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Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric
coefficients

Hirotsugu Ogi,a) Yasunori Kawasaki, and Masahiko Hirao
Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan

Hassel Ledbetter
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 8 March 2002; accepted for publication 10 June 2002!

We report simultaneous measurement of the complete set of elastic and piezoelectric coefficients of
lithium niobate (LiNbO3), which has trigonal crystal symmetry~3m point group! and thus six
independent elastic-stiffness coefficientsCi j , four piezoelectric coefficientsei j , and two dielectric
coefficientsk i j . We used a single specimen: an oriented rectangular parallelepiped about 5 mm in
size. Our measurement method, acoustic spectroscopy, focuses on the crystal’s macroscopic
resonance frequencies and is sensitive to any property that affects those frequencies. We overcame
the principal obstacle to precise measurements—mode misidentification—by using laser-Doppler
interferometry to detect the displacement distribution on a vibrating surface. This approach yields
unambiguous mode identification. We used 56 resonances ranging in frequency from 0.3 to 1.2 MHz
and determined theCi j andei j with known k i j . The ten unknowns always converged to the same
values even with unreasonable initial guesses. TheCi j uncertainty averages 0.09% for the diagonal
Ci j . Theei j uncertainty averages 5%. All our coefficients fall within the~surprisingly wide! error
limits of previous~conventional! measurements. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1497702#

I. INTRODUCTION

Not occurring naturally, all crystals of lithium niobate
are cultured. Its ferroelectricity was discovered in 1949.1 Its
crystal structure and physical properties received intense
study at Bell Laboratories.2–6

Today, lithium niobate finds wide use as an electro-
optical material. Its superior piezoelectric performance
makes it a frequent replacement for quartz. As described by
Weis and Gaylord,7 lithium niobate enjoys a wide range of
device applications that exploit its favorable elastic, piezo-
electric, dielectric, acousto-optical, electro-optic, pyroelec-
tric, photoelastic, and photovoltaic properties.

Crystals with 3m point-group symmetry show six inde-
pendent elastic-stiffness coefficients~in contracted notation!8

@Ci j #53
C11 C12 C13 C14 0 0

C12 C11 C13 2C14 0 0

C13 C13 C33 0 0 0

C14 2C14 0 C44 0 0

0 0 0 0 C44 C14

0 0 0 0 C14 C66

4
~ i , j 51,2,..,6!. ~1!

Here, C665(C112C12)/2. They show four independent pi-
ezoelectric coefficients9

@ei j #5F 0 0 0 0 e15 2e22

2e22 e22 0 e15 0 0

e31 e31 e33 0 0 0
G

~ i 51,2,3; j 51,2,..,6!. ~2!

And, they show two independent dielectric coefficients10

@k i j #5F k11 0 0

0 k11 0

0 0 k33

G ~ i , j 51,2,3!. ~3!

Measuring the ten independent coefficientsCi j and ei j

presents a formidable task. As an example of previous stud-
ies, we cite Smith and Welsh,11 who showed that a complete
set of coefficients could be obtained from ultrasonic phase-
velocity measurements coupled with low-frequency capaci-
tance measurements for the dielectric coefficients. These au-
thors emphasize that this approach sometimes fails and then
one must measure the electromechanical coupling factor and
the natural frequencies of resonating bars. Of the ten coeffi-
cients, only six result from direct measurements. Their laby-
rinthine set of equations emphasizes the need for many mea-
surements on many crystals in many orientations.

Here, we propose a method that yields all ten elastic and
piezoelectric coefficients with a single frequency sweep on a
single monocrystal. This approach was suggested by Dunn,
Ledbetter, and Heyliger,12 who showed that for lithium nio-
bate large differences exist between resonance frequencies
predicted by an elastic model and a dielectric–piezoelectrica!Electronic mail: ogi@me.es.osaka-u.ac.jp
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model. By measuring resonance frequencies very accurately,
the elastic and piezoelectric coefficients should be obtain-
able.

Our measurement method uses acoustic spectroscopy,
often called resonance-ultrasound spectroscopy.13–15 Our
main improvement over previous measurement protocols
was to use laser-Doppler interferometry to determine the dis-
placement figure for each resonance, thus to identify unam-
biguously each resonance mode.

II. MEASUREMENTS

A. Crystal

From Z. Li ~then at Argonne National Laboratory!, we
obtained an oriented monocrystal measuring 5.039 mm by
5.070 mm by 4.973 mm. Laue x-ray diffraction confirmed
orientations within the measurement uncertainty of 1°. The
three sets of orthogonal faces were perpendicular to@101̄0#,

@ 1̄21̄0#, and@0001# directions, along which we take thex1 ,
x2 , and x3 axes, respectively. Using Archimedes’s method
and distilled water as a standard, we found a mass density
r54.636 g/cm3. From handbooks one findsc513.856 Å,
a55.147 Å, andr54.633 g/cm3, essentially identical with
our measured density. The@0001# direction constitutes a
threefold rotation axis, which contains three mirror planes,
one perpendicular to@101̄0# in the standard setting. Within
the x12x2 plane, all physical properties are isotropic~trans-
verse isotropy!, thusC225C11, e245e15, k225k11, and so
on.

B. Method

Acoustic spectroscopy,13–15 measures the macroscopic
resonance frequencies of a simple-shape specimen. Usually,
one uses this method to determine the elastic-stiffness coef-
ficients. However, one can use it to determine any property
coupled to the macroscopic resonance frequencies. These in-
clude:

~1! shape;
~2! dimensions;
~3! mass or mass density;
~4! elastic stiffnesses; and
~5! orientation.

Thus, the resonance spectrum represents a ‘‘fingerprint’’ of
many interconnected properties. If the specimen is piezoelec-
tric, then other properties enter:

~6! piezoelectric coefficients and
~7! dielectric coefficients.
In general, contributions of the last two properties to the

macroscopic resonance frequencies are much smaller than
those of the elastic stiffnesses, and precise measurements of
the resonance frequencies are required to deduce them. Most
acoustic-spectroscopy measurements sandwiched the speci-
men corners between two transducers for the acoustic trans-
duction, which restrains the specimen’s displacements and
raises the resonance frequencies from those atfree vibra-
tions. Hence, we use a piezoelectric tripod consisting of two
pinducers for generation and detection of vibration, and one
just for support~Fig. 1!. The specimen is put on the piezo-

electric tripod, without external forces except for its own
weight. Contacts between the specimen and pinducers are
therefore weak and stable, ensuring high reproducibility of
the resonance-frequency measurements. We kept the speci-
men temperature at 3060.02 °C so that the reproducibility
among completely independent measurements was better
than 1025.

Acoustic-microscopy disadvantages include the need for
a well-shaped specimen and the mode-misidentification
problem. The latter has not been overcome. Successful de-
termination of the material’s properties requires finding exact
correspondence between the observed and calculated reso-
nance modes, that is, mode identification. If this is wrong,
the resultant properties are physically meaningless. However,
it has never been straightforward because measured reso-
nance spectrum contains a large number of resonance peaks,
providing no mode information. On the other hand, the cal-
culation can tell the resonance modes. Then, one has to know
beforehand the material’s properties close to the true values
to correctly compare the measurements with the calculations,
otherwise mode misidentification easily occurs.

For correct mode identification, we used a laser-Doppler
interferometer as shown in Fig. 1 to scan the displacement on
a surface. A He–Ne laser beam was focused on the specimen
surface~focal diameter: 15mm!. The reflected beam enters
the Doppler interferometer, which detects the normal compo-
nent of the velocity at the focal point. The velocity is easily
converted into the displacement because of harmonic oscil-
lation. Because lithium niobate is a transparent material, we
deposited a 100 nm aluminum film on the~0001! surface

FIG. 1. Measurement setup showing piezoelectric tripod supporting a
parallelepiped-shape specimen whosex3-axis surface displacements were
detected by a laser-Doppler interferometer.
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after completing the measurements of the resonance frequen-
cies. The deposition shifted the resonance frequencies
slightly, but the effect was so small that the mode correspon-
dence between before and after deposition was unambigu-
ous. Further details appear elsewhere.16

III. INVERSE CALCULATION

The governing equations expressing the interconnectiv-
ity of the elastic and electric properties are17

s i5Ci j Sj2ẽikEk ~ i , j 51,2,..,6;k51,2,3!, ~4!

Di5ei j Sj2k ikEk ~ i ,k51,2,3;j 51,2,..,6!. ~5!

Heres andS denote the stress and the engineering strain in
contracted notation.E denotes electric field,D electric flux
density, andẽik5eki . The electric field can be divided into a
rotational component and an irrotational component~or qua-
sistatic field!. In the megahertz-frequency region, the rotation
component is negligible and the quasistatic electric field
dominates,18 which is expressed by the electric potentialf as

Ek52
]f

]xk
. ~6!

The simplest way to see the interconnectivity of these
properties is to consider the equation of motion of plane
waves traveling along the directionl5( l 1 ,l 2 ,l 3), that is,
Christoffel equations19

det@G2rv2I #50. ~7!

Here,r denotes mass density,v velocity of the plane wave,
and I the identity matrix. For the elastic case,G i j 5 l ir Crsl s j

( i , j 51,2,3;r ,s51,2,..,6), where the matrix@ l ir # is defined
as

@ l ir #5F l 1 0 0 0 l 3 l 2

0 l 2 0 l 3 0 l 1

0 0 l 3 l 2 l 1 0
G .

For the piezoelectric case,20

@G i j #5 l ir FCrs1
ejr l jeisl i

l ik i j l j
G l s j . ~8!

Solving Eq. ~7! yields three positive real eigenvaluesrv2.
Thus, the elastic stiffnesses are increased by the piezoelectric
effect, that is, piezoelectric stiffening. The stiffness increases
depend on the vibration mode. Equation~8! indicates that the
stiffness modification is caused by thecombinationof the
piezoelectric and dielectric coefficients, not by them inde-
pendently. Therefore, with mechanical spectroscopy, one
cannot determine theei j and k i j separately. However, the
dielectric coefficients can be measured easily using low-
frequency capacitance measurements.

To deduce the elastic and piezoelectric properties simul-
taneously, we perform an inverse calculation for the mea-
sured and calculated resonance frequencies following
Ohno,21 who presented a calculation method of the macro-
scopic resonance frequencies of a quartz rectangular paral-
lelepiped crystal~32 point-group symmetry!. He used linear
combinations of the basis functionsc consisting of the nor-

malized Legendre polynomials to express approximately the
actual displacementsui and electric potential in the vibrating
specimen, for which analytical solutions are unavailable

ui~x1 ,x2 ,x3!5(
k

ak
( i )Ck

( i )~x1 ,x2 ,x3!, ~9!

f~x1 ,x2 ,x3!5(
k

ak
fCk

f~x1 ,x2 ,x3!. ~10!

Here

Ck~x1 ,x2 ,x3!5A 8

L1L2L3
P̄l~2x1 /L1!

3 P̄m~2x2 /L2!P̄n~2x3 /L3!. ~11!

P̄l denotes the normalized Legendre polynomial of degreel
andLi denotes the edge length along thexi axis of the rect-
angular parallelepiped. Lagrangian minimization with a
Rayleigh–Ritz approach13–15,21–25 determines the macro-
scopic resonance frequencies together with the associated
sets of coefficientsak . The rectangular-parallelepiped
lithium niobate crystal has four vibration groups denoted by
Ag , Bg , Au , and Bu according to the deformation
symmetry.21,26 The elastic-piezoelectric interconnectivity
leads to a corresponding symmetry of the electric potential as
well, which differs from that of quartz. Because the symme-
try of the deformation and electric potential is governed by

FIG. 2. Resonance spectrum. By an inverse calculation, the resonance fre-
quencies yield the elastic and piezoelectric coefficients.

TABLE I. Four free-vibration groups of rectangular-parallelepiped oriented
lithium niobate crystal classified by the degree of the Legendre polynomial
bases.

Mode l m1n

Ag u1 O E
u2 E O
u3 E O
f E O

Au u1 E E
u2 O O
u3 O O
f O O

Bg u1 E O
u2 O E
u3 O E
f O E

Bu u1 O O
u2 E E
u3 E E
f E E

2453J. Appl. Phys., Vol. 92, No. 5, 1 September 2002 Ogi et al.



the degree of the Legendre polynomial~Even or Odd!, we
can divide free vibrations into the four groups by evaluating
the Legendre-polynomial degrees as shown in Table I.
Choosing proper combinations of basis functions reduces
calculation time. We included the Legendre polynomials

FIG. 3. Predicted vs measured resonance-peak frequencies. The correlation
coefficient between the measurements and piezoelectric analysis is 0.999 99.

FIG. 4. Examples of measured~left! and computed~right! displacement
figures along thex3 axis on thez face of the crystal. Dark areas represent
node lines. Typical displacement amplitude is one nm. The horizontal and
vertical axes are along thex1 andx2 axes of the crystal, respectively.

TABLE II. Measured and calculated resonance frequencies of the lithium
niobate crystal. The rms error between them is 0.09%.

Mode f m f c Diff. ~%!

Au-1 0.325 351 0.325 222 20.04
Au-2 0.372 827 0.373 01 0.05
Au-3 0.489 603 0.490 14 0.11
Bu-1 ¯ 0.490 951 ¯

Bg-1 ¯ 0.495 56 ¯

Bu-2 ¯ 0.501 695 ¯

Ag-1 0.515 367 0.516 03 0.13
Bu-3 0.549 011 0.548 391 20.11
Bg-2 0.548 699 0.549 46 0.14
Ag-2 ¯ 0.567 101 ¯

Au-4 0.568 932 0.569 531 0.11
Ag-3 ¯ 0.573 198 ¯

Bu-4 ¯ 0.573 993 ¯

Bg-3 ¯ 0.580 393 ¯

Ag-4 0.589 799 0.589 625 20.03
Ag-5 0.602 959 0.603 091 0.02
Bg-4 0.617 182 0.617 318 0.02
Bg-5 0.640 888 0.640 645 20.04
Ag-6 0.66 302 0.663 178 0.02
Ag-7 ¯ 0.671 538 ¯

Bu-5 ¯ 0.6835 ¯

Bg-6 0.699 531 0.698 004 20.22
Au-5 0.698 426 0.699 204 0.11
Bu-6 0.716 54 0.716 383 20.02
Ag-8 0.726 31 0.725 257 20.15
Au-6 0.734 215 0.734 688 0.06
Au-7 0.774 928 0.774 832 20.01
Bu-7 0.798 14 0.798 513 0.05
Ag-9 0.810 661 0.810 658 0
Bu-8 0.818 689 0.817 873 20.1
Bu-9 0.829 478 0.829 465 0
Au-8 0.835 145 0.83 499 20.02
Bu-10 0.866 328 0.864 694 20.19
Au-9 0.868 907 0.868 434 20.05
Ag-10 ¯ 0.880 101 ¯

Bu-11 0.88 91 0.888 362 20.08
Bg-7 0.910 393 0.910 837 0.05
Au-10 0.916 148 0.915 92 20.02
Ag-11 0.921 689 0.921 443 20.03
Bg-8 0.926 254 0.925 603 20.07
Bg-9 0.929 839 0.929 501 20.04
Bg-10 0.938 723 0.938 218 20.05
Ag-12 0.950 881 0.947 176 20.39
Bu-12 0.947 714 0.947 873 0.02
Ag-13 0.968 434 0.967 707 20.08
Au-11 0.994 905 0.994 34 20.06
Au-12 1.016 239 1.015 45 20.08
Au-13 1.040 908 1.040 819 20.01
Bg-11 1.049 125 1.049 673 0.05
Bu-13 1.049 631 1.050 541 0.09
Ag-14 1.054 975 1.056 065 0.1
Bu-14 1.066 507 1.066 003 20.05
Ag-15 1.067 732 1.067 267 20.04
Bg-12 1.076 394 1.077 097 0.07
Au-14 1.080 066 1.080 05 0
Ag-16 1.097 344 1.097 328 0
Au-15 1.100 799 1.101 092 0.03
Bu-15 1.103 102 1.102 319 20.07
Bg-13 1.109 774 1.111 12 0.12
Bg-14 1.119 112 1.120 377 0.11
Bu-16 1.124 947 1.124 538 20.04
Au-16 1.130 25 1.130 521 0.02
Ag-17 1.130 514 1.131 832 0.12
Bg-15 1.131 718 1.133 518 0.16
Bg-16 ¯ 1.145 2 ¯

Bu-17 1.14 4316 1.146 701 0.21
Ag-18 1.152 006 1.151 736 20.02
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with degree up to 12. The total number of the basis functions
is 400–500 for each group in this case. We stopped the it-
erative calculation when the change of the rms error between
the measured and calculated resonance frequencies became
less than 531026. This is the criterion of the convergence of
the inverse calculation.

We focus especially on the coefficientsak . They reveal
the displacement distribution on a specimen surface, which is
a signature of an individual mode. Thus, comparison be-
tween the measured and computed displacement distribu-
tions guarantees correct mode identification.

IV. RESULTS

Figure 2 shows the measured resonance spectrum. For
each mode, we fitted the Lorentzian function around the peak
amplitude to determine the resonance frequency. Figure 3
shows measured resonance frequencies versus calculated by
two models: piezoelectric and nonpiezoelectric. The differ-
ence between them permits determination of the piezoelec-
tric coefficients. Figure 4 shows examples of the measured
and computed displacement distributions on thex3 surface.
Excellent agreement permitted correct vibration-mode iden-
tification. A few modes showed poor agreement and we
omitted them from the inverse calculation. Totally, we used
56 completely identified modes. Concerning the dielectric
coefficients, we averaged the reported values and fixed them
ask115398.9310212 andk335232.0310212 F/m2. Table II
compares the measurements and calculations after conver-
gence. Their rms difference was 0.09%. The converged ma-
terial coefficients are shown in Table III together with previ-
ously reported values.

V. DISCUSSION

First, we discuss the accuracy of our results. Four prin-
cipal errors arise:~i! errors in the resonance-frequency mea-
surement (,0.001%),~ii ! dimension errors (,0.01%),~iii !
crystal misorientation errors~less than 1°!, and~iv! calcula-
tion errors~0.09%!. Thus, the maximum error lurks in the

calculated resonance frequencies. Such a material coefficient
that contributes little to the resonance frequencies compared
with the error would not be determined with good accuracy.
Table III shows the average contributions of the ten coeffi-
cients, (q/ f )(] f /]q), whereq meansCi j or ei j . The con-
tribution of e31 is the smallest~0.16%!, but it is still larger
than the calculation uncertainty by a factor 1.8. Using their
contributions and the calculation errors for each resonance
mode, we estimated possible errors included in the result.
These also appear in Table III. All our coefficients fall within
the error limits of previous~conventional! measurements.
The calculation error can be decreased by increasing the
number of basis functions, but this drastically increases the
computation time.

Second, we discuss the insensitivity of our results to the
initial ~guessed! values. The results given in Table III come
from the initial set given by Dan’kovet al.27 However, even
with initial sets far away from the true values, the inverse
calculation produced exactly the same results, owing to un-
ambiguous mode identification. ~The displacement-
distribution patterns were hardly affected by the initial values
as demonstrated in Ref. 16.! For example, use of the follow-
ing unreasonable initial guesses,C115230, C335200, C12

560, C13580, C44540, and C14515 GPa; e1555.0, e22

51.0, e3150.1, ande3353.0 C/m2, little affected the com-
puted displacement patterns and resulted in coefficients that
agreed with those in Table III within 0.02% for theCi j and
0.2% for theei j .

Finally, we emphasize the importance of correct mode
identification. Most studies with acoustic spectroscopy iden-
tified an observed mode by comparing only its frequency
with calculations. In this procedure, mode misidentification
certainly occurs unlessexcellentinitial values are known in
advance. Such misidentification, even for a few modes, af-
fects highly the derived piezoelectric coefficients because of
their weak contributions. For example, we made the inverse
calculation using the initial set given by Warner, Onoe, and
Coguin,28 simplemindedly pairing the closest resonance fre-
quencies between measurements and calculations without re-

TABLE III. Elastic coefficients~GPa!, piezoelectric coefficients (C/m2), and dielectric coefficients (10212 F/m2) of lithium niobate crystal; and average
contributions of the coefficients to the resonance frequencies.

Present
Damle

~Ref. 29!
Warner

and co-workers~Ref. 28!
Smith &

Welsh ~Ref. 11!
Dan’kov

et al. ~Ref. 27!
Kovacs

et al. ~Ref. 30!
Contributionsc

~%!

C11 199.560.20 203.1 203 203.0 199 198.4 17
C33 235.260.4 241.3 245 242.4 237.2 227.9 22
C44 59.4860.04 64.6 60 59.5 60.1 59.65 28
C66

a 72.1060.01 75.1 75 72.8 72.6 71.84 45
C12 55.2760.13 53 53 57.3 53.8 54.72 7.9
C13 67.6760.26 74.2 75 75.2 71.4 65.13 10.8
C14 8.760.2 8.5 9 8.5 7.85 7.88 1.6
e15 3.6560.03 ¯ 3.7 3.76 3.61 3.69 10
e22 2.3960.03 ¯ 2.5 2.43 2.40 2.42 5.2
e31 0.3160.04 ¯ 0.2 0.23 0.28 0.30 0.16
e33 1.7260.18 ¯ 1.3 1.33 1.59 1.77 0.88
k11 398.9b ¯ 390 392 394 404 ¯

k33 2232.0b ¯ 257 247 231 233 ¯

aC665(C112C12)/2.
bAverage of Refs. 27 and 30.
cThe total departs from 100% because absolute values are shown.
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ferring to the vibration patterns. Misidentification occurred
for seven modes and the resultingC14, e31, and e33 dis-
agreed with the correct values by 11%, 72%, and 25%, re-
spectively, although other coefficients agreed within 3%.
Thus, mode misidentification can be fatal when deducing a
property that contributes little to the macroscopic vibrations.

VI. CONCLUSIONS

~1! We made the simultaneous determination of the six
elastic coefficients and four piezoelectric coefficients of
lithium niobate from a single specimen by using acoustic
spectroscopy. We measured the macroscopic resonance fre-
quencies with accuracy better than 0.001% and identified
almost all observed~56! modes by measuring the displace-
ment distributions on a surface using a laser-Doppler inter-
ferometry.

~2! Our values are consistent with those reported previ-
ously using conventional measurement methods where the
values range widely.

~3! Our values are insensitive to the initial guessed set of
coefficients, which are needed at the beginning of the inverse
calculation. Even unreasonable guesses resulted in the same
answers, owing to right mode identification. On the other
hand, even good initial values failed to produce the correct
answer with modes misidentified.

~4! Acoustic spectroscopy represents a viable alternative
to conventional methods of measuring piezoelectric coeffi-
cients. Its principal advantages are simultaneous determina-
tion of the Ci j and ei j on a single specimen. This provides
enormous advantages for making measurements versus tem-
perature, pressure, or stress. Also, measurements on speci-
mens smaller than a millimeter would present few difficul-
ties.
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