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~Received 26 October 2001; accepted for publication 11 January 2002!

This study presents a complete set of effective elastic-stiffness coefficients of a Ni80P20

amorphous-alloy thin film deposited on an aluminum-alloy substrate by electroless plating. The film
thickness was 12mm. The electromagnetic-acoustic-resonance method detected resonance
frequencies of the triple-layered specimens~film/substrate/film!, which enabled us to determine all
five independent elastic-stiffness coefficients of the film using known substrate elastic properties.
The resulting coefficients were those of a transverse isotropic material. There was strong anisotropy
between the in-plane and normal directions; the in-plane Young’s modulus is larger than the normal
Young’s modulus by 34%, for example. The anisotropic coefficients can be interpreted by
considering a micromechanics model for local incomplete cohesion~thin ellipsoidal voids! aligned
parallel to the film surface. ©2002 American Institute of Physics.@DOI: 10.1063/1.1457542#

I. INTRODUCTION

Many thin films appear as candidates for a wide variety
of advanced applications such as microelectronics devices,
data-storage media, and microelectromechanical systems
~MEMS!. Among them, amorphous-alloy thin films are suit-
able for biomedical devices because of their high resistance
to corrosion. Understanding their mechanical properties is
the key to designing applications and improving the film-
processing techniques. In particular, elastic-stiffness coeffi-
cients remain issues of central importance because various
film-processing techniques produce various elastic stiff-
nesses. Thus developing a reliable methodology for measur-
ing elastic-stiffness coefficients of thin films is a matter of
great interest.

It is considered that such a thin film exhibits anisotropy
in the elastic properties between the in-plane~film-plane!
and normal~film-growth! directions. In this case, the film
shows transverse isotropy~or hexagonal symmetry! and pos-
sesses five independent elastic-stiffness coefficientsCi j

~C11, C33, C12, C13, andC44!. Indeed, anisotropic magnetic
properties have been reported for amorphous-alloy thin
films,1 indicating elastic anisotropy as well.

Several techniques have been reported for measuring the
thin-film Ci j . The typical acoustic approach measures the
flexural-vibration resonance frequency of a reed composed
of a film/substrate layered plate to calculate the in-plane
Young’s modulus.2–4 This method always involves ambigu-
ity caused by the mechanical contacts needed for the acoustic
transduction and supports. Huang and Spaepen5 developed a
quasistatic uniaxial-tension measurement to obtain the in-
plane Young’s modulus of free-standing films. They adopted
a laser strain measurement to minimize the gripping influ-

ence. Another approach is to use surface-acoustic-wave
transducers attached to the films to measure the velocities
that provide some of theCi j .6,7 Recently, Brillouin
scattering8 has been used for measuring the Rayleigh-wave
velocity traveling along the film surface, which is closely
related to the shear modulus polarized perpendicular to the
surface ~C44!. Thus existing methods provide only a few
elastic-stiffness coefficients.

In the present study we develop an advanced methodol-
ogy for measuring the elastic-stiffness tensor of a thin film
and apply it to a Ni–P amorphous-alloy film deposited on an
Al–Mg-alloy substrate. Free-vibration resonance frequencies
of such a layered solid depend on all the film’sCi j and the
substrateCi j as well as their dimensions and mass densities.
Therefore measurements of the resonance frequencies and
use of known substrate properties allow one to deduce the
film’s Ci j . However, because of weak contributions of the
film Ci j to the resonance frequencies, their successful deter-
mination requires high accuracy in measuring the resonance
frequencies, and any mechanical contact to the specimen
should be eliminated or minimized. We achieved this by con-
tactless acoustic excitation and detection with electromag-
netic acoustic resonance~EMAR!.

Determination of the film’sCi j proceeds in two steps.
First, we determineC33 andC44 by measuring the thickness
resonance frequencies of the layered plate specimen Ni–P/
Al–Mg/Ni–P. Different dependencies of the fundamental
and higher resonance modes on the film moduli and density
allow their simultaneous determination. Second, we deduce
the remaining three stiffnesses by measuring the free-
vibration resonance frequencies of a rectangular-
parallelepiped specimen and by performing an inverse calcu-
lation to find the most suitableCi j to provide the observed
resonance frequencies. The resultantCi j showed elastic an-
isotropy despite Ni–P being an amorphous alloy.a!Electronic mail: ogi@me.es.osaka-u.ac.jp
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II. MATERIAL

Ni-11.5mass%P~Ni80P20! amorphous alloy was deposited
on both surfaces of polycrystalline Al-4.5mass%Mg plate by
electroless plating.9 The Ni–P film was 12mm in thickness
and the total thickness of the triple-layered specimen~Ni–P/
Al–Mg/Ni–P! was 0.799 mm. The thickness-resonance mea-
surement, described below, gave the isotropic substrate stiff-
nesses asC115106.760.05 GPa andC44526.3660.005
GPa. Archimedes-method mass density of the substrate was
2645 kg/m3. Film surface roughness was less than 1 nm.
Through-thickness observation of the film by transmission
electron microscopy showed no defects and a halo-ring elec-
tron diffraction pattern appeared, a typical characteristic of
an amorphous phase. We assume transverse isotropy for the
film.

We machined three square-cross-section specimens,
measuring 30 mm on each side, from a large layered plate for
the thickness-resonance measurements; and two rectangular
parallelepiped specimens measuring 2.60732.59930.799
and 2.67932.61830.799 mm3 for the subsequent free-
vibration-resonance measurements.

Throughout this study we use a coordinate system where
thex12x2 plane is parallel to the film surface and thex3 axis
is along the normal direction. We made all measurements in
a heat- insulated chamber, which regulates the specimen tem-
perature to 3060.05 °C.

III. ELECTROMAGNETIC ACOUSTIC RESONANCE

A. Thickness resonance of layered plate

We derive the frequency equation for a triple-layered
plate by considering six partial plane waves traveling along
thex3 direction. The resulting expression takes the form~see
Appendix A!

Cfkf tanh5Csks

cosg sind2sing cosd

cosg cosd1sing sind
, ~1!

where

cosd5cosa cosb1k sina sinb,

sind5cosa sinb2k sina cosb, ~2!

and

a5kfd1 , b5ksd1 , g5ks~d11d2!, h5kfd3 ,

and

k5
Cfkf

Csks
. ~3!

Cf and Cs denote the film and substrate elastic constants,
respectively, either for the longitudinal mode~C33! or shear
mode~C44!. kf andks denote the wave numbers for the film
and substrate, respectively, and they are expressed by the
wave velocity v and the resonance frequencyf as k
52p f /v. d1 andd3 denote the film thicknesses andd2 the
substrate thickness. Equation~1! applies also to a double-
layered specimen~film/substrate! by takingd350.

We used a bulk-wave electromagnetic acoustic trans-
ducer~EMAT!.10,11It consists of a spiral-elongated coil and a

pair of permanent magnets mounting the coil to generate and
detect the longitudinal wave and the shear wave polarized
parallel to the film surface, relying on the Lorentz-force
mechanism. The EMAT proving area was 537 mm2. We
excited the EMAT with long tone bursts to launch the bulk
waves into the thickness direction. After the excitation, we
detected the reverberating signal by the same EMAT and
processed it with a superheterodyne spectrometer to extract
the signal amplitude of the same frequency component as the
driving bursts. A frequency scan gives a resonance spectrum
as shown in Fig. 1.

For determining accurate substrateCi j , we measured the
resonance frequencies of the substrate plate alone; after fin-
ishing the measurements for the film/substrate/film plate we
removed the film layers. We then deduced the film’sC33,
C44, and density from Eq.~1! using the measured resonance
frequencies of both the multilayer specimen and the substrate
as well as their thicknesses.

B. Free-vibration resonance of a layered rectangular
parallelepiped

We derived the remaining three stiffnesses~C11, C12,
and C13! by resonance ultrasound spectroscopy~RUS!.12–16

Basically, this method is capable of finding complete sets of
elastic-stiffness coefficients of bulk anisotropic solids with
higher accuracy than other methods. It involves measure-
ment of the free-vibration resonance frequencies of the solid
and an inverse calculation to find a set ofCi j that provides
the closest resonance frequencies to the measurements. The
inverse calculation requires Lagrangean minimization with
the Rayleigh–Ritz approach for calculating the resonance
frequencies and a least-squares fitting between the measure-
ments and calculations.

Because no analytical solution exists for a rectangular-
parallelepiped solid, the displacements in the vibrating solid
have been approximated by linear combinations of the nor-
malized Legendre functions12 or simply of the power
series.13 For a layered rectangular parallelepiped, however,
such a basis function fails to express the strain discontinuity
at the interfaces caused by the different elastic moduli.
Heyliger,17 therefore, separated thex12x2 and x3 depen-
dences of the displacements. He used a power series~x1

kx2
l ,

k, l50,1,2,...! for the x12x2 dependence and Lagrangean

FIG. 1. Thickness-resonance spectrum measured for the Ni–P/Al–Mg/Ni–P
triple-layered plate. The fifth longitudinal-wave resonance peak and the
tenth shear-wave resonance peak appear.
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interpolation polynomials for thex3 dependence. For the dis-
placement along thex1 axis, the expression is

u1~x1 ,x2 ,x3 ,t !5(
i 51

m

(
j 51

n

U ji ~ t !C i~x1 ,x2!C̄ j~x3!. ~4!

Here,n denotes the number of layers andm the number of
the in-plane basis functionsC i(x1 ,x2). C̄ j (x3) denotes the
one-dimensional Lagrangean interpolation polynomials.18

Approximations foru2 and u3 take similar forms. We fol-
lowed Heyliger’s calculation and used a standard least-
squares procedure to inversely deduce the film’sCi j .

To study the reliability of the present inverse calculation
method we made a numerical simulation of a titanium thin
film epitaxially deposited on the~0001! surface of a monoc-
rystal titanium rectangular parallelepiped. The substrate tita-
nium measures 53432 mm3 and thex3 axis~c axis! is along
the 2-mm side. We usedC115160 GPa,C335181 GPa,
C13566 GPa,C12590 GPa,C44546.5 GPa, andr54500
kg/m3. The deposition was expressed by an increase of the
thickness along thex3 axis. Because the resultant layered
rectangular-parallelepiped Ti/Ti is the same as a homoge-
neous Ti monocrystal, its free-vibration resonance frequen-
cies can be calculated by the usual method.12 We regarded
them as measurements. Then, assuming that a surface layer
of unknown material had been deposited, we deduced the
film Ci j by the inverse-calculation procedure based on Hey-
liger’s approach using the known substrateCi j and density,
the film thickness and density, and themeasuredresonance
frequencies. The converged filmCi j must agree with the sub-
strateCi j because the same material was added. We investi-
gated this agreement with various film thicknesses.

Figure 2 shows the result, whereD is the substrate thick-
ness~2 mm! andd the film thickness. We could deduce the
film C66 and the in-plane Young’s modulusE1 within 1.5%
error for d/D>1.5%, while the convergedC33, C12, C13,
and the normal Young’s modulusE3 contained large errors
for d/D,2.5%. In the free vibration of the rectangular- par-
allelepiped solid, many flexural and torsional vibrations ap-
pear, which cause maximum bending and shearing stresses at

the specimen surfaces where the film is deposited. The film
E1 andC66 can, therefore, contribute a lot to those vibration
modes. However, other elastic constants contribute little. For
example,C33 affects mostly the longitudinal-mode wave that
propagates in the thickness direction and such a
C33-dependent mode appears at much higher frequencies,
where a large number of overlapping overtone peaks occur
from other vibration modes to overlap it. Thus the free-
vibration-resonance method provides accurateC66 and E1,
but inaccurate otherCi j . For this reason we separately de-
terminedC33 andC44 using the thickness-resonance method.
Indeed, whenC33 and C44 are fixed, the remaining three
elastic constants are determined within 5% error ford/D
.0.2% ~see Fig. 2!.

The thickness ratiod/D of the Ni–P/Al–Mg/Ni–P
specimen equals 1.54%, suggesting that a reliable set ofCi j

of the Ni–P film can be obtained by the combination of the
two resonance methods.

Exact mode identification is essential for the least-
squares fitting between the measured and calculated reso-
nance frequencies. However, this is not an easy task in the
conventional RUS method because too many resonance
modes are simultaneously excited, causing peak overlapping.
We overcame this difficulty by selecting one vibration group
by controlling the Lorentz-force direction.~There are four
vibration groups for a layered rectangular parallelepiped ac-
cording to the deformation symmetry, as tabulated by
Heyliger.17! Figure 3 shows the typical measurement setup
with EMAR. We inserted the specimen in the solenoid coil
and located a pair of permanent magnets outside the coil to
provide the static-magnetic field for the electromagnetic ex-
citation and detection of free vibration. The field direction
was changeable to control the Lorentz-force direction and
then to select a vibration group. The mode-selective principle
is discussed in detail in Ref. 19.

IV. RESULTS

A. C33 and C44

Using Eq. ~1!, we calculated the dependencies of the
thickness resonance frequencies on the film’s shear modulus

FIG. 2. Errors of inversely deduced monocrystal titanium-filmCi j with
various film thicknesses. The same material was assumed for the substrate.FIG. 3. Measurement setup of the mode-selective resonance ultrasound

spectroscopy.

4859J. Appl. Phys., Vol. 91, No. 8, 15 April 2002 Ogi et al.



~C44!, longitudinal-wave modulus~C33!, and densityr ~Fig.
4!. The film C44 least affects the fundamental resonance fre-
quency because of nearly uniform displacement and then
nearly zero shear stress within the film. The sensitivity of the
resonance frequency to the film’s moduli increases with the
resonance order. On the other hand, the density most affects
the fundamental mode because of the largest particle accel-
eration and inertia resistance at the film, which is sensitive to
the film mass. Thus we used the fundamental shear-wave
resonance to determine the film density and the higher-order
modes shown in Fig. 1 for the film’sC44 and C33. Repro-
ducibility of a single resonance-frequency measurement was
on the order of 1026. The standard deviation among com-
pletely independent measurements was less than 0.005%.
The results are given in Table I with the possible maximum
errors, which contain the standard deviation and differences
among the three specimens.

B. C11 , C12 , and C13

Figure 5 shows the free-vibration resonance spectra of
the rectangular-parallelepiped specimen, demonstrating that
each vibration group is independently excited. The reproduc-
ibility of the measurements was of the same order as the
thickness-resonance measurements. Table II compares the
measurements with the calculations after the inverse calcula-
tion. Typical rms difference between them was 0.2%, which
was one-order smaller than theCi j contribution to the reso-
nance frequencies@i.e., (Ci j / f )(] f /]Ci j )#. The resulting
three Ci j are given in Table I with the possible maximum
errors, which contain the measurement difference between
the two specimens.

V. DISCUSSION

In Table I we compare the present results with those
reported for Ni–P amorphous-alloy thin films in the past.

Barmatz and Chen20 used a vibrating-reed method for the
in-plane Young’s modulus~E1!, and Logan and Ashby21 used
tension and torsion measurements forE1 and the in-plane
shear modulus~C66!. Their results are comparable with our
E1 andC66 despite a slight difference of chemical composi-
tion. The Logan–Ashby bulk modulusB disagrees with ours
because they assumed that the material is isotropic.

Concerning Ni–P amorphous-alloy film, this is the first
report of the complete set of elastic-stiffness coefficients
with transverse isotropy. Particularly significant is elastic an-
isotropy between in- plane and out-of-plane directions;C11

is larger thanC33 by 49%,E1 larger thanE3 by 34%, and
C66 larger than C44 by 8.4%. For the same material,
Takashimaet al.22,23observed strong anisotropy in the crack-
growth behavior. The fracture-toughness values were 4.2 and
7.3 MPa m1/2 for cracks propagating in the in-plane and out-

FIG. 4. Dependences of the thickness-resonance frequencies on the moduli
and density of the Ni–P film.

FIG. 5. Resonance spectra of the free vibration of the Ni–P/Al–Mg/Ni–P
layered rectangular parallelepiped specimen, measuring 2.67932.618
30.799 mm3. Individual measurement setup excites one vibration group
among four groups.

TABLE I. Elastic-stiffness coefficients~GPa! and density of Ni–P
amorphous-alloy thin films. The film-growth direction is along thex3

direction.

Present Micromechanics Reference 20 Reference 21
Ni80P20 ~film! prediction Ni76P24 ~film! Ni76P24 ~film!

C11 140614 139
C33 8563.0 86
C12 64614 63
C13 30615 45
C44 35.260.8 31
C66

a 38.360.5 38 35

E1 10761.0 102 100 95
E3 7668.0 66
B 6561.5 71 111

n12 0.4160.015 0.34 0.36
n13 0.2160.1 0.34
n31 0.1460.05 0.22

r ~g/cm3! 7.6860.015 7.86 7.79

aC665(C112C12)/2.
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of-plane directions, respectively, indicating that this material
is more tolerant to crack propagation in the film-growth di-
rection. Our largerC11 suggests stronger in-plane binding
force, consistent with their observation.

There are two possible mechanisms for the elastic an-
isotropy in the amorphous-alloy film. First is inhomogeneous
microstructure. Phosphorus-rich and phosphorus-poor re-
gions could appear periodically to make the columnar struc-
ture as actually seen in Fe–P amorphous-alloy film.24 Also,
chemical composition could vary in the film-growth direc-
tion. Both inhomogeneities may cause transverse isotropy.
Second is local incomplete cohesion inside the film
material,5 which would occur during deposition. Incomplete
cohesive regions lying in thex12x2 plane will cause
transverse-isotropic effective stiffnesses. Considering the
strong anisotropy observed here, it is more likely that the
latter dominates. We estimate this effect using a microme-
chanics model by replacing the incomplete cohesive regions
with oblate ellipsoidal microcracks aligned parallel to the
depositing face. As shown in Appendix B, this model recon-
structed the effective elastic-stiffness coefficients close to the
measurements with a very small volume fraction~531025!
and an aspect ratioa3 /a151024 of the inclusion. Thus
aligned microcracking can cause such a strong anisotropy
even with an isotropic matrix. It is difficult to observe the
incomplete cohesive region with microscopic observations
and their presence remains better than hypothetical at
present. Such a structural inhomogeneity may occur in many
thin films and elastic-anisotropy measurement may provide a
significant means for evaluating the thin-film microstruc-
tures.

VI. CONCLUSIONS

We proposed a contactless method relying on electro-
magnetic acoustic resonance for determining all the elastic-
stiffness coefficients of anisotropic thin films. We derived a
frequency equation for the thickness resonance in a triple-
layered plate, and we developed an inverse calculation for

the layered rectangular-parallelepiped specimen by incorpo-
rating the linear Lagrangean-interpolation polynomials in the
basis functions. The EMAR method determined the reso-
nance frequencies with reproducibility better than 1025,
which allowed us to evaluate the film elastic-stiffness coef-
ficients within 5% error when the film-to-substrate thickness
ratio is larger than 0.2%.

Assuming transverse isotropy, we presented a complete
set of elastic-stiffness coefficients of Ni–P amorphous-alloy
thin film deposited on an Al–Mg substrate. The most impor-
tant observation is the strong elastic anisotropy between in-
plane and out-of-plane directions. On the basis of a micro-
mechanics calculation, thin microcracks aligned parallel to
the film surface could explain the anisotropy.

APPENDIX A

We consider six partial plane waves, either longitudinal
waves or shear waves polarized parallel to the surface, trav-
eling in the thickness directionz of a triple-layered plate
~Fig. 6!:

u15U1ej (vt2k1z), u25U2ej (vt2k2z1f2),

u35U3ej (vt2k3z1f3), u45U4ej (vt1k3z1f4),

u55U3ej (vt1k2z1f5), u65U6ej (vt1k1z1f6). ~A1!

Here,Ui and f i denote the amplitude and phase of theith
partial wave.v denotes the angular frequency anddj the
thickness of thejth layer.kj denotes the wave number in the
jth phase, that is,kj5v/v j ~v j is the longitudinal-wave or
shear-wave velocity!. There are four boundaries, two free
boundaries and two interfaces between the layers. The stress-
free boundary conditions atz50 andz5d11d21d3 are

C1

]

]z
~u11u6!50, and C3

]

]z
~u31u4!50, ~A2!

respectively. At the layer interfaces, continuity of displace-
ments and stresses is required:

u11u65u21u5

and

C1

]

]z
~u11u6!5C2

]

]z
~u21u5!, at z5d1 , ~A3!

and

FIG. 6. Six partial plane waves~longitudinal wave or shear wave! traveling
in the triple-layered plate in the thickness~z! direction.r j denotes density of
the j layer.

TABLE II. Measured resonance frequencies~f meas! and calculated reso-
nance frequenciesf calc for the Ni–P/Al–Mg/Ni–P rectangular parallelepiped
specimen, measuring 2.67932.61830.799 mm3. The rms difference be-
tween them is 0.2%.

Group f meas~MHz! f calc ~MHz! diff ~%!

I 0.650 458 0.649 062 20.21
0.994 308 0.994 861 0.06
1.392 840 1.395 308 0.18
1.631 315 1.632 315 0.06
1.864 601 1.865 514 0.05

III 0.641 412 0.640 453 20.15
1.027 070 1.023 561 20.34
1.396 996 1.397 333 0.02
1.604 992 1.608 280 0.20
1.892 098 1.882 969 20.48

IV 0.819 586 0.819 504 20.01
0.940 220 0.942 139 0.20

1.101 383
1.571 404 1.575 227 0.24
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u21u55u31u4

and

C2

]

]z
~u21u5!5C3

]

]z
~u31u4!

at z5d11d2 . ~A4!

Here,Ci denotes the longitudinal or shear modulus of thei
layer. Substitution of Eq.~A1! into Eqs.~A2!–~A4! results in
the frequency equation for the through-thickness resonance
of the triple-layered plate:

C3k3 tanh2C2k2

$cosg sind2sing cosd%

$cosg cosd1sing sind%
50, ~A5!

Here,

cosd5cosa cosb1k sina sinb,

sind5cosa sinb2k sina cosb, ~A6!

and

a5k1d1 , b5k2d1 , g5k2~d11d2!,

h5k3d3 , k5
C1k1

C2k2
. ~A7!

In the present study,C15C35Cf , C25Cs , k15k35kf ,
andk25ks .

APPENDIX B

We consider the Ni–P amorphous alloy to contain
aligned oblate ellipsoidal microcracks with two equal major
axes in the film plane (a1! and the third major axis along the
film-thickness direction~a3! as illustrated in Fig. 7. We as-
sume isotropic symmetry for the amorphous-alloy matrix.

The effective elastic stiffness of the dual-phase compos-
ite C can be expressed with strain concentration factorA:25

C5CM1 f ~CI2CM !A. ~B1!

Here, CM and CI denote the elastic-stiffness tensors of the
matrix amorphous alloy and the microcracks~inclusions!. f
denotes the volume fraction of the microcracks.A is given
by the Mori–Tanaka mean-field theory26 as

A5AD@~12 f !I1 f AD#21,

AD5@ I1SCM
21~CI2CM !# - 1. ~B2!

Equation ~B2! is derived analytically using Eshelby’s
equivalent-inclusion method.27 The effect of the microcrack
shape is contained in the Eshelby tensorS, which is a func-
tion of Poisson’s ration of the isotropic matrix. For the mi-
crocracks shape considered here, the nonzero components of
S are

S115S225
p~1328n!

32~12n!

a3

a1
, S33512

p~122n!

4~12n!

a3

a1
,

S125S2152
p~128n!

32~12n!

a3

a1
,

S315S325
n

12n H 12
p~114n!

8n

a3

a1
J ,

S445S55512
p~22n!

4~12n!

a3

a1
, S665

p~728n!

16~12n!

a3

a1
.

~B3!

Arbitrarily taking CM115160 GPa,CM44538 GPa,CI50,
a3 /a151024, and f 5531025, we obtained the effective
modulusC as given in Table I.
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FIG. 7. Oblate ellipsoidal microcracks for modeling the incomplete-
cohesion regions within the film.
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