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ABSTRACT 

We have determined all five independent elastic-stiffness coefficients Cij of a silicon-carbide 

fiber with transverse isotropy from room temperature up to 873 K.  First, we measured the Cij of 

a Ti-alloy-matrix composite reinforced unidirectionally with the fibers and the matrix alloy 

alone.  Electromagnetic acoustic resonance detected the free-vibration resonance frequencies of 

the specimens to determine their Cij.  Second, we applied a micromechanics calculation to 

deduce the fiber Cij from the measured composite and matrix Cij.  The resulting fiber Cij show 

strong anisotropy in the temperature derivatives of the Cij; the temperature derivatives for the 

fiber-axis-direction Cij are much smaller than the others. 
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§1. INTRODUCTION 

Silicon-carbide (SiC) fibers offer high strength, rigidity, and corrosion resistance at 

elevated temperatures.  Reinforcing metals with them provides toughness as well, known as 

metal-matrix composites (MMC), and have found important applications in space/aeronautical 

structural elements (Johnson 1988; Wadworth and Froes 1998).  A stand-alone single fiber 

would be useable for micromachines. 

Designing such an application often requires the fiber’s elastic-stiffness coefficients Cij.  

Overall elastic constants of an MMC can be predicted from the fiber and matrix Cij, for example.  

However, conventional methods are inapplicable to measuring all of the fiber Cij because of two 

principal reasons: (i) small fiber diameter (~0.14 mm) and (ii) strong elastic anisotropy showing 

many independent Cij (typically five).  Conventional methods, such as the pulse-echo method, 

need many measurements on many oriented specimens in many directions for the anisotropic Cij.  

This is an unrealistic task for fibers.  The Cij measurements at elevated temperatures would pose 

further difficulties.  Previous studies (Mittnick 1987; Jansson et al. 1991; Mital et al. 1994) have 

then measured only Young’s modulus along the fiber-longitudinal direction for room 

temperature. 

In this study, we determined all five Cij of the SiC fiber with transverse isotropy from room 

temperature up to 873 K.  The procedure takes two steps: (i) measurements of the Cij of an 

MMC, which is composed of an isotropic Ti-alloy matrix and the fibers embedded 

unidirectionally, and the Cij  of the matrix alloy alone; and (ii) a micromechanics calculation for 

deducing the fiber Cij from the composite Cij, the matrix Cij, and the fiber volume fraction.  The 

composite and matrix Cij are measured with electromagnetic acoustic resonance (EMAR) (Ogi, 

Ledbetter, Kim, and Hirao, 1999; Ogi, Takashima et al. 1999; Ogi et al. 2000); free-vibration 

resonance frequencies of a well-shaped specimen depend on the dimensions, mass density, and 

all the material’s Cij.  Measurement of the resonance frequencies then permits us to inversely 



 

H.Ogi et al., Phil. Mag. A 

3 

determine the Cij with the known dimensions and mass density.  The EMAR technique makes a 

contactless acoustic coupling possible and allows choosing an individual vibration group from 

eight possible groups of a rectangular parallelepiped specimen.  This aspect prevents mode 

misidentification and guarantees high accuracy of the deduced elastic constants.  The subsequent 

micromechanics calculation uses Mori-Tanaka (1973) mean-field theory.  We cite a study by 

Ledbetter, Datta, and Kyono (1989) who have inversely determined the elastic constants of 

graphite fibers using conventional ultrasonic measurements and a plane-wave theory. 

 

§2. MATERIAL 

We consider a continuous SCS-6 SiC fiber.  It consists of a carbon core surrounded by SiC 

as shown in fig. 1.  The fiber diameter is 140 µm.    Such an annular structure macroscopically 

exhibits transverse isotropy with five independent Cij: 

 

.                                                           (1) 

 

Hence .   

The composite material is a Ti-6Al-4V alloy unidirectionally reinforced with the SiC fibers.  

The fiber volume fraction is 0.35.  The material was fabricated by a foil-fiber-foil technique (8 

plies) at 1173 K uncer a 65-MPa hydrostatic pressure.  We take the x3 axis along the fiber-

longitudinal direction and the x2 axis normal to the foil plane throughout this study.  We 

prepared a rectangular-parallelepiped specimen, measuring about 4.5 mm by 1.7 mm by 4.0 mm 

along the x1, x2, and x3 axes, respectively.  Figure 2 shows the microstructure seen along the x3 
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direction.  The Archimedes-method mass density was 3.879 g/cm3.    We also prepared a 

rectangular-parallelepiped specimen of the matrix alloy alone for measuring its isotropic Cij. 

 

§3. MEASUREMENT 

Figure 3 shows our EMAR apparatus for measuring the free-vibration resonance 

frequencies of the composite and matrix-alloy specimens.  The specimen was inserted in a 

solenoid coil located within a stainless-steel cylindrical container.  A heater surrounding the coil 

raises the temperature at a rate of 0.8 K/min.  The pressure the container was kept less than 10-4 

Torr.  (Deterioration occurred at the SiC-carbon interfaces due to oxidization over 700 K when 

the specimen was exposed to air (Ogi et al. 2001).)  A pair of permanent magnets was located 

outside the container to apply the static magnetic field to the specimen for the electromagnetic 

excitation and detection of free vibration.  The field direction is changeable by rotating the 

permanent magnets about the container axis to select the detecting vibration modes. 

We applied high-power tone bursts to the solenoid coil to vibrate the specimen via the 

Lorentz forces.  The specimen was under free vibration because the coil was loose and never 

tight; the applied force to the specimen was only its own weight.  After the excitation, the same 

coil received the vibration through the reversed-Lorentz-force mechanism.  The received signals 

entered superheterodyne phase detectors and the amplitude spectrum at the operating frequency 

was obtained.  Frequency scans provided many resonance peaks.  The resonance frequencies 

were determined by the Lorentzian-function fitting.  An inverse calculation for the measured and 

calculated resonance frequencies (Ohno 1976; Migliori and Sarrao 1997; Ledbetter et al. 1995) 

derived all the independent elastic-stiffness coefficients of the specimen.  Mode identification 

for the measured resonance frequencies, which is the key in the inverse calculation, was 

correctly made through choosing the vibration modes.  This mode-selection principle is 

described in detail by Ogi, Ledbetter, Kim, and Hirao (1999). 
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§4. MICROMECHANICS CALCULATION 

We consider the SiCf/Ti-alloy composite to be a dual-phase composite consisting of the 

matrix with isotropic symmetry and the aligned fibers with transverse isotropic symmetry.  The 

effective elastic-stiffness coefficients of the composite Cc can be expressed with the strain 

concentration factor of the fiber, A, as (Dunn and Ledbetter, 1995) 

.                                                                                          (2) 

Here, Cm and Cf denote the elastic-stiffness matrices of the matrix and fiber, respectively.  vf is 

the fiber volume fraction.  We estimate A using the mean-field theory by Mori and Tanaka 

(1973) as: 

  .                                                                                 (3) 

Here I denotes the identity matrix.  S denotes the Eshelby tensor and is a function of the fiber 

shape and Cm.  When the matrix is isotropic, the expressions of the S components are simple for 

the fiber shape (the long circular cylinder) and they are tabulated in Mura's monograph (1987).  

When the matrix is anisotropic, the S components can be numerically calculated as shown by 

Kinoshita and Mura (1971).  The simplified expression for the cylinder-cylindrical inclusions is 

.                                                            (4) 

Here, xl denotes a component of the unit vector lying normal to the fiber axis, and Nij and D 

denote the cofactor matrix and determinant of matrix Gij= , respectively.  The 

integration is made along the unit circle surrounding the fiber at the center.  Equation (4) has 

been verified by Ichitsubo et al. (2002). 
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,                                     (4) 

where vm=1-vf, the matrix volume fraction.  Thus, measurements of Cc, Cm, and vf permit us to 

determine the fiber elastic stiffnesses Cf. 

 

§5. RESULT 

Figure 4 shows the resonance spectra of the composite specimen at various temperatures: 

Capability of mode selection and good signal-to-noise ratio demonstrate the EMAR’s usefulness 

for the Cij measurement at elevated temperatures.  Shifts to lower frequencies indicate the elastic 

softening with temperature increase.  Figure 5 shows temperature dependence of the composite 

Cij, which shows linear decreases with temperature without hysteresis.  The matrix Cij also 

showed linear decreases up to 900 K.  (Note that the a-b phase transition occurs near 1000 K in 

the matrix.)    The rms difference between the measured and calculated resonance frequencies 

after the inverse calculations was typically 0.8% for the composite material.  This indicates that 

the transverse-isotropy assumption for the composite is allowable with this error.  The rms 

difference for the isotropic matirix was 0.2%.  Figure 6 shows the temperature dependence of 

the fiber Cij.  The scattered results for C33, C11 and the bulk modulus B are attributable to their 

weak contributions to the resonance frequencies.  Table I gives the normalized temperature 

derivatives of the composite Cij, the matrix Cij, and the fiber Cij.  Table II gives the fiber Cij at 

room temperature together with those of the composite and matrix. 

 

§6. DISCUSSION 

First, we discuss the reliability of the resulting fiber Cij.  A direct comparison with a 

previous study is impracticable because no study has reported a complete set of the fiber Cij.  

But, there are reports on the tensile-test Young’s modulus E3 along the fiber longitudinal 
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direction at room temperature.  The values reported range from 400 to 428 GPa (Mittnick 1987; 

Jansson et al. 1991; Mital et al. 1994), which our fiber E3 falls within. 

Further confirmation is made possible by measuring and calculating the Cij of such a 

composite that contains another alignment of the fibers.  We prepared a crossply composite for 

this purpose; the Ti-alloy matrix reinforced by the fibers along the two principal directions 

alternately (0°/90° crossply) (Ogi, Takashima et al. 1999).  The fiber volume fraction was 0.35.  

This composite macroscopically shows tetragonal symmetry with six independent Cij.  We 

measured them with the EMAR method.  On the other hand, the micromechanics modeling 

calculations allow calculation of the crossply-composite Cij with the known matrix Cij, the fiber 

volume fraction, and the determined fiber Cij.  The calculated and measured coefficients are 

compared with each other in Table III.  We see good agreement between them, especially for the 

diagonal Cij.  This favorable comparison supports our fiber Cij. 

We have assumed that the polycrystalline Ti-alloy matrix of the composite is elastically 

isotropic.  However, it might not be the case because the composite was fabricated by the foil-

fiber-foil technique; a texture may occur.  Thus, the matrix can exhibit transverse isotropy with 

five independent Cij.  We investigated the effect of matrix anisotropies on the resultant fiber Cij, 

simulating various transverse anisotropy of the matrix with the same bulk modulus.  (The bulk 

modulus is independent of texture.)  We varied the shear-modulus anisotropy 

( anisotropy) and the longitudinal-modulus anisotropy (  anisotropy).  The 

results are shown in fig. 7.  A 30%  anisotropy causes errors less than 3% in the fiber 

Cij.  This anisotropy corresponds to the shear-modulus anisotropy of monocrystal titanium, 

indicating that the fiber Cij are insensitive to  anisotropy.   A 10% anisotropy, 

corresponding to the longitudinal-modulus anisotropy of monocrystal titanium, causes errors 

less than 3%, except for the fiber C11.  (The fiber C11 is sensitive to the  anisotropy.)  

The texture would cause elastic anisotropy in the matrix, but the relative magnitude would be 
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less than a few percent, confirming our view that the deduced fiber Cij are little affected by the 

matrix anisotropy.  This result is related to the fiber Cij much larger than the matrix Cij.  Thus, 

our assumption of isotropy for the matrix yields a reliable set of the fiber Cij.   

Next, we discuss the temperature derivatives of the fiber Cij.  We observe a large difference 

between the fiber’s longitudinal and radial directions; the derivative for C33 is smaller in 

magnitude than that for C11 by a factor 4.7 and that for E3 smaller than for E1 by a factor 3.0.  

This is perhaps attributed to (i) nearly temperature-independent elastic constants of the carbon 

core and/or (ii) anisotropic elastic constants of the SiC and carbon.  The fiber itself is a 

composite consisting of the SiC and carbon core.  A micromechanics calculation for an isotropic 

SiC with an isotropic carbon core reveals that the carbon’s elastic constants most affect the C33 

and E3 of the composite fiber.  Thus, the temperature derivatives of the fiber C33 and E3 highly 

depend on those of the carbon’s elastic constants.  If the SiC and carbon are elastically 

anisotropic, anisotropy in the temperature derivative will occur. 

 

§7. CONCLUSIONS 

The present study gives the complete set of elastic-stiffness coefficients Cij of the silicon-

carbide fiber from room temperature to 873 K.  The results were confirmed in two ways via 

Young’s modulus along the fiber axis and anisotropic elastic-stiffness coefficients of the 

crossply composite.  The micromechanics calculation for an anisotropic matrix revealed that the 

deduced fiber Cij were little affected by the matrix anisotropy.  The temperature derivatives of 

the Cij along the fiber axis are much smaller than those for the others.  Those results will be 

useful for predicting the anisotropic elastic constants of composites containing the SiC fibers.   

The technique presented here is applicable to any other continuos fibers, including those with 

much smaller diameters. 
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Table Caption 

 

TABLE I  Temperature derivatives of the elastic constants (dC/dT)/C (10-4 K-1) of the 

unidirectional SiCf/Ti-6Al-4V composite, Ti-6Al-4V alloy, and SiC fiber. 

 

TABLE II Elastic constants (GPa) of the unidirectional SiCf/Ti-6Al-4V composite, Ti-6Al-4V 

alloy, and SiC fiber at 293 K.  The fiber longitudinal direction is along the x3 axis. 

 

TABLE III  Measured and calculated constants (GPa) of the crossply SiCf/Ti-6Al-4V with 

tetragonal symmetry at 293 K.  Two principal axes of the fiber are along the x1 and x2 axes, 

respectively.  
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C11 C33 C44 C66 E1 E3 B

composite(SiC/Ti-6Al-4V) -2.5 -1.3 -4.5 -4.2 -3.6 -1.9 -1.3

matrix(Ti-6Al-4V) -2.8 -2.8 -4.7 -4.7 -4.4 -4.4 -1.8

SiC fiber -1.4 -0.3 -3.9 -2.1 -1.8 -0.6 -0.4

TABLE I   
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C11 C33 C12 C13 C44 C66
* E1 E3 B

  composite (SiC/Ti-6Al-4V) 195 253 85.4 72.2 53.9 54.8 150 216 121
  matrix (Ti-6Al-4V) 161 161 76.2 76.2 42.7 42.4 113 113 105
  SiC fiber 299 425 106 62 86.3 96.5 258 406 163
  * C66=(C11-C12)/2

TABLE II 
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C11 C33 C44 C66 C12 C13

  measurement 226 189 54.7 52.1 81.9 78.4

  calculation 225 192 55.2 55.1 72 73.9

diff.(%) 0.4 -1.6 -0.9 -5.8 12.1 5.7

TABLE III   
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Figure Caption 

 

Fig. 1  Microstructure of the silicon carbide fiber (SCS-6).  The fiber consists of a carbon core 

and silicon carbide surrounding the core.  The bar indicates 20 µm.   

 

Fig. 2  Microstructure of the SiCf/Ti-6Al-4V composite.  The bar indicates 200 µm.   

 

Fig.3 EMAR-measurement setup at elevated temperatures. 

 

Fig.4 Resonance spectra of the SiCf/Ti composite material at various temperatures.  (a) B1g 

vibration modes and (b) Ag vibration modes.  Mode notation follows Mochizuki (1987). 

 

Fig. 5  Temperature dependence of the elastic constants of the unidirectional SiCf/Ti-6Al-4V 

composite.  Solid marks denote measurements in the heating process and open ones in the 

cooling process. 

 

Fig. 6  Temperature dependence of the elastic constants of the SiC fiber.  Solid marks denote 

measurements in the heating process and open ones in the cooling process. 

 

Fig. 7  Sensitivities the fiber elastic constants to the hexagonal matrix anisotropy; (a) effect of 

the shear-modulus anisotropy and (b) effect of the longitudinal-modulus anisotropy.  The bulk 

modulus of the matrix is the same as that of the isotropic case. 
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Fig. 1   
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Fig. 2   
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Fig.3  
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Fig.4  
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Fig. 7   
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