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Vibration analysis of an elastic-sphere oscillator contacting semi-infinite
viscoelastic solids in resonant ultrasound microscopy

Jiayong Tian,a) Hirotsugu Ogi, and Masahiko Hirao
Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka,
Osaka 560-8531, Japan

~Received 1 December 2003; accepted 15 March 2004!

Resonant-ultrasound microscopy evaluates local Young’s modulus of materials by the
resonant-frequency shift of a vibrating oscillator. This study presents a dynamic-contact model to
analyze free vibrations of an isotropic elastic-sphere oscillator contacting two semi-infinite
viscoelastic solids, which sandwich the sphere. Assuming frictionless contacts and smaller
vibrational amplitude, dynamic-contact pressure distributions are obtained with the linearized
maximum contact pressure and contact radius. Combining the sphere oscillation and the solid
motions through contact-displacement boundary conditions, resonant frequencies of the elastic
sphere are obtained. Unlike the quasistatic model, this dynamic model agrees well with the
measurements. ©2004 American Institute of Physics.@DOI: 10.1063/1.1737472#

I. INTRODUCTION

Evaluation of elastic properties in a micro- and nano-
scale region of a solid is of great importance for optimization
of applications including surface-wave acoustic devices and
microelectromechanical systems~MEMS!. It can be
achieved by using the resonant-frequency shift of a vibrating
oscillator contacting the solid. Typical measurement uses an
atomic-force-microscope cantilever.1 One end of the cantile-
ver is gripped by a holder and the other end contacts the
specimen surface through a small tip. A piezoelectric trans-
ducer attached to the cantilever causes a flexural vibration,
while maintaining contact with the specimen. Because this
approach involves many components contributing to the
resonance, and the resonant frequency is highly affected by
the ambiguous gripping condition, quantitative evaluation of
a material’s elasticity has not been straightforward. We have
recently developed an alternate resonant-ultrasound-
microscopy~RUM! method using an isolated piezoelectric
oscillator2–4 which aims to overcome the long-running prob-
lems associated with contact acoustic coupling. Our method
does not require any acoustical contacts except for the point
contact with the specimen, which allows us to quantitatively
evaluate the local Young’s modulus.

In such a resonant-ultrasound-microscopy measurement,
the influence of material’s elastic properties on the oscilla-
tor’s vibration remains the central issue. Previous studies5–9

assumed a flat contact interface between the oscillator and
the specimen, replaced it with a linear spring obtained by
Hertzian contact theory, and calculated the dependence of the
resonant-frequency shift on the elastic constants of the ma-
terial. ~We call this model the quasistatic Hertzian-contact
model.! Thus, this assumption neglects the influence of non-
uniform vibrational deformation at the contacting interface,

the mass density of the specimen, and vibrational frequency
of the system. This is unphysical. Indeed, our previous
study2–4 showed that the quasistatic Hertzian-contact model
failed to explain the frequency shift of an oscillator caused
by contacts: the resonant-frequency shift predicted by the
quasistatic model is much smaller than the observation. The
same occurred in ultrasonic indentation measurements.5 To
date, no study has analyzed an elastic-oscillator vibration
with contacts with viscoelastic materials considering ady-
namicHertzian contact.

There are three principal purposes in this study:~i!
present an dynamic Hertzian-contact model to predict the
free-vibration resonant frequencies of an isotropic elastic-
sphere oscillator contacting semi-infinite viscoelastic solids;
~ii ! investigate the effect of the contacting material’s moduli,
mass density, and viscosity on the resonant frequencies; and
~iii ! confirm the developed model with measurements using
an electromagnetic–acoustic–transduction method,10 where
the electromagnetic–acoustic coupling generates and detects
the vibration of the sphere without any contact.

Our analysis proceeds in four steps. First, assuming
small vibrational amplitude, the approximate dynamic-
contact-pressure distributions are presented~Sec. II A!. Sec-
ond, vibration of an elastic sphere subjected to dynamic con-
tact pressure is analyzed in spherical coordinates~Sec. II B!.
Third, the motion of semi-infinite viscoelastic solids sub-
jected to dynamic contact pressure at the contacting surface
is analyzed using Hankel transforms in cylindrical coordi-
nates ~Sec. II C!. Fourth, the resonant frequencies of the
overall system are derived by combining two solutions at the
contact area through the dynamic-contact boundary condi-
tions for displacements~Secs. II D and E!. The present analy-
sis showed good agreement with the measurements of the
resonant-frequency shifts, indicating the necessity of consid-
ering the dynamic response near the contacting area in the
resonant-ultrasound microscopy.a!Electronic mail: jItian@me.es.osaka-u.ac.jp
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II. RESONANT FREQUENCY OF AN ELASTIC SPHERE
CONTACTING SEMI-INFINITE VISCOELASTIC
SOLIDS

Various types of oscillators such as spheres, cantilevers,
and rectangular parallelepipeds can be used in resonant-
ultrasound microscopy. Because the principal aim of this
study is to investigate mathematically the influence of the
dynamic contacting response on the resonant frequency of an
oscillator, we consider the simplest oscillator, a sphere.

Consider an isotropic elastic sphere with radiusR,
Young’s modulusE, and Poisson’s ration in frictionless con-
tact with two semi-infinite viscoelastic solids, as shown in
Fig. 1. ~This model includes the case of one-point contact
with l15m150.) The stress–strain relationships in the vis-
coelastic solids take the form11

s i j 5ln~11 iQn
21!ed i j 1mn~11 iQn

21!e i j . ~1!

Here, the subscriptn(51 or 2) indicates the solid~solid 1 or
solid 2!. ln andmn are Lame´ constants of the solids.s i j and
e i j are stress and strain of the solids, respectively;e5e11

1e221e33; d i j is Kronecker’s delta symbol.Qn
21 denotes

internal friction of the solids.~There are usually two inde-
pendent internal friction associated withl and m, respec-
tively, in an isotropic material, but we assume the same value
for them to simplify the problem. This assumption affects the
resulting resonant frequencies, but little, as shown later.!
Also, we assume that the vibrational amplitude of the elastic
sphere is much smaller than the indentation caused by the
static biasing force.

A. Dynamic contact stress distribution at the
sphere–solid interfaces

A static normal forceF pressing the sphere and two sol-
ids together results in circular contact areas, whose radii are
expressed as12

an5A3 3FR

4En*
. ~2!

Here,En* denotes the effective Young’s modulus of the con-
tacting sphere and solids, satisfying 1/En* 5@(12n2)/E#
1@(12nn

2)/En#. En andnn are Young’s modulus and Pois-
son’s ratio of the solid 1 or 2, respectively.

The normal contact pressure distributionpn(jn), ex-
pressed in the local cylindrical coordinate system (jn ,zn)
shown in Fig. 1, is given by12

pn~jn!5pnA12jn
2/an

2, ~3!

wherepn53F/2pan
2 denotes the maximum static pressure.

The harmonic vibration of the elastic sphere will change
the contact-pressure distribution and the contact radius. We
assume that the general form of Eq.~3! still holds for such a
time-dependent problem

pn~jn ,t !5pn~ t !A12jn
2/an~ t !2, ~4!

wherepn(t) and an(t) denote the maximum dynamic pres-
sure and dynamic contact radius, respectively; they depend
on time t. They will be implicitly determined later by the
boundary conditions for deformation~see Sec. II D!. We re-
write Eq. ~4! as

pn~jn ,t !5~pn1dpn~ t !!A12jn
2/~an1dan~ t !!2, ~5!

wheredpn(t) and dan(t) are unknown perturbations to the
static valuespn andan , respectively.dpn(t) anddan(t) can
be approximated to be harmonic oscillations with the angular
frequencyv

dpn~ t !'dpneivt

dan~ t !'daneivtJ , ~6!

wheredpn and dan are unknown constants and we assume
udpnu!pn and udanu!an . In Eq. ~6!, we neglect the influ-
ence of internal friction of the solids for two reasons:~i! The
contact area and vibrational amplitude of the sphere are
much smaller than the wavelength, and the effect of internal
friction on the interface spring constants will be small.~ii !
Incorporation of internal friction in Eq.~6! results in a laby-
rinth of relationships among the related properties and makes
it impossible to solve the system mathematically. We con-
sider the effect of internal friciton in vibrational analysis in
the solids in Sec. B and will show that it little affects the
resonance frequencies of the system.

Substitution of Eq.~6! into Eq. ~5! leads to

pn~jn ,t !'pnA12jn
2/an

21d f n~jn!eivt, ~7!

by retaining the first-order perturbations. The second term of
Eq. ~7! denotes the harmonic contact-pressure distribution
due to the sphere vibration given by

d f n~jn!5pn

jn
2dan

an
3A12jn

2/an
2

1dpnA12jn
2/an

2. ~8!

Thus, the nonlinear-contact problem with the dynamic con-
tact radius is reduced to a linear problem. Equation~7! indi-
cates that the system can be expressed by a linear superpo-
sition of a static problem related to the Hertzian contact and
a dynamic problem with harmonic contact pressure
d f n(jn)eivt at the interfaces. We only consider the dynamic
response in the following analysis.

FIG. 1. A dynamic model of an elastic sphere contacting two semi-infinite
viscoelastic solids.
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B. Elastic sphere subjected to harmonic contact
pressure

We next consider the dynamic response of the elastic
sphere subjected to harmonic contact pressure,d f n(jn)eivt.
The factoreivt will be omitted for brevity. Free vibration of
an isotropic elastic sphere without any contacts falls into two
vibration groups, torsional modes and spheroidal modes.13

Torsional modes do not have any radial displacements, but
spheroidal modes do. We consider only the spheroidal modes
because, in resonant-ultrasound microscopy, they show much
larger sensitivity to the elastic constants of solids than tor-
sional modes, where a biasing force is vertically applied.

Equations of motion for the harmonic spheroidal vibra-
tion in the spherical coordinates system (r ,u,f) shown in
Fig. 1 are expressed as13

¹2w1kL
2w50, kL5

v

vL

¹2x1kS
2x50, kS5

v

vS

J , ~9!

where w and x denote the displacement potentials.vL

5A(l12m)/r andvS5Am/r are the longitudial and shear-
wave velocities of the elastic sphere, respectively.l, m, andr
are Lame´ constants and mass density of the sphere.

The general solutions of Eq.~9! are expressed as13

w5cmlj m~kLr !Pm
l ~cosu!eil f

x5dmlj m~kSr !Pm
l ~cosu!eil fJ , ~10!

wherecml anddml are unknown constants.j m andPm
l denote

the spherical Bessel function and the associated Legendre
functions with the colatitudinal mode numberm and the azi-
muthal mode numberl, respectively. We only consider the
case thatl 50 for two reasons:~i! As shown later, the
electromagnetic–acoustic–resonance microscopy used in the
present study causes principally the vibration modes ofl
50, and~ii ! The contact pressure is axisymmetric about the
z axis. Thus, the displacement potentials are independent of
f.

The displacements and stresses are obtained from the
equations forw andx that are presented in Appendix A

ur~r ,u,f!5~cm0Cm1~r !1dm0Dm1~r !!Pm
0 ~cosu!

uu~r ,u,f!5~cm0Cm2~r !1dm0Dm2~r !!
dPm

0 ~cosu!

du

uf~r ,u,f!5~cm0Cm3~r !1dm0Dm3~r !!
Pm

0 ~cosu!

sinu
6 ,

~11!

s rr ~r ,u,f!5~cm0Cm4~r !1dm0Dm4~r !!Pm
0 ~cosu!

s ru~r ,u,f!5~cm0Cm5~r !1dm0Dm5~r !!
dPm

0 ~cosu!

du

s rf~r ,u,f!5~cm0Cm6~r !1dm0Dm6~r !!
Pm

0 ~cosu!

r 2 sinu
6 ,

~12!

whereCm1(r )2Cm6(r ) andDm1(r )2Dm6(r ) are shown in
Appendix B. @Note that displacements and stresses in Eqs.

~11! and~12! are time-dependent quantities.# Boundary con-
ditions at the surfacer 5R are represented by

s rr ~R,u,f!55
2d f 1~j1! 0<u<

a1

R

2d f 2~j2! p2
a2

R
<u<p

0
a1

R
<u<p2

a2

R

s ru~R,u,f!50 ~13!

s rf~R,u,f!50.

We expand the stress at the surface of the sphere using
the spherical harmonics functions14

s rr ~R,u,f!52 (
m50

`

(
l 52m

m

BmlPm
l ~cosu!eil f, ~14a!

where

Bml5
2l 11

4p E
0

pE
0

2p

s rr ~R,u,f!Pm
l ~cosu!sinue2 i l fdf du.

~14b!

Combination of Eqs.~8!, ~13!, and~14b! leads to

Bml5H dp1N11da1N21dp2N31da2N4 , l 50

0, lÞ0,
~14c!

N15
~2m11!a1

2

6R2
, ~14d!

N25
~2m11!p1

2a1
3 E

0

a1 /R R2u2

A12R2u2/a1
2

Pm
0 ~cosu!sinudu,

~14e!

N35
~21!m~2m11!a2

2

6R2
, ~14f!

N45
~2m11!p2

2a2
3 E

p2~a2 /R!

p R2~p2u!2

A12R2~p2u!2/a2
2

3Pm
0 ~cosu!sinu du. ~14g!

C. Dynamic response of semi-infinite viscoelastic
solids subjected to harmonic contact pressure

Here, we study the dynamic response in the visoelastic
solids subjected to the harmonic contact pressure,d f n(jn).
Because of the circular contact area and axisymmetric con-
tact pressure, the dynamic response is solved in cylindrical
coordinates (jn ,zn) shown in Fig. 1. Nonzero displacement
components ujn(jn ,zn) and uzn(jn ,zn) are expressed
by11,15–18

ujn5
]fn

]jn
1

]2cn

]jn]zn

uzn5
]fn

]zn
2

]2cn

]jn
2

2
]cn

jn]jn
6 , ~15!
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wherefn andcn are the potentials satisfying the following
equations:11

~11 iQn
21!¹2fn1kLn

2 fn50, kLn5
v

vLn

~11 iQn
21!¹2cn1kSn

2 cn50, kSn5
v

vSn

J . ~16!

Here, vLn5A(ln12mn)/rn and vSn5Amn /rn. Resulting
stress components are11

szzn52lnkLn
2 fn12mn~11 iQn

21!

3S ]2fn

]zn
2

1
]3cn

]zn
3

1
kSn

2

~11 iQn
21!

]cn

]zn
D

szjn5mn~11 iQn
21!

3S 2
]2fn

]jn]zn
12

]3cn

]jn]zn
2

1
kSn

2

~11 iQn
21!

]cn

]jn
D 6 .

~17!

The boundary conditions atzn50 are given by

szzn5H 2d f n~jn! jn<an

0 jn>an

szjn50
J . ~18!

We apply Hankel transforms to this problem, which are
defined as

F̂Hs~q!5E
0

`

F~jn!jnJs~qjn!djn

F~jn!5E
0

`

F̂Hs~q!qJs~qjn!dq
J , ~19!

whereJs(x) denotes the sth Bessel function of the first kind.
The application of Hankel transforms to Eqs.~16!–~18!

yields

d2f̂n
H0

dz2
2an

2f̂n
H050, an

25q22
kLn

2

~11 iQn
21!

d2ĉn
H0

dz2
2bn

2ĉn
H050, bn

25q22
kSn

2

~11 iQn
21!

6 , ~20!

ûrn
H152qS f̂n

H01
]ĉn

H0

]zn
D

ûzn
H05

]f̂n
H0

]zn
1

]2ĉn
H0

]zn
1kSn

2 ĉn
H0
J , ~21!

ŝzzn
H0 52lnkLn

2 f̂n
H012mn~11 iQn

21!

3S ]2f̂n
H0

]zn
2

1
]3ĉn

H0

]zn
3

1
kSn

2

~11 iQn
21!

]ĉn
H0

]zn
D

ŝzrn
H1 52mnq~11 iQn

21!

3S 2
]f̂n

H0

]zn
12

]2ĉn
H0

]zn
2

1
kSn

2

~11 iQn
21!

ĉn
H0D 6 ,

~22!

ŝzzn
H0 uz505dpnD1n~q!2danD2n~q!

ŝzrn
H1 uz5050 J , ~23!

where

D1n~q!5
cos~anq!anq2sin~anq!

anq3

D2n~q!5
pn~cos~anq!anq2sin~anq!1sin~anq!an

2q2!

an
2q3

6 .

~24!

Solutions of Eq.~20! that are finite atz→` are obtained by

f̂n
H05Ae2anzn

ĉn
H05Be2bnznJ , ~25!

where coefficientsA andB are functions ofq and are deter-
mined by the boundary conditions

FABG5 1

mnGn~q!~11 iQn
21!

Fq21bn
2

2an
G

3~dpnD1n~q!2danD2n~q!!, ~26!

with

Gn~q!5~q21bn
2!224q2anbn . ~27!

Substituting Eq.~25! into Eq.~21!, the displacement compo-
nent ûzn

H0(q,zn) at the surfacezn50 is given as

ûzn
H0~q,0!5

ankSn
2

mnGn~q!~11 iQn
21!2

3~dpnD1n~q!2danD2n~q!!. ~28!

Application of the inverse Hankel transform of zero order to
Eq. ~28! yields

uzn~jn,0!5dpnN1n~jn!2danN2n~jn!, ~29!

where

FIG. 2. Quasistatic model.

8369J. Appl. Phys., Vol. 95, No. 12, 15 June 2004 Tian, Ogi, and Hirao



N1n~jn!5E
0

` ankSn
2

mnGn~q!~11 iQn
21!2

D1n~q!qJ0~qjn!dq

N2n~jn!5E
0

` ankSn
2

mnGn~q!~11 iQn
21!2

D2n~q!qJ0~qjn!dq6 .

~30!

Here,N1n(jn) andN2n(jn) are obtained numerically.

D. Contact boundary conditions for displacement

We now combine the sphere’s vibration and solid’s mo-
tions through the dynamic contact boundary conditions for
displacements, which are given approximately according to
Hertzian-contact theory12

uz1~0,0!2ur~R,0,f!50
uz1~a1,0!2ur~R,a1 /R,f!50J , ~31!

uz2~0,0!2ur~R,p,f!50
uz2~a2,0!2ur~R,p2a2 /R,f!50J . ~32!

From the above conditions,dp1 , da1 , dp2 , andda2 are
obtained as

dp15Tm1cm01Sm1dm0

da15Tm2cm01Sm2dm0

dp25Tm3cm01Sm3dm0

da25Tm4cm01Sm4dm0

J , ~33!

whereTm12Tm4 andSm12Sm4 appear in Appendix C.

E. Resonant frequencies

Combination of Eqs.~13!, ~14!, and~33! leads to

MX 50, ~34!

where

X5@cm0 ,dm0#,

M5FCm4~R!1Tm1N11Tm2N21Tm3N31Tm4N4 Dm4~R!1Sm1N11Sm2N21Sm3N31Sm4N4

Cm5~R! Dm5~R!
G .

The vibration of the elastic sphere contacting two viscoelas-
tic solids is damped and we adopt the complex frequency to
solve resonant frequencies of the elastic sphere19

ṽ5v~11 i e!, ~35!

wherev is the real part of the complex frequency ande!1.
Resonant frequencies of the elastic sphere are given by solv-
ing Eq. ~36!

det~M !50. ~36!

For a givenm, there are an infinite number of modes denoted
by Sm,i with a subscripti for the higher orders.

III. QUASISTATIC MODEL

The quasistatic model shown in Fig. 2 was often used in
ultrasonic hardness tests and previous analysis in resonant-
ultrasound microscopy, where the contacts between the
sphere and solids were considered to be elastic springs. Here

we compare this conventional model with the present dy-
namic model. According to Hertz theory, the spring stiffness
is12

Kn5A3 6FREn*
2. ~37!

Using the boundary condition at the sphere surface

s rr ~R,u,f!

55 2
K1ur~R,u0 ,f!d~cosu2cosu0!

2pR2
at u050

2
K2ur~R,u0 ,f!d~cosu2cosu0!

2pR2
at u05p

,

~38!

the resonant frequencies are obtained through

det~N!50, ~39!

where

N5F Cm4~R!1
~K11K2!Cm1~R!~2m11!

4pR2
Dm4~R!1

~K11K2!Dm1~R!~2m11!

4pR2

Cm5~R! Dm5~R!
G .
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IV. RESULTS AND DISCUSSION: THE CASE OF
ONE-POINT CONTACT

First, we consider the influence of the one-point contact
with l15m150 on modeS0,1, which is the most important
mode in an actual microscopic measurement. The spheroidal
modes withm50 are known as radial modes because their
displacements are along the radial direction. Figures 3~a! and
~b! show the resonant-frequency shift caused by the contact
as a function of Young’s modulus and Poisson’s ratio of the
contacting material. The resonant frequency increases with
the increase of Young’s modulus and Poisson’s ratio, reflect-
ing the increase of the effective modulusE* . Note that the
dynamic model@Fig. 3~a!# always provides a frequency shift
larger than that of the quasistatic model@Fig. 3~b!#. Their
difference increases with the Young modulus; it reaches a
factor of 4 atE25550 GPa. Furthermore, Poisson’s ratio has
much more influence on the resonant frequency in the dy-
namic model than in the quasistatic model. Thus, the dy-
namic model predicts higher sensitivity to the modulus of the

specimen, which agrees with previous measurements3,4 and
the measurement shown later. One may attribute the larger
frequency shifts in the dynamic model to the influence of the
mass density and internal friction of the solid, because they
do not appear in the quasistatic model. We calculated varia-
tions in the resonant frequency as a function of the mass
density and internal friction in Figs. 4 and 5, respectively.
They can affect the resonant frequency, but their effects are
negligible. Thus, the mass density and internal friction are
not principal factors for the larger frequency shifts in the
dynamic model. We attribute this to the deformation distri-
bution at the interface: the quasistatic model assumes a pla-
nar deformation. However, the actual deformation at the in-
terface caused by vibration is more complicated, which
includes a nonplanar deformation and shows larger resis-
tance to deformation, giving rise to a larger contact stiffness.
The dynamic model includes the nonplanar deformation at
the interface.

FIG. 3. Resonant-frequency shift of modeS0,1 caused by the one-point
contact as a function of Young’s modulus of the contacting material with
various Poisson’s ratio.f 0 denotes the resonant frequency of spheroidal
modeS0,1 for the elastic sphere without any contact.~a! Dynamic model.~b!
Quasistatic model.F050.18 N, E5196.2 GPa, n50.29, R52.4 mm,
r57942.6 kg/m3, n250.29,r257800 kg/m3, Q2

2150.02.

FIG. 4. Resonant-frequency shift of modeS0,1 as a function of mass density
of the contacting material for the case of one-point contact.F050.18 N,
E5196.2 GPa,n50.29, R52.4 mm, ṙ57942.6 kg/m3, E25210 GPa,n2

50.29,Q2
2150.02.

FIG. 5. Resonant-frequency shift of modeS0,1 as a function of internal
friction of the contacting material for the case of one-point contact.F0

50.18 N, E5196.2 GPa, n50.29, R52.4 mm, r57942.6 kg/m3, E2

5210 GPa,n250.29,r257800 kg/m3.
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V. EXPERIMENTS

In order to verify our calculation quantitatively, we used
the electromagnetic–acoustic transduction method10 to mea-
sure the resonant frequencies of an elastic sphere. The mea-
surement setup is shown in Fig. 6; it is essentially the same
as that proposed by Johnsonet al.10,20 An austenitic-
stainless-steel sphere with a radius of 2.4 mm and a mass
density of 7942.6 kg/m3 was inserted into a solenoid coil
located between two permanent-magnet blocks. Young’s
modulus and Poisson’s ratio of the sphere were determined
to be E5196.2 GPa andn50.292 by the electromagnetic–
acoustic–resonance~EMAR! method.21–23 A polycrystalline
brass of 0.018 kg was located on the top surface of the
sphere. The specimen was located below the sphere. Because
the brass cover and the specimen were much larger than the
contact areas, they can be considered as approximate semi-
infinite solids. The solenoidal coil driven with high-power rf
bursts causes eddy currents that are localized near the surface
of the sphere. Because of the interaction of eddy currents
with the static magnetic field from the permanent magnets,
Lorentz forces oscillating at the same frequency as the driv-
ing bursts are generated along the radial direction to excite
the spheroidal vibration of the sphere. The same coil receives

the vibrational signals by the reversed-Lorentz-force mecha-
nism. The received signals are fed to superheterodyne phase
detectors to obtain the amplitude spectrum. A single fre-
quency scan can provide many resonant peaks.

Figure 7 shows the measured free-vibration resonant
spectrum of the sphere without any contact. Only three sphe-
roidal modes maked asS2,1, S0,1 andS2,2 appear in the reso-
nant spectrum. The displacements of spheroidal modes with
m52 are not only along the radial direction but also the
tangential direction.

Numerical calculation was done to predict the frequency
shift. The parameters used in the calculation are shown in
Table I. Figure 8 compares the calculation and the measure-
ments for the spheroidal modeS0,1. We used acrylic resin,
~001! monocrystal silicon, polycrystalline boron, and poly-
crystalline tungsten carbide as solid 2~specimen!. The mea-
surements appear more consistent with the dynamic model
than the previous quasistatic model, which predicts much
smaller frequency shift. Their difference increases with
Young’s modulus of the specimen.

Figure 9 shows the calculated resonant-frequency shifts
for spheroidal modeS2,1 and S2,2 as functions of Young’s
modulus of solid 2. When the sphere contacts the specimens,
the spectrum splits and these modes are sometimes absent
from the resonant spectrum. We attribute it to the high damp-
ing of the polycrystalline brass. Hence, we failed to measure
their frequency shift by the contact. The comparison between
dynamic and quasistatic models for them again indicates the
larger frequency shift in the dynamic model. Note that the
resonant frequency of modeS2,1 is much more sensitive to
the specimen’s Young’s modulus thanS2,2 andS0,1 modes.

FIG. 7. Free-vibration resonant spectrum of an austenitic-stainless steel
measured by an electromagnetic–acoustic transducer.

FIG. 6. The measurement setup of an
electromagnetic–acoustic microscopy.

TABLE I. Material properties used in the calculation.

Materials E (GPa) r ~Kg/m3! n

Acrylic resin 2.9 1 900 0.41
~001! monocrystal silicon 110 2 300 0.24
Polycrystalline brass 130 8 300 0.35
Polycrystalline boron 400 2 500 0.25
Polycrystalline tungsten carbide 550 15 500 0.21
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VI. CONCLUSION

Based on the assumption of small vibrational amplitude,
an approximate dynamic contact model was presented to in-
vestigate the high-frequency free vibration of a uniform elas-

tic sphere contacting two semi-infinite viscoelastic solids.
Numerical results of the dynamic model reveal that the reso-
nant frequencies are mainly affected by Young’s modulus
and Poisson’s ratio of contacting specimens, not by the mass
density and internal friction of the contacting materials. The
frequency shifts predicted by the present dynamic model
agreed with those measured by electromagnetic–acoustic
resonance forS0,1 mode. However, the quasistatic model,
which is conventionally used, predicted much smaller fre-
quency shifts.
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APPENDIX A: FORMULAS IN SPHERICAL
COORDINATES „r ,u,f… „Ref. 13…

Displacement potential relationships

ur5
]w

]r
1

1

kS
F ]2~rx!

]r 2
2r¹2xG ,

uu5
1

r

]w

]u
1

1

r sinu

]2~r j!

]f
1

1

kSr

]2~rx!

]u]r
,

uf5
1

r sinu

]w

]f
2

1

r

]~r j!

]u
1

1

kS r sinu

]2~rx!

]f]r
,

where

¹251/r 2@]~r 2]/]r !/]r #1@1/r 2 sin~u!#

3@]~sinu]/]u!/]u#1@1/r 2 sin2u#]2/]f2.

w andx are related to spheroidal vibration of elastic sphere.
Torsional vibration of elastic sphere is denoted byj, which is
not considered and set to be zero in this paper.

Stress in terms of displacement potentials
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FIG. 8. Resonant-frequency shift of modeS0,1 for the case of two-point
contact.

FIG. 9. Resonant-frequency shifts of modesS2,1 and S2,2 for the case of
two-point contact.
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APPENDIX B: EXPRESSIONS FOR Cm1„r …ÀCm6„r … AND Dm1„r …ÀDm6„r …
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APPENDIX C: EXPRESSIONS FOR Sm1ÀSm4 AND Tm1ÀTm4
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