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The classical Hertzian-contact theory for an isotropic material has been adopted to simplify
quantitative evaluation of local elastic modulus by resonance-ultrasound microscopy �RUM�.
However, the validity of this simplified model must be confirmed because most materials show
elastic anisotropy in small regions. This study investigates the influence of the elastic anisotropy of
the tip and the specimen on the determination of the local elastic modulus in RUM by introducing
the Hertzian-contact stiffness for orthorhombic materials. Numerical results reveal that specimen
anisotropy significantly affects the contact stiffness and the quantitative evaluation of local elastic
modulus even for specimens with weak anisotropy when we consider the anisotropy of the oscillator

tip in RUM. © 2005 American Institute of Physics. �DOI: 10.1063/1.2131201�
Evaluation of elastic properties in a micro- and nanos-
cale region of materials is of great importance for optimiza-
tion of applications including surface-wave acoustic devices
and microelectromechanical systems, which can be achieved
by using nanoidentation and atomic force acoustic micros-
copy �AFM�. In nanoindentation, the depth and the loading
during the unloading process of an indenter are recorded to
determine the elastic modulus, which is modeled as a contact
problem of a flat rigid punch on an elastic half space.1 In
AFM, resonance-frequency shift of a vibrating cantilever
contacting materials through a small tip is used to determine
the elastic modulus, however, the resonant frequency is
highly affected by the ambiguous gripping condition of the
cantilever, quantitative evaluation of a material’s elasticity
has not been straightforward.2,3 Recently, resonance-
ultrasound microscopy �RUM� was developed as an alterna-
tive method of AFM.4,5 An isolated oscillator contacts the
specimen surface through a spherical tip. The mechanical
constraint causes a resonance-frequency shift of the oscilla-
tor only depending on contact stiffness at the tip-to-specimen
interface, which in turn depends on the elastic constants of
the specimen and the tip in the contacting area. To date, the
tip-to-specimen contact in AFM and RUM is often modeled
as a contact problem of a sphere on an elastically isotropic
half space based on classical Hertzian-contact theory. How-
ever, the tip and the specimen usually exhibit elastic aniso-
tropy in microscale and nanoscale regions. For example, a
polycrystalline material with no texture macroscopically
shows elastic isotropy, but it shows elastic anisotropy in a
small-scale region because of different orientations of indi-
vidual grains. In nanoindentation, AFM and RUM, the con-
tact radius is usually much smaller than the grain size. In
nanoindentation, Vlassak et al. have considered the influence
of specimen anisotropy on the indentation modulus by mod-
eling a contact problem of a flat rigid punch on an elastically
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anisotropic half space based on the assumption of the rigid
indenter.6,7 However, in AFM and RUM, we must consider
the elastic anisotropy of the tip and the specimen in most
cases. At present, the validity of Hertzian-contact model for
isotropic materials used in RUM and AFM has not been
confirmed in evaluating the elastic modulus quantitatively.

The objective of this letter is to evaluate the influence of
the elastic anisotropy of the tip and the specimen on the
determination of the elastic modulus in RUM/AFM by intro-
ducing Hertzian-contact stiffness for orthorhombic materials.
Following Willis,8 we derive the relationship between
the normal force F0 applied to the tip and the normal inden-
tation �0 for the contact between the tip and specimen, both
of which show orthorhombic symmetry, as show in the
Appendix. The result is given by

�0 =
I0

8
�3 9F0

2

�2RI1
, �1�

where R is the radius of the spherical tip. I0 and I1 are
determined in terms of Green’s functions given in the
Appendix. The resonant vibration of the oscillator causes
harmonic perturbations to the force and the indentation. We
denote the time-dependent force and time-dependent inden-
tation as F and �, respectively, and determine the dynamic
contact stiffness kA by

kA =
F − F0

� − �0
. �2�

In the case that F0� �F−F0�, substitution of Eq. �1� into Eq.
�2� yields an expression for kA,

kA � 4�3 3F0R�2I1

I0
3 . �3�

The anisotropic tip-to-specimen contact stiffness kA is
compared with the contact stiffness kI derived from the
Hertzian-contact theory for isotropic materials, which is con-

2–5
ventionally used, kI is given by
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kI = �3 6E*2RF0, �4�

where E*−1= �1−�1
2�E1

−1+ �1−�2
2�E2

−1 is the effective Young’s
modulus. E1, �1, E2, and �2 represent Young’s moduli and
Poisson’s ratios of the tip and the specimen along the normal
direction to the contact surface, respectively.

Here, we consider that both the tip and specimen show
cubic symmetry with three independent elastic constants. To
represent the influence of the elastic anisotropy on the
contact stiffness, we introduce the contact-stiffness ratio,
�=kA /kI. Thus, �=1 verifies the isotropic Hertzian-contact
approximation.

Figure 1 presents � when a rigid tip contacts �001� faces
of cubic crystals. � is expressed as a function of the aniso-
tropic factor A2�=2C44/ �C11−C12�� and Poisson’s ratio �2 of
the cubic specimen. For all �2, �=1 at A2=1, indicating that
the present anisotropic analysis contains the isotropic contact
model �Eq. �4��. We find that � increases monotonically with
the increase of A2, which is the reverse of the results for the
contact of a rigid punch on elastically anisotropic half
space.6 The dependence of � on A2 enhances as �2 increases.
The isotropic contact stiffness differs from the anisotropic
one by more than 20% for A2�2 or A2�0.5 when �2=0.4;
the isotropic contact-stiffness model is not valid for the
evaluation of Young’s modulus for �cubic� materials showing
high elastic anisotropy.

We next investigate the influence of the tip’s Young’s
modulus on the contact stiffness. We consider the case that
�001� faces of the spherical cubic tip contacts the �001� face
of the cubic specimen. We assume that A1=2 and �1=�2
=0.3. Figure 2 shows the dependence of � on A2 for three
ratios of the normal Young’s moduli of the tip and specimen.

FIG. 1. The dependence of the contact-stiffness ratio � on the anisotropy
factor of the specimen A2 when a spherical rigid tip touches �001� faces of
cubic crystals with Poisson ratio �2.

FIG. 2. The contact-stiffness ratio � vs the anisotropy factor of the specimen
A2 when the �001� face of a spherical elastic tip contacts �001� faces of cubic

crystals.
�Normal Young’s modulus means the Young’s modulus along
the �001	 direction.� When the tip is much softer than the
specimen, � changes little with the specimen’s anisotropy,
A2. When the tip is much stiffer than the specimen, � natu-
rally shows a similar behavior to the rigid-tip case �Fig. 1�.
Therefore, when the difference of Young’s moduli of the tip
and specimen is large, the contact stiffness kA is principally
governed by the elastic anisotropy of the material with the
lower modulus.

Previous studies evaluated the local Young’s modulus
from the contact stiffness determined by the resonance-
frequency shifts using the isotropic-contact-stiffness
approximation.2–5 This simple model, however, should in-
volve the error caused by the elastic anisotropy. In order to
estimate this error, we calculate the normal Young’s modulus
E2� considering elastic anisotropy by replacing kI in Eq. �4�
with kA in Eq. �3� and compare it with E2, which is the
normal Young’s modulus along the �100	 direction of the
cubic specimen. Figure 3 presents �=E2� /E2 when the �001�
face of a monocrystal silicon tip contacts �001� faces of the
specimens. Here, we set �2=0.25. For Pb, Au, Cu, 	-Fe, and
Ni,9 which show high anisotropy �A2�2�, the estimated
moduli are at least two times larger than the true moduli.
Even for tungsten �W�,9 which shows A2�1, � nearly equals
two because of the anisotropy of the silicon tip and the larger
modulus of tungsten. Thus, we tend to overestimate the
modulus of the specimen in RUM because of the elastic
anisotropy of the tip and specimen.

We finally investigate the effect of the crystallographic
orientation of the specimen on the contact stiffness. Figure 4
shows the ratios of the normal Young’s moduli, the isotropic
contact stiffnesses, and the anisotropic contact stiffnesses
when a rigid tip contacts the �110� and �001� faces of cubic

FIG. 3. The ratio � of the normal Young’s moduli determined by the
anisotropic and isotropic contact-stiffness models when the �001� face of a
spherical silicon tip contacts the �001� faces of single cubic crystals.

FIG. 4. Ratios of the normal Young’s moduli, isotropic contact stiffnesses,
and anisotropic contact stiffnesses for contacts with �110� and �100� faces of

cubic crystals.
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crystals. �Cubic crystals with �110� face exhibit orthorhom-
bic symmetry.� The ratio of the normal Young’s moduli
E�110� /E�001�, along �110	 and �001	 directions increases from
0.64 �Nb� to 2.24 �Pb� as A2 increases. The corresponding
contact-stiffness ratio kI�110� /kI�001� in the isotropic contact-
stiffness model also increases from 0.91 �Nb� to 1.49 �Pb�.
However, the contact-stiffness ratio kA�110� /kA�001� in the an-
isotropic contact-stiffness model varies only from 0.97 �Nb�
to 1.067 �Pb�. This means that the crystallographic orienta-
tion at the contacting surface has less influence on the con-
tact stiffness: The resonant frequency of the oscillator is not
very much affected by the grain orientation.

In summary, we considered the influence of the elastic
anisotropy of the tip and the specimen on the determination
of the local elastic modulus in RUM by introducing the
Hertzian-contact stiffness for orthorhombic materials. The
difference between the anisotropic and isotropic contact
models is compared with various anisotropy factors and
Poisson’s ratios for both the tip and specimen. Numerical
results strongly indicate that the elastic anisotropy of the tip
and specimen must be considered for determining the local
elastic modulus in RUM, even for materials with weak an-
isotropy. The elastic anisotropy tends to increase the contact
stiffness and then the resonant frequency of the oscillator.
However, the crystallographic orientation at the contact area
has a relatively small influence on the contact stiffness and
the resonant frequency compared with the elastic modulus,
which induces smaller resonant-frequency shifts in the
elastic-stiffness mapping on a polycrystalline material, even
in the case where the normal Young’s modulus strongly
depends on the grain orientation. Therefore, if we evaluate
the elastic modulus in different grain orientations, we need
the accurate measurement of the resonant frequencies of the
oscillator in RUM and then the accurate determination of
contact stiffness from the measured resonant frequencies.
This study also can be directly applied to the evaluation of
elastic modulus in AFM and be helpful to nanoidentation
measurements.

Willis7 presented a general procedure to determine the
contact radius and the indentation for orthorhombic materi-
als, which is outlined in the following. Consider a biasing
force F applied to a spherical tip with radius R to make it
contact with a specimen surface. The specimen is a half
space of a material having an orthorhombic elastic aniso-
tropy. The tip is also assumed to be of an orthorhombic ma-
terial with a principal axis normal to the specimen surface.
Two Cartesian coordinates �x1 ,y1 ,z1� and �x1 ,y1 ,z2� relating
with the tip and the specimen, respectively, have the origins
at the center of the contacting area; the x1−y1 plane coin-
cides with the tangential plane and the z1 and z2 axes are
along the inward normal directions to the tip and the speci-
men at the contacting interface, respectively. Because of the
orthorhombic anisotropy, the contact area has an elliptical
shape with the semiaxes a1 and a2 in the x1 and y1 directions,
respectively. The contact pressure distribution is expressed as

p�x1,y1� = p0
1 −
x1

2

a1
2 −

y1
2

a2
2�1/2

, �5�

where p0 is the maximum contact pressure at the center. p0,
a1, and a2 can be subsequently determined from the contact
geometries.
The surface displacements for the tip and the specimen
caused by the contact pressure are calculated from

w	�x1,y1� =
3F

16�a1
�

0

2�

Ĝ	�
�1,�2�
1 − 
�1x1

a1
+

�2y1

a2
�2�d� , �6�

where 	=1 and 2 indicate the specimen and the tip, respec-
tively. 
=a2 /a1, �1=cos �, �2=sin �, and F=2p0�a1a2 /3.

Ĝ	�x1 ,y1� denotes the Fourier transform of Green’s function
for surface displacements and involves the anisotropic elastic
constants, which is expressed as8

G	�x1,y1� =
1

4�2 � � Ĝ	�
1,
2�e−i�
1x1+
2y1�d
1d
2. �7�

Considering the contact geometry condition for the tip-
specimen within the contact area yields

I2

I1
= 
2, �8a�

� =
3FI0

16a1�
, �8b�

where 
 is determined numerically by iterations10

I0 = �
	=1

2 �
0

2�

Ĝ	�
�1,�2�d� ,

I1 = �
	=1

2 �
0

2�

Ĝ	�
�1,�2��1
2d� ,

I2 = �
	=1

2 �
0

2�

Ĝ	�
�1,�2��2
2d� .

After determining 
, the indentation � is deduced as

� =
I0

8
�3 9F2

�2RI1
. �9�

The earlier equation shows that the indentation � is pro-
portional to �3 F2, which is the same as that in isotropic
contact model.
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