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Using the mode-selective contactless resonance ultrasound spectroscopy, we measured the complete
elastic-stiffness tensorCi j and the corresponding internal-friction tensorQi j

21 of a silicon-carbide
fiber unidirectionally reinforced Ti–6Al–4V-matrix composite. This material shows orthorhombic
symmetry and possesses nine independentCi j andQi j

21. We independently excited and detected an
unique vibration-mode group among the eight vibration groups of a orthorhombic rectangular
parallelepiped. This provides a great advantage in identifying the vibration modes of the observed
resonance peaks, whose frequencies yield theCi j by solving an inverse problem. To verify the
resultantCi j , we also determinedCi j by point-contact resonance ultrasound spectroscopy and
pulse-echo methods. Then, using the compositeCi j , we inversely calculated the
transverse-isotropic fiber elastic stiffnesses with micromechanics theory. With the fiberCi j and the
isotropic matrixCi j , we reconstructed the compositeCi j as a function of fiber-volume fraction.
© 2000 American Institute of Physics.@S0021-8979~00!07206-6#
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I. INTRODUCTION

Metal-matrix composites are important materials. Th
good mechanical properties, even at elevated temperat
make them attractive for use in critical components. T
study focused on the elastic properties of a silicon-carb
fiber (SiCf) unidirectionallly reinforced titanium-alloy com
posite, which is a candidate material for components of
engine or aerospace structures because of its h
temperature strength, stiffness, and toughness.1 First, we
measured the elastic stiffnessesCi j and internal friction val-
ues Qi j

21. From the manufacturing process, the mate
shows orthorhombic symmetry and possesses nine inde
dent Ci j . Presumably, it also possesses the correspon
nine internal frictionQi j

21. Second, we inversely calculate
the fiberCi j with micromechanics theory using the measur
compositeCi j .

Concerning the elastic-stiffness measurement, we
three methods: electromagnetic acoustic resonance~EMAR!,
resonance ultrasound spectroscopy~RUS!, and the pulse-
echo method. The RUS method2–5 is useful for determining a
complete set ofCi j of solids. A single-frequency scan pro
vides a large number of mechanical-resonance peaks, w

a!Also at Materials Science and Engineering Laboratory, National Insti
of Standards and Technology, Boulder, Colorado 80303; electronic m
ogi@me.es.osaka-u.ac.jp
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are entered into the inverse calculation to find the most s
ableCi j . This method is powerful for a well-posed mono
rystal or polycrystal and typically yieldsCi j within one part
in 104 or less. However, for a composite material, some o
stacles occur; imperfect fiber alignment and heterogene
phase distribution result in departure from ideal macrosco
symmetry. These characteristics may cause spectrum s
resonance-peak broadening, and nonsymmetrical reson
peaks. In this case, the mode identification~exact correspon-
dence between the measured and calculated frequencie! is
not straightforward, and the inverse calculation easily c
verges to a false minimum. Note that the resultantCi j from
incorrect mode identification have no physical meaning.

In previous studies,6,7 we established the contactles
mode-selective RUS method. We call this method EMA

e
il:FIG. 1. Unidirectionally fiber-reinforced-composite specimen and coo
nate system.
9 © 2000 American Institute of Physics
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Using the Lorentz-force coupling, we selectively and ind
pendently generated and detected one vibration group am
the eight vibration groups of rectangular parallelepipe
This is a great advantage for mode identification beca
only one vibration group appears and no mode overlapp
occurs. We applied this method to a copper monocry
~cubic!6 and SiCf /Ti-alloy crossply composite~tetragonal!,7

and obtained successful results. In this study, we applied
method to a lower symmetry case~orthorhombic! and com-
pared the results with the usual RUS and the pulse-e
methods. The acoustically contactless configuration
EMAR is ideal for measuring internal friction. We measur
the internal-friction tensorQi j

21 by the free-decay metho
with EMAR.

For theoretical calculations, we used the Mori–Tana
mean-field theory.8 With the assumption of transverse sym
metry for the SiC fiber and isotropic symmetry for the m
trix, we inversely calculated the effective fiber elastic sti
nesses. Then, we reconstructed the compositeCi j as a
function of volume fraction.

II. MATERIAL

The composite was a Ti–6Al–4V alloy reinforced wi
continuous SCS-6SiC fibers. Figure 1 shows the schem
of the material and the coordinate system used in the pre
study. Figure 2 shows microstructure observed along thex3

axis. The fiber consists of a carbon core surrounded by S
The fiber diameter is 140mm and the fiber volume fraction i
0.35. The material was fabricated by a foil-fiber-foil tec
nique ~8 ply! at 900 °C with 65 MPa hydrostatic compre
sion. We prepared three rectangular-parallelepiped sp
mens ~specimens A, B, and C! with dimensions given in
Table I. We measured mass density by the Archime

FIG. 2. Microstructure of the composite seen along thex3 axis.

TABLE I. Specimen dimensions and mass density.

a ~mm! b ~mm! c ~mm! r ~kg/m3!

Specimen A 4.943 1.745 3.979 3870
Specimen B 3.986 1.815 3.023 3886
Specimen C 4.484 1.742 3.967 3879
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method, which also appears in Table I. This material exhib
orthorhombic symmetry with nine independentCi j .

@Ci j #53
C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

4 . ~1!

III. MEASUREMENTS

The EMAR-measurement setup is the same as that
veloped in the previous studies.6,7 The specimen was inserte
in a solenoidal coil located between two permanent-mag
blocks. The solenoidal coil is driven with high-power
bursts, which cause eddy currents near the surface regio
the specimen. Eddy currents interact with the static magn
field from the permanent magnets and generate Lore
forces. The Lorentz force vibrates with the same freque
as the driving bursts, being sources of mechanical vibrat
The same coil receives the vibration through the revers
Lorentz-force mechanism. The received signals are fed
superheterodyne phase detectors, and the amplitude spec
at the operating frequency is determined. A single-freque
scan provides many resonance peaks, and the resonanc
quencies are determined by Lorentzian-function fitting.

The free vibrations of a rectangular parallele piped w
orthorhombic or higher symmetry fall into eight groups d
pending on the deformation symmetry.2 Because the
Lorentz-force direction is determined by the vector prod
of the magnetic field and eddy currents, we can control
deformation symmetry and select a vibration group
changing the geometrical configuration between the st
field and the solenoidal coil. For example, in Fig. 3, t
magnetic field is applied along thex2 axis and the Lorentz-
forces work on thex1–x3 faces along thex1 axis. The Lor-
entz forces cause thex1-component displacementu1 . This
displacement can be detected most effectively by the s
coil through the reversed-Lorentz-force mechanism whenu1

is an odd function aboutx2 and an even function aboutx1

FIG. 3. EMAR measurement setup forB1g vibration group.
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andx3 . Among the eight groups of free vibration, only th
B1g vibration group~torsional vibration aboutx3 axis! satis-
fies this condition.9 Thus, onlyB1g vibration modes are gen
erated and detected with this configuration. In this study,
independently excited and detectedB1g ,B3g ~torsional vibra-
tion aboutx1 axis!, andAg ~breathing vibration! groups. The
EMAR configurations forB3g andAg groups appear in Refs
6 and 7. Details of RUS and pulse-echo measurements
described in Ref. 5.

For internal friction, we measured the amplitude dec
after an excitation with a burst signal.10 The amplitude free-
decay curve provides the internal friction at the resona
frequency. Figure 4 shows the result of the measured am
tude decay and the fitted exponential function. Internal fr
tions for all resonance modes were used to reduce
internal-friction tensorQi j

21, which enable us to calculate th
internal friction of any unmeasurable oscillation mode.

IV. MICROMECHANICS MODELING

We briefly describe a micromechanics model used
estimate the effective stiffness of the composite in terms
the fiber and matrix elastic stiffnesses and the fiber volu
fraction. Our intent is to use this model to derive the u
known effective SiC fiber elastic stiffness from the measu
composite stiffness and the known matrixCi j . We use the
termeffectiveto describe the fiber stiffness because the fib
themselves have a composite structure~see Fig. 2! consisting
of an SiC annulus surrounding a carbon core. Furtherm
the thin interface region between the SiC and Ti matrix a
affects the effective SiC fiber elastic stiffness.

For the analysis, we considered the unidirectional SiC
composite to be a two-phase composite consisting of
matrix ~phase 0! and the aligned fibers~phase 1!. We intro-
duced a coordinate system wherex3 is parallel to the unidi-
rectional fibers. We assumed transverse-isotropic symm
for the fiber and isotropic symmetry for the matrix. Also, w
assumed transverse-isotropic symmetry for the resul
compositeCi j because of simplicity of calculation.~In the
general development, the composite will exhibit lower sy
metry, but as will be shown later, the measured compo
Ci j showed nearly transverse-isotropic symmetry with a f
percent error.! The effective elastic stiffness of the two-pha

FIG. 4. Free decay of the amplitude after excitation. Open circles de
measurements, and solid line denotes the fitted exponential function.
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compositeC can be expressed in terms of strain concen
tion factors as11,12

C5c0C0A01c1C1A15C01c1~C12C0!A1 . ~2!

Here,Ci andci are the elastic stiffness tensor and the volu
fraction of thei th phase, andA i are the strain concentratio
factors for thei th phase. Bold symbols are used for tensor
quantities. Physically, the strain concentration factors re
the average strain in thei th phase to the uniform strain tha
would be developed in a homogeneous material if it w
subjected to displacement boundary conditions. In ot
words,e i5A ie

0( i 50,1), wheree0 is the uniform strain con-
sistent with the applied displacements. The second term
the right-hand side of Eq.~2! comes from the identities
c01c151 andc0A01c1A15I . As is apparent from Eq.~2!,
the key to predicting the effective stiffness of the compos
is estimating the concentration factorsA i . Here, we use the
Mori–Tanaka mean-field theory8 to estimateA i . The physi-
cal interpretation of the theory is that, when subjected
uniform stress boundary conditions, the average stres
each fiber is equal to the average stress in a single fi
embedded in an infinite matrix subjected to a uniform f
field stress equal to~as-yet unknown! average stress in th
composite. Mathematically, this assumption can be writ
as

A i5ADi
21@c0I1c1AD1#,

~3!
ADi5I1SC0

21~Ci2C0!.

Hence,ADi is the concentration factor for a single fiber
phasei embedded in an infinite matrix subjected to unifor
far-field stress or strain boundary conditions and is called
dilute concentration factor. It is easily determined analy
cally by using Eshelby’s equivalent inclusion method.13–15

te

FIG. 5. EMAR resonance spectra ofB1g vibration group,Ag vibration
group, andB3g vibration group.
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The effect of the fiber shape is contained in the Eshe
tensorS, which is a function of the fiber shape, and Poisso
ratio of the isotropic matrixn. For the fiber shape considere
here, continuous circular cylinders, the nonzero compon
of S are remarkably simple and are tabulated in Mur
monograph,14 along with results for other inclusion shapes

Our intent was to use this model inversely to find t
effective-elastic-stiffness tensor of the fibers. Some mo
calculations that used isotropic elastic moduli for the S
fibers have been reported in the literature,16,17but as we shall
show, the assumption of isotropic fibers is inconsistent w
the measured composite stiffness~and, of course, with the
annular fiber morphology!. Our micromechanics estimate
then yielded explicit expressions for the five independ
elastic stiffness components of the compositeCi j in the form

Ci j 5Ci j ~C011
,C044

,C111
,C113

,C133
,C144

,C166
,c1!. ~4!

Thus, Eq.~4! represents five equations that connect the fi
compositeCi j to the five fiberC1i j , the two matrixC0i j ,
and the fiber volume fractionc1 . From our measurements
we reduced the nine compositeCi j to five Ci j by assuming
transverse isotropy of the composite.~We used the measure
C12, C11, and C66 and formed an error function with th
calculatedC12, C11, andC66, which averages the measure
C12, C11, andC66. For the otherCi j , we simply averaged
the orthorhombicCi j .! For the matrix, we usedC011

5160.6 GPa andC044542.0 GPa.18 The fiber volume frac-
tion is c150.35. We used these values with the five Eqs.~4!
to inversely compute the five fiberC1i j .

V. RESULTS AND DISCUSSION

A. Elastic stiffnesses

Figure 5 shows the resonance spectra measured
EMAR for specimenA. Different EMAR configurations led
to a different spectrum pattern, as expected. According to
mode-selection principle, we identified the resonance mo
and made the inverse calculation developed in the prev
y
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study5 to determine the nine independent elastic stiffness
Table II compares the measured and calculated reson

TABLE II. Measured (f EMAR) and calculated (f calc) resonance frequencie
with EMAR for specimen B. Mode notation follows Mochizuki~see Ref. 9!.
The average difference off EMAR2 f calc was 0.4%.

Mode f EMAR ~MHz! f calc ~MHz! diff. ~%!

B1g21 0.633727 0.639325 0.88
B1g22 0.761856 0.767144 0.69
B1g23 1.112402 1.11038 20.18
B1g24 1.189886 1.179541 20.87
B1g25 1.286432 1.282397 20.31
B1g26 1.427158 1.429458 0.16
B1g27 ¯ 1.604195 ¯

B1g28 1.638866 1.64696 0.49
B1g29 ¯ 1.760986 ¯

B1g210 ¯ 1.887708 ¯

B1g211 ¯ 1.925395 ¯

B1g212 1.93206 1.929845 20.11
Ag21 0.674023 0.671491 20.38
Ag22 ¯ 0.798739 ¯

Ag23 0.958798 0.954882 20.41
Ag24 ¯ 1.244947 ¯

Ag25 1.490086 1.486785 20.22
Ag26 1.594972 1.60392 0.56
Ag27 ¯ 1.66483 ¯

Ag28 1.673748 1.672069 20.1
Ag29 ¯ 1.67851 ¯

Ag210 1.83982 1.828107 20.64
Ag211 1.85286 1.864525 0.63
Ag212 1.938973 1.944108 0.26
Ag213 2.007576 2.010206 0.13
B3g21 0.551647 0.551056 20.11
B3g22 0.916413 0.918502 0.23
B3g23 1.052841 1.057635 0.46
B3g24 1.264239 1.263364 20.07
B3g25 1.317111 1.309443 20.58
B3g26 1.398568 1.393513 20.36
B3g27 ¯ 1.552009 ¯

B3g28 ¯ 1.650926 ¯

B3g29 1.772487 1.781171 0.49
B3g210 1.996798 1.999062 0.11
90

8

TABLE III. Composite elastic stiffnesses~GPa! measured by the EMAR, RUS, and pulse-echo~PE! methods; fiber elastic stiffnesses~GPa! determined by
the micromechanics theory; and composite internal friction measured by EMAR.

Specimen A Specimen B Specimen C

EMAR RUS PE EMAR RUS PE EMAR RUS PE Averagea
Fiber

modulib
Qi j

21

(1024)

C11 190.1 190.6 ¯ 191.1 189.4 ¯ 190.3 189.6 ¯ 190.2 278.9 3.14
C22 193.2 190.7 192.9 190.0 190.5 191.9 190.8 190.6 190.7 191.0 278.9 6.
C33 258.4 258.6 ¯ 243.8 244.8 ¯ 246.3 246.7 ¯ 249.8 418.1 3.54
C44 56.62 55.33 58.7 55.97 54.18 56.13 56.62 56.86 57.06 55.93 93.1 10.8
C55 53.54 57.71 ¯ 51.23 55.62 ¯ 50.48 55.96 ¯ 54.09 93.1 11.7
C66 55.23 55.52 54.1 53.83 54.30 53.77 53.87 54.16 54.85 54.49 109.5 6.7
C12 75.83 79.83 ¯ 69.90 75.31 ¯ 76.76 75.82 ¯ 75.58 59.0 ¯

C13 70.45 69.99 ¯ 73.53 68.18 ¯ 71.75 69.96 ¯ 70.29 50.1 ¯

C23 73.48 76.19 ¯ 61.63 63.10 ¯ 65.51 65.53 ¯ 67.57 50.1 ¯

E1 152.7 150.9 ¯ 153.8 151.3 ¯ 150.2 150.8 ¯ 151.6 262.6 5.05
E2 154.1 147.8 ¯ 158.8 154.7 ¯ 153.7 153.9 ¯ 153.8 262.6 13.2
E3 219.7 218.9 ¯ 208.2 212.2 ¯ 210.8 212.1 ¯ 213.7 403.2 4.35
B 120.1 121.3 ¯ 115.0 115.3 ¯ 117.3 116.6 ¯ 117.6 143.8 1.91

aEMAR-RUS average.
bFiber-longitudinal direction is along thex3 axis.
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FIG. 6. Composite elastic propertie
reconstructed using the micromecha
ics model. Solid circles are measure
ments.
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frequencies for specimen B. For almost all modes, th
agreed within 1%. The typical rms error was 0.5%.

We also applied the RUS method. The RUS spec
showed a better signal-to-noise ratio than the EMAR spec
but the subsequent inverse calculations were very sens
to the initial estimates ofCi j and easily converged to differ
ent ~false! minima. However, because we used the ela
stiffnesses determined by EMAR as the initial set for t
RUS-inverse calculation, the resultantCi j were consistent
with EMAR and pulse-echoCi j . The rms difference be
tween measured and calculated frequencies was compa
with that in the EMAR case.
y

a
a,
ve

c

ble

For pulse-echo measurements, we used longitud
wave and two shear waves polarized in thex1 andx3 direc-
tions. All ultrasonic waves propagated in thex2 direction.
They provideC22, C66, and C44. The pulse-echo method
applied to other propagation directions was unsuccessful
cause the surface areas were too small.

Table III presents the elastic stiffnesses determined
the three methods. The EMAR and RUS methods gave c
Ci j , within a few percent difference, except forC55: the
RUS C55 was about 8% larger than the EMARC55. At
present, this remains unclear. The EMAR and pulse-e
methods showed the same trend ofC44 larger thanC66,
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which is expected from the fiber alignment. This was n
evident with the RUS method, although agreement of
RUSCi j with the pulse-echoCi j was still good. The EMAR
measurement is based on the correct mode identification
it includes fewer resonance peaks. The RUS measurem
includes more resonance peaks, but mode identificatio
unclear, especially at higher modes because the peaks
lap. Therefore, we consider that averaging the elastic s
nesses obtained by the EMAR and RUS methods prov
the most reliable answer; these averages are show
Table III.

B. Prediction of composite elastic stiffnesses

The measurement resultsC11>C22, C44>C66, and
C13>C23 suggest that the composite has nearly tetrago
symmetry, which is understandable from its manufactur
procedure~foil-fiber-foil technique!. For transverse isotropy
the additional requirement isC665(C112C12)/2. This was
observed with 5%. As a result, in determining the fiberCi j ,
we assumed transverse-isotropic symmetry for the com
ite, which is needed to use Eq.~4! directly; these values ar
given in Table III. This is the complete set of effective elas
stiffnesses for the SCS-6 SiC fibers. Previously, only ax
Young’s modulus has been reported; it ranged from 400
428 GPa,19,20 consistent with our inferred value of 403 GP
Note that we tried to determine the fiber elastic stiffnesses
assuming that they were isotropic and by using the sa
approach, but we were unsuccessful. This means that no
sible set of isotropic fiberCi j can explain the measured com
positeCi j .

Once we obtain the complete sets of the fiber ela
stiffnesses and the matrix stiffnesses, we can reconstruc
composite stiffness as a function of fiber-volume fracti
by using Eq.~2!. In Fig. 6, we show the changes in comp
site elastic properties that are important for engineer
purposes.

C. Internal friction

We show the three-specimen averaged internal-frict
tensor componentsQi j

21 in Table III. Possible factors con
tributing to internal friction in the frequency range used he
are the dislocation damping in the matrix and energy los
the imperfectly bonded fiber-matrix and interlayer boun
aries. The bulk-modulus internal friction was the small
value, which is understandable because dislocation mob
is lower during breathing-mode vibration.6 An interesting
observation is the larger internal friction for the wave mod
propagating in thex2 direction; that is,Q22

21 is larger than
Q11

21 andQ33
21; Q44

21 andQ55
21 is larger thanQ66

21; andQE2
21 is

larger thanQE1
21 and QE3

21. This trend is the same as th
observed for a similar SiC/Ti crossply composite7 and sug-
gests an energy loss at the imperfect bonding bounda
between ply layers.

VI. CONCLUSIONS

~1! We determined the complete set of elastic stiffnes
of a unidirectional SiCf /Ti alloy composite using three meth
t
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ods: electromagnetic acoustic resonance~EMAR!, resonance
ultrasound spectroscopy~RUS!, and pulse echo. In EMAR
we controlled the vibration mode by changing the geome
cal configuration of the coil and static field, which is a
important advantage in mode identification.

~2! Using theCi j determined by EMAR for the initial
guess of the iteration analysis in RUS led to succes
inverse-calculation convergence.

~3! Assuming transverse isotropy, we calculated t
complete set of the effective SiC fiber elastic stiffnesses
ing the measured compositeCi j and matrixCi j with a mi-
cromechanics model. The calculated Young’s modulus al
the fiber direction agreed with previously reported values
complete set of the SiC fiberCi j is first reported here.

~4! We applied the micromechanics model to predict t
compositeCi j as a function of fiber-volume fraction.

~5! We determined the internal-friction tensorQi j
21 by a

free-decay method with EMAR. TheQi j
21 of wave modes

propagating in thex2 direction were larger than those o
other modes, suggesting imperfect bonding between ply
ers. Thus, the measurement of the internal-friction tensor
dicates the quality of those interfaces.
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