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This paper determines all the 13 elastic constants Cij of monoclinic b-Ga2O3, which has never been

achieved since the discovery of this crystal about 100 years ago. We used resonant ultrasound

spectroscopy with laser-Doppler interferometry, where the resonant-mode identification was unam-

biguously made by comparing measured and calculated displacement distributions on the vibrating

specimen surface. Using more than 110 resonance frequencies, we inversely determined the Cij:

C11¼ 242.8 6 2.9, C22¼ 343.8 6 3.8, C33¼ 347.4 6 2.5, C44¼ 47.8 6 0.2, C55¼ 88.6 6 0.5,

C66¼ 104.0 6 0.5, C12¼ 128 6 0.1, C13¼ 160 6 1.5, C23¼ 70.9 6 2.1, C15¼ –1.62 6 0.05, C25

¼ 0.36 6 0.01, C35¼ 0.97 6 0.03, and C46¼ 5.59 6 0.69 GPa. We also performed a density-func-

tional-theory calculation and found that the local density approximation yields both the lattice

parameters and Cij closer to the measurements than the generalized gradient approximation. Strong

elastic-stiffness anisotropy is found in the diagonal elastic constants: C11 is smaller than C22 and

C33 by �30%, and the difference between C44 and C66 exceeds 50%. Our measurements also reveal

anomalous Poisson’s ratios: �21 and �31 exceed 0.5, and �23 and �32 are almost zero. We explain

these unusual elastic properties with the truss-like deformation of the tetrahedra-octahedra network

and confirm this view with the ab- initio calculation. Published by AIP Publishing.
https://doi.org/10.1063/1.5047017

I. INTRODUCTION

b-Ga2O3 has received intense interest because of its

characteristic crystallographic structure and the second wid-

est bandgap among semiconductors. Since its discovery in

1925,1 there are many reports on the physical properties of

b-Ga2O3 until now,1–11 such as detailed crystal structure,4

Brillouin zone and band structure,9 and anisotropic thermal

conductivity.11 However, no study reports the elastic con-

stants Cij of b-Ga2O3 including experiment and theory,

despite the discovery of this crystal about 100 years ago;1

this fact is surprising because b-Ga2O3 is currently highly

promising material for power devices, for which the elastic

constants are required in designing.

b-Ga2O3 shows very high breakdown electric field

(higher than that of GaN by a factor of 2.5)12 and very large

Baliga’s figure of merit13 (larger than that of GaN by a factor

of 4), being a desirable power-device material.12,14–17

Another advantage over GaN is its low manufacturing cost:

A b-Ga2O3 monocrystal bulk can be, in principle, synthe-

sized by a melt-growth method,18,19 allowing large produc-

tion at lower cost. It is well recognized that the Cij of a

power-device material are significantly important in design-

ing the device, because they are indispensable to evaluate

the stress field in the device caused by thermal process and

lattice misfits with other materials.20–23 The absence of

Cij is, therefore, a critical problem for the applications of

b-Ga2O3.

This study determines the complete set of Cij of

b-Ga2O3 for the first time. The monoclinic b-Ga2O3 belongs

to space group C2/m and shows a crystal structure in which

tetrahedra and octahedra are joined by oxygen atoms as

shown in Fig. 1. Complete description of its elasticity

requires 13 independent Cij

Cij

� �
¼

C11 C12 C13 0 C15 0

C22 C23 0 C25 0

C33 0 C35 0

C44 0 C46

sym: C55 0

C66

2
6666666664

3
7777777775
:

Measuring all the Cij of b-Ga2O3 with conventional meth-

ods, such as the plate-thickness resonance method24 and the

pulse-echo method,25 is a formidable task, where one must

acquire at least 13 labyrinthine simultaneous equations

through measurements on many specimens with different

crystallographic orientation and solve them. It would be,

however, difficult to complete such measurements because

single-crystal and high-quality specimens are limited to

small size.

In this study, we use resonant ultrasound spectroscopy

coupled with laser-Doppler interferometry (RUS/LDI)26–30

to accurately determine all the 13 Cij of b-Ga2O3. This

method detects many free-vibration resonant frequencies

with a piezoelectric needle tripod and identifies their reso-

nance modes by measuring displacement distributions on thea)ogi@prec.eng.osaka-u.ac.jp
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vibrating specimen surface with LDI and comparing them

with the theoretical distributions, leading to unambiguous

mode identification. The determined Cij show unusual prop-

erties, including significantly smaller C11 than the other lon-

gitudinal moduli, much smaller C44 than C66, and unusual

Poisson’s ratios (some exceed 0.5 and others are nearly

zero).

To confirm these elastic properties, we evaluated the Cij

using the density-functional-theory (DFT) calculation. The

calculated Cij essentially agree with our measurements,

reproducing the unusual elastic properties. Deformation of

the lattice is also reproduced with the DFT calculation, and

we reveal that the truss-like deformation with the tetrahedra-

octahedra crystallographic network consistently explains the

anomalous elasticity.

II. MEASUREMENTS

Three rectangular-parallelepiped specimens (specimens

A–C) were cut from a single-crystal b-Ga2O3 ingot. Table I

shows their dimensions. We take the x1, x2, and x3 axes, the

three orthogonal principal axes for the monoclinic system as

follows: x2 and x3 axes are along the b and c axes, respec-

tively, and the x1 axis is taken to be perpendicular to the

x2–x3 plane. (Note that the x1 axis is not parallel to the a axis

because the angle between the a and c axes is not 90� but

103.7� for b-Ga2O3.3) The dimensions L1, L2, and L3 denote

the side lengths along the x1, x2, and x3 axes, respectively.

The mass density determined from mass and dimensions was

5709 kg/m3.

We used the tripod-type RUS/LDI measurement system,

whose details appear elsewhere.26–28 The specimen is put on

the tripod consisting of two needle piezoelectric transducers

for excitation and detection of acoustic vibrations and one

needle just for support. This measurement setup enables

ideal free vibrations of the specimen because the external

force acting on the specimen is only gravity. This setup

allows us to rigorously compare measured resonance fre-

quencies with computed free-vibration values, which dra-

matically improves the accuracy of the Cij determination.

We measured the resonance frequencies of the three speci-

mens up to 2 MHz.

FIG. 1. The conventional unit cell of b-Ga2O3.

TABLE I. Dimensions Li (mm), elastic constants Cij (GPa) of the three b-Ga2O3 specimens, and the rms errors between measured and calculated resonance

frequencies after convergence of the inverse calculation. Lattice parameters a, b, and c (Å) and Cij calculated with first-principles calculation, where the local-

density-approximation (LDA), the generalized-gradient-approximation (GGA) potential, Becke’s three-parameter hybrid exchange functional, and Lee, Yang,

and Parr correlation functional (B3LYP) or the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE) was used.

Measurement Calculation

Specimen A Specimen B Specimen C Ref. 3 LDA (this study) GGA B3LYP5 HSE9

L1 3.021 3.449 3.872

L2 5.438 4.454 4.676

L3 3.469 3.778 3.661

a 12.23 12.20 12.51 12.34 12.27

b 3.04 3.04 3.10 3.08 3.05

c 5.80 5.81 5.92 5.87 5.82

C11 240.7 240.8 246.9 219 204

C22 349.1 341.3 340.9 365 324

C33 345.0 350.9 346.3 344 305

C44 48.1 47.8 47.7 54 45

C55 87.9 88.9 89.1 76 73

C66 103.5 104.6 103.8 99 93

C12 128.2 128.3 128.4 127 116

C13 160.4 158.0 161.6 169 139

C23 72.0 72.7 68.0 106 78

C15 –1.68 –1.59 –1.58 –1.4 –1.3

C25 0.36 0.35 0.35 3.5 2.1

C35 0.97 1.00 0.93 18 17

C46 5.89 4.64 6.25 13 7.8

rms error (%) 0.36 0.35 0.28
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After the resonance-frequency measurements, a 100-nm

aluminum film was deposited on the x2–x3 face of the speci-

men. This deposition is necessary to apply laser-Doppler

interferometry to b-Ga2O3 because it is a transparent mate-

rial. The differences of resonance frequencies before and

after the deposition were �0.03%; hence, the mode corre-

spondence is clear even after the aluminum-film addition.

We then measured normal-displacement distributions of the

surface with laser-Doppler interferometry for mode identifi-

cation. A Doppler interferometer detects the frequency shift

of a reflected beam from the resonating surface and derives

the vertical component of the displacement velocity at a

focal point. It is possible to gain vertical-velocity distribu-

tions, that is, normal-displacement distributions by scanning

the whole surface.

III. RESULTS

Figure 2 shows an example of the measured resonance

spectrum of specimen B. The resonance frequency of each

resonant mode was obtained by Lorentzian-function fitting

procedure. Figure 3 shows examples for comparison between

the measured and calculated displacement distributions.

Their strong agreement indicates that the visual approach

permits unambiguous resonant-mode identification. We iden-

tified more than 110 resonant peaks for each specimen and

determined all 13 Cij by the inverse calculation: We used

normalized Legendre polynomials31 up to order 24 as the

basis functions (�3000 basis functions were used for each

displacement). Considering the vibrational symmetry, the

free vibrations of the monoclinic-symmetry rectangular par-

allelepiped fall into four vibrational groups,31,32 for which

the resonance frequencies are separately calculated.

Table I shows inversely determined Cij of the three

specimens together with the rms errors between measured

and calculated frequencies after convergence; the errors

were less than 0.36%.

Also, we estimated the Cij of b-Ga2O3 with ab-initio cal-

culation based on density-functional theory. The Vienna

ab-initio simulation package (VASP)33 was used. The local

density approximation (LDA) and the generalized gradient

approximation (GGA) were used to describe the exchange

correlation potential. The plane-waves cutoff energy was set

to 1300 eV with 10� 10� 10 mesh k points. We applied 13

different deformation modes (elongation, shearing, breath-

ing, and so on) to the unit cell up to 61% in each deforma-

tion mode, relaxed the ions inside the cell at individual

strain, and calculated the relationship between the total

FIG. 2. Resonance spectrum of b-Ga2O3 specimen (specimen B) measured

by the RUS system. The inset shows an enlarged resonant peak.

FIG. 3. Examples of measured (left)

and calculated (right) displacement

distributions of specimen A. The x2

and x3 axes are parallel to the horizon-

tal and vertical axes, respectively.

Bright and dark zones represent anti-

node and node, respectively. The mode

denotations follow Mochizuki.32
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energy and strain. By fitting a harmonic function to the total

energy vs. strain curve, we determined the effective stiffness

in each deformation mode. All the independent Cij were then

obtained.34–36 The resultant lattice parameters and Cij are

given in Table I together with lattice parameters previously

reported.3,5,9

IV. DISCUSSION

Figure 4 shows the contribution of each elastic constant

to resonance frequencies f, defined as jðCij=f Þð@f=@CijÞj.
This represents the magnitude of frequency change caused

by the Cij change. Therefore, Cij, whose contributions are

relatively high, are sensitive to the resonance frequencies,

and they can be accurately determined by the inverse calcu-

lation. The diagonal elastic constants and two off-diagonal

elastic constants (C12 and C13) should be obtainable with

high precision by the inverse calculation because their con-

tributions are large. Indeed, the standard deviations of these

elastic constants among the three specimens are less than

1.2%. The measurements of these elastic constants show

good agreements with the theoretical values with LDA rather

than with GGA (Table I); the rms error between the measure-

ments and the DFT calculations was within 8%. Table I indi-

cates also that the LDA potential provides lattice parameters

closer to the measurements3 (within 0.25% error) than the

GGA potential. Thus, the DFT calculation with LDA will be

more appropriate for predicting other material properties

than with GGA for b-Ga2O3.

From the measured Cij, we determined Young’s moduli

Ei along the three principal directions, Poisson’s ratios �ij

(¼ –sij/sii, where sij denote components of the compliance

matrix), and the bulk modulus B as shown in Table II. These

results reveal unusual elastic properties: (1) very strong

Young-modulus anisotropy (E1 � E2, E3) as well as strong

longitudinal-modulus anisotropy (C11 � C22, C33), (2) very

strong shear-modulus anisotropy (C44 � C55, C66), (3)

Poisson’s ratios exceeding 0.5 (�21 and �31), and (4) nearly

zero Poisson’s ratios (�23 and �32). We find that very similar

elastic anomalies appear in h alumina (h-Al2O3), which

shows the same space group (C2/m) as b-Ga2O3. On the

other hand, other monoclinic materials with different space

group fail to show the anomalies as shown in Table II; they

show normal Poisson’s ratios (0.1–0.4) and insignificant

elastic anisotropies in Young’s and shear moduli. These

observations highly indicate that the anomalous elastic prop-

erties of b-Ga2O3 result from the specific space group C2/m,

that is, the polyhedral-linkage structure shown in Fig. 1.

b-Ga2O3 and h alumina show larger bulk modulus than the

others, indicating higher binding energy in the tetrahedra-

octahedra crystallographic network.

The strong anisotropy in the longitudinal modulus C11

� C22, C33 or E1 � E2, E3 means that b-Ga2O3 is softer

along the x1 axis. We attribute this elastic anisotropy to the

polyhedral-linkage structure. Figures 5(a)–5(c) project the

crystal structure of b-Ga2O3 onto the x2 – x3, x1 – x3, and x1

– x2 planes, respectively. b-Ga2O3 has a truss-like structure

in which the rigid tetrahedra and octahedra are connected by

sharing the vertex or side. They are expected to show high

stiffness, that is, high resistance to the change in the neigh-

boring Ga-O bond distance and O-Ga-O bond angle consti-

tuting them. Although uniaxial elongation basically requires

the increase in the interatomic distance, apparent tensile

deformation can arise from the bending of connection

between the tetrahedron and octahedron in the x1 direction.

As a result, it is possible to produce the longitudinal deforma-

tion along the x1 axis with less Ga-O bond distance change

in the rigid polyhedra, resulting in lower C11 than the other

longitudinal moduli. To confirm this interpretation, we calcu-

lated the atomic migration in b-Ga2O3 caused by the principal

tensile and shear strain with the ab-initio calculation with

LDA. The applied strains are 1%, and the atoms inside unit

cell are relaxed. Figure 6 shows the examples of computed

atomic behavior. The change ratios of the neighboring Ga-O

bond distance of the tetrahedron and octahedron are given in

Table III. The calculations reveal that the bond distance

change needed to produce the 1% tensile strain in the x1

direction is smaller than in the x2 and x3 direction by �18%.

As for the principal shear moduli, C44 is remarkably

small, less than 50% of C66. The shear deformation essen-

tially requires bond angle change because it is necessary to

deform without volume change. However, since the square

sides of the octahedra are parallel to the x2 and x3 axes, the

shear deformation in the x2 – x3 plane will be achieved with

less angle change of the rigid O-Ga-O bond by changing into

a parallelogram as shown in Fig. 6(b), yielding lower C44.

As can be seen in Table III, the ab-initio calculation actually

demonstrates that the smaller angle change than that in the

x1 – x2 plane (related to C66) by �38% can produce the

equivalent shear deformation in the x2 – x3 plane (related to

C44), supporting our view.

We find a negative elastic constant C15. Since the a axis

is inclined against the x1 axis as shown in Fig. 5(b), the shear

strain in the x1 – x3 plane caused by a tensile stress along the

x1 axis decreases the angle between x1 and a axes, that is, the

shear angle. As a result, C15 can become negative.

As mentioned above, b-Ga2O3 shows the following

unusual Poisson’s ratios: �21 and �31 are larger than 0.5 and

�23 and �32 are nearly zero. From Figs. 5(b) and 5(c), it can

be seen that b-Ga2O3 includes parallelogram-shape units sur-

rounded by two tetrahedra and two octahedra in the x1 – x3

FIG. 4. Normalized contributions of elastic constants to resonance frequen-

cies jðCij=f Þð@f=@CijÞj for specimen B.
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and x1 – x2 planes. These unit structures function as a square

truss, whose Poisson’s ratio nearly equals unity when uniax-

ial stress is diagonally applied, so that Poisson’s ratios in

these planes become larger. The first-principles calculation

indicates the behavior of the parallelogram-shape units as a

square truss as shown in Figs. 6(c) and 6(d). Besides, the uni-

axial stress applied along the x2 or x3 axis easily induces the

transverse strain in the x1 direction because of smaller C11,

resulting in larger �21 and �31 values. For these reasons, �21

and �31 can exceed 0.5.

We attribute the nearly zero Poisson ratios (�23 and �32)

to the distinguishing alignment of the tetrahedra in the x2–x3

plane seen in Fig. 5(a); two vertices of the tetrahedron lie on

the x2 axis and the other two lie on the x3 axis as shown in

Fig. 5(d). Because the two sides (AB and CD) are orthogo-

nal, an elongation of one side affects little the deformation of

the other side. Supplementary material confirms this with an

FEM calculation, where an isotropic tetrahedron is elongated

along one side, giving almost no change in the length of the

other side. Thus, a tetrahedron elastic body inherently shows

nearly zero Poisson’s ratio when it is uniaxially deformed

along the side.

Finally, we calculate the Debye temperature HD through

the following relationship:40,41

HD ¼
h

k

3

4pVa

� �1
3

vm: (1)

Here, h, k, and Va denote Planck’s constant,

Boltzmann’s constant, and the atomic volume, respectively.

vm denotes the mean sound velocity vm, which is determined

from the averaged elastic constants of the material. Several

calculation methods for averaging anisotropic Cij were pre-

sented as reviewed in the literature.42 We here numerically

calculated the averaged-over-direction Cij and sij by dividing

the Euler angles and obtained the isotropic-approximation

elastic constants from the averages between Cij and (sij)
�1.

The determined HD are given in Table II, together with the

averaged-over-direction elastic moduli. The Debye tempera-

ture of b-Ga2O3 is significantly lower than those of the others

because it contains heavy gallium, whereas HD of h alumina

is the highest because it shows large bulk modulus and con-

sists of light elements.

V. CONCLUSIONS

We determined the 13 (monoclinic-symmetry) elastic

constants of b-Ga2O3 by performing resonant-mode identifi-

cation through the RUS/LDI method. Density-functional-

TABLE II. Elastic constants Cij (GPa), Young’s modulus Ei along the xi axis (GPa), Poisson’s ratios �ij, the bulk modulus B (GPa), and the Debye temperature

HD (K) of monoclinic materials. The isotropic-approximation longitudinal modulus hCLiiso
(GPa), the bulk modulus hBiiso

(GPa), Young’s modulus hEiiso

(GPa), shear modulus hGiiso
(GPa), and Poisson’s ratio h�iiso

are obtained from the averaged-over-direction Cij. The averages of the three specimens are

shown.

Space group

b-Ga2O3

(this study) C2/m

h-Al203 Ref. 39

C2/m

Diopside

(CaMgSi206)37 C2/c

Hedenbergite

(CaFeSi206)38 C2/c

Chrome diopside

(CaMgCr0.02Si206)31 C2/c

C11 242.8 6 2.9 283.8 223 222 228.1

C22 343.8 6 3.8 420.4 171 176 181.1

C33 347.4 6 2.5 435.3 235 249 245.4

C44 47.8 6 0.2 86.8 74 55 78.9

C55 88.6 6 0.5 104.3 67 63 68.2

C66 104.0 6 0.5 124.5 66 60 78.1

C12 128 6 0.1 119.3 77 69 78.8

C13 160 6 1.5 159.8 81 79 70.2

C23 70.9 6 2.1 83.0 57 86 61.1

C15 –1.62 6 0.05 –30.7 17 12 7.9

C25 0.36 6 0.01 12.3 7 13 5.9

C35 0.97 6 0.03 16.7 43 26 39.7

C46 5.59 6 0.69 23.8 7.3 –10 6.4

E1 141.2 6 1.5 191.1 174 185 185.3

E2 275.1 6 3.5 363.8 140 137 147.7

E3 241.2 6 4.0 333.7 179 191 195.3

�12 0.29 6 0.005 0.23 0.37 0.28 0.37

�13 0.40 6 0.008 0.34 0.25 0.21 0.20

�21 0.57 6 0.003 0.43 0.29 0.21 0.29

�23 –0.057 6 0.008 0.02 0.15 0.27 0.17

�31 0.69 6 0.005 0.59 0.25 0.22 0.21

�32 –0.050 6 0.007 0.02 0.20 0.38 0.23

B 182.6 6 0.3 202.7 108 117 113.4

HD 562 6 0.6 860 673 609 700

hCLiiso
289.7 6 0.01 348.6 202 203 213.4

hBiiso
183.1 6 0.3 204.9 113 120 116.4

hEiiso
209.3 6 0.4 275.1 168 158 180.7

hGiiso
79.9 6 0.2 107.8 67.1 61.8 72.8

h�iiso
0.31 6 0.001 0.28 0.25 0.28 0.24
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theory calculation with the LDA potential provides both

proper lattice constants and the elastic constants close to the

measurements, indicating that other properties will be favor-

ably predicted with this calculation method. b-Ga2O3 shows

strong elastic anisotropies: It shows significantly low resis-

tance to the longitudinal deformation along the x1 axis and to

the shear strain in the x2 – x3 plane, corresponding to small

C11 and C44. Unusual Poisson’s ratios are found in b-Ga2O3

such as exceeding 0.5 and near-zero values. These anoma-

lous elastic properties are consistently explained by focusing

on the tetrahedra-octahedra crystallographic network, which

is supported by the DFT calculation.

FIG. 5. Schematic projection views of

the crystal structure on the (a) x2–x3,

(b) x1–x3, and (c) x1–x2 planes. (d) An

enlarged view of a tetrahedron in (a),

whose two sides (AB and CD) align so

as to be parallel to the x2 and x3 axes,

respectively.

FIG. 6. Deformation behavior of b-Ga2O3 caused by (a) tensile strain along x1 axis, (b) shear strain in the x2–x3 plane, (c) tensile strain along x3 axis, or (d) ten-

sile strain along x2 axis calculated with the ab-initio calculation. The left and right images show the structures before and after applying the corresponding

strain, respectively. Displacements of atoms are increased by 20 times.

085102-6 Adachi et al. J. Appl. Phys. 124, 085102 (2018)



SUPPLEMENTARY MATERIAL

See supplementary material for FEM calculation of

deformation of a tetrahedron.
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