 The langasite crystal is
an oriented rectangular parallelepiped, showing the cross-
section area of 2�2 mm2 and the length of 7 mm. The crys-
tal’s twofold axis �X axis� is selected along the longitudinal
direction. When a sinusoidal current is applied to the sole-
noid coil, a quasistatic electric field �nonrotational compo-
nent� �Ex� is generated along the vertical direction, causing
the principal stresses −e11Ex along the X direction and e11Ex
along the Y direction via the converse piezoelectric effect.
e11denotes a piezoelectric coefficient of materials showing a
32-point-group symmetry. Thus, this setup causes breathing
vibrations �Ag vibration group11,12�. The same solenoid coil
detects the vibrational amplitudes through the piezoelectric
effect and a frequency scan yields the resonance spectrum,
requiring neither wires nor electrodes on the oscillator sur-
faces.

We used the fundamental mode of the breathing vibration
�Ag−1� because it has nodal lines at the center on the side
faces and an antinode point at the center of the bottom sur-
face to achieve a high sensitivity. �The sensitivity to the
modulus increased by a factor of 50 comparing our previous
oscillator in Refs. 9 and 10.� The vibrational amplitude dis-
tribution was confirmed by the laser-Doppler interferom-
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eter13 and we supported the langasite oscillator by the epoxy
fixture exactly at the nodal lines on the side faces, giving
little influence on the vibration.

III. VIBRATIONAL ANALYSIS

This isolated vibrational system has made it possible to
determine the local modulus quantitatively. The contact be-
tween the tip and specimen is equivalent to an elastic spring
with the contact stiffness k.14 The resonance frequency is
calculated by the Lagrangian minimization with the Rayl-
eigh-Ritz method. The system Lagrangian consists of the
elastic strain energy, electromechanical coupling energy,
electrostatic energy of the langasite crystal,11,12,15 kinetic en-
ergy of the tip, and the elastic-spring energy at the tip-
specimen contact interface.10 No gripping effect is involved.
Because of the isolated vibrational system, we require only
the crystal’s dimensions, elastic and piezoelectric coeffi-
cients, and the mass of the tip, which are all unambiguous-
ly measurable. The displacements and electric potential are
approximately expressed by a combination of many basis
functions of Legendre polynomials �Rayleigh-Ritz ap-
proach�.11,12,15 Calculated frequencies agreed with those
measured within 0.1% for first 40 modes: One would never
obtain such an excellent agreement between measured and
calculated frequencies in the use of the cantilever-type oscil-
lator because of ambiguous parameters.

Figure 1 shows the sensitivity of Ag-group resonance fre-
quencies to the contact stiffness k; the highest sensitivity of
the fundamental mode �Ag-1� is associated with the large
out-of-plane amplitude at the contacting point. Its sensitivity
is actually very high because our microscopy determines the
resonance frequency within the error limit of 2�10−5. When
we find a relationship between the contact stiffness k and the
effective elastic constant of the material, we can determine
the effective stiffness only from the resonance frequency. We
propose this relationship following Willis and Swanson:

Willis16 formulated contact features between two anisotropic
bodies using the Fourier transform, and Swanson17 calcu-
lated the indentation depth � using Willis’s approach in the
case of the contact with orthorhombic materials by �
=3F0I0 / �8a�, where F0 is the biasing force normal to the
surface and a denotes the average contact radius given by
a=�33RF0I1 /4. Here, R denotes the tip radius. I0 and I1 are

given by integrating the Green function Ĝ for a point-force
indentation, which depends on the elastic constants of the
specimen:

I0 = �
i=1

2 �
0

2�

Ĝi���x,�y�d�, I1 = �
i=1

2 �
0

2�

Ĝi���x,�y��x
2d� .

Here i=1 represents quantities of the tip and i=2 those of the
specimen. �x=cos � and �y =sin �; � denotes the angle of the
polar-coordinate system on the contact-interface plane. � is
the ratio between the major and minor axes of the ellipsoid
of the contact interface; obtained by an iterative calculation,
it equals approximately unity.

The harmonic oscillation of the oscillator causes har-
monic perturbation in the applied force and the total force
will be of the form F0+	F at the contact interface. We as-
sume �	F � 
 �F0� to obtain 	��	F�3 I0

3 / �48F0RI1�. Thus, we
derive the contact stiffness k for the contact between two
orthorhombic materials:

k = �3 48F0RI1/I0
3. �1�

Equation �1� applies when the two orthogonal axes of the
material are parallel to the contact interface. In Fig. 1, we
plot the experimental 	f versus k for the contacts with �001�
and �110� faces of monocrystal silicon wafers and the �001�
face of monocrystal diamond. Remarkably, they agree with
the theoretical calculation regardless of the absence of fitting
parameters. This demonstrates that isolation of the oscillator
is the key of the quantitative microscopy.

Our goal is to determine the effective modulus of the
specimen only from the resonance-frequency shift of the os-
cillator. A classical Hertzian theory relates the effective
modulus E* to the contact stiffness k through E*

=�k3 / �6RF0� in the case of the contact of two isotropic
bodies,18 where E* is given by

E* = 	�1 − �t
2�/Et + �1 − �s

2�/Es
−1. �2�

Here, � and E denote Poisson’s ratio and Young’s modulus,
and subscripts t and s denote the tip and specimen, respec-
tively. Similarly, we define the effective modulus for the con-
tact between the anisotropic bodies by

E* = �8I1/I0
3. �3�

Thus, the effective normal Young’s modulus of the specimen
Es is given by Eqs. �2� and �3�.

IV. RESULTS AND DISCUSSION

Using our original microscopy, we measure the stiffness
distribution on the polycrystalline copper and compare the
result with that obtained by the electron-backscattering-pat-

FIG. 1. Relationships between the contact stiffness and the reso-
nance frequencies of the Ag vibration group �left� and a comparison
of the calculated frequency shift with measurements �right� for the
Ag-1 mode. No fitting parameters are involved in the calculation of
the contact stiffness and resonance frequencies.
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tern �EBSP� measurement. The studied material was an oxy-
gen-free high-conductivity copper. Purity exceeded 99.95%.
The EBSP measurement was carried out before the elastic-
stiffness mapping. After annealing at 800 °C for 2 h, the
surface layer ��30 �m thick� was removed chemically to
obtain a nonstrained surface, and Kikuchi patterns were ob-
tained for every 7 �m. Figures 2�a� and 2�b� compare an
image obtained by the scanning electron microscopy with a
crystallographic orientation image determined by the EBSP
measurement. We measured the resonance frequency for ev-
ery 5 �m on the same area examined by EBSP. At each
measuring point, the change of the resonance frequency be-
tween before and after making contact was recorded. Figure
2�c� shows the resonance-frequency image, showing clearly
the difference of the elastic stiffness depending on the crys-
tallite orientation. Even within a single grain, the resonance
frequency is nonuniform, indicating elastic-constant distribu-
tion.

Because Eq. �3� applies only to orthorhombic materials,
we averaged the elastic-stiffness tensor over the rotational
angle in the surface plane at each point using Hill’s averag-
ing method4 and crystallographic orientations determined by
EBSP measurements: The averaged elastic-stiffness tensor
�Cijkl� is given by

�Cijkl� =
1

2 1

2�
�

0

2�

Cijkl���d� + � 1

2�
�

0

2�

sijkl���d��−1� .

�4�

Here, sijkl denotes the elastic compliance tensor. This proce-
dure yields transverse-isotropic �hexagonal� elastic symme-
try to accept the above analysis. Figure 3 compares the ef-
fective normal Young modulus determined by the observed
frequency shift and that calculated by the EBSP measure-
ment for individual grains; there were 74 grains in the
scanned area and we numbered them. The effective Young
modulus determined by our elastic microscopy failed to
show a perfect agreement with that by EBSP because of the
simplification of the contact-stiffness calculation in order to

accept the Willis-Swanson analysis. However, they show a
good correlation as shown by the solid line; this is remark-
able because no fitting parameters are included in the calcu-
lation of the effective modulus from the resonance fre-
quency.

We note that some grains show smaller stiffnesses than
those estimated by EBSP measurements. These are smaller
grains as labeled in Figs. 2�c� and 3. We attribute this dis-
crepancy to two factors. First, elastic softening at the grain
boundaries is caused by lattice distortion. Polycrystalline
materials tend to show smaller elastic constants than those

FIG. 2. �Color� Scanning-electron-microscopy image �a�, crystallographic-orientation image for the normal direction to the surface
measured by the EBSP method �b�, and resonance-frequency image �c�. F0=0.019 N. Numbered grains indicate smaller stiffnesses than
those estimated by grain orientations.

FIG. 3. A comparison between the effective normal Young
modulus determined by the resonance frequency and that by the
EBSP measurement. The slope of the broken line is 1. The solid line
indicates the strong correlation between them. Numbered grains
correspond to those in Fig. 2�c�.

ELASTIC-STIFFNESS DISTRIBUTION ON¼ PHYSICAL REVIEW B 73, 174107 �2006�

174107-3



for an aggregate computed from elastic constants of corre-
sponding monocrystals.19 The volume fraction of such soft-
ened regions near grain boundaries increases in a small grain.
Figure 4 shows a linear trace of the resonance frequency
along the horizontal broken line, which indicates the stiffness
decrease near grain boundaries. The top figure in Fig. 4
shows a low quality factor of EBSP at the grain boundaries,
indicating low crystallinity.

Second is a small-grain elastic softening caused by an
elastic strain �or lattice anharmonicity�. Phillips et al.20 found
by using x-ray microdiffraction measurements21 that elastic
strains in some small grains �not all� are much larger than in
large grains in Al-Cu polycrystalline thin films: The maxi-
mum resolved shear strain reaches 0.6%. In small grains, less
plastic deformation occurs because dislocations cannot move
freely because of the grain-boundary back stress. The modu-
lus decrement is estimated roughly to be 3–8% from the
correlation line in Fig. 3. We estimate the elastic strain that

may cause this decrement from the temperature dependence
of the elastic constants. Copper’s Young’s modulus is
135.7 GPa at 100 K and 127.0 GPa at 300 K;22 it decreases
by 6.4% by the 200-K temperature increase, corresponding
to the 1% volume change, assuming the constant thermal
expansion coefficient of 18�10−6 K−1. Thus, to explain a
decrease of Young’s modulus in small grains, we expect
about 0.3% uniaxial strain. Young’s modulus is highly af-
fected by the shear modulus because it is about eight times as
sensitive to the shear modulus as to the bulk modulus.
Zener23 showed that the variation of the shear modulus with
the strain energy caused by thermal vibrations �thermal ex-
pansion� is identical with that caused by the strain energy
due to residual stresses. Therefore, considering the large re-
sidual resolved shear strain observed in an Au-Cu alloy,20

decrease of Young’s modulus by several percent is possible.
Thus, smaller grains may include residual strains large
enough to change the elastic constant, approximately by
10−2. The stiffness distribution within a single grain can,
therefore, be interpreted as arising from the residual-strain
distribution.

V. CONCLUSION

We developed a microscopy method for a quantitative de-
termination of effective elastic stiffnesses in a microscale
region. The relationship between the resonance-frequency
change and the material’s anisotropic elastic constants was
formulated. Its correctness and usefulness were demonstrated
by comparing the determined modulus to that predicted by
EBSP measurements for a polycrystalline copper. This
homemade microscopy detected elastic softening grain
boundaries and softened small grains, which were attributed
to a lattice distortion due to a larger residual strain in small
grains.
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