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Elastic constants of langasite and alpha quartz at high temperatures
measured by antenna transmission acoustic resonance
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Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

(Received 25 April 2012; accepted 13 June 2012; published online 5 July 2012)

A method for measuring elastic constants of piezoelectric materials at high temperature up to
1224 K is proposed. It determines all independent elastic constants by measuring resonance frequen-
cies of a rectangular parallelepiped piezoelectric specimen contactlessly using its own piezoelec-
tricity with an antenna. Without using conventional contacting piezoelectric transducers, vibrational
sources are excited directly in the specimen by the oscillating electric field. Capability of the method
is demonstrated by measuring the elastic constants of langasite at high temperature up to 1224 K,
and temperature coefficients of the elastic constants are determined. In addition, elastic constants of
alpha quartz are measured at high temperature up to just below the alpha-beta phase transition tem-
perature. Considering the local deformation with temperature increment, an interpretation based on
the strain energy reduction is proposed for the unusual temperature dependence of C66. Furthermore,
the internal-friction tensor is measured, and the relationship between the observed anisotropy in in-
ternal friction and the structural evolution with temperature increment is discussed. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4731657]

I. INTRODUCTION

Elastic constants of piezoelectric material are essential
parameters for designing acoustic sensors and filters. Be-
cause the temperature at which sensors are used is wide-
ranging, temperature dependence of elastic constants have
been required to develop optimized sensors at the operat-
ing temperature. However, the measurement has never been
straightforward. One of the reasons is the low crystallographic
symmetry of piezoelectric materials; for example, langasite
(La3Ga5SiO14) and α-quartz show trigonal symmetry (six in-
dependent elastic constants) and typical metals such as cop-
per and iron show cubic symmetry (three independent elastic
constants). As symmetry becomes lower, the number of in-
dependent elastic constant increases. It makes measurement
of elastic constants difficult, especially at high temperatures.
There are several methods that measure elastic constants of
piezoelectric materials: plate-thickness resonance,1, 2 the rod
vibration,3 and pulse-echo.4 These methods require several
specimens with different crystallographic orientations to de-
termine a complete set of elastic constants, and each speci-
men has to be examined individually. Then, orientation error
and dimension error of each specimen are accumulated in the
resultant elastic constants, and as the number of specimens in-
creases, the resultant error increases. Also, it has to be noted
that for measuring the temperature dependence of elastic con-
stants, experiments at several temperatures have to be car-
ried out for each specimen, which is highly time-consuming.
These features indicate that the conventional methods are
not optimized for studying temperature dependence of elas-
tic constants.

Among the conventional methods, resonant ultrasound
spectroscopy (RUS) is a candidate for the high-temperature

a)Electronic mail: ogi@me.es.osaka-u.ac.jp.

experiment, because it can determine all independent elas-
tic constants from a single specimen by a single frequency
sweep.5, 6 This is an advantage over other methods, and the
RUS method has been already applied to temperature de-
pendence of elastic constants of various materials.7–9 How-
ever, in the conventional RUS method, there is a difficulty to
be solved for high-temperature measurements. RUS method
measures resonance frequency of mechanical free vibrations
of a specimen, and determines a set of elastic constants in-
versely from a number of resonance frequencies. Resonance
frequencies are generally measured by holding a specimen be-
tween two piezoelectric transducers. Because piezoelectricity
of the transducers disappears at elevated temperature, conven-
tional transducers cannot be used for high-temperature mea-
surements. Although the methods to use buffer rods connect-
ing the piezoelectric transducers and specimen were proposed
for high-temperature measurements,7, 8 separation of the rod’s
signal from the specimen’s signal is problematic. It is also in-
evitable that holding a specimen by the transducers obstructs
free vibrations and consequently degrades measurement ac-
curacy of resonance frequencies.10

Antenna transmission acoustic resonance (ATAR) is here
proposed for solving the difficulty and for achieving high-
temperature measurement of elastic constant of piezoelectric
materials. Measurement principle of the ATAR method is the
same as that of RUS method, but the experimental setup is
different; resonance frequencies are now measured owing to
the specimen’s own piezoelectricity using an antenna, instead
of the piezoelectric transducers. The antenna applies no exter-
nal force except for the specimen’s mass, and it achieves ideal
free vibrations of the specimen.

In this study, we show the capability of the ATAR
method by measuring the elastic constants of langasite and
α-quartz. Langasite shows higher electromechanical coupling
coefficients than α-quartz. Because piezoelectricity exists
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until the melting point (1743 K), langasite is a candidate
for high-temperature transducers and sensors. Temperature
dependence of elastic constants has been reported up to
620 K by the RUS method11 and up to 1173 K by the rod
vibration method.3 Here we measure the elastic constant up to
1224 K, and demonstrate capability of the ATAR method.

Also, α-quartz is measured. Elastic constants are mea-
sured up to just below the α-β phase transition temperature
(846 K); we discuss significant differences from the previ-
ously reported values. Among the elastic constants, only C66

shows anomalous behavior. An interpretation, which is estab-
lished based on the local strain caused by thermal expansion,
is proposed for the anomaly. Also, temperature dependence
of the internal friction tensor is determined, which has never
been reported at high temperatures. In the internal-friction
measurement, an experimental setup that minimizes energy
loss caused by other factors is required. The antenna causes
the limited contact with the specimen, and it allows us to mea-
sure the internal friction. Our measurement reveals that an in-
ternal friction component Q33 shows anomalous behavior just
below the transition temperature.

II. MEASUREMENTS

A. Specimen

Langasite and α-quartz belong to the point group 32.
They show trigonal symmetry, and possess six independent
elastic constants, two piezoelectric constants, and two di-
electric constants. A rectangular parallelepiped specimen was
prepared for each single crystal. Specimen sizes were 8.049
× 4.061 × 3.958 mm3 for langasite and 4.768 × 5.234
× 5.797 mm3 for α-quartz. The dimensions were measured
using a micrometer. Mass density was calculated from the di-
mensions and mass measured using an electric balance, and
their values were 5677 and 2645 kg/m3, respectively.

B. Antenna transmission acoustic resonance

Figure 1 shows a diagram of the antenna developed in the
present study. The antenna consists of three chromel wires.
An end of each wire is curled so as to roughly surround the
specimen. The wires are placed side by side with a small gap
between them, and the curled regions are covered with ce-
ment paste. It forms a cement tube that the curled wires are
embedded in the circumferential direction inside the tube’s

Driving burst

Specimen

Detected
signal

Chromel wire

Potential difference

FIG. 1. Schematic image of the antenna for measuring resonance frequency
of a piezoelectric specimen. The cement tube that is explained in the text is
not shown here.
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FIG. 2. Cross-sectional view of the vacuum chamber.

wall. The cement is then solidified. Resonance frequencies
are measured by placing a specimen inside the ceramic tube.
Inner diameter of the tube is slightly larger than the speci-
men’s dimensions, and the specimen does not touch the inner
surface of the tube except at the specimen’s bottom. This re-
alizes nearly ideal resonance vibrations. A thermocouple is
located beside the specimen. The tube and the thermocouple
are surrounded by a resistive heater. All of them are placed
in a vacuum chamber, and resonance spectra are measured.
Configuration of the vacuum chamber is shown in Fig. 2. The
pressure during the experiments was between 4.5 × 10−3 and
1.6 × 10−2 Pa for langasite and between 5.3 × 10−3 and 9.3
× 10−2 Pa for α-quartz.

One of the chromel wires is connected with the ground.
One of the remaining wires is connected to a synthesizer
through a gated amplifier for excitation purpose, and the other
is connected to a superheterodyne spectrometer through a pre-
amplifier for detection purpose. To excite vibration in a spec-
imen, a sinusoidal tone burst is applied to the transmission
wire. Potential difference between the transmission wire and
the ground wire excites the electric field in the normal direc-
tion to the straight line of the wires. By inverse piezoelectric-
ity, the field causes oscillation of the specimen at the same fre-
quency of the burst. The oscillating specimen then inversely
excites an electric field near the surface through the piezoelec-
tricity, which is picked up by the detecting wire. Amplitude of
the detected signal is proportional to the oscillation amplitude
of the specimen, and by sweeping the frequency of the driving
burst, a resonance spectrum is obtained. When the frequency
of the driving burst corresponds to a resonance frequency of
the specimen, a high-amplitude vibration occurs and a reso-
nance peak appears in the spectrum. Resonance frequencies
are determined by the Lorentz-function fitting method. The
antenna transmitting system possesses advantages that elec-
trodes are not required to be deposited on specimen surfaces
and no external forces except for its weight are applied. These
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advantages allow us to measure resonance frequencies accu-
rately. The efficiency can be seen in the literature, where the
antenna transmitting system was applied to the immunoassay
sensor.12, 13

In the ATAR method, elastic constants are determined
in the same manner as the RUS method.14 Resonance
frequencies of a piezoelectric rectangular parallelepiped
specimen depend on the dimensions, mass density, elastic
constants, piezoelectric constants, dielectric constants, and
crystal orientation. Therefore, elastic constants are deter-
mined by measuring the resonance frequencies and the other
parameters. Regarding the dimensions and the mass density,
they are measured at room temperature first; variations
with temperature increment are estimated from the reported
temperature dependence of lattice parameters.15, 16

Regarding the piezoelectric coefficients and dielectric
constants, the values given at room temperature are used over
the whole temperature range. In high-frequency (ultrasonic-
frequency) measurements, the material is stiffened because
of suppression of total strain by the piezoelectric strain. This
is called piezoelectric stiffening, and the apparent elastic
constant C′ is roughly expressed as C′ = C + e2/ε, where C
is the elastic constant, e the piezoelectric constant, and ε the
dielectric constant. The piezoelectric stiffening term e2/ε is
usually much smaller than the elastic constant C. ATAR and
RUS methods can principally determine all independent elas-
tic constants and piezoelectric constants from the resonance
frequencies. However, measurement of the resonance fre-
quencies at high temperature is difficult, and the number is not
enough to determine the piezoelectric constants accurately.
For example, in the present study, the number of measurable
resonance frequencies is about 20 close to the transition tem-
perature of α-quartz. Therefore, the piezoelectric stiffening
term was often ignored, e2/ε = 0, in the determination of
elastic constants.7 However, the piezoelectric stiffening effect
has to be considered in accurate evaluation of the elastic
constants. For evaluating the contribution, before high-
temperature experiments, we first determined two sets of
room-temperature elastic constants by the ATAR method; one
was determined with considering the piezoelectric stiffening
and the other was determined without it. In the calculation,
the reported piezoelectric constants and dielectric constants at
room temperature were used (the values are shown in the next
paragraph). Then, the difference between the elastic constants
of langasite was less than 1.1% for the diagonal components
and was less than 3.3% for the off-diagonal components. The
same analysis was carried out for α-quartz. Then, the differ-
ence was 8.5% for C12 and was less than 1.5% for other com-
ponents. Because these differences are not necessarily small,
the piezoelectric stiffening is considered in the analysis using
the reported values of eij and εij at room temperature. Effect of
temperature dependence of eij and εij on the resultant elastic
constant was also evaluated using their temperature depen-
dence reported in previous studies.3, 17–19 Then, the possible
error is 3.9% for C13 and less than 0.8% for other components
in α-quartz, and less than 1.2% for all components in langa-
site. These contributions are ignored in the present study.

For langasite, piezoelectric constants and dielectric
constants reported by Ogi et al.,14 e11 = −0.397 C/m2, e14

= 0.203 C/m2, ε11/ε0 = 19.04, and ε33/ε0 = 50.51, are
used. Here, ε0 denotes the vacuum permittivity. For α-quartz,
piezoelectric constants reported by Ogi et al.,20 e11 = 0.151
C/m2 and e14 = −0.061 C/m2, and averaged value of dielec-
tric coefficients given by Mason21 and Koga etal.,1 ε11/ε0

= 4.50 and ε33/ε0 = 4.60, are used.

III. RESULTS AND DISCUSSION

A. Langasite

Figure 3 shows resonance spectra measured at several
temperatures. Each resonance spectrum was measured keep-
ing the target temperature with the fluctuation less than
±1.5◦C. At room temperature, 48 resonance frequencies were
identified between 0.1 and 0.9 MHz. As the temperature in-
creases, some resonance peaks disappeared, and the minimum
number was 25 around 973 K. At 1224 K, 35 frequencies were
measurable, which is a large enough number to determine six
independent elastic constants. This result confirms capability
of the antenna at high temperature, and it is expected that the
antenna operates above 1273 K (=1000 ◦C).

Figure 4 shows the temperature dependences of elastic
constants obtained in the present study. Figure 5 shows
Young’s moduli Ea and Ec, bulk modulus B, and Pois-
son’s ratios ν12, ν13, and ν31 calculated from the measured
elastic constants (ν ij = −sij/sii, where sij denotes the elastic
compliance). Elastic constants decrease almost linearly
as the temperature increases. This behavior is similar
to the observation between 280 and 625 K measured
by Schreuer et al.11 with a RUS method. A linear function
Cij (T ) = [1 + aij (T − 293)]C293 K

ij was fitted to each temper-
ature dependence between 293 and 1224 K, and the first-order
temperature coefficients aij were deduced. They are listed in
Table I together with Cij at 293 and 1224 K. C14 shows the
largest dependence (a14 = −2.66 × 10−4 K−1), and the others
show comparable values (aij ≈ −1.0 × 10−4 K−1). At high
temperatures, solids generally show a linear negative slope
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FIG. 3. Resonance spectra of a langasite specimen measured with the an-
tenna method at several temperatures.
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FIG. 4. Temperature dependence of elastic constants of langasite.

in temperature dependence of Cij because of phonon effects.
Langasite shows high melting point and no phase transition
until the melting. Therefore, we expect that the phonon effect
is the primary reason of the linear temperature dependence in
the examined temperature range. Regarding Poisson’s ratios,
they are almost independent of temperature. Considering
comparable aij, the independences are reasonable, because
Poisson’s ratio is expressed as a fraction of homogeneous
polynomials of Cij and changes in Cij is canceled in Poisson’s
ratio. Although a14 is not comparable to others, value of C14

is small and contribution on Poisson’s ratio is expected to be
smaller than that of others. We consider that the comparable
aij is a feature that characterizes elastic property of langasite.

Comparing with the reported elastic constants, the
present results are close to those given by Schreuer et al.,11

but are different from the results measured with the rod vi-
brating method.3 The difference should be attributed to the
inaccuracy in the previous experiments described in the Intro-
duction.

B. Quartz

Figure 6 shows the temperature dependence of the elas-
tic constants. Figure 7 shows the temperature dependence of
Young’s moduli, bulk modulus, and Poisson’s ratios calcu-
lated from the measured Cij. In Fig. 6, present values show
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FIG. 5. Temperature dependence of Young’s moduli E, bulk modulus B, and
Poisson’s ratios ν of langasite.

the similar temperature dependence with the values reported
by Ohno et al.,7 as temperature increases, C11, C12, C13, C33,
and C44 decrease, C66 increases, and C14 slightly decreases
just above ambient temperature and it then increases. How-
ever, the values disagree, especially near the α-β phase tran-
sition temperature. Around room temperature, the effect of the
piezoelectric stiffening is a possible reason of the differences.
As described above, the present study considers the piezo-
electric stiffening, but it was ignored in the previous study.
Therefore, reported values tend to be larger than the present
values.

Around the phase transition temperature, the difference
becomes larger than that at room temperature; for example,
the difference in C33 exceeds 15%. This cannot be explained
only by piezoelectric stiffening. A possible reason is the dif-
ference in the number of resonance frequencies measured in
the experiment. In the ATAR method and the RUS method, re-
liability of resultant elastic constants is markedly improved as
the number of resonance frequency increases. In the previous
study, only 11 resonance frequencies were used around the
phase transition temperature for the six Cij, but the present
study uses more than 22 resonance frequencies. Among in-
dependent elastic constants, C44 is sensitive to the resonance
frequencies, and it is determined accurately even if the num-
ber of resonance frequency is small. Therefore, the difference

TABLE I. Elastic constants Cij (GPa) at room temperature and elevated temperature, and first-order temperature
coefficient aij (×10−4 K−1) of elastic constants of langasite and α-quartz.

ij 11 12 13 14 33 44 66

Cij at 293 K 188.6 104.7 95.6 14.4 258.9 53.3 42.0
Langasite Cij at 1224 K 172.5 96.4 87.8 11.0 228.1 47.7 38.0

aij − 0.90 − 0.98 − 0.99 − 2.66 − 1.29 − 1.04 − 0.85

Cij at 294 K 86.8 7.0 11.8 − 18.0 105.4 58.2 39.9
α-quartz Cij at 843 K 72.0 − 27.4 − 3.4 − 13.4 79.9 41.3 49.7

aij − 0.49 − 25.08 − 6.94 0.67 − 2.19 − 1.67 1.66
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FIG. 6. Temperature dependence of elastic constants of α-quartz. A dashed
line shows the phase transition temperature of 846 K.

in C44 is small. However, other elastic constants are not de-
termined as accurately as C44, and the smaller number of the
resonance frequencies significantly deteriorates the accuracy,
causing larger differences. From the above discussions, we
consider that the present study gives a more reliable set of
elastic constants. Table I shows the first-order temperature co-
efficient of Cij of α-quartz calculated between 294 and 373 K.

A notable feature in the temperature dependence of elas-
tic constants is the positive temperature dependence of a di-
agonal component C66 of elastic constant matrix. Usually Cij

decrease with increasing temperature. Although C14 increases
with increasing temperature, interpretation of off-diagonal
component of elastic constant matrix is complicated, and it is
not often essential. Here, we discuss its origin with the crys-
tallographic structural evolution accompanying the thermal
expansion. Before focusing on C66, the general relation be-
tween the Cij and the structural change in α-quartz is consid-
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ered. In thermal expansion of α-quartz, there is an anisotropy;
the a lattice parameter changes more than the c lattice
parameter.15 Considering that the thermal expansion changes
elastic constants through the higher order elasticity,22 the
anisotropy in the thermal expansion should cause anisotropy
in the temperature dependence of the elastic constants as well.
Figure 8 shows the in-plane elastic constant C11 + C12 and the
out-of-plane elastic constant C33. C11 + C12 denotes the in-
plane stiffness under the plane strain condition, S3 = 0, where
Si is the engineering strain. In the figure, C11 + C12 changes
more than C33. This behavior is related with the difference in
the thermal expansion coefficients; larger thermal expansion
causes larger change in the elastic constants. Thus, this rela-
tionship supports the view that the temperature dependence of
Cij is related with the crystallographic structural change.

The increment of C66 by heating is now considered. To
understand the detail of the structural change, local strain
caused by temperature increment is calculated using the
atomic positions measured by Kihara.23 Figure 9 compares
the structure of α-quartz at 298 K with that of β-quartz
at 848 K (just above the phase transition temperature) to-
gether with the coordinate axes. As the temperature in-
creases, the atoms in α-quartz move toward the atomic po-
sitions of β-quartz. As seen in the figure, the deformation is
never uniform. From the coordinate ui

n(T ) of each atom at T
= 298 K and at elevated temperature T, strain component γ ij

caused by heating is deduced by searching for γ ij that mini-
mizes the mean-square difference between the coordinate at
the elevated temperature and expected coordinates that each
atom would have if they were uniformly deformed by heating,
D2(T ) = ∑

n

∑
i(u

i
n(T ) − ∑

j (δij + γij )uj
n(298))2 where the

indices i and j denote spatial coordinates and the index n
runs over the atoms inside the spherical volume indicated by
dashed circle with radius r in Fig. 9.24 From the γ ij that min-
imizes D2, the engineering strain Si is determined.

Figure 10(a) shows the calculated strain with different r
at 848 K. As r increases, S1 and S2 increase gradually and
approach a specific strain. Similar behavior appears in S3. Re-
garding S4, fluctuation with r is intense and it converges on
zero as the temperature increases. On the other hand, S5 and S6

are zero. The fluctuations reveal that deformation by thermal
expansion is never uniform. If structural change by heating
were uniform, the strains would be constant without depend-
ing on r. When r becomes significantly large, the macroscopic
strain approaches the specific strain that is deduced from the
change in the lattice constant in the a and c directions; macro-
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FIG. 9. Comparison of structure between α-quartz at 298 K and β-quartz at
848 K. (a) is a projection onto the x1 − x2 plane and (b) is onto the x1 − x3
plane.

scopically local shear strains are canceled and only longitu-
dinal strain components remain. Also, strain evolution with
temperature is calculated with r = 8 Å in Fig. 10(b). In the
figure, strain changes depending on the temperature, but S5

and S6 are unchanged. In these results, it is noted that local
strain caused by heating is complicated but S5 and S6 are zero.
Elastic softening near the phase transition is considered to de-
crease the strain energy that is required to achieve the tran-
sition. However, zero strain of S6 indicates that softening of
the corresponding stiffness C66 is not necessarily required for
decreasing the strain energy, and the observed nonsoftening
of C66 is acceptable. Regarding S5, the same interpretation is
applicable to C55(= C44). However, S4 is not locally zero, and
softening of the corresponding stiffness C44 is required. Thus,
strain evolution caused by the thermal expansion provides a
possible interpretation of the notable temperature dependence
of C66.

Another feature is the unusual decrease of Poisson’s
ratios toward negative values with increasing temperature.
Keskar and Chelikowsky25 calculated Poisson’s ratio of α-
quartz with uniaxial stress in the c direction, and predicted

0 10

-0.01

0

0.01

0.02

r (Å)

E
ng

in
ee

ri
ng

st
ra

in

(a)

400 600 800
Temperature (K)

(b)

S1
S2
S3
S4
S5
S6

r=8Å
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33 . Inset shows decay curve of a resonance vibration of 0.771 MHz at
573 K.

negative value of Poisson’s ratio when sufficiently large ten-
sile stress is applied. Their prediction says that rigidity of
SiO4 tetrahedra and its rotation contribute the negative Pois-
son’s ratio, and lower mass density is required for this. Con-
sidering that thermal expansion decreases mass density, the
observed negative values of Poisson’s ratios should be ex-
plained in the same manner as that proposed for deformation
under the uniaxial stress. The interpretation should be also
applicable to negative values of C12 and C13 just below the
transition temperature, because they denote relationship be-
tween deformations in orthogonal directions as Poisson’s ra-
tios denote, and their physical meaning seems to be similar to
Poisson’s ratio.

For evaluating internal friction, decay curve of vibra-
tional amplitude at each resonance frequency was measured
(inset in Fig. 11). Attenuation coefficient α was deduced by
fitting an exponential function Ae−αt to the decay curve (A
is a constant), and internal friction Q−1 of each resonance
frequency was calculated by Q−1 = α/π f, where f is a res-
onance frequency. Then, internal friction tensor Q−1

ij was cal-
culated from Q−1 values at individual resonances and the
calculated contributions of elastic constants to the resonance
frequencies. Detail of the calculation procedure is described
elsewhere.14

Figure 11 shows the diagonal components of Q−1
ij . As

temperature approaches the phase transition temperature,
internal friction becomes large for all components and an
anisotropy appears between Q−1

11 and Q−1
33 ; Q−1

11 is larger than
Q−1

33 . This indicates that acoustic vibrations related to C11

attenuate faster than those related to C33 at these tempera-
tures. Similar anisotropy is seen in the lattice parameters. In
α-quartz, the thermal expansion coefficient in the a direction
is larger than that in the c direction (Fig. 8(a)). Furthermore,
in the c direction, thermal expansion is interrupted around
798 K. The interruption indicates that at this temperature
thermal phonons related to C33 are not stimulated by heating.
If we assume the phonon-phonon interaction mechanism
by Akhieser26 that thermal phonons disturbed by acoustic
phonons remove energy from the acoustic phonons during
returning to the equilibrium state as the major damping mech-
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anism, the loss of acoustic energy should be related closely to
the thermal phonons. As seen in the thermal expansion coef-
ficients, thermal phonons in the a direction are preferentially
excited by heating, and it enhances the interaction between
the acoustic phonon and thermal phonons. On the other hand,
in the c direction, the interaction is not enhanced. Considering
the interactions, anisotropy in the internal friction tensor
is explained by the phonon-phonon interactions and the
interruption in the thermal expansion coefficients.

IV. CONCLUSIONS

Capability of the antenna transmission acoustic res-
onance method for high-temperature elastic constant was
demonstrated by applying it to langasite and α-quartz. In lan-
gasite, resonance frequencies were measured up to 1224 K us-
ing the antenna method, and temperature dependences of Cij

were successfully determined. In α-quartz, Cij were measured
at high temperature just below the α-β phase transition tem-
perature, and a difference was observed between the present
values and the reported values. Origin of the unusual non-
softening in C66 was discussed considering the local strain
caused by the thermal expansion, and it was found that S6

is zero without depending on the local deformation and the
softening of C66 by heating does not necessarily contribute to
reduction of elastic strain energy for the phase transition. In
the internal friction, unexpected behavior was observed in the
c direction. It shows the relationship with the thermal expan-
sion coefficient in the c direction, and it was expected that the
phonon-phonon interactions affect the thermal expansion as
well as the internal friction.

Considering the advantages over other methods that a
complete set of elastic constants is determined from a single
specimen by an experiment and is applicable until the temper-

ature at which the specimen’s piezoelectricity disappears, the
antenna transmission acoustic resonance method shows much
promise.
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