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1. Introduction

Let/: M -• N be a continuous map of a smooth closed ra-dimensional manifold
into a smooth ^-dimensional manifold with k = n — m>0. In [2] we have defined
a primary obstruction Θ1(f)eHm_k(M;Z2) to the existence of a homotopy between
/and a topological embedding. This homology class is represented by the closure
of the self-intersection set of a generic smooth map (in the sense of Ronga [9])
homotopic to / and it has been shown that it is a homotopy invariant (for a
precise definition of θx(f\ see §2). Thus, if / is homotopic to a topological
embedding (not necessarily locally flat), then θ^f) necessarily vanishes. (Nevertheless,
we warn the reader that the vanishing of this primary obstruction does not
necessarily imply the existence of a homotopy between / and a topological
embedding.)

In this paper, we study the bordism invariance of the primary obstruction
0i(/), which is a homotopy invariant. Here, two continuous maps/and g.M-+Noϊ
a closed m-dimensional manifold M into a manifold N are said to be bordant, if
there exist a compact (unoriented) (m + l)-dimensional manifold W with dW the
disjoint union of two copies Λ/\ and M2 of M and a continuous map F.W-+N
(called a bordism between / and g) with F | M 1 = / a n d F\M2—g (see [4] for the
terminology). Note that, here, the domains of / and g are the same manifold.

Our main result of this paper is the following.

Theorem 1.1. Let f and g\M-+N be continuous maps of a smooth closed
m-dimensional manifold into a smooth n-dimensional manifold with k = n — m>0.
Suppose that Hm~k(M\Z2) is generated by the elements of the form w ί l (M)u u
wis(M)with iί-i \-is = m—k, where Wj(M) denotes the j-th Stiejel- Whitney class of
M. Then if f and g are bordant, then θί(f) = θί(g).

1 The second author has been partly supported by CNPq, Brazil.
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This paper is organized as follows. In §2, we recall the definition of the
primary obstruction Θx(f) and also recall some related results. Theorem 1.1 will be
proved in §3. As an application of our theorem, we show, in §4, that no constant
map of a real, complex or quaternionic projective space into a smooth manifold
can be bordant to a topological embedding under some dimension assumptions. As
a corollary, we show that no null-homologous continuous map of the projective
plane into an arbitrary 3-manifold can be a topological embedding. In §4 we
also give explicit examples which show that the primary obstruction is not invariant
under bordism in general.

Throughout the paper, all homology and cohomology groups have Z 2

coefficients unless otherwise indicated.
The second author would like to thank the people in ICMSC-USP, Institute

de Ciencias Matematicas de Sao Carlos, Universidade de Sao Paulo, Brazil, where
this work has been done. The authors would like to express their deep sorrow
on the death of Maria Helena Derigi (Lene), chief secretary at ICMSC-USP, who
had supported and helped them in many ways during the preparation of this work.

2. Primary obstruction and related results

Let f:M-*NbG a continuous map of an m-dimensional manifold M into an
^-dimensional manifold N. We suppose that k = n — m>0 and that the map/is
proper. For the moment, we assume no differentiability of Λf, N or / Let the
stable normal bundle f*TN®vM o f/be denoted by v/5 where vM is the stable
normal bundle of the manifold M. Then we denote by wk{f\eHk(M)) the k-th
Stiefel-Whitney class of the stable vector bundle vf. Note that this is a homotopy
invariant; i.e., if/and g.M-* N are homotopic, then wk(/) = wfe(g). This is easily
seen, since wk(f) is the degree k term of f*w(N)vw(M), where w(N) is the total
Stiefel-Whitney class of Λf and w(M) is the total dual Stiefel-Whitney class of Λf.

For the proper continuous map f:M-*N9 we define v(f)eHk(M) to be the
image of the fundamental class [M] e Hc

m(M) by the composite

H'JtAf) t Hc

m(N) DZ Hk(N) f-+ H\M\

where H+ denotes the (singular) homology of the compatible family with respect
to the compact subsets ([11, Chapter 6, Section 3]), and DN denotes the Poincare
duality isomorphism. By the definition, it is easy to see that v(f) is a homotopy
invariant (when M is not compact, the homotopy should be through proper maps).

We note that when M and N are smooth and / is an immersion, the above
definitions of wk(f) and υ(f) coincide with those of wk(vf) and vk{f) respectively
given in [1]. See also [6] and [5, Proposition 4.1]. Furthermore, we recall the
reader that there are some alternative definitions for v(f) (see [2, §2]).
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DEFINITION 2.1. For a proper continuous map f:M-*N, we define the
homology class θ,{f)eHc

m.k{M) by θί(f) = DM(v(f)-wk(f)l where DM:Hk(M)
-*Hc

m_k(M) is the Poincare duality isomorphism. Note that this is a homotopy
invariant of/

As has been seen in [2, §5], we know that, if M and TV are smooth manifolds,
M is closed, and / is a topological embedding, then θί(f) necessarily vanishes.

The reason why we use the homology class θ^f) instead of its Poincare dual
is that, if/is a generic smooth map, then the homology class θ^f) is exactly the
homology class represented by the closure of the self-intersection set of/(see [9,2]).

EXAMPLE 2.2. Let/:Λ:->S3 be a continuous map, where K is the Klein
bottle. Then it is easy to see that θγ{f) does not vanish, since wγ(f) does not
vanish while v(f) vanishes. Hence/is not homotopic to a topological embedding.

In some cases we have the vanishing of the obstruvcion θγ(f). The following
proposition has been proved in [2].

Proposition 2.3. Let f:M-*N be a proper continuous map of a smooth
m-dimensional manifold into a smooth n-dimensional manifold with k = n — m>0. If

Hc

m.k(N) is injective, then 01(/) = O in Hc

m_k{M).

We note that, since θγ{f) depends only on the neighborhood oϊf(M) (see [2]),
the above proposition is valid also when/^ on the (m — k)-th homology is injective
after a sequence of surgeries performed in N—f(M).

The obstruction θγ(f) plays an important role in the recognition problem of
smooth embeddings. In fact, in [2,3], the authors have proved that, iϊf:M-+N
is a differentiable map which is generic for the double points in the sense of Ronga
[9] and if M is closed, then / is a differentiable embedding if and only if the
(m—& + l)-th Betti numbers (with respect to Cech homology) of M and f(M)
concide and θγ(f) vanishes.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Since / and g are bordant, we have

for all oceHk{N) and for all (il9—,Q with ι1 + . . .+ί s = m-jfc, where [M]e//m(M)
is the fundamental class of M (see [4]). This implies that
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Hence by our hypothesis, we see that /*(α)=g*(α) for all oteHk(N). Then,

this together with the fact tha t/ J | c [M]=^ J | t [M] implies that v(f) = υ(g).

Now let F: W -* N be a bordism between / and g as in the paragraph just

before the statement of Theorem 1.1 in §1. Note that, since T\dW)®ει = TW\dW

for the trivial line bundle ε1 over dW, we see that (vF\dW)®el = v(/uί?), where v

denotes the stable normal bundle. Hence we have w(dW) = i*(w(W)) and

w(v(f<jg)) = i*(w(vF)\ where w denotes the total Stiefel-Whitney class and i.dW^ W

denotes the inclusion map. Then we have

< w*(v(/uί7)) u wh(d W) u u wis(d W),ldJV]y

- u wis{W)\

= 0

for every (*!,-••,/s) with /jH \-is = m—k. This implies that

< vt^v,) u w^CM) u u wis(M), [ M ] >

= <wk(vg) u wfl(M) u u wis(M\ [ M ] >.

This together with our assumption shows that wk(f) = wk(vf) = wk(v

g) — wk(g) This
completes the proof.

Note that the hypothesis of Theorem 1.1 is always satisfied when

m — k. Another example for which the hypothesis is satisfied will be given in the

next section.

4. Application and examples

In the following, K will denote the field R of real numbers, the field C of

complex numbers, or the field H of quaternions, and d will denote 1, 2 or 4

respectively.

Proposition 4.1. Let f\KPm-+N be a constant map of the m-dimensional

K-projective space (dim KPm = dm) into a smooth n-dimensional manifold with m even

and k = n — dm>0. If the k-th dual Stiefel-Whitney class wk(KPm) does not vanish,

then f is not bordant to a topological embedding of KPm.

Proof. It is known that, if k is not a multiple of d9 then Hdm~\KPm) vanishes
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and when m is even and k is a multiple of rf, Hdm~\KPm) is generated by
wd(KPm)m~(kld) (see [7], for example). Thus the obstruction θx(f) is a bordism
invariant by Theorem 1.1. Furthermore, it is easy to see that, in our case, Θ1{f)
coincides with the Poincare dual of wk(KPm). Thus, if this class does not vanish,
then/is not bordant to a topological embedding of KPm. This completes the proof.

For example, if m = 2r for some positive integer r, then wd{m_γ)(KPm)Φ0 (see
[7, p.49]) and we see that a constant map KPm -* N is not bordant to a topological
embedding of KPm for any manifold N with ά\mN=d{2m — \).

Since the 2-dimensional unoriented bordism group of a manifold N is isomorphic
to the direct sum of H2(N) and the usual 2-dimensional unoriented cobordism
group Jί2 ([4, (8.3) Theorem]), a continuous map /: RP2 -• N is bordant to a
constant map if and only if fJ[RP2'] = 0 in H2(N). Furthermore, it is known that
every topological 3-manifold admits a smooth structure. Thus we have the
following.

Corollary 4.2. Let f: RP2 -> N be a continuous map of the projective plane
into a topological 3-manifold N. IffJ_RP2] =0 in H2(N), then f is not a topological
embedding.

Note that a topological embedding of a surface into a 3-manifold is not
necessarily locally flat and can be very complicated. For example, see [8, Chapter
3]. Note also that there even exist topological embeddings which are nowhere
locally flat ([10, Remark 3.3]).

Now we give examples which show that the primary obstruction θί{f) is not
invariant under bordism in general. In fact, neither v(f) nor wk{f) is a bordism
invariant in general.

EXAMPLE 4.3. Consider smooth immersions with normal crossings / and
g:K-+ S1 xS2 whose images are as in Figure 1, where K is the Klein bottle, and
in the figure we have regarded SιxS2 as [0,1] x S 2 with {0}xS2 and { l } x ί 2

identified. The maps / and g are bordant, since fJ_K]z=gJ[K'] in H2(Si xS2)
and the bordism group Jr

2{Sι xS2) is naturally isomorphic to H^S1 xS2)®Λr

2

(see [4]). However, we see that v{f)φv(g\ while wι(f) = wί(g). The latter is
easy to see, since S1 x S2 is orientable. The former follows from the latter together
with the fact that Dκ{v{f)-wί(f)) = θ^if) =jJiM{f)] eHγ{K) is non-zero, where
M{f) = {xeK\f~\f(x))φ{x}} is the self-intersection set of / and j:M(f) -+K is
the inclusion map ([9]), while the corresponding class vanishes for g. Note that
H\K) is not generated by wx{K) and our Theorem 1.1 cannot be applied.
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Identify here.

Identify here.

Fig. 1.

EXAMPLE 4.4. Another example is given as follows. Consider an embedding
f\K-+V whose image is parallel to the boundary of V and a constant map
g: K -> V, where V is the solid Klein bottle. Note that / and g are
bordant. Furthermore, we see that wι(f)φwί(g), while v(f) — v(g) = 0.
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