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The five independent elastic constants of hexagonal monocrystal titanium were 

determined up to the phase-transformation temperature, and the two isotropic elastic 

constants of polycrystalline titanium were determined beyond, up to 1300 K.  

Anomalous temperature dependences were observed just below the 

phase-transformation temperature: C11 and C66 increase with increasing temperature 

whereas C33 and C44 remarkably decrease, for example.  To determine the Cij, we used 

the free-vibration resonance frequencies obtained by electromagnetic acoustic resonance.  

After the phase transformation, the resonance frequencies changed little with the 

temperature increase, showing that the bcc-phase elastic constants change little with 

temperature.  The polycrystalline elastic constants remained unchanged up to 1300 K 

after the phase transformation.  The anomalous temperature dependence near the 

transformation is interpreted in terms of the small c/a ratio of the hcp phase and change 

of the atomic distances to meet the Burgers lattice relationship.  

Temperature-insensitive elastic constants in the bcc phase suggest the stabilizing of the 

bcc phase with increasing temperature. 
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1. Introduction 

Titanium belongs to the group-IV metals, which show hcp () to bcc () phase 

transformation at temperatures higher than half the melting points.  Elastic constants 

Cij of titanium and its alloys received intensive study by Fisher and coauthors [1-3] who 

tried to clarify the transformation mechanism.  They performed pulse-echo 

measurements independently for three specimens with different crystallographic 

orientations and determined the five elastic constants of hcp-phase titanium up to 1156 

K for C11 and C44, 1153 K for C66, 1083 K for C33, and 923 K for C13 [1].  Also, they 

used Ti-Cr binary-alloy specimens with different chromium concentrations to predict 

the unalloyed bcc-phase titanium Cij using extrapolation [2, 3].  However, the 

extrapolation is questionable because of rapid changes of elastic constants near the 

zero-chromium concentration.  Thus, elastic constants of hcp-phase titanium just 

below the phase-transformation temperature and those of bcc-phase titanium remain 

uncertain and a central issue because of difficulties of high-temperature measurements.   

Titanium exhibits an hcp lattice-parameter ratio c/a (=1.59) smaller than the ideal 

value (=1.63), indicating that its basal plane is dilated.  Fisher and Renken [1] 

suggested that thermal-vibration modes would occur principally along the a axis at low 

temperatures because of the elongated lattice and they would change to c-axis vibrations 

at the phase transformation to satisfy Burgers’ relationship for the hcp-bcc phase 
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transformation [4] and Zener’s theory for high-temperature stability of bcc phases [5].  

However, no study observed such effects near the phase transformation. 

Here, we report measurements of the five hexagonal-symmetry elastic constants of 

monocrystal titanium up to the phase-transformation temperature and also the two 

isotropic elastic constants of polycrystalline titanium above the phase-transformation 

temperature.  Elastic constants were determined simultaneously on a single specimen 

using electromagnetic acoustic resonance (EMAR).  EMAR [6-9] is a noncontact 

method to measure free-vibration resonance frequencies of solids through the 

Lorentz-force or magnetostriction-force mechanism.  The resonance frequencies are 

entered into an inverse calculation to determine all the independent elastic constants.   

We observe elastic softening for C33 and C44, and elastic stiffening for C11 and C66, 

just below the phase-transformation temperature.  Elastic softening is often observed 

near a phase transformation, but elastic stiffening seems unreported, thus presenting a 

new challenge for theory.  Another important observation is the 

temperature-insensitive elastic constants of bcc-phase titanium. 

  

2. Materials 

Two specimens were prepared.  One was a rectangular parallelepiped of 

monocrystal titanium, whose crystallographic axes were along the three sides.  It was 
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obtained by a strain-annealing technique: We applied a plastic deformation to a 

commercially available titanium rolled plate with 0.043-mass% oxygen content.  The 

plate was heated to 1473 K with a rate 0.1 K/s and kept for 3 h in a pressure less than 

10-5 Torr.  It was cooled to 1123 K with a rate 7 K/s and kept for 24 h, and then 

furnace-cooled to room temperature.  The procedure provided large grains with 15-mm 

diameter.  We obtained the rectangular parallelepiped specimen from a single grain 

using the X-ray Laue method.  The specimen measured 3.880 mm by 4.182 mm by 

1.749 mm.  The mass density was 4429 kg/m3.  The hexagonal-symmetry elastic 

constants are given by 
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Here C66=(C11−C12)/2.   

The other specimen was a rectangular parallelepiped of a 99.96%-purity 

polycrystalline titanium, measuring 3.891 mm by 3.278 mm by 1.835 mm.  The mass 

density was 4469 kg/m3.  Macroscopically, it shows two isotropic elastic constants, C11 

and C44 (longitudinal modulus and shear modulus).  We did not correct dimension and 

density changes caused by thermal expansion because the effect is small, comparable to 
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the measurement errors. 

  

3. Measurement 

Figure 1 shows our measurement setup.  The specimen was inserted in a solenoid 

coil located within a cylindrical vacuum vessel made of austenitic-stainless steel.  The 

solenoid coil was made with a Ni-alloy wire and its shape was held by a ceramic cement 

so as to operate at temperatures above 1300 K.  A Cantal-line heater supplied the heat 

to the coil and specimen.  The pressure inside the vessel was kept less than 10-4 Torr.  

A pair of permanent magnets made of sintered Nd-Fe-B sintered material was set 

outside the vessel to apply a biasing magnetic field to excite and detect free vibrations 

of the specimen via the Lorentz-force mechanism.  The permanent-magnet assembly 

was mounted on casters, which facilitated the rotation of field direction about the 

cylindrical-vessel axis and selection of detectable vibration modes.  The detailed 

procedures for measuring resonance frequencies are given in a monograph by Hirao and 

Ogi [6]. 

There are eight vibration groups in free vibration of an oriented crystal with 

crystallographic symmetry higher than orthorhombic [10].  When the static field is 

along the coil’s axial direction, breathing vibration (Ag group) appears.  A static field 

perpendicular to the coil’s axial direction causes shearing vibration (B1g, B2g, or B3g 
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group).  (Notation of vibration group follows Mochizuki [11].)  Thus, rotation of the 

permanent magnets allows one to excite one vibration group independently, leading to 

unambiguous mode identification, which is of great importance for the success of 

acoustic spectroscopicy.  Here, we used Ag and B3g vibrations.  To determine the 

elastic constants, we performed an inverse calculation, the input being specimen mass, 

shape, and size, and measured resonance frequencies [10]. 

  

4. Results 

Figure 2 shows changes of the resonance frequencies of the monocrystal specimen 

during heating.  They decrease monotonically, but show anomalous changes just below 

the phase-transformation temperature.  Upon heating, at the phase-transformation 

temperature, resonance peaks disappear, then another spectrum appears.  Resonance 

frequencies of the bcc phase change little with temperature increase up to 1323 K. 

Figure 3 shows temperature dependences of principal hcp-phase elastic constants, 

including the results by Fisher and Renken [1] for comparison.  B denotes the bulk 

modulus, and Ea and Ec denote Young’s moduli along the a and c axes, respectively.  

The bcc-phase monocrystal elastic constants become unavailable because of 

transformation-induced twinning.  At room temperature, we see elastic anisotropy 

between the directions parallel and normal to the basal plane: C11 smaller than C33 by 
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13%, Ea smaller than Ec by 41%, and C66 smaller than C44 by 32%.  Significant 

behavior occurs just below the phase-transformation temperature as shown in Fig. 4: 

elastic constants related to the c-axis (C33, Ec, and C44) decrease, whereas those related 

to the a-axis (C11, Ea, and C66) increase. 

Figure 5 shows temperature dependence of the isotropic elastic constants of the 

polycrystalline specimen.  Assuming that the material remained macroscopically 

isotropic after the hcp-bcc phase transformation, we determined the bcc-phase isotropic 

elastic constants.  (This assumption was verified by two facts: the two elastic constants 

returned exactly to the initial values of the hcp phase at room temperature.  The 

high-temperature-phase vibration spectrum fit well to assumed isotropic symmetry.)  

Figure 5 also shows the effective (averaged-over-direction) constants calculated from 

the monocrystal-specimen values in Fig. 3 using the Voigt-Reuss-Hill averaging method.  

The polycrystalline-specimen elastic constants agree with the monocrystal-specimen 

elastic constants at room temperature, but at high temperatures they fall below the 

monocrystal-specimen values. 

  

5. Discussion 

A. Hcp Cij near the phase-transformation temperature 

The lattice-parameter ratio c/a of hcp titanium is 1.59, smaller than the ideal value 
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(1.63).  This indicates larger atomic distance in the basal plane (0001).  This causes 

C66 to be smaller than C44, C11 to be smaller than C33, and Ea to be smaller than Ec.  

The normalized temperature derivatives (1/Cij)dCij/dT of the elastic constants are larger 

for C66 than for C44, and so on.  This is also caused by the larger distance among the 

atoms constituting the (0001) plane; a larger distance between atoms causes lower 

elastic stiffness and larger thermal vibration.  Recent X-ray studies of titanium’s 

anisotropic Debye-Waller factor Bdw support this view:  Narayana et al. [12] gave the 

Bdw value along the a-axis larger than that along the c-axis by a factor 1.13.  In a 

Debye model, the mean-squared atomic displacement varies as Bdw, which varies as 

reciprocal elastic-stiffness constant [13].  (Note that our C33/C11 value at room 

temperature is also 1.13.)  Because the c-axis thermal expansion exceeds the a-axis 

thermal expansion, high temperatures tend to reverse this anisotropy. 

Approaching the transformation temperature at 1152 K, C11, C66, and Ea increase 

(Figs. 3 and 4), that is elastic stiffening approaching the transformation.  This unusual 

stiffening can be attributed to premonitory behavior associated with the hcp-bcc Burgers 

mechanism [4].  The (0001) closed-packed plane in the hcp phase becomes a (110) 

plane in the bcc phase.  The lattice parameter in the hcp phase is a=2.95 Å at room 

temperature [14].  That for the bcc phase is a=3.31 Å at 1173 K, which means that the 

distance between nearest atoms is 2.86 Å [14].  Thus, the distance between the 
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next-nearest atoms in the basal plane of the hcp phase decreases during the phase 

transition, which will increase C66, C11, and Ea.  On the other hand, C33, C44, and Ec 

decrease just below the transformation, elastic softening.  This supports the idea 

suggested by Fisher and Renken [1] that the direction of high-amplitude thermal 

vibration shifts from along the a axis to the c axis.  The occurrence of the 

high-amplitude mode along the c-axis affects strongly the elastic constants C33, C44, and 

Ec so as to decrease them because of lattice anharmonicity.   

  

B. Polycrystalline Cij at high temperatures 

Figure 5 indicates elastic-constant softening at elevated temperatures in 

polycrystalline titanium.  At 1123 K, the polycrystal/monocrystal elastic-constant 

ratios reach 0.87 for bulk modulus B and 0.96 for the longitudinal modulus Cl.  Such 

elastic softening in a polycrystalline material is sometimes reported.  For example, 

Bpoly/Bmono=0.53 and Cl
poly/Cl

mono=0.72 for Nb3Sn [15, 16].  We attribute the present 

result to grain-boundary softening with two causes.  First is mismatch of 

thermal-expansion coefficients along the a and c axes.  As suggested by Fisher and 

Renken [1], titanium shows a marked positive temperature dependence of the c-axis 

thermal-expansion coefficient, which should increase the strain mismatch at the grain 

boundaries.  A highly distorted structure near grain boundaries reduces elastic stiffness.  
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Second is impurity softening.  Impurities such as oxygen tend to diffuse to 

grain-boundary sinks to form oxide layers, which reduce stiffness, especially at high 

temperatures. 

We studied the influence of such an elastically softened region on the macroscopic 

elastic constants by a micromechanics calculation as shown in Appendix.  Our model 

is general; it should apply to any system where particles of one phase are enveloped by 

a softer-phase layer.  The polycrystalline bulk modulus decreases by 0.91 and 

polycrystalline longitudinal modulus decreases by 0.93 compared with the non-defect 

material by the presence of very thin (aspect ratio=103) and low-volume-fraction (=10-5) 

microcracks at grain boundaries.  Thus, the elastic softening can be achieved by thin 

and soft inclusions on grain boundaries even when their volume fraction is quite small. 

  

C. Bcc Cij 

The resonance frequencies in the bcc titanium show weak dependence on 

temperature.  The normalized temperature derivative of the resonance frequency is 

about –3x10-4 K-1 in the hcp phase, whereas that in the bcc phase is of the order of 10-5 

K-1.  Thus, the bcc-titanium elastic constants are essentially temperature independent.  

We attribute this to structural stabilization with temperature increase; the bcc phase is 

unstable (softened) just above the transformation temperature.  Further temperature 
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increase decreases the instability, increases stiffness, offsetting the usual 

temperature-induced softening. 

We determined bcc-phase elastic constants of the polycrystalline specimen using 

the measured resonance frequencies and mass density calculated from the lattice 

parameter at 1173 K [17].  However, because of the elastic softening of the 

polycrystalline specimen at higher temperatures, we corrected them assuming the same 

ratios of the polycrystalline Cij to the aggregate Cij from monocrystal Cij both for the 

hcp and bcc phases.  Thus-determined bcc-phase elastic constants are Cl=115.3 GPa, 

G=20.7 GPa, and B=87.7 GPa.   

Table I compares our results with previous results: alloy-extrapolation results by 

Fisher and Dever [2] and force-constant neutron-scattering results from monocrystal 

measurements by Petry et al. [18].  (We averaged their values for monocrystal bcc 

titanium to get the two quasi-isotropic elastic constants.)  Our results agree well with 

those of Fisher and Dever.  However, our results differ strongly from those of Petry et 

al.: our bulk modulus and longitudinal modulus are lower by 34% and 30%, 

respectively.  Our bulk-modulus measurements on monocrystal hexagonal titanium 

give 96.4 GPa at 1143 K (Fig. 3), which agrees well with the Fisher and Renken value 

99.7 GPa at 1146 K [1].  Thus, the Petry et al. results give a cubic/hexagonal 

bulk-modulus ratio of about 1.2, a twenty-percent increase upon transforming to the 
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cubic phase.  Weston and Granato [19] measured the complete elastic-constant tensors 

for both phases of the hexagonal-cubic transformation in a cobalt-nickel alloy.  They 

found a cubic/hexagonal bulk-modulus ratio of 0.90.  A simple Einstein-oscillator 

model [20, 21] also predicts a lower bulk modulus in the high-temperature phase.  

Furthermore, Nishitani et al. [22] obtained the bcc-titanium bulk modulus 107 GPa by 

first-principles calculations for zero temperature.  Sanati et al. [23] also did the 

first-principles calculations and obtained 118 GPa for the zero-temperature bulk 

modulus.  Their values would decrease by 10-20% at 1140 K, predicting a much 

smaller bulk modulus than that of Petry et al., thus supporting our result.  We deduced 

the monocrystal bcc-titanium Cij, which will be reported elsewhere [24]. 

  

VI. SUMMARY 

(1) We determined the five independent elastic constants of monocrystal pure titanium 

up to the hcp-bcc phase-transformation temperature.  Just before the transformation, 

the basal-plane-related elastic constants increase and c-axis-related elastic constants 

decrease remarkably.  This can be explained by premonitory lattice deformation 

associated with the Burgers lattice correspondence in the hcp-bcc transformation.   

(2) The polycrystalline elastic constants soften at elevated temperatures, which we 

interpret as grain-boundary softening.  We confirmed this with a micromechanics 
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calculation.   

(3) We determined the polycrystalline elastic constants of bcc-phase titanium.  They 

show almost no temperature dependence.  They agree well with the Fisher-Dever 

estimate and disagree with the Petry et al. results.  First-principles calculations support 

our results. 

  

APPENDIX   

Micromechanics Model for Elastic Softening in Polycrystalline Materials Caused 

by Grain-Boundary Softening 

We represented the softened regions near grain boundaries with thin 

pancake-shape inclusions with smaller stiffness.  The calculation contains two steps.  

First, we calculate the five transverse-isotropic elastic constants of a composite 

consisting of isotropic titanium matrix including the inclusions whose minor axes are 

aligned along a particular direction.  According to Eshelby’s equivalent-inclusion 

theory [25] and Mori-Tanaka mean-field theory [26], such a two-phase composite 

elastic constants CC are given by  
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Here CM and CI denote elastic constants of the matrix and inclusion, respectively, and S 
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denotes Eshelby’s tensor.  fM and fI denote the volume fractions of the matrix and 

inclusion.  Eshelby’s tensor depends on the shape of inclusion and Poisson’s ratio of 

the isotropic matrix.  When the inclusions are ellipsoids, the nonzero components of S 

become simple and are tabulated in Mura’s monograph [27].  Second, we calculate the 

effective (averaged-over-direction) elastic constants of the composite by averaging CC 

using the Voigt-Reuss-Hill method.  Thus, the resulting isotropic-symmetry elastic 

constants include the effect of randomly distributed thin inclusions.  In the present 

study, we assumed microcracks on grain boundaries with an aspect ratio 103 and fI=10-5. 
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Table I  Elastic constants (GPa) of b.c.c. polycrystalline titanium.  Cl, G, B, and  

denote longitudinal modulus, bulk modulus, shear modulus, and Poisson ratio, 

respectively.

T (°C) C l G B 

present 1000 115.3 20.7 87.7 0.391

Fisher, Dever[2] 1000 113.9 18.1 89.7 0.406

Petry et al .[18] 1020 149 23.2 118 0.408
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Figure Caption 

  

Fig. 1  Setup of high-temperature elastic-constant measurement by electromagnetic 

acoustic resonance. 

  

Fig. 2  Changes of resonance frequencies of Ag modes (left) and B3g modes (right) with 

increasing temperature.  Note mode both softening and mode stiffening just below the 

transformation. 

  

Fig. 3  Temperature dependences of monocrystal hcp-titanium elastic constants. 

  

Fig. 4  Change of elastic constants of monocrystal hcp-titanium near the hcp-to-bcc 

phase-transformation temperature.  Note both mode softening and mode stiffening.  

Largest changes occur in the c-axis Young modulus Ec.  Smallest in the bulk modulus 

B. 

  

Fig. 5  Temperature dependences of elastic constants of polycrystalline titanium.  B 

denotes bulk modulus and Cl longitudinal modulus.  Open symbols show results 

calculated by the Voigt-Reuss-Hill averaging method using monocrystal elastic 

constants.  The bcc-phase elastic constants are obtained by assuming the same 

polycrystal/monocrystal Cij ratios in both phases. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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