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We report paratellurite’s 300-10-K elastic constantsCij , six constants reflecting tetragonal symmetry
(P422 point group). The quantitye14

2 /k11, where e14 denotes the sole independent piezoelectric
constant andk11 denotes a dielectric constant, was determined over the same temperature range. All
the principal Cij show approximately regular temperature-change behavior: increasing with
decreasing temperature, the increases being 2% –10%. One derived elastic constant,C8=sC11

−C12d /2, a shear constant, shows strongly anomalous temperature behavior,decreasing
continuously during cooling to 10 K, the total decrease being 5%. The quantitye14

2 /k11 was
essentially independent of temperature. Obtained by resonant-ultrasound spectroscopy, our results
differ from previous studies, none of which went to 10 K, a temperature region of much practical
interest for this material. From the near-zero-temperature elastic constants, we derive a Debye
temperature of 235 K. The slopedC8 /dT yields anegativeGruneisen parameterg=−0.9, close to
the specific-heat value. ©2004 American Institute of Physics. [DOI: 10.1063/1.1805717]

I. INTRODUCTION

Recently,1 two of the present authors presented an exten-
sive study of paratellurite’s ambient-temperature elastic,
internal-friction, and piezoelectric coefficients. The present
study represents an extension to low temperatures for the
elastic and piezoelectric constants. Just as the previous study
helped clarify the ambient-temperatureCij , the present study
clarifies the disparate previously reporteddCij /dT,2–5 ex-
tends the measurements to 10 K, and yields insights into
paratellurite’s remarkable elastic properties.

Previously,1 we described much of paratellurite’s odd
elastic behavior. Some remarkable aspects include the fol-
lowing.

(1) Strong shear-wave anisotropy:C66/C8=281! This prop-
erty led to paratellurite being chosen to confirm Her-
ring’s anharmonic phonon-relaxation theory.2 The high
anisotropy ratio reflects a lowC8. Related to this, there
remains the following question: reflecting a very lowC8,
does paratellurite undergo a low-temperature phase
transformation caused by decreased volume?

(2) Along the x axis, one shear-wave velocity exceeds the
longitudinal-wave velocity:C66.C11. Isotropic materi-
als show shear-wave velocities approximately half the
longitudinal-wave velocity.

(3) The principal-axis Poisson ratios vary widely, from 0.02
to 0.91.

(4) The [110] [001] Poisson ratio is negative.
(5) For an oxide, the elastic constants are low, especially

when compared with a companion-crystal-structure ma-
terial: rutile sTiO2d.

As discussed previously, most of paratellurite’s remark-
able elastic behavior can be understood from its crystal struc-
ture and interatomic bonding, which also determine its un-
usual optical properties. Key features here include alternating
weak and strong bonds in the Te-O chains and a Te-O truss
structure that is soft against several mechanical deforma-
tions.

Paratellurite permits unusual piezoelectric applications
because its only piezoelectric coefficient is a shear coeffi-
cient e14. Thus, it generates and detects only shear waves.

Interest in paratellurite’s low-temperature properties
arises for several reasons.

(1) Often, piezoelectric crystals show irregular low-
temperature physical-property changes.

(2) Previous studies found a strong decrease inC8 upon
cooling, but the zero-temperature value could not be de-
termined reliably by extrapolation. Also, the value ofC8
is important for considering phase stability.

(3) At low temperatures, paratellurite shows a negative
overall (average-over-direction) Gruneisen parameter,
which relates to elastic-constant temperature derivatives
dCij /dT.

(4) Paratellurite sees important low-temperature uses, for
example, in the massive(eventually tons) undergrounda)Electronic mail: hledbet@lanl.gov
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cryogenic bolometer detector for sensing rare events(re-
lated to dark matter).6 For this particular detector, one
uses the Debye temperature to predict the bolometer’s
pulse amplitude for a given energy deposition. The main
error in estimating paratellurite’s Debye temperature
arises from the difficulty of extrapolating itsCij to zero
temperature. Especially,C8 exacerbates the extrapola-
tion: C8is small, its temperature derivative is large, and
small shear elastic constants contribute strongly to the
Debye temperature.7

(5) Finally, because paratellurite represents one of the most
oddly anisotropic materials yet studied, one wonders
whether the elastic anisotropy depends strongly on tem-
perature, that is, whether the anisotropy is intrinsic or is
temperature induced.

II. MEASUREMENTS

Our crystal was a companion to that used in the previous
ambient-temperature measurments.1 It consisted of an accu-
rate parallelepiped with faces perpendicular to the tetragonal
a, b, c axes as confirmed by Laue X-ray diffraction within
0.2°. The corresponding room-temperature dimensions were
7.030, 8.035, and 8.999 mm. The room- temperature specific
gravity, calculated from the dimensions and mass, was 5.990.
This is just below the x-ray-diffraction value, 6.023. We
measured the elastic moduli using resonant ultrasound spec-
troscopy (RUS).8–10 To make measurements between 300
and 10 K, we used a gas-flow cryostat.

III. RESULTS

As mentioned above, TeO2 is piezoelectric; this affects
the specimen’s resonance frequencies. Thus, one must
modify the usual inverse calculation10 to consider the piezo-
electric effect.11 With the inclusion of the piezoelectric effect
in the Langrangean-minimization method, it is possible to
determine both the elastic constants and the piezoelectric
constants from the measured frequencies.1,12 For the present
study, the frequencies of 38 of the lowest 40 resonances were
fit with an rms difference between measured and computed
frequencies that ranged from 0.13% at room temperature to a
maximum of 0.23% at lowest temperature. Specimen dimen-
sions were corrected for temperature dependence using re-
ported thermal-expansion measurements.13

Paratellurite has tetragonal symmetry(P422 point group)
with six independent elastic constants:C11, C33, C44, C66,
C12, C13. Figure 1 showsC11, C12, andC66—as well as the
bulk modulusB—as a function of temperature. Figure 2
showsC33 along with moduli derived from the principalCij

to be discussed below. Finally, Fig. 3 showsC44 determined
without including the piezoelectric effect in the minimization
scheme, as well as this modulus determined byincluding the
piezoelectric effect:C44(nonpiezo) andC44 (piezo). Because
the only independent piezoelectric coefficient ise14, the only
elastic constant affected by the piezoelectricity isC44. Figure
3 shows that the effect of ignoring the piezoelectric effect is
to increase the apparentC44 by about 0.75 GPa. Calculations
with and without including the piezoelectric effect for the

other principalCij gave essentially the same result; the other
Cij were not affected by the piezoelectricity. Curves through
the measurement points represent an Einstein-oscillator
model based on the idea that elastic stiffness varies as14

CsTd = Cs0ds1 − DĒd. s1d

Here,Cs0d denotes the zero-temperature elastic stiffness,Ē
the average oscillator energy, andD a constant that depends
on crystal structure. Substituting the usual expression for the
Einstein-oscillator energy gives15

CsTd = Cs0d −
s

expft /Tg − 1
. s2d

Here, t relates to the Einstein temperature, but is usually
lower because, in most crystals, the average phonon fre-

FIG. 1. Low-temperature elastic constantsC11, C12, C66 and the bulk modu-
lus B. Points represent measurements. Curves represent Einstein-oscillator
behavior, Eq.(2).

FIG. 2. Low-temperature elastic constantsC33, Cf110gf110g(corresponding to
longitudinal waves along[110] ), and the Young modulusEc (corresponding
to extension-compression along[001] ). Points represent measurements.
Curves represent Einstein-oscillator behavior, Eq.(2).
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quency v̄ is lower than the Einstein frequencyvE. Origi-
nally, s was an adjustable parameter. Later, a relationship
appeared betweens and three basic properties: Einstein tem-
perature, Gruneisen parameter, and atomic volume.16 The fit
parametersCs0d, s, and t, for the six principalCij are given
in Table I. All six constants show a normal temperature de-
pendence, increasing as the temperature decreases. Except
for C44 the increase ranges from 7% to 10%. The increase for
C44 is small, less than 2%.

Figure 4 showse14
2 /k11 wheree14 denotes the sole inde-

pendent piezoelectric constant for the symmetry of TeO2 and
k11 denotes a dielectric constant. The fitting of the material
parameters to the measured frequencies gives this combina-
tion of the piezoelectric constant and the dielectric constant,
not each separately. As the figure shows, this quantity re-
mains essentially constant at about 0.80 GPa over the entire
studied temperature range, 10–300 K.

It is useful to consider other elastic parameters that can
be calculated from the six VoigtCij . Thus, Fig. 1 shows the
bulk modulusB along with a fit of Eq.(2). The temperature
dependence is normal, increasing about 8% as the tempera-
ture decreases to 10 K. Figure 2 includes Young’s modulus
Ec representing extension resistance along the tetragonalc
axis. Also included in Fig. 2 is the elastic constant

Cf110gf110g =
C11 + C12 + 2C66

2
, s3d

which corresponds to propagation of longitudinal elastic
waves in the[110] direction. Figure 5 shows Young’s modu-
lus for extension along the tetragonala ( or b) axis as well as
the elastic constant

C8 =
C11 − C12

2
, s4d

the elastic constant corresponding to shear waves propagated

along[110] and polarized alongf1̄10g. Figure 5 shows large
differences from the previous figures. First, the temperature
dependence is opposite; these constants decrease with de-
creasing temperature. There are other differences, several of
which were discussed previously.1 C11 ranges from 84% to
81% of C66 as the temperature is lowered from room tem-
perature to 10 K, meaning that for acoustic waves along

FIG. 3. Low-temperature elastic constants ofC44. The points forC44 non-
piezo were determined with the Langrangean minimization methodwithout
taking the piezoelectric effect into account while those forC44 piezo were
determined by including the piezoelectric effect in the minimization. The
points represent measurements. The curve through theC44 piezo data repre-
sents an Einstein-oscillator behavior, Eq.(2).

TABLE I. Parameters obtained by fitting Eq.(2) to measurements.

Modulus Cs0d (GPa) s (GPa) t (K)

C11 59.5 3.08 191
C12 55.1 3.01 178
C13 24.7 0.47 69
C33 115.6 4.51 129
C44 26.9 0.53 212
C66 72.9 10.0 277
B 48.7 1.70 129
Ec 105.0 5.29 158
Cf110gf110g 130.1 13.1 248

FIG. 4. The quantitye14
2 /k11 vs temperature, wheree14 denotes the piezo-

electric constant andk11 a dielectric constant. The piezoelectric effect in-
creasesC44 by 3%.

FIG. 5. Temperature dependence of the elastic constantC8, corresponding to

shear on a(110) plane in af1̄10g direction, and the Young modulusEa,
corresponding to extension-compression along the crystallinea axis.
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[100] the longitudinal wave is slower that the shear wave
polarized along[010]. The situation changes dramatically
upon rotating 45° to the[110] direction. In this case the
elastic constantCf110gf110g ranges from 52 to 60 timesC8 as
the temperature decreases. The shear wave corresponding to
C8 is extraordinarily slow.

The strong elastic anisotropy is revealed further by con-
sidering the directional dependence of the Young modulus.
Figure 6(a) shows the strong anisotropy in the crystalline
a-b plane where the modulus increases by a factor of 14.7 at
10 K on rotating 45° from the[100] to the [110] direction.
Similarly, Fig. 6(b) shows the anisotropy in thea-c plane,
where Ec/Ea=12.7 at 10 K. Finally, Fig. 6(c) presents a
three-dimensional plot of the Young modulus at 10 K.

We gain further insight by considering the Poisson ratio

ni j = −
« j8

«i8
. s5d

Here,«i8 denotes the longitudinal strain in response to a lon-
gitudinal stress along thexi8 axis and« j8 the corresponding
lateral strain along thexj8 axis. We consider three cases,
where the prime coordinates refer to rotations about the crys-
talline a, b, c axes.17 Figure 7 shows the Poisson ratiosv128
andv138 for rotation about the crystallinea axis. The longitu-
dinal strain is along thex18 axis and the lateral strains are
along thex28 andx38 axes. Foru=0, n128 andn138 reduce to the
usualn12 andn13. Because of symmetry, the diagram is sym-
metric about the 45° angle. Figure 8 shows a similar diagram
for rotation about the crystallineb axis. Rotation aboutb is

not equivalent to rotation abouta because the longitudinal
extension is alongx18, which is not equivalent for the two
cases. Figure 8 shows the remarkable result that a longitudi-
nal extension in thea-c plane at about 60° above thea axis
results in a contraction along thex28 axis of magnitude 1.54
as great. Also,n138 is negative for this orientation, reaching a
value of −0.845 at 60.9°. Such a large negative Poisson ratio
is unusual. This means a lateralexpansionthat is nearly as
large as the longitudinal expansion. Negative Poisson ratios
are unusual, but not unknown. Recently, many negative-

FIG. 6. Directional dependence of the
Young modulus.(a) Modulus in the
crystallinea-b plane as a function of
the angle from thea axis.(b) Modulus
in the a-c plane as a function of the
angle from the a axis. (c) Three-
dimensional representation of the
Young modulus at 10 K.

FIG. 7. Poisson ratios describing the response to a longitudinal stress along
the x18 axis as a function of the angle of rotationu about thea axis. A
positive value ofn128 ( n138 ) corresponds to the contraction along thex28 ( x38)
axis in response to an extension alongx18.
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Poisson-ratio studies appeared.18–21 Finally, Fig. 9 gives the
Poisson ratios for rotation of the primed system about the
crystallinec axis. As pointed out previously,1 for this case
n128 becomes negative for a longitudinal extension along the
[110] axis.

Table I gives the parameters from fitting Eq.(2) to those
elastic constants having a normal temperature dependence.
These parameters permit a convenient calculation of the elas-
tic constants as functions of temperature.

IV. DISCUSSION

All six principal Voigt elastic constants—C11, C33, C44,
C66, C12, C13—show nominally regular temperature behav-
ior. In accord with Eq.(2), they show linearity at higher
temperatures, increases upon cooling, zero slopes approach-
ing zero temperature. Regular behavior also appears in the
derived elastic constantsB, Ec, andCf110gf110g. The exception-
ally low C8 value, discussed in more detail below, resulted in
many of the lower resonance frequencies depending strongly
on this elastic constant. There was only a weak dependence
of the frequencies on the elastic constantsC13 andC66, lead-
ing to more scatter in the results for these two constants. A

derived shear-mode elastic constant,C8=sC11−C12d /2,
shows dramatically different temperature behavior. Upon
cooling, it decreasesapproximately linearly, about 5%.C8

represents resistance to shear on(110) in f1̄10g. C8 is re-
markably small, about 4% and 9% of the principal shear
moduli C44 and C66. Such a small shear modulus reflects a
soft-phonon mode, often indicating incipient phase
transformation.22 The C8decrease during cooling reflects in-
creased tendency toward mechanical instability. Paratellurite
represents a rare material where one elastic constant changes
with temperature so drastically from all the other principal
elastic constants. Although a phase transformation in paratel-
lurite fails to result from decreasing temperature, a reversible
second-order transformation occurs under a small pressure(9
kbar).23 Stable phases depend strongly on the average atomic
volume. Using reported thermal-expansion coefficients,13 we
estimate the 300-0-K volume changeDV/V as 0.0083. From
Hooke’s law and a bulk modulus of 45.3 GPa, we estimate
the pressure-induced volume change as 0.020, about 2.5
times the volume change effected by cooling.

Paratellurite’s much smaller thermal-expansion coeffi-
cient along thec-axis compared with thea-axis13 suggests
smaller temperature-induced changes inC33 than inC11, con-
trary to observation. This disagreement could be explained
by atomic-position changes in the unit cell during cooling.
Above, we mentioned unusual Poisson ratios and some soft
Te-O interatomic bonds. Our results show that the principal
Poisson ratios given byni j =−Sij /Sii , despite their unusual
values, change surprisingly little during cooling.(Here Sij

denotes the tensor inverse ofCij .) Atomic-position changes
are likely because it was suggested that paratellurite’s lowC8
value arises because internal atomic displacements occur in
response to a homogeneous mechanicalC8-mode strain.24

Focusing ondC8 /dT, we found a concave slope in the
region 150–300 K, agreeing with a previous measurement,5

but disagreeing with another that reported a convex shape.2

The slope relates to the mode Gruneisen parameter. For the
bulk modulusB, at higher temperatures(say above half the
Debye temperature), in a quasiharmonic model,16

dB

dT
= −

3kgsg + 1d
Va

. s6d

Here,k denotes Boltzmann constant,g Gruneisen parameter,
Va atomic volume. Although it remains to be derived, a simi-
lar expression should result for each elastic constant. Equa-
tion (6) and the strong positivedC8 /dT suggests strongly
that, even at ambient temperatures, the mode Gruneisen pa-
rameter corresponding toC8 must be negative. Substitution
into theC8 form of Eq. (6), taking the negative root, yields
g=−0.9. A negative mode Gruneisen parameter is implied
also by the pressure measurements that showed anegative
dC8 /dP.23 Taking the approximate relationship25

dCi

dP
= 2gi + 1 s7d

yields gi =−1.8, near the value −1.4 estimated by White and
co-workers13 from other researchers’ pressure measurements,

FIG. 8. Poisson ratios describing the response to a longitudinal stress along
the x18 axis as a function of the angle of rotationc about theb axis. The
negative value ofn138 means there is an extension along thex38 axis in re-
sponse to an extension alongx18.

FIG. 9. Poisson ratios describing the response to a longitudinal stress along
the x18 axis as a function of the angle of rotationf about thec axis.
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and close to their overall valueg=−1 at very low tempera-
tures whereC8 dominates the specific heat.

Although the six principalCij show nearly normal tem-
perature dependencies, some derived elastic constants, nota-
bly sC11−C12d /2 and Ea=1/S11 (Fig. 5), show abnormal
stiffening near 150 K. Not shown here, abnormal changes
occur also in the elastic compliancesS11 andS12. No irregu-
larities appeared inS33, S44, S66. Thus, the irregularity ap-
pears only in those principalSij corresponding to a strain
along thex1 or x2 axes. This irregularity’s atomistic cause
remains uncertain.

Now, we consider the Debye temperatureQD. Specific-
heat measurements yielded 265 K.13 The same authors, from
extrapolated elastic-constant measurements, estimated
240 K. Recent high-precision specific-heat measurements to
0.06 K yielded 232 K.6 Our previous ambient-temperature
elastic-constant measurements yielded 232 K. Using our
present measurements extrapolated to zero temperature, we
obtain 235 K. The surprisingly small difference from our
ambient-temperatureCij estimate arises from the strong ef-
fect of the C8 decrease offsetting the increases in all the
principal six Cij . The unusually smallC8 means that this
elastic-vibration mode dominates the Debye temperature and
the low-temperature specific heat.

Related to mode Debye temperatures are thet coeffi-
cients shown in Table I, coefficients obtained from fitting Eq.
(2) to the measurements. In an Einstein solid,t=QE, where
QE denotes Einstein temperature. In real solids, usually
t,QE because the average phonon frequency is usually less
than the Einstein frequency. In Table I, severalt values ex-
ceed the Einstein temperature.(Here,QE=0.75QD5 176 K.)
The surprising highert values for both longitudinal and shear
modes suggest higher-frequency-phonon modes in the pho-
non density of states. The notable softness ofC13sTd presents
interpretation problems becauseC13 is nonphysical, that is,
the lattice contains no vibrations(standing waves) related
only to C13; likewise for C12.

Finally, we comment on the interatomic bonding. Some
authors concluded that paratellurite possesses covalent bond-
ing, reflecting the double(four-electron) bond in the TeO2
molecule.26 But, piezoelectricity requires ionic bonding.27

Several attempts to relate interatomic-bonding type to theCij

appeared previously.28–30 Paratellurite’s complicated crystal
structure seems to preclude those approaches. Considering
all theCij and their usual combinations, the best indicators of
paratellurite’s interatomic-bonding type are its negative Pois-
son ratios. Very small Poisson ratios occur in some covalent
crystals, but apparently never in ionic crystals.

V. CONCLUSIONS

(1) For paratellurite, cooling from 300 K to 10 K
causes small increases in all six principal elastic
constants:C11, C33, C44, C66, C12, C13. Increases
vary from 2% to 10%.

(2) The quantitye14
2 /k11 involving the piezoelectric coeffi-

cient and a dielectric constant changes little with tem-
perature.

(3) No evidence appears for a very-low-temperature struc-
tural phase transformation as appears at moderate pres-
sures.

(4) The tetragonal-mode shear constantC8=sC11−C12d /2
decreasescontinuously, about 5% total.

(5) From ourCij extrapolated to zero temperature, we cal-
culated a Debye temperature of 235 K, close to a
specific-heat value, and close to our previous estimate
based on ambient-temperatureCij .

(6) From the slopedC8 /dT, we obtain a negative Gruneisen
parametergsC8d=−0.9, agreeing well with the low-
temperature specific-heat Gruneisen parameter,g=−1,
emphasizing the dominance ofC8 in the low-frequency
low-temperature lattice-vibration modes.

(7) The remarkable elastic anisotropy, for exampleC66/C8
=28, changes little with temperature. Thus, it reflects
intrinsic interatomic interactions.
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