u

) <

The University of Osaka
Institutional Knowledge Archive

Vibration analysis of an elastic-sphere
Title oscillator contacting semi-infinite viscoelastic
solids in resonant ultrasound microscopy

Author(s) |Tian, Jiayong; Ogi, Hirotsugu; Hirao, Masahiko

, , Journal of Applied Physics. 2004, 95(12), p.
Citation 8366-8375

Version Type|VoR

URL https://hdl. handle. net/11094,/84220

This article may be downloaded for personal use
only. Any other use requires prior permission of
the author and AIP Publishing. This article

rights appeared in Journal of Applied Physics, 95(12),
8366-8375 (2004) and may be found at
https://doi.org/10.1063/1. 1737472,

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Vibration analysis of an elastic-sphere
oscillator contacting semi-infinite
viscoelastic solids in resonant ultrasound
microscopy

Cite as: Journal of Applied Physics 95, 8366 (2004); https://doi.org/10.1063/1.1737472
Submitted: 01 December 2003 . Accepted: 15 March 2004 . Published Online: 04 June 2004

Jiayong Tian, Hirotsugu Ogi, and Masahiko Hirao

AT f
L A |

i J

L 0

View Online Export Citation

(7))
.2
(7))
>
Y
on
o
co
- S —
50
oQ
P g

ARTICLES YOU MAY BE INTERESTED IN

Elastic-stiffness mapping by resonance-ultrasound microscopy with isolated piezoelectric
oscillator

Applied Physics Letters 83, 464 (2003); https://doi.org/10.1063/1.1593819

Complete mode identification for resonance ultrasound spectroscopy

The Journal of the Acoustical Society of America 112, 2553 (2002); https://
doi.org/10.1121/1.1512700

Implementation of a modern resonant ultrasound spectroscopy system for the measurement
of the elastic moduli of small solid specimens

Review of Scientific Instruments 76, 121301 (2005); https://doi.org/10.1063/1.2140494

Challenge us.

What are your needs for >
periodic signal detection? Q)

N/ Zurich
Z N\ Instruments

Journal of Applied Physics 95, 8366 (2004); https://doi.org/10.1063/1.1737472 95, 8366

© 2004 American Institute of Physics.



https://images.scitation.org/redirect.spark?MID=176720&plid=1401535&setID=379065&channelID=0&CID=496959&banID=520310235&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=71bf76294ba1eff3502a31fdb96fd8874112c042&location=
https://doi.org/10.1063/1.1737472
https://doi.org/10.1063/1.1737472
https://aip.scitation.org/author/Tian%2C+Jiayong
https://aip.scitation.org/author/Ogi%2C+Hirotsugu
https://aip.scitation.org/author/Hirao%2C+Masahiko
https://doi.org/10.1063/1.1737472
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.1737472
https://aip.scitation.org/doi/10.1063/1.1593819
https://aip.scitation.org/doi/10.1063/1.1593819
https://doi.org/10.1063/1.1593819
https://aip.scitation.org/doi/10.1121/1.1512700
https://doi.org/10.1121/1.1512700
https://doi.org/10.1121/1.1512700
https://aip.scitation.org/doi/10.1063/1.2140494
https://aip.scitation.org/doi/10.1063/1.2140494
https://doi.org/10.1063/1.2140494

HTML AESTRACT * LINKEES

JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 12 15 JUNE 2004

Vibration analysis of an elastic-sphere oscillator contacting semi-infinite
viscoelastic solids in resonant ultrasound microscopy

Jiayong Tian,® Hirotsugu Ogi, and Masahiko Hirao
Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka,
Osaka 560-8531, Japan

(Received 1 December 2003; accepted 15 March 004

Resonant-ultrasound microscopy evaluates local Young’s modulus of materials by the

resonant-frequency shift of a vibrating oscillator. This study presents a dynamic-contact model to
analyze free vibrations of an isotropic elastic-sphere oscillator contacting two semi-infinite

viscoelastic solids, which sandwich the sphere. Assuming frictionless contacts and smaller
vibrational amplitude, dynamic-contact pressure distributions are obtained with the linearized

maximum contact pressure and contact radius. Combining the sphere oscillation and the solid
motions through contact-displacement boundary conditions, resonant frequencies of the elastic
sphere are obtained. Unlike the quasistatic model, this dynamic model agrees well with the
measurements. @004 American Institute of Physic§DOI: 10.1063/1.1737472

I. INTRODUCTION the mass density of the specimen, and vibrational frequency
of the system. This is unphysical. Indeed, our previous
Evaluation of elastic properties in a micro- and nano-study’—* showed that the quasistatic Hertzian-contact model
scale region of a solid is of great importance for optimizationfajled to explain the frequency shift of an oscillator caused
of applications including surface-wave acoustic devices an@y contacts: the resonant-frequency shift predicted by the
microelectromechanical system$MEMS). It can be quasistatic model is much smaller than the observation. The
achieved by using the resonant-frequency shift of a vibratingame occurred in ultrasonic indentation measurentefits.
oscillator contacting the solid. Typical measurement uses afate, no study has analyzed an elastic-oscillator vibration
atomic-force-microscope cantileveOne end of the cantile- with contacts with viscoelastic materials consideringlya
ver is gripped by a holder and the other end contacts theamicHertzian contact.
specimen surface through a small tip. A piezoelectric trans-  There are three principal purposes in this study:
ducer attached to the cantilever causes a flexural vibratiorpresent an dynamic Hertzian-contact model to predict the
while maintaining contact with the specimen. Because thigree-vibration resonant frequencies of an isotropic elastic-
approach involves many components contributing to thesphere oscillator contacting semi-infinite viscoelastic solids;
resonance, and the resonant frequency is highly affected hyj) investigate the effect of the contacting material’s moduli,
the ambiguous gripping condition, quantitative evaluation ofmass density, and viscosity on the resonant frequencies; and
a material’'s elasticity has not been straightforward. We haV?iii) confirm the developed model with measurements using
recently developed an alternate resonant-ultrasouncgn electromagnetic—acoustic—transduction mefflodhere
microscopy(RUM) method using an isolated piezoelectric the electromagnetic—acoustic coupling generates and detects
oscillatof~*which aims to overcome the long-running prob- the vibration of the sphere without any contact.
lems associated with contact acoustic coupling. Our method  ouyr analysis proceeds in four steps. First, assuming
does not require any acoustical contacts except for the poigmall vibrational amplitude, the approximate dynamic-
contact with the specimen, which allows us to quantitativelycontact_pressure distributions are preseret. Il A). Sec-
evaluate the local Young's modulus. ond, vibration of an elastic sphere subjected to dynamic con-
In such a resonant-ultrasound-microscopy measuremenfact pressure is analyzed in spherical coordinées. 11 B).
the influence of material's elastic properties on the oscilla-Third, the motion of semi-infinite viscoelastic solids sub-
tor’s vibration remains the central issue. Previous stiidfes jected to dynamic contact pressure at the contacting surface
assumed a flat contact interface between the oscillator ang analyzed using Hankel transforms in cylindrical coordi-
the specimen, replaced it with a linear spring obtained byates(Sec. 110. Fourth, the resonant frequencies of the
Hertzian contact theory, and calculated the dependence of thgerall system are derived by combining two solutions at the
resonant-frequency shift on the elastic constants of the masgntact area through the dynamic-contact boundary condi-
terial. (We call this model the quasistatic Hertzian-contacttjons for displacementsSecs. 11 D and E The present analy-
model) Thus, this assumption neglects the influence of nonsjs showed good agreement with the measurements of the
uniform vibrational deformation at the contacting imerface,resonant-frequency shifts, indicating the necessity of consid-
ering the dynamic response near the contacting area in the
¥Electronic mail: jtian@me.es.osaka-u.ac.jp resonant-ultrasound microscopy.

0021-8979/2004/95(12)/8366/10/$22.00 8366 © 2004 American Institute of Physics
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Here,E} denotes the effective Young's modulus of the con-
tacting szphere and solids, satisfyingEf/=[(1— »?)/E]
/ . _ +[(1-v))/E,]. E, and v, are Young's modulus and Pois-
g B 1 son’s ratino of the solid 1 or 2, respectively.

The normal contact pressure distributign(&,), ex-
pressed in the local cylindrical coordinate systedp,¢,)
shown in Fig. 1, is given by

Pn(én) =PaV1—E&3as, 3)

wherepn=3F/2waﬁ denotes the maximum static pressure.
The harmonic vibration of the elastic sphere will change
the contact-pressure distribution and the contact radius. We

F

solid 2 AN

Z . .
v solid2| 1, u,, 0;! assume that the general form of Eg) still holds for such a
F time-dependent problem
_ [ 2/a 12
FIG. 1. A dynamic model of an elastic sphere contacting two semi-infinite Pn(&nst) =pa(t) V1- §n/an(t)2, (4)

viscoelastic solids. wherep,(t) anda,(t) denote the maximum dynamic pres-

sure and dynamic contact radius, respectively; they depend
on timet. They will be implicitly determined later by the
1. RESONANT FREQUENCY OF AN ELASTIC SPHERE boundary conditions for deformatidisee Sec. Il ). We re-
CONTACTING SEMI-INFINITE VISCOELASTIC write Eq. (4) as

SOLIDS 5
Pn(én D) =(Pn+ Spn(D)V1—EX(a,+ day(1)2 (5

Various types of oscillators such as spheres, cantilevers, .
and rectangular parallelepipeds can be used in resonan‘ﬁhere@?“(t) andd5an(t) are ur_]knlo;vn pertur(;)gtlons o the
ultrasound microscopy. Because the principal aim of this;tat'C value, anday, respectivelysp(t) andsa,(t) can
study is to investigate mathematically the influence of the
dynamic contacting response on the resonant frequency of E[F]equencyw
oscillator, we consider the simplest oscillator, a sphere. Spn(t)~ dppe't

Consider an isotropic elastic sphere with radiRs San(t)~ da,e' |’ (6)
Young’s modulusE, and Poisson’s ratie in frictionless con-
tact with two semi-infinite viscoelastic solids, as shown inWN€re 9P, and da,, are unknown constants and we assume

Fig. 1. (This model includes the case of one-point contacd 5pn|<p_n and|5a_n|§an. In Eq. (_6)’ we neglect th? influ-
with \,=u,=0.) The stress—strain relationships in the vis-ence of internal friction of the solids for two reasofig:The

coelastic solids take the fof contact area and vibrational amplitude of the sphere are
much smaller than the wavelength, and the effect of internal
T =Aa(1+1Qp Hed + un(1+iQ, Ye; - (1)  friction on the interface spring constants will be smail)
Incorporation of internal friction in Eq6) results in a laby-
Here, the subscript(=1 or 2) indicates the solitsolid 1 or  finth of relationships among the related properties and makes
solid 2. N, and u,, are Lameconstants of the solidsr; and it impossible to solve the system mathematically. We con-
€; are stress and strain of the solids, respectively;ey; sider the effect of internal friciton in vibrational analysis in
+€22+ 633; 5” is Kronecker’s delta SymonrTl denotes the solids in Sec. B and will show that it little affects the

internal friction of the solids(There are usually two inde- resonance frequencies of the system.

e approximated to be harmonic oscillations with the angular

pendent internal friction associated withand u, respec- Substitution of Eq(6) into Eq. (5) leads to
tively, in an isotropic material, but we assume the same value Do (Er ,t)%pn\/Fﬁ/aﬁJr St (&,)el, @

for them to simplify the problem. This assumption affects the

resulting resonant frequencies, but little, as shown Jater.by retaining the first-order perturbations. The second term of
Also, we assume that the vibrational amplitude of the elasticq. (7) denotes the harmonic contact-pressure distribution
sphere is much smaller than the indentation caused by thdue to the sphere vibration given by

static biasing force. 25a

n
A. Dynamic contact stress distribution at the ofn(én)= png\/ﬁ +8pV1—E2ac. (8
sphere—solid interfaces an &nlay

A static normal force pressing the sphere and two sol- Thus, the nonlinear-contact problem with the dynamic con-
ids together results in circular contact areas, whose radii ar&ct radius is reduced to a linear problem. Equatignindi-

expressed 38 cates that the.system can be expressed by a linear superpo-
sition of a static problem related to the Hertzian contact and
3[3ER a dynamic problem with harmonic contact pressure

—. 2 5f(&€,)e'“! at the interfaces. We only consider the dynamic
AE, response in the following analysis.

an=
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B. Elastic sphere subjected to harmonic contact (11) and(12) are time-dependent quantitif®oundary con-
pressure ditions at the surface=R are represented by

We next consider the dynamic response of the elastic s a;
sphere subjected to harmonic contact presséig|é,)e'". —ofi(&y) Osb=4

The factore'®® will be omitted for brevity. Free vibration of
an isotropic elastic sphere without any contacts falls into two

a
R6,¢)={ —of =
vibration groups, torsional modes and spheroidal mdtles. orr(R.6,6)= o0& TR T

Torsional modes do not have any radial displacements, but a, a,
spheroidal modes do. We consider only the spheroidal modes 0 E$ o<m— R
because, in resonant-ultrasound microscopy, they show much .
larger sensitivity to the elastic constants of solids than tor- ¢, ,(R,6,¢6)=0 (13
sional modes, where a biasing force is vertically applied.
Equations of motion for the harmonic spheroidal vibra- org(R,0,¢)=0.
tion in the spherical coordinates system ¢, ¢) shown in We expand the stress at the surface of the sphere using
Fig. 1 are expressed ‘ds the spherical harmonics functidis
) ks m
Vierkie=0, k=, - oe(RO.)== 3 3 BnPy(cosne', (143
, (9) m=0 [=-m
V2x+k3x=0, ks:2 where
vs _ | 2141 [ 2n , R
where ¢ and y denote the displacement potentiats, — Bmi=—7— fo fo o (R, 0,¢)P(cosd)singe™ " “d¢p do.
=J(N+2u)/p andvg= \ulp are the longitudial and shear- (14b)
wave velocities of the elastic sphere, respectiviely:, andp o
are Lameconstants and mass density of the sphere. Combination of Egs(8), (13), and(14b) leads to
The general solutions of E9) are expressed &5 {5D1N1+ Sa;Ny+ 8p,Na+ sa,N,, 1=0
N . | il mli— (14C)
@=Crmijm(kL)Ppy(cosf)e 10 0, 1#0,
X=Guin(ker) Ph(cost)e!?| ( (om+ 1)a
wherec,, andd,, are unknown constantg,, andP}, denote Ni= 6R2 (149
the spherical Bessel function and the associated Legendre
functions with the colatitudinal mode numbmrand the azi- \ (2m+1)p; (ai/R R2p? PO( )sindds
muthal mode numbet, respectively. We only consider the No=———=— 55 5 T m(COY)SINGAL,
case thatl=0 for two reasons:i) As shown later, the 2ay 0 1-R*0%/a; 148
electromagnetic—acoustic—resonance microscopy used in the (
present study causes principally the vibration modeg of (—1)™(2m+ 1)35
=0, and(ii) The contact pressure is axisymmetric about theN;= 5 ; (14
z axis. Thus, the displacement potentials are independent of 6R
b . 20— )2
The displacements and stresses are obtained from tWAZMJ R iw 6) —
equations forp and y that are presented in Appendix A 2a; 7= (a2 /R)\ 1~ R¥(7— )%/ aj
Ur(1, 0,6) = (CpoCina () + DinD o (1)) P3,(COS0) X Pry(cos)sin 6 do. (149
dP(cos6)
Up(r, 6, #) = (CrnoCrma(1) + oD ma(r) — 7= C. Dynamic response of semi-infinite viscoelastic
Po(cose) ’ solids subjected to harmonic contact pressure
Uy(r, o, ¢)=(Cmocm3(f)+dmoDm3(r))mSiT Here, we study the dynamic response in the visoelastic
(11) solids subjected to the harmonic contact pressafg(é,,).
Because of the circular contact area and axisymmetric con-
o (1,8, ¢)=(cmOCm4(r)+dm0Dm4(r))P?n(cos¢9) tact pressure, the dynamic response is solved in cylindrical
dP?(cos6) coordinates §,,,z,) shown in Fig. 1. Nonzero displacement
0 g(r,0,0)=(CmoCms(r) +dmoDms(r)) B E— conluljé)rlgnts Uen(€n,2zn) and uy(é,,z,) are expressed
P° (cos#) by'
a'rqs(rv0v¢):(CmOCmG(r)+dmODm6(r))2—.0 _ﬁ¢n+ &Zirlfn
resin Ugn= AT

(12 )

J J J ’
Where Cong (1)~ Crg(r) aNdD ()~ Do(r) are shown in  u, =oon_ L 2
Appendix B.[Note that displacements and stresses in Egs. 9Zn 9, €ndén

(15
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where ¢, and ¢,, are the potentials satisfying the following

equations

. _ w
(1+iQ 1 V2, + k2 ¢n=0, kin=—
" (16)
w

(1+iQp H V2, +kEn=0,
Usn

Here, v n=vV(\y+2u,)/pn @and vgy=+un/p,. Resulting
t

stress components é e

Uzzn:_}\nkfnd’n—i_zﬂn(l"_iQ;l) )

Ksn=

X ( "0 + P + sn a_%)
02 9z5  (1+iQ.*t) 9zn
aen= pn(1+1Qq )
X( , o0 o P k& g)
9éndZn  9gn0z  (1+iQ, 1) dén )
(17)
The boundary conditions at,=0 are given by
—0fn(én)  én=ay
Tz { 0 £.=a, (18)

O2en=0

We apply Hankel transforms to this problem, which arep, (q)= cosa,q)anq—sin(a.q)

defined as

FHS(q) = f:F@n)fan(qfn)dgn
o , (19
F(én)=fo FHS(0)qJs(aé,)dq

whereJy(x) denotes the sth Bessel function of the first kind.

The application of Hankel transforms to E¢%6)—(18)
yields

dz”Ho kf
n 27 HO 2_ 2 n
— - ah=0, af=gf- ———
dz nen " (1+iQ, Y 2
dzl‘//Ho K2 ’ (20
—_m —Bﬁ&/?ozo B§:q2—$
1 . 71
dz? (1+iQ;h
A R m‘!IHo
= o a0 2
g “Ho : (21)
l]“ozaqbﬁoJr—(92(//r0+k2 gHo
zn (?Zn &Zn Sn%n
oo = =~ NakZ RO+ 2un(1+iQ, 1) )
PHO UG,
az2 02 (1+iQ. Y 9zn
o=~ mn0(1+iQ Y '
(9“H0 ﬁz‘Ho K2 R
w2200, w; + 0 gHo
9z, dzz  (1+iQ,H )
(22
T 2—0= 3PnA1n(0) — 3a3A ()
~H1 _ , (23
Uzrn|z=0_0

Tian, Ogi, and Hirao 8369
FIG. 2. Quasistatic model.
where
ang®
Pr(C0g@,0)a,q—sin(anq) + sin(ayq)asg?)
anq
(24

Solutions of Eq(20) that are finite az—« are obtained by

THO _ A a—apzn
¢n = Ae ] 25

I;},EO: Befﬁnzn

where coefficient®\ andB are functions ofy and are deter-
mined by the boundary conditions

A}_ 1 q’+ B2
Bl waln(@(1+iQ,hl 2an
X (3PpA1n(0) — 824 54()), (26)
with
Ta(@)= (0 + B2 = 40%anfn. (27)

Substituting Eq(25) into Eq.(21), the displacement compo-
nent("%(q,z,) at the surface,=0 is given as

2
ankSn

04%(q,0=
(0= @+io 2

X (5pnA1n(q) - 5anA2n(Q))-

Application of the inverse Hankel transform of zero order to
Eq. (28) yields

Uzn(€n,0)=8pnNqn(€n) — da,Nan(&p),

where

(28)

(29
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o ankgn Uzz(0,0)_Ur(R,W,¢):O (32)

Nln(gn)=f0 T (q)(HiQ_l)zAln(q)qu(qfn)dq Up(ay,0)—u (R, m—a,/R,¢)=0]"
ntn
- o ké " . From the above condition$p,, da,, p,, andda, are
n n .
N - A J d obtained as
2n(€n) 0 T o(Q)(14iQ )2 2n(A)aJo(qén)dq
(30)

0P1= T Cmo T Sm1dmo
. . 58,=ToCrmo+ Spd
Here,N andN are obtained numerically. 17 _m2¥mo T =m2* mo
ln(fn) 2n(§n) Y 5p2:TmSCm0+Sm3dmO ’ (33)
633= TmaCmo+ Smadmo

D. Contact boundary conditions for displacement where T —Tms and Syy — Sy appear in Appendix C.

We now combine the sphere’s vibration and solid’s mo-E: Résonant frequencies

tions through the dynamic contact boundary conditions for  Combination of Eqs(13), (14), and(33) leads to
displacements, which are given approximately according to
Hertzian-contact theoly

MX =0, (34
where
uZl(O!O) - ur( R,O,(,b) = O
Up(a1,0—u,(R,ay /R, $)=0]" (3Y) X=[Crn0 Aol

B Cma(R)+ TNy +TroNo+ TigNg+ TraNg - Da(R) +SiaNy +Sm2N2+Sm3N3+Sm4N4
Cms(R) Dms(R)

The vibration of the elastic sphere contacting two viscoelaswe compare this conventional model with the present dy-
tic solids is damped and we adopt the complex frequency tmamic model. According to Hertz theory, the spring stiffness
solve resonant frequencies of the elastic spiiere ist?

B=w(ltie), 35 Ko=36FRE}. 37)

wherea is the real part of the complex frequency asd1. Using the boundary condition at the sphere surface

Resonant frequencies of the elastic sphere are given by solv " (R,6,8)
ing Eq. (36)
KU (R, 8q, @) 5(cosfd— cosby)

— at 0020
detM)=0. (36) 27R?
For a givenm, there are an infinite number of modes denoted B K,u, (R, 8y, ¢) 8(cosf— cosby) '
by Sy, with a subscripi for the higher orders. - > R? at Gp=m
I1l. QUASISTATIC MODEL (38

The quasistatic model shown in Fig. 2 was often used iffhe resonant frequencies are obtained through
ultrasonic hardness tests and previous analysis in resonant-
ultrasound microscopy, where the contacts between the de(N)=0, (39)
sphere and solids were considered to be elastic springs. Hewnehere

(Rt KitKICmB®EMHY) - (Kt K)Dm(R)(2m+ 1)
N= 47R? 47R?
Cm5(R) DmS(R)
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0.04 Spheroidal mode S, in dynamic model . . 0.01620
- 7
0.03 ¥;=0.10 . / z 001615
I il .2 2 0.01610-
- | s e 1=040 Yy <
< 0.0 P X 0.01605-
S . g T
@ L 0.01600 |
S 001 o
0.01595 -
0.00 0.01590 T . . . . T 1
0 100 200 300 400 st &0 2000 4000 6000 8000 10000 12000 14000 16000
E, (GP3) pr (Kg/m')
(a) FIG. 4. Resonant-frequency shift of moSg, as a function of mass density
of the contacting material for the case of one-point contBgt=0.18 N,
00157 g pheroidal mode S, in quasi-static model E=196.2GPa,r=0.29, R=2.4mm, p=7942.6 ky/, E,=210GPa,r,
=0.29,Q,'=0.02.
0.010- . . . .
< specimen, which agrees with previous measurerériad
é the measurement shown later. One may attribute the larger
= frequency shifts in the dynamic model to the influence of the
Q 0.0054 mass density and internal friction of the solid, because they
= do not appear in the quasistatic model. We calculated varia-
tions in the resonant frequency as a function of the mass
density and internal friction in Figs. 4 and 5, respectively.
0.000 L ——. They can affect the resonant frequency, but their effects are
0 100 200 300 400 500 600 negligible. Thus, the mass density and internal friction are
E, (GPa) not principal factors for the larger frequency shifts in the
(b) dynamic model. We attribute this to the deformation distri-
bution at the interface: the quasistatic model assumes a pla-
FIG. 3. Resonant-frequency shift of modg, caused by the one-point nar deformation. However, the actual deformation at the in-

contact as a function of Young's modulus of the contacting material withterface caused by vibration is more complicated, which
various Poisson’s ratiof, denotes the resonant frequency of sphermdalincludes a nonplanar deformation and shows larger resis-

modeS, ; for the elastic sphere without any conta@). Dynamic model(b)
Quasistatic model.Fy=0.18 N, E=196.2 GPa, »=0.29, R=2.4 mm,

tance to deformation, giving rise to a larger contact stiffness.

p=7942.6 kg/r, v,=0.29, p,= 7800 kg/n, Q;1=0.02. The dynamic model includes the nonplanar deformation at

the interface.

IV. RESULTS AND DISCUSSION: THE CASE OF

ONE-POINT CONTACT 0.01610 -

with N;= ;=0 on modeS, ;, which is the most important

mode in an actual microscopic measurement. The spheroide _
modes withm=0 are known as radial modes because theiry® 0-01606-
displacements are along the radial direction. Figufesand <

First, we consider the influence of the one-point contact 0.01608 4

N’

(b) show the resonant-frequency shift caused by the contac= ¢.01604-
as a function of Young's modulus and Poisson’s ratio of the$ e
contacting material. The resonant frequency increases witt

the increase of Young’s modulus and Poisson’s ratio, reflect- 001602

ing the increase of the effective modulE$. Note that the

dynamic mode[Fig. 3(@)] always provides a frequency shift 0.01600 +——F—————— T 71—
larger than that of the quasistatic mod&ig. 3b)]. Their 45 40 35 300 25 200 -5
difference increases with the Young modulus; it reaches & log;o(Q,")

factor of 4 atE,=550 GPa. Furthermore, Poisson’s ratio has _ _ )
much more influence on the resonant frequency in the d FIG. 5. Resonant-frequency shift of modg; as a function of internal

X ; s . q y yfriction of the contacting material for the case of one-point contigt.
namic model thar_l in the quaS|st_gt|_c model. Thus, the dy=g 18N, E=196.2 GPa, »=0.29, R=2.4mm, p=7942.6 kg/m, E,
namic model predicts higher sensitivity to the modulus of the=210 GPa,v,=0.29, p,= 7800 kg/ni.
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Austenitic-stainless-  [[[ERF v wrws ] Brass
steel sphere ;

P e Excitation signal
Solenoid Superheterodyne FIG. 6. The measurement setup of an
coil > spectrometer electromagnetic—acoustic microscopy.
) Received signal
Specimen
V. EXPERIMENTS the vibrational signals by the reversed-Lorentz-force mecha-

In order to verify our calculation quantitatively, we used glstm.tThe trece;)\:e_d stlﬁnals arlt_at fzd o su;t)erhetirOQynle pfhase
the electromagnetic—acoustic transduction methtm mea- etectors 1o obtain Ihe amplitude spectrum. A singie ire-
guency scan can provide many resonant peaks.

sure the resonant frequencies of an elastic sphere. The me ) oo
Figure 7 shows the measured free-vibration resonant

surement setup is shown in Fig. 6; it is essentially the same )
as that proposed by Johnsoet all®2 An austenitic- spectrum of the sphere without any contact. Only three sphe-

stainless-steel sphere with a radius of 2.4 mm and a mad@idal modes maked &, ,, Sy, andS, , appear in the reso- -
density of 7942.6 kg/fhwas inserted into a solenoid coil nant spectrum. The displacements of spheroidal modes with

located between two permanent-magnet blocks. Young'$'=2 are not only along the radial direction but also the

modulus and Poisson’s ratio of the sphere were determiné@ngential direction.

to be E=196.2 GPa and’=0.292 by the electromagnetic— Numerical calculation was done to predict the frequency

acoustic—resonand€MAR) method?1 23 A polycrystalline shift. The parameters used in the calculation are shown in

brass of 0.018 kg was located on the top surface of thdable I. Figure 8 compares the calculation and the measure-

sphere. The specimen was located below the sphere. Becau®€nts for the spheroidal mod& ;. We used acrylic resin,

the brass cover and the specimen were much larger than tf@01) monocrystal silicon, polycrystalline boron, and poly-

contact areas, they can be considered as approximate serfifystalline tungsten carbide as solidspecimei The mea-

infinite solids. The solenoidal coil driven with high-power rf surements appear more consistent with the dynamic model

bursts causes eddy currents that are localized near the surfdt@n the previous quasistatic model, which predicts much

of the sphere. Because of the interaction of eddy currentsmaller frequency shift. Their difference increases with

with the static magnetic field from the permanent magnetsyoung's modulus of the specimen.

Lorentz forces oscillating at the same frequency as the driv-  Figure 9 shows the calculated resonant-frequency shifts

ing bursts are generated along the radial direction to excitéor spheroidal modes, ; and S, , as functions of Young’s

the spheroidal vibration of the sphere. The same coil receivesiodulus of solid 2. When the sphere contacts the specimens,
the spectrum splits and these modes are sometimes absent
from the resonant spectrum. We attribute it to the high damp-

0 7_' ing of the polycrystalline brass. Hence, we failed to measure
l S their frequency shift by the contact. The comparison between
0.6 0.1 dynamic and quasistatic models for them again indicates the
—~ ] Sa larger frequency shift in the dynamic model. Note that the
g 0’5'_ resonant frequency of modsy ; is much more sensitive to
S 0.4 the specimen’s Young's modulus th&a, and S, ; modes.
S ]
3
El 0.3 S22
£ 02
< TABLE I. Material properties used in the calculation.
0.1
J Materials E (GPa) p (Kg/m®) v
0.0 M 1 M T M T v 1 M 1 v 1 . .
Acrylic resin 2.9 1900 0.41
0.6 0.7 0.8 0.9 1.0 11 (001) monocrystal silicon 110 2300 0.24
Frequency (MHz) Polycrystalline brass 130 8300 0.35
Polycrystalline boron 400 2500 0.25
FIG. 7. Free-vibration resonant spectrum of an austenitic-stainless ste@olycrystalline tungsten carbide 550 15500 0.21

measured by an electromagnetic—acoustic transducer.
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Spheroidal mode S,

8 Measurements
Dynamic model
= = Quasi-static model

—~ 0.05
N
&o/ 0.04 JAcrylic resin Tungsten carbide
=< Boron (WC)
Q 0.03
S

0024/ ~ -

-
0.01/,
0000 1 T T T T T T 1
0 100 200 300 400 500 600 700
E, (GPa)

FIG. 8. Resonant-frequency shift of modg, for the case of two-point
contact.

VI. CONCLUSION

Based on the assumption of small vibrational amplitude,
an approximate dynamic contact model was presented to in-
vestigate the high-frequency free vibration of a uniform elas-

0.7

] Spheroidal mode S,
0.6 Dynamic model
1 = = Quasi-static model
0.5
- ]
Q\C’/ 0.4-.
S 03-
S |
S 02 -———
0.1
0.0 1 L) 1 L) Ll T T 1
0 100 200 300 400 500 600 700
E,(GPa)
(@)
0.0020 .
Spheroidal mode S, ,
Dynamic model
0.0015{ = = Quasi-static model
e
S
> 0.0010-
2
g
0.0005
0-0000 1 T T v 1 v T v T M 1 v 1 M 1
0 100 200 300 400 500 600 700
E, (GPa)
(b)

FIG. 9. Resonant-frequency shifts of modgs, and S, ; for the case of

two-point contact.
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tic sphere contacting two semi-infinite viscoelastic solids.
Numerical results of the dynamic model reveal that the reso-
nant frequencies are mainly affected by Young’'s modulus
and Poisson’s ratio of contacting specimens, not by the mass
density and internal friction of the contacting materials. The
frequency shifts predicted by the present dynamic model
agreed with those measured by electromagnetic—acoustic
resonance folS; ; mode. However, the quasistatic model,
which is conventionally used, predicted much smaller fre-
quency shifts.
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APPENDIX A: FORMULAS IN SPHERICAL
COORDINATES (r, 8, ¢) (Ref. 13)

Displacement potential relationships

dp 1|P(rx) _,
ur_(?l'+ks|: (9|’2 *TV)( ,
lde 1 F(rd) 1 F(ry)
Y=Y 99 vsind ap | ke dbar
1 do 19(ré) 1 (ry)

Y=Y singag r 960 ' kersind ddor ’
where
V2=1i?[a(r2alar)lar ]+ [1lr? sin( 6)]
X[ d(sinfal 96)136]+[ 1Ir? sirf0]9%1 9 2.

¢ and y are related to spheroidal vibration of elastic sphere.
Torsional vibration of elastic sphere is denotedépwhich is
not considered and set to be zero in this paper.

Stress in terms of displacement potentials

1 a(rf)
rsing do

2ul e 1ap] u
Oro~ T ol

v lorae r a0l r

r
&( 1 a(rg)”“t

d
a0

J*(rx)
ar?

“"or\vsing ag kst

—rvy

1&2(r)()+ d (1 d%(ry)
r a6ar " arl\t aeor

1 & 1 Je¢
r sind 0!'0"(]5 rzsing (9(}5

(1 F(ré)
A araa)

2 9(ré)
2 36
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ks

rsingd dé| g2

1 9 (2(92(0()

1 d(ry)
r2sing d¢ar
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APPENDIX B: EXPRESSIONS FOR C,,1(r)— Cpg(r) AND D,y (r)—Dye(r)

djm(kir)
Cona(1) =~
sz(r):Jm(:(Lr),
Cma(r)=0,

_ Pjkr) [ dim(ker) (k) (m?+m)
Cral1) =| (\+20) =5 +( o ,

din(kir)  jm(kir)

Cre()=201| =g )
Cm6(r):0,

m(m+1)
Dm(r)= ij(ksr),

d(rj miker))
DmZ(r):—lJ(SrdrS

Dm3(r):0.

Dma(r)=2um(m+1)

2djm(ksf)  jm(Ksr)
kgrdr ker? |

dzj m(kSr) jm(ksr)( “2+m_2)
D, s(r)= + ,
ms(1) = ksdr? kgr?

Dm6(r)=0.

APPENDIX C: EXPRESSIONS FOR S,,,;—S,,4 AND T,,1— T4

_ Nay(@3)Dina(R) ~ N2y(0)D s (R) Pr(cog a; /R))
™ N11(0)Nag(as) —N2y(0)Nyy(ay)
_ N11(81)Dma(R) ~ N11(0) Dy (R)Pry(cog ;1 /R))
? N11(0)Nzg(as) —N23(0)Nyy(ay)
_ Nf(@2)Dna (R)(— 1)~ N 0) Dy (R) Py 7— cOg @, /R))
° N12(0)Nza(az) = N2x(0)N1x(ay) ’
_ Nif(@2) D (R)(— 1) N1 A 0) Dy (R) Py 7 cO 3, /R))
™ N12(0)N2a(az) = N2y (0)Nyx(az) ’
_ Nai(@1) Crua(R) ~Nay(0)Cra(R)Pry(cod 21 /R))
m N11(0)Nzg(as) —N23(0)Nyy(ay)
_ N11(@1)Cna(R) ~ N11(0)Ca(R)Pry(cog a1 /R))
m N11(0)Nag(a1) = N21(0)Nyy(ay)
_ N2x(@2)Cra(R)(—1)™— N3y 0) Coy(R) Py 7 — co @, /R))

m3 N12(0)Noy(az) —Noy(0)Ny(ay)
B N1x(82)Crmi(R)(—1)™=N35(0)Ciru(R) P?n( m—coga,/R))

m N12(0)Nox(@z) —Noy(0)Ny(ay)
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