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We report estimates of body-centered-cubic titanium’s monocrystal elastic constantsC11, C12, and
C44. Two constants resulted from measuring a pure-titanium polycrystal at high temperatures using
resonant-ultrasound spectroscopy. The third constant resulted from assuming a Zener elastic
anisotropy and using inversely Kro¨ner’s monocrystal–polycrystal elastic-constant relationship. Our
values areC11597.7, C12582.7, andC44537.5 GPa at 1000 °C. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1688445#

I. INTRODUCTION

Before melting at 1670 °C, titanium transforms from the
familiar close-packed-hexagonal~cph! form to a body-
centered-cubic~bcc! phase at 882 °C with a notably smaller
atomic volume. Titanium’s isoelectronic companion ele-
ments, zirconium and hafnium, show similar behavior. Often,
the transformation is described in terms of a Burgers
mechanism,1 which relates the cph close-packed plane to the
bcc ~110! plane, which shows a small distortion from close
packing. It also relates two close-packed directions:@2̄110# in
cph to @111# in bcc. Zener2 ascribed high-temperature bcc
phases to their possibility for higher vibrational entropy, re-
lated to high elastic anisotropy, often to a low value of the
elastic-shear constantC85(C112C12)/2. Friedel3 took an-
other view: the excess bcc vibrational entropy arises from a
lower Einstein frequency expected from the smaller nearest-
neighbor number. As emphasized by Dehlinger,4 elements
tend more to be cph when they contain one, two, or three
valence electrons. With four valence electrons, titanium is
borderline cph.

Special interest in bcc titanium arises because it may
provide a good example of phonon softening. Local-density-
approximation calculations5 for zirconium showed that the
cph phase shows lower energy, but that the bcc phase
N-point transverse phonon showsnegativefrequencies. This
phonon plays a key role in the above-mentioned cph–bcc
phase transformation. Neutron-scattering studies6,7 show
temperature-dependent phonon softening. Elastic constants
represent the long-wavelength limit of the phonon spectrum.
Because elastic constants can be measured accurately, they

provide valuable information about long-wavelength~low-
energy! phonon frequencies, about mechanical instability,
and about the Debye characteristic temperature. Their tem-
perature dependence relates simply to the quintessential an-
harmonic parameter: the Gru¨neisen parameter.8 Titanium’s
bcc elastic constants figure prominently in several recentab
initio studies.9–11

Previous estimates of titanium’s three bcc elastic con-
stantsCi j came either from large extrapolations of titanium–
alloy monocrystal measurements12 or from force constants
from neutron-scattering monocrystal measurements.6 Usual
direct sound–velocity measurements13 remain to be made
because large bcc monocrystals remain to be prepared.

Measurements of titanium’s bcc elastic constants re-
ported here were obtained more directly by measuring sound
velocities at high temperatures in pure titanium. A disadvan-
tage of our approach is that our specimen was polycrystal-
line; thus we measured directly only two elastic constants,
say the quasiisotropic bulk and shear moduli. We overcame
this disadvantage by using some relationships from con-
tinuum mechanics. Our results for the threeCi j —C11, C12,
andC44—differ considerably from the two previous neutron-
scattering results, but they agree surprisingly closely with
extrapolated alloy results.

II. METHODS

The specimen was commercially available polycrystal-
line titanium with 10mm average grain size. With 99.96%
purity, it showed a mass density of 4581 kg/m3 and negli-
gible texture. To determine the elastic constants, we used
resonant-ultrasound spectroscopy.14–16 Briefly, this method
excites and detects the macroscopic resonance frequencies of
a simple-shape specimen. In the present study, we used

a!Author to whom correspondence should be addressed; electronic mail:
ogi@me.es.osaka-u.ac.jp

JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 9 1 MAY 2004

46420021-8979/2004/95(9)/4642/3/$22.00 © 2004 American Institute of Physics

http://dx.doi.org/10.1063/1.1688445


electromagnetic–acoustic resonance for noncontacting exci-
tation and detection.17–19 The specimen was inserted in a
solenoid coil located within a cylindrical vacuum vessel
made of austenitic stainless steel. A heater located by the
solenoid coil increased the specimen’s temperature up to
1030 °C. The pressure inside the vessel was kept less than
1024 Torr. A pair of Nd–Fe–B permanent magnets applied
biasing magnetic field to the specimen from outside the ves-
sel to excite and detect free vibrations of the specimen via
the Lorentz-force mechanism. The permanent-magnet assem-
bly can be rotated about the cylindrical-vessel axis to a se-
lection of detectable vibration modes. TheCi j result from an
inverse calculation, the input being specimen mass, shape,
and size, and the resonance frequencies.

III. RESULTS AND DISCUSSION

Table I shows our results together with previous results
by Fisher and Dever12 who extrapolated from various Ti–Cr
alloys measured ultrasonically at temperatures up to 1100 °C
and by Petry and colleagues6 who measured phonon disper-
sion on anin situ grown monocrystal at 1020 °C.

In Table I, our directly measured results~at 1000 °C! are
the bulk modulusB and the shear modulusG. For cubic
crystal symmetry, the bulk modulus relates simply to theCi j

B5~C1112C12!/3. ~1!

TheCi j relate to the shear modulus by Kro¨ner’s relationship
from continuum mechanics

G31aG22bG2c50. ~2!

Coefficientsa, b, andc contain the threeCi j and were given
by Kröner20 and by Ledbetter,21 who showed that, among
many proposedG–Ci j relationships, Kro¨ner’s method
agrees best with observation. Table I shows our estimatedCi j

calculated by assuming various Zener elastic anisotropies2

A52C44/~C112C12!. ~3!

Our results differ strongly from those of Petry and col-
leagues: our bulk modulus is lower by a factor of 0.64, and
our shear modulus is higher by a factor of 1.30.~Here, we
converted the Petryet al. Ci j to a shear modulus using the
Voigt–Reuss–Hill method.21! Previous bulk-modulus mea-

surements on hexagonal titanium gave 99.7 GPa at 873 °C22

and 96.4 GPa at 870 °C.23 Thus, the Petryet al. results give
a cubic/hexagonal bulk-modulus ratio of about 1.2, a 20%
increase upon transforming to the cubic phase. Although nu-
merous phase transformations occur in metals and alloys, the
authors know only one report of careful elastic–constant
measurements through a hexagonal–cubic transformation.
Weston and Granato24 measured the complete elastic–
constant tensors for both phases of the hexagonal–cubic
transformation in a cobalt–nickel alloy. They found a cubic/
hexagonal bulk-modulus ratio of 0.90. A simple Einstein-
oscillator model25,26 also predicts a lower bulk modulus in
the high-temperature phase.

Like Petryet al., we found a lower shear modulus in the
cubic phase, but lower by a smaller amount, about 5% versus
15%. From thermodynamics, it follows that the high-
temperature shear modulus should be lower. Ledbetter27

showed that the Debye characteristic temperatureQ goes as
the square root of the shear modulus. Zener and Bilinsky28

showed for crystalline allotropic transformations thatQ2 /Q1

is less than unity, where 1 and 2 denote the low-temperature
and high-temperature phases. For the cases they considered,
they found an average ratio of 0.84, the extreme~tin! being
0.81.

A check on our measurements appears in Table II, where
we compare the polycrystal alpha-phase elastic constants
with those obtained from the monocrystal elastic constants
by Voigt–Reuss–Hill averaging. For all the elastic constants,
we see agreement within a few percent.

Our results relate to three first-principles studies. In con-
sidering compression effects, Ahujaet al.9 calculated the bcc
C44 shear modulus, obtaining 35.8 GPa, close to our result,
although calculated for zero temperature. For the bulk modu-
lus, Nishitaniet al.10 obtained 107, or about 94 GPa when
corrected to a high temperature, about 5% higher than our
result. For the zero-temperature bulk modulus, Sanatiet al.11

obtained 118 GPa. Nishitaniet al. reached a conclusion that
supports our high elastic anisotropy (A55). From potential-
energy-surface curvatures, they concluded that bcc titanium
possesses strong anisotropic chemical bonding and marginal
mechanical stability~proximity of a phase transformation!.

Finally, we consider the Zener elastic anisotropy, which
determines the preferredCi j set in Table I. Both structural
and thermodynamic factors predict that the cubic phase will
show higher elastic anisotropy.2,3 ~A bcc near-neighbor-only
model allows the anisotropy to be infinite.! From high-
temperature measurements on monocrystal Ti–Cr alloys,
Fisher and Dever12,29 argued the anisotropy is near 5. We
adopt this value. Thus, the lowest row in Table I shows our

TABLE I. Elastic constants~GPa! of bcc monocrystal titanium at 1000 °C
~present!, 1000 °C,a and 1020 °C.b In the present study, the three indepen-
dent elastic constants are derived assuming five elastic anisotropiesA with
the measured bcc polycrystal bulk modulusB587.7 GPa and shear modulus
G520.7 GPa.QD denotes the Debye characteristic temperature.

A C11 C12 C44 C8 B QD ~K!

1 115.3 73.9 20.7 20.7 87.7 278.2
2 105.8 78.66 27.11 13.6 87.7 275.5
3 101.7 80.71 31.47 10.5 87.7 271.5
4 99.3 81.9 34.8 8.7 87.7 267.7

Present 5 97.7 82.7 37.5 7.5 87.7 264.2

Fisher and Devera 4.8 99 85 33.6 7 89.7 —
Petryet al.b 3 134 110 36 12 118 272

aSee Ref. 12
bSee Ref. 6.

TABLE II. Titanium’s ambient-temperature alpha-phase polycrystal elastic
constants at 20 °C. Units GPa except dimensionlessn. Cl denotes longitu-
dinal modulus,B bulk modulus,E Young modulus,G shear modulus, andn
Poisson ratio.

Cl B E G n

Measured 165.1 106.43 115.98 43.99 0.318
Calculated 166.4 107.6 116.39 44.1 0.320
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best estimate of bcc titanium’s monocrystal elastic constants.
We estimate a slightly lower~264 K! Debye temperature
than estimated by Petryet al.6 ~272 K!.

IV. CONCLUSIONS

Using the electromagnetic-acoustic-resonance method,
we measured free-vibration resonance frequencies of poly-
crystalline titanium up to 1030 °C and determined the two
polycrystalline elastic constants of the bcc phase. We then
deduced the three elastic constants of bcc monocrystal tita-
nium at 1000 °C using the polycrystalline values and assum-
ing the anisotropy factorA55. Our values areC11597.7,
C12582.7, andC44537.5 GPa at 1000 °C.
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