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Using the mode-selective contactless resonance ultrasound spectroscopy, we measured the complete
elastic-stiffness tensdZ;; and the corresponding internal-friction ten:(@lfjl of a silicon-carbide

fiber unidirectionally reinforced Ti—6Al-4V-matrix composite. This material shows orthorhombic
symmetry and possesses nine independgnanin}l. We independently excited and detected an
unique vibration-mode group among the eight vibration groups of a orthorhombic rectangular
parallelepiped. This provides a great advantage in identifying the vibration modes of the observed
resonance peaks, whose frequencies yieldGjjeby solving an inverse problem. To verify the
resultantC;;, we also determinedC;; by point-contact resonance ultrasound spectroscopy and
pulse-echo methods. Then, using the composilg, we inversely calculated the
transverse-isotropic fiber elastic stiffnesses with micromechanics theory. With th€fjkerd the
isotropic matrixCj;, we reconstructed the composig; as a function of fiber-volume fraction.

© 2000 American Institute of Physids$0021-89780)07206-9

I. INTRODUCTION are entered into the inverse calculation to find the most suit-
_ . . _ _ableC;; . This method is powerful for a well-posed monoc-
Metal-matrix composites are important materials. Thelrrysta| or polycrystal and typically yield§;; within one part
good mechanical properties, even at elevated temperaturgf, 10* or less. However, for a composite material, some ob-
make them attractive for use in critical components. Thisstacles occur; imperfect fiber alignment and heterogeneous
study focused on the elastic properties of a silicon-carbidephase distribution result in departure from ideal macroscopic
fiber (SiG) unidirectionallly reinforced titanium-alloy com- symmetry. These characteristics may cause spectrum split,
posite, which is a candidate material for components of jetesonance-peak broadening, and nonsymmetrical resonance
engine or aerospace structures because of its highseaks. In this case, the mode identificatiemact correspon-
temperature strength, stiffness, and toughneBast, we  dence between the measured and calculated frequinisies
measured the elastic stiffnesses and internal friction val-  not straightforward, and the inverse calculation easily con-
ues Q;*. From the manufacturing process, the materialverges to a false minimum. Note that the resul@ptfrom
shows orthorhombic symmetry and possesses nine indepeficorrect mode identification have no physical meaning.
dent C;; . Presumably, it also possesses the corresponding |n previous studie§/ we established the contactless,

nine internal frictionQ;; *. Second, we inversely calculated mode-selective RUS method. We call this method EMAR.
the fiberC;; with micromechanics theory using the measured

compositeC;; .

Concerning the elastic-stiffness measurement, we use
three methods: electromagnetic acoustic reson8EREAR),
resonance ultrasound spectrosca®US), and the pulse-
echo method. The RUS metHodis useful for determining a
complete set ofC;; of solids. A single-frequency scan pro-
vides a large number of mechanical-resonance peaks, which

dAlso at Materials Science and Engineering Laboratory, National Institute
of Standards and Technology, Boulder, Colorado 80303; electronic mailFIG. 1. Unidirectionally fiber-reinforced-composite specimen and coordi-
ogi@me.es.osaka-u.ac.jp nate system.
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FIG. 2. Microstructure of the composite seen alongsthexis.

FIG. 3. EMAR measurement setup B4 vibration group.

Using the Lorentz-force coupling, we selectively and inde- . . . . -
pendently generated and detected one vibration group amo ethod, which also appears in Table I. This material exhibits
orthorhombic symmetry with nine independedy; .

the eight vibration groups of rectangular parallelepipeds.

This is a great advantage for mode identification because Cy Cip Ci3 O 0 0

only one vibration group appears and no mode overlapping Ci» Cyp Cps O 0 0

occurs. We applied this method to a copper monocrystal

(cubic® and SiG/Ti-alloy crossply compositétetragonal,” . Cis C3 C3 O 0 O L
and obtained successful results. In this study, we applied this [Cij1= 0 0 0 Cyuy O 0 @
method to a lower symmetry cagerthorhombi¢ and com- 0 0 0 0o C 0

pared the results with the usual RUS and the pulse-echo >

methods. The acoustically contactless configuration of L 0 0 0 0 0 Cee]

EMAR is ideal for measuring internal friction. We measured
the internal-friction tensoQ;;* by the free-decay method Il MEASUREMENTS
with EMAR.

For theoretical calculations, we used the Mori—Tanaka\/eI
mean-field theor{.With the assumption of transverse sym-
metry for the SiC fiber and isotropic symmetry for the ma-
trix, we inversely calculated the effective fiber elastic stiff-
nesses. Then, we reconstructed the compoSite as a
function of volume fraction.

The EMAR-measurement setup is the same as that de-
oped in the previous studi€$ The specimen was inserted
in a solenoidal coil located between two permanent-magnet
blocks. The solenoidal coil is driven with high-power rf
bursts, which cause eddy currents near the surface region of
the specimen. Eddy currents interact with the static magnetic
field from the permanent magnets and generate Lorentz
forces. The Lorentz force vibrates with the same frequency
II. MATERIAL as the driving bursts, being sources of mechanical vibration.
_ . _ . The same coil receives the vibration through the reversed-
The composite was a Ti-6AI-4V alloy reinforced with | grentz-force mechanism. The received signals are fed to
continuous SCS-6SIC fibers. Figure 1 shows the schematigperheterodyne phase detectors, and the amplitude spectrum
of the mgterlal and the cqordlnate system used in the presegt the operating frequency is determined. A single-frequency
study. Figure 2 shows microstructure observed along«the scan provides many resonance peaks, and the resonance fre-
axis. The fiber consists of a carbon core surrounded by S'Cquencies are determined by Lorentzian-function fitting.
The fiber diameter is 14Am and the fiber volume fraction is The free vibrations of a rectangular parallele piped with
0.35. The material was fabricated by a foil-fiber-foil tech- o thorhombic or higher symmetry fall into eight groups de-
nigue (8 ply) at 900 °C with 65 MPa hydrostatic compres- pending on the deformation symmefryBecause the
sion. We prepared three rectangular-parallelepiped speci-orentz-force direction is determined by the vector product
mens (specimens A, B, and JCwith dimensions given in  f the magnetic field and eddy currents, we can control the
Table I. We measured mass density by the Archimedeg§eformation symmetry and select a vibration group by
changing the geometrical configuration between the static
field and the solenoidal coil. For example, in Fig. 3, the

TABLE I. Specimen dimensions and mass density. magnetic field is applied along the axis and the Lorentz-
a (mm) b (mm) ¢ (mm) p (kgm?)  forces work on the; —x3 faces along .thexl axis. The Lor-
Soecmon A 7943 T7a 3979 2870 entz forces cause the-component displacement;. This
pecimen . . . H H
Specimen B 3 086 1815 3023 3886 displacement can be detected most effectively by the same

Specimen C 4.484 1742 3.967 3g79  coil through the reversed-Lorentz-force mechanism wingn
is an odd function about, and an even function about
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B4 Vibration group(torsional vibration about; axis) satis-

fies this conditior?. Thus, onlyB,, vibration modes are gen- R

erated and detected with this configuration. In this study, we W — . . . 1+ . . . . |

independently excited and detectg, , B3, (torsional vibra-

tion aboutx; axis), andAq (breathing vibratiopgroups. The

EMAR configurations fOBag andAg groups appear in Refs. FIG. 5. EMAR_resqnance spectra &g vibration group,Ay vibration

6 and 7. Details of RUS and pulse-echo measurements afPup: andBzq vibration group.

described in Ref. 5.

For internal friction, we measured the amplitude decay

after an excitation with a burst signélThe amplitude free- compositeC can be expressed in terms of strain concentra-

decay curve provides the internal friction at the resonancéion factors as-*?

frequency. Figure 4 shows the result of the measured ampli- _ _

tude decay and the fitted exponential function. Internal fric- C=CoCoAot €1C1A1=Cot Cr(Cy = Co)As. )

tions for all resonance modes were used to reduce theere,C; andc; are the elastic stiffness tensor and the volume

internal-friction tensoQ;; ! which enable us to calculate the fraction of theith phase, and,; are the strain concentration

internal friction of any unmeasurable oscillation mode. factors for theith phase. Bold symbols are used for tensorial
quantities. Physically, the strain concentration factors relate
the average strain in theh phase to the uniform strain that

IV. MICROMECHANICS MODELING would be developed in a homogeneous material if it were

) ) , , subjected to displacement boundary conditions. In other
We briefly describe a micromechanics model used tQ,,qs €=A e(i=0,1), wheree is the uniform strain con-

estimate the effective stiffness of the composite in terms ofistent with the applied displacements. The second term in
the fiber and matrix elastic stiffnesses and the fiber volumey,, right-hand side of Eq(2) comes from the identities
fraction. Our intent is to use this model to derive the UN-c 4 ¢ =1 andcyAg+C,A,=1. As is apparent from Eq2)
known effective SiC fiber elastic stiffness from the measureqhe key to predicting the effective stiffness of the composite

composite stiffness and the known mat@; . We use the g egtimating the concentration factoks. Here, we use the
termeffectiveto describe the fiber stiffness because the f'berNori—Tanaka mean-field thed?yo estimateA, . The physi-
i

themselves have a composite structisee Fig. 2consisting ¢4 interpretation of the theory is that, when subjected to
of an SiC annulus surrounding a carbon core. Furthermorg,hitorm stress boundary conditions, the average stress in
the thin interface region between the SiC and Ti matrix alsQach fiber is equal to the average stress in a single fiber
affects the effective SiC fiber elastic stiffness. ___embedded in an infinite matrix subjected to a uniform far-
For the analysis, we considered the unidirectional SiC/Tkiq|q stress equal téas-yet unknowhaverage stress in the

composite to be a two-phase composite consisting of thgomposite. Mathematically, this assumption can be written
matrix (phase Pand the aligned fiberfphase 1 We intro- ¢

duced a coordinate system whetgis parallel to the unidi-

rectional fibers. We assumed transverse-isotropic symmetry Ai=Ap [ Col +C1Ap1],
for the fiber and isotropic symmetry for the matrix. Also, we A —| +SC51(C-—C )
assumed transverse-isotropic symmetry for the resultant bi S
compositeC;; because of simplicity of calculatioriin the ~ Hence,Ap; is the concentration factor for a single fiber of
general development, the composite will exhibit lower sym-phasel embedded in an infinite matrix subjected to uniform
metry, but as will be shown later, the measured compositéar-field stress or strain boundary conditions and is called the
Ci; showed nearly transverse-isotropic symmetry with a fewdilute concentration factor. It is easily determined analyti-
percent erroi. The effective elastic stiffness of the two-phasecally by using Eshelby’s equivalent inclusion metHdd!®

E
andxs. Among the eight groups of free vibration, only the E
~

Byl

1
Frequency (MHz)

©)
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The effect of the fiber shape is contained in the EshelbyrABLE Il. Measured {gyar) and calculatedf(,) resonance frequencies

tensorS, which is a function of the fiber shape, and Poisson’
ratio of the isotropic matrix. For the fiber shape considered
here, continuous circular cylinders, the nonzero components
of S are remarkably simple and are tabulated in Mura’'s

SW|th EMAR for specimen B. Mode notation follows Mochizulgee Ref. 9
The average difference dtyar— fcac Was 0.4%.

monograph along with results for other inclusion shapes.

Our intent was to use this model inversely to find the Biz_g

effective-elastic-stiffness tensor of the fibers. Some model B,,—4
calculations that used isotropic elastic moduli for the SiC Big—5
fibers have been reported in the literattfté! but as we shall
show, the assumption of isotropic fibers is inconsistent with
the measured composite stiffne@nd, of course, with the
annular fiber morphology Our micromechanics estimates
then yielded explicit expressions for the five independent
elastic stiffness components of the compo€ligin the form

Cij = Cij( Con’ CO44' C111’ C113’ C133’ C144’ Clee' C1).

(4)

Thus, Eq.(4) represents five equations that connect the five
compositeC;; to the five fiberC,;;, the two matrixCy; ,

and the fiber volume fraction;. From our measurements,
we reduced the nine composi@; to five C;; by assuming
transverse isotropy of the composifé&/e used the measured
C12, Cq1, andCgg and formed an error function with the
calculatedC,,, Cq1, andCgg, Which averages the measured
we simply averaged
the orthorhombicC;;.) For the matrix, we usedCy;
=160.6 GPa andC,,=42.0 GPat® The fiber volume frac-
tion is c;=0.35. We used these values with the five E¢$.

to inversely compute the five fibé,;; .

C12, Cq1, andCgg. For the othelC

V. RESULTS AND DISCUSSION

A. Elastic stiffnesses

Mode femar (MHz) f caic (MHZ) diff. (%)
19— 1 0.633727 0.639325 0.88
-2 0.761856 0.767144 0.69
1.112402 1.11038 —0.18
1.189886 1.179541 -0.87
1.286432 1.282397 —0.31
Big—6 1.427158 1.429458 0.16
19— 7 1.604195 :
Big—8 1.638866 1.64696 0.49
Big—9 1.760986
Byg—10 1.887708
Byy—11 1.925395
Bjg—12 1.93206 1.929845 —-0.11
Ag—1 0.674023 0.671491 —-0.38
Ag—2 0.798739
Ag—3 0.958798 0.954882 —0.41
Ag—4 1.244947
Ag—5 1.490086 1.486785 —0.22
A,—6 1.594972 1.60392 0.56
Ag—7 1.66483
A,—8 1.673748 1.672069 -0.1
Ag—9 1.67851
Ag—10 1.83982 1.828107 —0.64
Ag—11 1.85286 1.864525 0.63
g—12 1.938973 1.944108 0.26
A,—13 2.007576 2.010206 0.13
Bag—1 0.551647 0.551056 -0.11
B3g—2 0.916413 0.918502 0.23
B3y —3 1.052841 1.057635 0.46
Bsg—4 1.264239 1.263364 —0.07
Bsg—5 1.317111 1.309443 —0.58
B3y—6 1.398568 1.393513 —0.36
Bsy—7 1.552009
B3g—8 1.650926 :
B3g—9 1.772487 1.781171 0.49
-10 1.996798 1.999062 0.11

Figure 5 shows the resonance spectra measured by %
EMAR for specimenA. Different EMAR configurations led
to a different spectrum pattern, as expected. According to the
mode-selection principle, we identified the resonance modestudy’ to determine the nine independent elastic stiffnesses.
and made the inverse calculation developed in the previouSable Il compares the measured and calculated resonance

TABLE Ill. Composite elastic stiffnessd&Pag measured by the EMAR, RUS, and pulse-e¢R& methods; fiber elastic stiffnessé€Pg determined by
the micromechanics theory; and composite internal friction measured by EMAR.

Specimen A Specimen B Specimen C
Fiber Q!

EMAR RUS PE EMAR RUS PE EMAR RUS PE Averdge modulP (1079
Cuy 190.1 190.6 191.1 189.4 B 190.3 189.6 190.2 278.9 3.14
C,, 193.2 190.7 192.9 190.0 190.5 191.9 190.8 190.6 190.7 191.0 278.9 6.90
Cas 258.4 258.6 243.8 244.8 - 246.3 246.7 249.8 418.1 3.54
Cus 56.62 55.33 58.7 55.97 54.18 56.13 56.62 56.86 57.06 55.93 93.1 10.8
Css 53.54 57.71 .- 51.23 55.62  --- 50.48 55.96 54.09 93.1 11.7
Ces 55.23 55.52 54.1 53.83 54.30 53.77 53.87 54.16 54.85 54.49 109.5 6.78
Cy 75.83 79.83 - 69.90 75.31 : 76.76 75.82 .- 75.58 59.0
Ci3 70.45 69.99 73.53 68.18 71.75 69.96 70.29 50.1
Cys 73.48 76.19 61.63 63.10 65.51 65.53 67.57 50.1
E; 152.7 150.9 153.8 151.3 150.2 150.8 151.6 262.6 5.05
E, 154.1 147.8 158.8 154.7 153.7 153.9 153.8 262.6 13.2
Es 219.7 218.9 208.2 212.2 210.8 212.1 213.7 403.2 4.35
B 120.1 121.3 115.0 115.3 117.3 116.6 117.6 143.8 1.91

®EMAR-RUS average.

bFiber-longitudinal direction is along the; axis.
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frequencies for specimen B. For almost all modes, they For pulse-echo measurements, we used longitudinal
agreed within 1%. The typical rms error was 0.5%. wave and two shear waves polarized in #ieand x5 direc-

We also applied the RUS method. The RUS spectrdions. All ultrasonic waves propagated in tke direction.
showed a better signal-to-noise ratio than the EMAR spectralhey provideC,,, Cgs, and Cy4. The pulse-echo method
but the subsequent inverse calculations were very sensitiva@pplied to other propagation directions was unsuccessful be-
to the initial estimates o€;; and easily converged to differ- cause the surface areas were too small.
ent (false minima. However, because we used the elastic  Table Ill presents the elastic stiffnesses determined by
stiffnesses determined by EMAR as the initial set for thethe three methods. The EMAR and RUS methods gave close
RUS-inverse calculation, the resulta@f; were consistent Cj;, within a few percent difference, except f@ss: the
with EMAR and pulse-echcC;;. The rms difference be- RUS Cgs was about 8% larger than the EMARss. At
tween measured and calculated frequencies was comparalgeesent, this remains unclear. The EMAR and pulse-echo
with that in the EMAR case. methods showed the same trend ©f, larger thanCgg,
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which is expected from the fiber alignment. This was notods: electromagnetic acoustic resona(ERIAR), resonance
evident with the RUS method, although agreement of thailtrasound spectroscogfRUS), and pulse echo. In EMAR,
RUS C;; with the pulse-ech&;; was still good. The EMAR  we controlled the vibration mode by changing the geometri-
measurement is based on the correct mode identification, batl configuration of the coil and static field, which is an
it includes fewer resonance peaks. The RUS measurememhportant advantage in mode identification.

includes more resonance peaks, but mode identification is (2) Using theC;; determined by EMAR for the initial
unclear, especially at higher modes because the peaks oveguess of the iteration analysis in RUS led to successful
lap. Therefore, we consider that averaging the elastic stiffinverse-calculation convergence.

nesses obtained by the EMAR and RUS methods provides (3) Assuming transverse isotropy, we calculated the
the most reliable answer; these averages are shown iomplete set of the effective SiC fiber elastic stiffnesses us-

Table IlI. ing the measured composi®; and matrixC;; with a mi-
cromechanics model. The calculated Young’'s modulus along
B. Prediction of composite elastic stiffnesses the fiber direction agreed with previously reported values. A

complete set of the SiC fibeZ;; is first reported here.

(4) We applied the micromechanics model to predict the
ompositeC;; as a function of fiber-volume fraction.

(5) We determined the internal-friction tensQy; lhya
free-decay method with EMAR. Th@ﬁ1 of wave modes
propagating in thex, direction were larger than those of
é)_ther modes, suggesting imperfect bonding between ply lay-
ers. Thus, the measurement of the internal-friction tensor in-
dicates the quality of those interfaces.

The measurement result€,;;=C,,, C4=Cg, and
C.3=C,3 suggest that the composite has nearly tetragonal
symmetry, which is understandable from its manufacturingc
procedurgfoil-fiber-foil technique. For transverse isotropy,
the additional requirement i€g=(C1;— C15)/2. This was
observed with 5%. As a result, in determining the fikgr,
we assumed transverse-isotropic symmetry for the compo
ite, which is needed to use E@) directly; these values are
given in Table Ill. This is the complete set of effective elastic
stiffnesses for the SCS-6 SiC fibers. Previously, only axial
Young’s modulus has been reported; it ranged from 400 to
428 GPa>?° consistent with our inferred value of 403 GPa. ACKNOWLEDGMENTS
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