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Elastic, anelastic, and piezoelectric coefficients of �-quartz determined
by resonance ultrasound spectroscopy

Hirotsugu Ogi,a� Toshinobu Ohmori, Nobutomo Nakamura, and Masahiko Hirao
Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

�Received 10 March 2006; accepted 11 July 2006; published online 8 September 2006�

All independent components of the elastic constants, internal friction, and piezoelectric coefficients
of synthetic �-quartz have been simultaneously determined by resonance ultrasound spectroscopy
coupled with laser-Doppler interferometry. Seventeen crystals obtained from Z and X regions with
various infrared-absorption values were used; for each crystal, a complete set of the coefficients was
determined using 72 resonance frequencies, which were measured by a needle-transducer tripod in
a vacuum at a constant temperature with frequency-error limit of 0.001%. The infrared-absorption
value and grown region did not strongly affect the material coefficients. Among the eight �elastic
plus piezoelectric� coefficients, piezoelectric coefficients were significantly different from
previously reported values. The six independent internal-friction components showed a positive
correlation with the temperature derivatives of the corresponding elastic constants, indicating that
the dominant damping mechanism was the phonon-phonon scattering. Our values at 30 °C are
C11=86.76 GPa, C12=6.868 GPa, C13=11.85 GPa, C14=−18.02 GPa, C33=105.5 GPa, C44

=58.14 GPa, and e11=0.151 C/m2, and e14=−0.061 C/m2. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2335684�
I. INTRODUCTION

�-quartz has greatly benefited humans with its favorable
piezoelectricity. It possesses 32-point-group symmetry,
showing six independent elastic constants Cij

E, two indepen-
dent piezoelectric coefficients eij, and two dielectric con-
stants �ij

S .1 Besides, six internal frictions Qij
−1 accompany the

elastic constants.2,3 These material constants are essential for
designing acoustic devices and have been reported by several
researchers: Bechmann,4 Bechmann et al.,5 and Koga et al.6

used the plate-thickness resonance method; James7 deter-
mined the elastic constants by the pulse-echo method assum-
ing the piezoelectric constants given by Cook and Weissler;8

and Kushibiki et al.9 determined all the material constants
except for internal friction by the pulse-echo method. These
previous studies, however, required many independent mea-
surements on many crystals in many orientations to deter-
mine a complete set of coefficients through solving labyrin-
thine simultaneous equations. Various errors could occur,
being associated with the use of different specimens, crystal
misorientations, resonance-frequency shifts by attaching
electrodes and coupling materials, ambiguous electric bound-
ary conditions at the interfaces between the specimen and the
coupling material, and so on. The complete internal-friction
tensor Qij

−1 of quartz has never been reported regardless of
numerous studies on the elastic and piezoelectric properties.

Here, we intend to determine the independent elastic,
anelastic, and piezoelectric coefficients of �-quartz by reso-
nance ultrasound spectroscopy �RUS�. All the Cij

E and the
combinations of eij and �ij

S affect mechanical free-vibration
resonance frequencies of a piezoelectric material with differ-
ent contributions, and we can, in principle, determine in-

a�
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versely all the coefficients by measuring many resonance fre-
quencies. This approach was suggested by Ohno10 and Dunn
et al.,11 but was not actualized because of the small contri-
butions of eij and mode-identification difficulties. We re-
cently developed the needle-transducer tripod to measure the
resonance frequencies of small specimens with sufficiently
high accuracy to determine eij as well as Cij

E. Furthermore,
we used laser-Doppler interferometry �LDI� to identify the
vibrational modes unambiguously.12 We call this method the
RUS/LDI method, and we applied it to study lithium
niobate,13 langasite,3 and paratellurite.14 This task, however,
becomes much more difficult for �-quartz because of much
smaller magnitudes of the piezoelectric coefficients; their
normalized sensitivities to the resonance frequencies are be-
tween 0.001 and 0.05. Therefore, we must measure and cal-
culate the resonance frequencies very accurately. Even the
ambient-pressure effect should be eliminated. Internal-
friction measurement should also be done under vacuum
condition to minimize the leakage of the vibrational energy
into the air.

Here, we measure the resonance frequencies in a
vacuum at a constant temperature and determine all the Cij

E,
eij, and Qij

−1 of synthetic quartz crystals obtained from vari-
ous ingots with different infrared-absorption coefficients and
from different regions. In total, 17 crystals were used and
these material constants were determined individually.

II. SPECIMENS

Material constants of �-quartz are written in contracted

notation as

© 2006 American Institute of Physics11-1
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�Cij� = �
C11 C12 C13 C14 0 0

C12 C11 C13 − C14 0 0

C13 C13 C33 0 0 0

C14 − C14 0 C44 0 0

0 0 0 0 C44 C14

0 0 0 0 C14 C66

� , �1�

�eij� = �e11 − e11 0 e14 0 0

0 0 0 0 − e14 − e11

0 0 0 0 0 0
� , �2�

��ij
S � = ��11

S 0 0

0 �11
S 0

0 0 �33
S � . �3�

We omit the superscript E for Cij for simplicity. All the co-
efficients contribute to the free-vibration resonance frequen-
cies, but eij and �ij

S cannot be determined separately because
their combinations affect the mechanical vibrations. We then
used the averaged values given by Bechmann,4 James,7 and
Kushibiki et al.9 for the dielectric constants as �11

S /�0

=4.424 and �33
S /�0=4.632, where �0 denotes the vacuum per-

mittivity. �The dielectric constants accurately obtained from
the low-frequency capacitance measurement by several re-
searchers agree well.�

Seventeen specimens were cut into rectangular parallel-
epipeds from different quartz ingots synthesized by hydro-
thermal crystallization method. Their infrared-absorption
values �� values� at 3585 cm−1, corresponding to a OH

15 −1

TABLE I. Infrared-absorption value � �cm−1�, elastic constants Cij
E �GPa�,

crystals at 30 °C. The rms errors between measured and calculated resonan

� Specimen C11 C12 C13 C14 C3

0.024 QZ1-1 �1� 86.70 6.808 11.75 −18.06 105.
QZ1-2 �2� 86.73 6.913 11.82 −18.03 105.
QZ1-3 �3� 86.86 6.896 11.85 −18.07 105.

0.049 QZ2-1 �4� 86.72 6.925 11.87 −17.92 105.
QZ2-2 �5� 86.70 6.917 11.89 −17.91 105.
QZ2-3 �6� 86.69 6.935 11.81 −17.98 105.
QZ2-4 �7� 86.76 6.872 11.94 −18.01 105.
QZ2-5 �8� 86.71 6.897 11.89 −18.01 105.

0.068 QZ3-1 �9� 86.95 6.933 11.9 −18.06 105.
QZ3-2 �10� 86.79 6.900 11.82 −18.04 105.
QZ3-3 �11� 86.86 6.801 11.92 −18.12 105.

0.12 QZ4-1 �12� 86.69 6.956 11.79 −17.98 105.
QZ4-2 �13� 86.75 6.918 11.67 −17.99 105.
QZ4-3 �14� 86.80 6.851 11.82 −18.08 105.
QZ4-4 �15� 86.86 6.665 11.84 −18.07 105.

0.12 QX-1 �16� 86.66 6.785 11.93 −18.01 105.
QX-2 �17� 86.74 6.784 11.95 −18.01 105.

Average 86.76 6.868 11.85 −18.02 105.
SD �%� 0.09 1.11 0.62 0.30 0.

aC66= �C11−C12� /2.
absorption, ranged between 0.024 and 0.12 cm , which
has been correlated with the Q value of quartz oscillators.16

The specimens were mainly obtained from the −Z region, but
two specimens were from the +X region, where the disloca-
tion density is much higher,17 for investigating the effect of
dislocations on the material constants. �The definition of the
grown region, such as +X, is shown in detail in Ref. 17.� We
classify the specimens into five groups; QZ1, QZ2, QZ3,
QZ4, and QX, reflecting the infrared-absorption value and
the grown region �see Table I�. Dimensions of the specimens
were about 4.8, 5.2, and 5.8 mm along the crystallographic
X, Y, and Z axes, respectively, which were the averages of
ten measurements using a micrometer with the absolute ac-
curacy of 1 �m. Thus, the error from the dimension mea-
surement is expected to be less than 0.02%. By Laue x-ray
diffraction, we confirmed the crystal orientation within 1°.
Specimen mass was measured by a microbalance with the
accuracy of 0.002% and the mass density was determined
from the mass and dimensions.

III. METHODS

Details of the RUS/LDI method appear elsewhere.3,12,13

In this study, all the components were placed in a vacuum
chamber ��1 Pa� to avoid the effect of the ambient pressure
on the resonance frequencies and the leakage of the vibra-
tional energy into air. The specimen was put on the needle-
transducer tripod, consisting of two needle-type transducers
for generation and detection and one needle-thermocouple
support, which touched the specimen and measured the
specimen temperature. No external force was applied to the
specimen except for gravity. The resonance frequencies were

oelectric coefficients eij �C/m2�, and mass density � �kg/m3� of �-quartz
quencies after convergence of the inverse calculation are also shown.

C44 C66
a e11 e14 � rms error �%�

58.22 39.94 0.150 −0.041 2643.51 0.068
58.21 39.91 0.155 −0.050 2645.58 0.036
58.28 39.98 0.151 −0.051 2645.31 0.055

58.07 39.9 0.145 −0.077 2642.21 0.061
58.09 39.89 0.147 −0.082 2645.02 0.063
58.24 39.88 0.155 −0.062 2644.13 0.052
58.2 39.94 0.139 −0.057 2646.49 0.061
58.25 39.91 0.150 −0.050 2644.86 0.057

58.09 40.01 0.155 −0.066 2643.78 0.082
58.11 39.94 0.159 −0.057 2644.81 0.035
58.06 40.03 0.151 −0.053 2645.55 0.070

58.02 39.87 0.159 −0.068 2641.70 0.066
58.03 39.92 0.158 −0.071 2644.90 0.045
58.12 39.97 0.158 −0.051 2644.66 0.029
58.05 40.1 0.133 −0.061 2646.25 0.061

58.16 39.94 0.148 −0.065 2645.92 0.067
58.19 39.98 0.147 −0.067 2644.82 0.074

58.14 39.95 0.151 −0.061 2644.67 0.058
0.14 0.15 4.75 17.8 0.049 ¯
piez
ce fre

3

42
45
54

11
23
33
43
48

62
54
6

36
46
54
5

56
63

46
13
measured at 30 °C three times for each specimen to see the
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reproducibility; after measuring the resonance frequencies,
we took the specimen out of the vacuum chamber, replaced it
on the tripod, and again measured the frequencies in vacuum.
Differences of the resonance frequencies among the three
measurements were smaller than 0.001% regardless of the
different contact points between the specimen and the
needles. Thus, high reproducibility was confirmed. Figure 1
shows an example of the measured resonance spectrum.

Inverse calculation was performed by Lagrangian mini-
mization with a Rayleigh-Ritz approach.3,10,14 The displace-
ments and electric potential were expanded into linear com-
binations of basis factions �k composed of Legendre
functions:

�k =
1

�L1L2L3

�2l + 1

2
�2m + 1

2
�2n + 1

2

�Pl	 x1

L1

Pm	 x2

L2

Pn	 x3

L3

 . �4�

Hence x1, x2, and x3 denote Cartesian coordinates along the
X, Y, and Z crystallographic axes, respectively. Li denotes the
edge length along the xi axis of the rectangular-
parallelepiped crystal. l, m, and n denote the order numbers
of the Legendre polynomial. Poor contributions of the piezo-
electric coefficients to the resonance frequencies forced us to
involve higher-order Legendre polynomials than did previ-
ous studies. Figure 2 shows differences of the calculated
resonance frequencies from those calculated using many
Legendre polynomials up to N=26, where N= l+m+n. The
case of N=26 involves a sufficiently large number of basis
functions, and it provides resonance frequencies close to the
true values. Thus, Fig. 2 indicates that we can calculate the
resonance frequencies of the first 80 modes with errors less
than 0.0034% when we use Legendre functions up to N
=18. The total number of basis functions in this case reaches
near 15 000, implying a very long calculation time. How-
ever, because the free vibrations of an oriented rectangular-
parallelepiped �-quartz crystal fall into four vibrational
groups labeled as Ag, Bg, Au, and Bu, according to the defor-
mation symmetry,10 this number decreases to about 3 500 for
each group, requiring much shorter calculation time �a few
minutes with a conventional desktop computer�.

We have to pair up a measured frequency with a calcu-
lated frequency in the inverse calculation. Because the vibra-
tional modes of the calculated frequencies are exactly

known, we must identify observed frequencies. This task,
mode identification, is essential in RUS studies and mode
misidentification is fatal for determining weakly contributing
piezoelectric coefficients. We achieved mode identification
by the LDI method: after completing all the frequency and
the internal-friction measurements, we deposited a 100 nm
aluminum thin film on the Z face of the crystal and scanned
the resonating surface with a He–Ne laser beam, measuring
the Doppler frequency shift of the laser beam, which was
proportional to the particle velocity or to the displacement
amplitude in harmonic oscillation. The diameter of the laser
spot was about 50 �m. Then, measured out-of-plane-
displacement distributions were compared with those calcu-
lated. Figure 3 shows four examples of comparison between
the measured and calculated displacement distributions,
showing excellent agreement. Such a vibrational-mode figure
is uniquely determined for an individual mode, like a finger-
print. Thus, comparison between the measured and calcu-
lated displacement distributions leads us to unambiguous
mode identification. We identified 72 resonance modes,
whose frequencies were used to determine the eight coeffi-
cients.

Internal friction Qij
−1 can be defined as the ratio of imagi-

nary to real parts of the complex elastic stiffness.2

FIG. 1. Resonance spectrum observed for QZ1-1 in a
vacuum. The inset shows resonance-peak shape.

FIG. 2. Normalized differences of resonance frequencies calculated with
various N�=l+m+n� values from those with sufficiently large number of

Legendre basis functions with N=26. Specimen was QZ1-1.
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C̃ij = Cij�1 + jQij
−1� . �5�

There are six independent internal frictions in �-quartz. The
internal-friction tensor Qij

−1 permits us to predict unmeasur-
able mechanical loss of any ultrasonic mode and helps select
less lossy propagation and polarization directions in design-
ing acoustic devices. The independent components are in-
versely determined from the Q−1 values of many vibrational
modes using the calculated contribution of each internal-
friction component to the observed value.3 The Q−1 value of
each resonance peak was determined from its half-maximum
peak width. Unlike the elastic constants and piezoelectric
coefficients, the internal-friction measurement is easily af-
fected by the contact conditions at the specimen/transducer

−1

FIG. 3. Measured �left� and calculated �right� distributions of the out-of-
plane displacement on the Z surface of QZ1-1. The bright regions are anti-
node regions and the dark lines represent nodal lines. The maximum ampli-
tude was about 0.8 nm. These figures provide unambiguous vibration-mode
identification.
interfaces. We then measured the Q values of individual
peaks three times for each specimen and averaged the results
in each specimen group.

IV. RESULTS AND DISCUSSION

Table I shows the determined coefficients for all speci-
mens. We define �p / f��f /�p�� as the contribution of a par-
ticular coefficient p �one of Cij and eij� to a resonance fre-
quency f . Figure 4 shows the contributions of the eight
coefficients calculated by the Rayleigh-Ritz method. The
contributions of eij are between 0.1% and 5%, indicating that
we must measure and calculate the resonance frequencies
and measure dimensions and mass density with errors one or
two orders of magnitude smaller than the contributions. This
demand was also required for the conventional pulse-echo
method, but a velocity measurement with 0.01% error limit
would be difficult because of uncertain electric boundary
conditions at the coupling-material/specimen interface, non-
trivial correction for diffraction, wave form distortion caused
by the internal reflections within the coupling material, and
so on. On the other hand, the resonance frequencies are un-
ambiguously measured with the error limit of 0.001% by the
RU/LDI measurement in a vacuum without using any cou-
pling materials and applied forces. They are also accurately
calculated with errors smaller than 0.0034% �Fig. 2�. Mass
of the specimen was measured by a microbalance with an
accuracy of 0.002%. The maximum error is then involved in
dimensions, which is about 0.02%, and minimized by aver-
aging the resultant coefficients of many specimens.

Figure 5 shows differences of the measured resonance
frequencies and those calculated involving �i� both e11 and
e14, �ii� only e14, and �iii� only e11. The rms difference be-
tween measurements and calculations becomes minimum
��0.06% � when both coefficients are involved, demonstrat-
ing that the piezoelectric coefficients sufficiently affect the
resonance frequencies. Furthermore, the previous studies
used several different specimens to determine a set of coef-
ficients, but we determine all the coefficients simultaneously
from only one small specimen using a much larger number

FIG. 4. Normalized contributions of eight coefficients �p / f��f /�p�� to reso-
nance frequencies calculated for the crystal QZ1-1.
of measurements. �Use of 72 frequencies corresponds to 72
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measurements in different directions with various polariza-
tions in the pulse-echo method.� Therefore, the accuracy in
the present study is expected to be higher.

Figures 6 and 7 compare our results with previous re-
ports. Sorokin et al.18 suggested that C66 was affected by the
crystal grade �� value�, but we observe no remarkable de-
pendences of the coefficients on the crystal grade and the
grown region. We then averaged all the results of the 17
specimens to provide the eight �elastic plus piezoelectric�
coefficients of �-quartz determined by the RUS/LDI method,

FIG. 5. Comparison between measured resonance frequencies and calcu-
lated ones including e11 and e14 and neglecting e11 and e14. Results for
QZ1-1, QZ2-1, QZ3-1, and QZ4-1 are shown together.
which are shown in Table II together with those reported
previously. We note that previous values agree well with
each other even for the small contributing e14. This agree-
ment is most surprising considering the ambiguity associated
with the contacting measurements. Our values agree with the
previous values within the error limits except for C33 and the
two piezoelectric coefficients; our C33 is smaller than the
previous values by �0.3%, our e11 is smaller by �15%, and
our e14 is larger in magnitude by �35%. The temperature
dependence of C33 partially explains this discrepancy; using
the temperature coefficient of −1.93�10−4 K−1 for C33,

9 we
find that C33 decreases by 0.2% with a 10 K temperature
increase. However, the temperature dependence of eij is

FIG. 6. Elastic constants determined
by the RUS/LDI method. Previous re-
ports are shown by lines for
comparison.

FIG. 7. Piezoelectric coefficients determined by the RUS/LDI method. Pre-
vious reports are shown by lines for comparison.
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much smaller. Therefore, the discrepancies of our piezoelec-
tric coefficients from those reported are significant.

Internal-friction values measured in a vacuum were
smaller than those measured in ambient pressure by factors
of 1.2–2.8, indicating the necessity of the internal-friction
measurement in a vacuum. Figure 8 shows the diagonal in-
ternal frictions determined inversely, which are of the order
of 10−5. Heyliger et al.19 measured internal friction of a natu-
ral quartz by the conventional RUS method, giving Q−1 val-
ues of about 5�10−4. They noted that this value was larger
than that of a high-quality quartz ��1.0�10−5�, and they
suggested that this discrepancy was caused by the higher
dislocation density in their specimen. However, our result
did not show significant dependence on the grown region.
Dislocation density is much larger in the X region of a syn-
thetic quartz,17 but lower internal friction of the QX speci-
mens disputes the dislocation principal damping mechanism.
Furthermore, the � value affected internal friction very little.
The � value indicates the impurity concentration and has
been correlated with the Q value of a quartz oscillator.16 The
result in Fig. 8 indicates that such a damping mechanism will
be insignificant for frequencies below 1 MHz used here.

We therefore consider phonon-phonon interactions as the
major damping mechanism in the frequency region used
here. Acoustic vibrations disturb the equilibrium state of
thermal phonons, and scattered phonons tend to equilibrate
through interactions with low-frequency acoustic phonons
and thermal-mode phonons. This process is irreversible and

TABLE II. Elastic constants Cij
E �GPa� and piezoelec

Present
�30 °C�

Kushibiki et al. �Ref. 9�
�23 °C�

Jam
�

C11 86.76 86.80
C12 6.868 7.036
C13 11.85 11.94
C14 −18.02 −18.06 −
C33 105.46 105.78 1
C44 58.14 58.22
C66

a 39.95 39.88

e11 0.151 0.172
e14 −0.061 −0.039

aC66= �C11−C12� /2.

FIG. 8. Diagonal components of the internal-friction tensor. Note that two

shear components exceed two longitudinal components.
causes energy loss. The energy loss is determined by lattice
anharmonicity and relates closely with a dimensionless con-
stant, the Grüneisen parameter � �Akheiser mechanism20�. In
a low-frequency region, the loss is proportional to �2 /�v2,
where � and v denote the mass density and the sound veloc-
ity, respectively.21 We assume that this relationship applies to
individual modes, that is,

Qij
−1 �

�ij
2

Cij
, �6�

where �ij denotes the Grüneisen parameter of the vibrational
mode governed by Cij. The mode Grüneisen parameter is
also related with the temperature derivatives of the corre-
sponding elastic constants. Ledbetter22 derived a formulation
connecting the bulk-modulus temperature derivative with �.
We here assume that his result holds between Cij and �ij:

1

Cij
	 �Cij

�T

 = −

3k�ij��ij + 1�
CijVa

. �7�

Here, Va denotes the atomic volume and k the Boltzmann
constant. Therefore, the magnitude of the temperature de-
rivative of Cij is expected to show a positive correlation with
corresponding internal friction Qij

−1 provided that the phonon-
phonon interaction is the dominant damping mechanism.
Figure 9 compares Qij

−1 determined here and the temperature
derivatives of Cij reported by Bechmann et al.5 Qij

−1 corre-

oefficients eij �C/m2� of �-quartz.

ef. 7�
�

Koga et al. �Ref. 6�
�20 °C�

Bechmann �Ref. 4�
�20 °C�

86.83 86.74
0 7.090 6.99

11.93 11.91
−18.06 −17.91
105.94 107.2
58.26 57.94
39.87 39.88

1 0.175 0.171
1 −0.041 −0.041

FIG. 9. Internal-friction components vs temperature derivatives of the elas-
tric c

es �R
25 °C

86.79
6.79

12.01
18.12
05.79
58.21
40.00

0.17
−0.04
tic constants.
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lates with the temperature derivative of Cij, implying a sig-
nificant phonon-phonon scattering loss. Such a positive cor-
relation was also observed in an �-TeO2 monocrystal,14 and
this correlation may be commonly observed in piezoelectric
materials.

However, we have to point out that the internal-friction
value estimated by the theory for the Akheiser mechanism
��10−8� is much smaller than the measured values at room
temperature ��10−5�. �We estimated the theoretical value us-
ing reported specific heat and thermal conductivity.� One
may attribute this discrepancy to dislocation-related mecha-
nisms, such as damping caused by scattering of phonons by
moving dislocations.23 However, the small X-region internal
friction poses a negative view for a dislocation-related
mechanism. Therefore, identification of the dominant damp-
ing mechanisms remains, and we may need an improved
theory for the phonon-scattering loss.

V. CONCLUSION

The RUS/LDI method was used for determining all the
elastic, anelastic, and piezoelectric coefficients of 17
�-quartz crystals. To overcome the weak sensitivity of the
piezoelectric coefficients to the resonance frequencies, the
measurements were done in a vacuum at constant tempera-
ture. Seventy-two resonance peaks were identified by laser-
Doppler interferometry and used to determine inversely the
eight coefficients for each specimen. The crystal grade and
grown region did not affect them significantly. Our coeffi-
cients agreed with those reported previously except for the
piezoelectric coefficients; e11 is smaller by 15% and e11 is
larger by 35% than the existing values. Considering the ac-
curacy for the frequency measurement, we consider that our
values are more reliable. Internal friction showed a positive

correlation with the temperature derivative of the corre-
sponding elastic constant, indicating that the damping prin-
cipally arises from phonon-phonon scattering, although the
internal-friction magnitude does not agree with the theory.
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