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Abstract

Distribution of the elastic-stiffness coefficient on a dual-phase stainless steel is stud-
ied by resonance-ultrasound microscopy and electron-backscattering patterns. Using
a monocrystal langasite oscillator, the resonance-frequency change due to the con-
tact with the material is measured contactlessly by a solenoid-coil antenna. The
theoretical calculation based on the contact between two anisotropic bodies is pro-
posed to determine the contact stiffness from the resonance frequency. The measured
stiffness distribution is compared with that predicted from the orientation distribu-
tion determined by the electron-backscattering-pattern method. They principally
agreed but the stiffness by resonance-ultrasound microscopy is nonuniform even in
a single γ-phase grain. The nonuniformity of the chromium concentration can be a
principal cause of the stiffness distribution.
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1 INTRODUCTION

Elastic stiffness of materials provides important knowledge of atomic-bond
configurations and thermodynamic features (1; 2). Macroscopically, elastic
stiffness reflects microscopic defects through elastic softening and elastic anisotropy
(3; 4). Defects such as dislocations and microcracks cause additional strain be-
yond the perfect-lattice strain, and their nonrandom alignment causes elastic
anisotropy. Conventional methods for measuring material’s stiffness evaluate
macroscopic or averaged moduli. However, studies on elastic stiffness in lo-
cal regions become more significant because most materials show inhomoge-
neous microstructures due to nonuniform concentrations of impurity elements,
residual-stain distribution, piling-up dislocations, lattice distortion near grain
boundaries, and so on.

Atomic-force-acoustic microscopy (AFAM) (5; 6; 7) made it possible to esti-
mate local elastic properties of solids from the resonance frequency of a can-
tilever contacting the material with a needle-tip’s free end. It estimates the
elastic stiffness in a nanometer resolution, but an absolute determination of
material’s stiffness has been difficult because the vibrating cantilever is fixed
to the grip and the piezoelectric oscillator is attached on it. To calculate the
resonance frequencies of such a composite-resonator system, exact values of
dimensions, elastic constants, and mass densities of all participating compo-
nents must be known. Most significantly, the rigidity and friction at the fixed
end of the cantilever affects the resonance frequency because the maximum
bending stresses appear on the surface there. Thus, the quantitative deter-
mination of the local stiffness definitely requires an isolated oscillator in the
resonator system.

We recently demonstrated a novel microscopic method of measuring local stiff-
ness of solids, which we call resonance-ultrasound microscopy (RUM) (8; 9;
10). Mechanical resonance frequencies of an oscillator change when it is in con-
tact with a material, depending on the elastic stiffness of the material at the
contact area. The material’s local stiffness can be inversely determined from
the measured oscillator’s resonance frequencies. However, the determination
of the local stiffness prohibits any contacts on the oscillator surfaces, even for
holding, except for the contact with the measuring material. Neither wires nor
electrodes are allowable. We fulfilled this critical demand using a monocrystal
langasite (La3Ga5SiO14) oscillator; the high piezoelectricity of langasite allows
us to measure its resonance frequencies with the electric fields in a noncontact-
ing manner. Low temperature derivatives of the elastic constants of langasite
allow us to perform the measurement without controlling temperature.

Here, we further improve our RUM by making the oscillator isolated com-
pletely, leading to enhanced sensitivity. We also formulate the resonance-
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frequency change caused by the contact with anisotropic materials. The Hertzian
contact theory between two anisotropic bodies is applied to calculate the ef-
fective stiffness contributing to the resonator system.

There are three purposes in the present study. First, we demonstrate the use-
fulness, correctness, and high sensitivity of our stiffness microscopy for studies
of elastic properties of small-scale materials. Second, we show the necessity of
considering anisotropy of the specimen for evaluating the contact stiffness,
and then we clarify the validity of the obtained formula. Third, we study the
nonuniformity of elastic stiffness in a single crystallite. For these proposes,
we use a dual-phase stainless steel and compare the stiffness measured by
RUM with that predicted from crystallographic orientations measured by the
electron-backscattering patterns (EBSP).

2 MATERIAL

Examined specimen was the dual-phase stainless steel (JIS-SCS14A). It con-
sists of ferritic-phase (α-phase) matrix and austenitic-phase (γ-phase) island
precipitates (see Fig. 3(a)). The chemical composition is given in Table 1. The
volume fraction of the γ phase was determined to be 74.2% by observing the
surface microstructure by scanning-electron microscopy. The EPMA measure-
ment was carried out to estimate the chromium concentrations in the α and
γ phases as shown in Table 1.

This dual-phase microstructure provides high corrosion resistance, high tough-
ness and high strength, and it has been used in nuclear power plants as casings
for primary coolant systems(11; 12).

3 MEASUREMENTS

Our previous RUM system (8; 9; 10) entailed contacts between the langasite
oscillator and the side faces of the solenoid coil, deteriorating the sensitivity
of the frequency to the material’s modulus. Here, we develop a completely
isolated system as shown in Fig. 1, realizing a free oscillation. The rectangular-
parallelepiped langasite monocrystal is held by a fixture at the center nodal
lines on the side faces. The langasite oscillator measures 7 mm x 2 mm x 2
mm along X, Y, Z directions of trigonal crystallographic axes, respectively.
We choose the X direction of the crystal to be vertical because smaller X-
axis Young’s modulus provides higher sensitivity to the specimen’s stiffness.
A natural-diamond tip is attached at the center on the bottom surface of the
crystal. A solenoid-coil antenna is embedded in the cylindrical guide, which
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allows the vertical movement of the oscillator together with the fixture. The
specimen is put on an X-Y-Z stage. The system is placed in a vacuum (∼ 1
Pa) to avoid the acoustical coupling with the atmosphere.

A sinusoidal voltage applied to the solenoid-coil antenna causes the quasistatic
electric field (nonrotational component) Ex in the vertical direction, which
results in the principal stresses −e11Ex in the X direction and e11Ex in the
Y direction via the converse piezoelectric effect. e11 denotes a piezoelectric
coefficient of materials showing 32-point-group symmetry. Thus, this setup
causes breathing vibrations (Ag vibration group (13)) of the oscillator. The
same antenna receives the vibrational amplitudes through the piezoelectric
effect. A frequency scan yields the resonance spectrum, requiring neither wires
nor electrodes on the oscillator surfaces.

We utilized the fundamental mode of the breathing vibration (Ag-1) because
it has nodal lines at the center on the side faces, at which the oscillator was
supported by the fixture, and an antinode point at the center on the bottom
surface, where the tip was attached to touch the specimen, thereby achieving
a high sensitivity. The setup in Fig. 1 makes the frequency sensitivity to the
specimen’s modulus higher than that in the previous configuration (8; 9) by
a factor larger than 10.

Before the elastic-stiffness mapping, the EBSP measurement was carried out
with the instrument INCA Crystal 300 (OXFORD Instruments). The applied
accelerating voltage was 30 kV. The surface layer about 30 µm thick was
removed chemically to obtain a nonstrained surface. Kikuchi patterns were
then obtained with the 7-µm step to determine all three Euler angles, and
Miller indices (h, k, l) and (u, v, w).

We measured the resonance frequency with the 5-µm step on the same area
examined by EBSP. At each measuring point, the resonance frequency was
measured before and after making the contact and the frequency shift caused
by the contact was recorded. The biasing force F of 0.019 N was applied
from the gravity, which remained unchanged and independent of the surface
nonflatness. After each contact measurement, the specimen departed from the
tip and moved to the next point. The tip thus did not scratch the specimen
surface.

4 VIBRATIONAL ANALYSIS

The contact interface between the tip and specimen is equivalent to an elas-
tic spring of the contact stiffness K (6; 14; 15; 16). The resonance frequency
is calculated accurately by Lagrangian minimization with the Rayleigh-Ritz
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method (13). The system Lagrangian consists of the elastic strain energy,
electromechanical coupling energy, electrostatic energy of the langasite crys-
tal (13; 17); kinetic energy of the tip; and the elastic-spring energy at the
tip-specimen interface (10). No frictional effect is involved. The displacements
and electric potential are approximated by a combination of many basis func-
tions of Legendre polynomials (Rayleigh-Ritz approach). The calculation of
the resonance frequencies requires dimensions, elastic and piezoelectric coeffi-
cients of the langasite crystal, mass of the tip, which are measurable, and the
contact stiffness K.

Figure 2 shows the calculated dependence of the resonance frequencies of Ag-
group modes on the contact stiffness. The fundamental mode (Ag-1) shows the
highest sensitivity to the contact stiffness, which is attributed to the minimum
number of antinodes, one of which is acting as a probe. With this observa-
tion, we determined the contact stiffness at individual points by driving the
oscillator in the Ag-1 resonance.

5 CONTACT STIFFNESS

Many studies with AFAM and RUM analyzed local elastic properties of solids
using classical Hertzian-contact model (6; 8; 9; 14; 15; 16), which assumes
the contact between two isotropic materials. This model yielded the contact
stiffness Kiso of the form

Kiso =
3
√

6FRE∗2 (1)

Here, R denotes the tip radius and E∗ denotes the effective Young’s modulus
given by

E∗ =

[

1− ν2
t

Et

+
1− ν2

s

Es

]

−1

(2)

ν and E are Poisson’s ratio and Young’s modulus, and subscripts t and s
denote quantities of the tip and the specimen, respectively. This approach has
been adopted to evaluate the local Young’s modulus of the specimen. However,
many materials show elastic anisotropy in local regions and the validity of this
model is doubtful.

We analytically formulated the relationship between the contact stiffness and
the elastic constants of materials for the case that two orthorhombic bodies
are in contact with each other, keeping their orthogonal axes parallel to the
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contact surface (18), following Willis (19) and Swanson (20). The result gave
the contact stiffness for anisotropic materials Kaniso as

Kaniso =
3

√

48FRI1
I30

(3)

Here, I0 and I1 are given by integrating the Green function Ĝ for the point-
force indentation, including the orthorhombic elastic-stiffness tensors of the
tip and specimen (19):

I0 =
∑

i=t,s

2π
∫

0

Ĝi(εηy, ηz)dθ, I1 =
∑

i=t,s

2π
∫

0

Ĝi(εηy, ηz)η
2

ydθ

ηy = cosθ and ηz = sinθ; θ denotes the angle of the polar-coordinate system
on the contact-interface plane. ε is the ratio between the major and minor
axes of the ellipsoid of the contact interface and it is obtained by an iterative
calculation (20), although it is close to unity.

Crystallite orientations normal to the surface are usually off-principal direc-
tions and the above results cannot be used generally. In this study, we average
the elastic-stiffness tensor over the polar angle about the normal direction to
the surface using the Hill averaging method: The averaged elastic stiffness
tensor < Cijkl > is given by

< Cijkl >=
1

2







1

2π

2π
∫

0

Cijkl(θ)dθ +





1

2π

2π
∫

0

sijkl(θ)dθ





−1




 (4)

where sijkl denotes the elastic-compliance tensor. Thus, this averaging pro-
cedure yields transversely isotropic (or hexagonal symmetry) stiffness tensors
at the measuring points, which accept the formula derived for orthorhombic
materials (Eq.(3)).

By comparing measured and predicted stiffnesses, we discuss the effect of
material’s elastic anisotropy on the contact stiffness.

6 RESULTS

Figure 3 compares the microstructure observed by scanning-electron microscopy,
the orientation direction normal to the surface calculated from the EBSP re-
sults, and the frequency increase measured by RUM. Our microscopy clearly
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shows the difference of the elastic stiffness of the two phases; higher stiffness of
γ-phase grains than that of α-phase grains. It also demonstrates the stiffness
difference among crystallites with different orientations. < 111 >-oriented γ-
phase grains show larger modulus, which is reasonable because (111) planes
are closest-packing planes in f.c.c. crystals.

Figure 4 compares images of the contact stiffness determined from the fre-
quency shift in Fig. 3(c) and that calculated by Eq.(3), showing good agree-
ment. Figure 5 focuses on distribution of the stiffness in γ-phase crystallites.
The RUM measurement yields higher stiffness in the center region of each
crystallite, while EBSP predicts the uniform stiffness in a single crystallite.

Figure 6 compares the calculated and measured contact stiffness for γ-phase
grains in Fig. 3. (From the EBSP measurements, we identified 60 grains of γ
phase in Fig. 3(a).) Clearly, the anisotropic-contact model shows much better
agreement with the measurement.

7 DISCUSSIONS

In this paper, we focus on elastic properties of γ-phase grains. The cubic elas-
tic constants of pure f.c.c. iron are reported (21) as shown in Table 2. However,
there is no report on monocrystal elastic constants of the Fe-Cr alloy and we
had to estimate them to calculate the contact stiffness in γ-phase grains. The
elastic constants will be smaller than the pure-f.c.c.-iron values because the
substitutional chromium causes lattice distortion as analyzed by Zener (22).
The anisotropy factor A = 2C44/(C11 − C12) will be hardly affected though.
Our EPMA measurement shows that the chromium concentration in γ-phase
grains is close to that in a standard SUS304 steel (chromium concentration is
between 18-20 mass%), whose elastic constants are reported (23) and given
in Table 2. Considering that an isotropic aggregate of the γ-phase monocrys-
tal should yield the elastic constants of the polycrystalline SUS304 steel, we
inversely determined the three monocrystal elastic constants of the γ phase
alloy. Assumptions made were (i) the anisotropic factor A is the same as that
of the pure-f.c.c. iron and (ii) the Hill averaging of the monocrystal elastic
constants provides the reported values for polycrystalline SUS304 steel. The
results are shown in Table 2.

From the EBSP measurement, we calculated the elastic-stiffness tensor at
individual measuring points. The contact stiffness was then obtained either by
Eq. (1) or Eq. (3). Such a calculation requires the tip radius, which is, however,
ambiguous because of the non-perfect sphere shape of the conical diamond tip.
We therefore fitted the tip radius to obtain the same average contact stiffness
by calculations as that by the measurement, resulting in R=9.02 µm.
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We used the normal Young’s modulus to the surface as the material’s modulus
Es in Eq.(2). The stiffness Kiso in Fig.6 is thus calculated using the normal
Young’s modulus of γ-phase grains. The contact stiffness from this isotropic
contact model is however much more sensitive to the grain orientation than
the measured stiffness and it cannot explain the measurement quantitatively.
On the other hand, the contact stiffness calculated by the anisotropic-contact
model Kaniso quantitatively agrees with the measured stiffness: Indeed, images
of the contact stiffness measured by RUM and that calculated by Eq.(3) are
nearly identical as demonstrated in Fig. 4, indicating validity and importance
of considering the material’s anisotropy for evaluating the elastic properties
in a point-contact measurement including RUM, AFAM, and all indentation
measurements.

We note that the stiffness is nonuniform even in a single grain as seen in
Fig. 5: The stiffness predicted from the EBSP results is almost uniform in a
single crystallite, but the stiffness determined by RUM is larger inside grains
than near grain boundaries. We attribute this to the nonuniform chromium
concentration: The chromium concentration is higher in α phase than in γ
phase and it can increase in γ grains near the α-γ boundaries due to diffu-
sion. Zener (22) indicated that Young’s moduli of binary alloys decreased as
the concentrations of the substitutional impurity atoms increased. Therefore,
the stiffness decrease near the γ-phase grain boundaries indicates the larger
concentration of chromium there.

Another possibility is the influence of the softer α phase. The radius of the
contact area is estimated to be 1-2 µm and the measured stiffness may reflect
the softer α phase in regions very close to the grain boundaries. However, the
stiffness change in a crystallite occurs in a larger special scale than the contact
area and this will be not the principal cause.

8 CONCLUSIONS

A completely isolated resonator system was developed for quantitatively eval-
uating local elastic stiffness of solids. The vibration of the langasite oscillator
was excited and detected by the solenoid-coil antenna in the noncontacting
manner to isolate the oscillator from all other effective contacts than the spec-
imen. This home-built microscopy demonstrated high potential in the study
of material’s local elastic properties.

The EBSP measurement was done to predict the local elastic constants from
the crystallite orientation. Comparison of the stiffnesses determined by the
RUM and EBSP strongly showed that the contact stiffness must be calculated
considering elastic anisotropy of the contacting bodies. The elastic stiffness
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appeared nonuniform even in a single grain of the γ phase in the dual-phase
stainless steel. This stiffness distribution was interpreted as the nonuniform
chromium concentration due to diffusion from the high-chromium concentra-
tion area in the α phase.
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Table 1
Chemical contents (mass %) except Fe of the dual-phase stainless steel (JIS-
SCS14A).

Cr C Si Mn P S Ni Mo

20.65 (α:18.4, γ:27.5) 0.052 1.35 0.70 0.028 0.004 9.16 2.48
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Table 2
Elastic constants (GPa) of pure-f.c.c. iron (21), polycrystalline SUS304 steel (23),
and monocrystal Fe-Cr alloy inversely determined here. A denotes the anisotropy
factor, and B and G denote the bulk modulus and shear modulus of aggregates,
respectively.

C11 C12 A C44 B G

f.c.c. Fe 276 173.5 2.67 136.3 207.7 92.1

SUS304 - - - - 158 77.4

Fe-18.4-mass%Cr (present) 215.1 129.0 2.67 114.6 158 77.4
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Figure Caption

Fig. 1 Setup of the RUM oscillator. Monocrystal langasite oscillator is held by
a fixture at the nodal lines on the side surfaces. The weights of the oscillator
and fixture cause the biasing force for the contact with the specimen. The
solenoid-coil antenna makes a noncontacting measurement of the oscillator’s
resonance frequency.

Fig. 2 Sensitivity of the resonance frequencies of Ag-vibration modes to the
contact stiffness calculated by Lagrangian minimization with the Rayleigh-
Ritz method.

Fig. 3 (a) Image obtained by scanning-electron microscopy of the dual-phase
stainless steel (JIS-SCS14A), (b) image of the crystallographic orientation
normal to the surface of the γ phase determined by the EBSP measurement,
and (c) image of the resonance frequency measured by RUM.

Fig. 4 Image of the contact stiffness determined from the measured reso-
nance frequency (left) and that calculated by the anisotropic-contact model
(Eq.(3)) using Euler angles obtained by the EBSP measurement.

Fig. 5 Contact-stiffness distribution in γ-phase grains measured by RUM
(left) and that predicted by the anisotropic-contact model with the EBSP
results.

Fig. 6 Comparison between the contact stiffness measured by RUM Kmeas

and the contact stiffnessesKcalc calculated using the isotropic and anisotropic
models. The slope of the solid line is one.
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