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Abstract 

 A semi-analytical finite element method (SAFE) has been widely used for 

calculating dispersion curves and mode shapes of guided waves as well as transient 

waves in a bar like structures. Although guided wave inspection is often conducted for 

water-loaded plates and pipes, most of the SAFE techniques have not been extended to 

a plate with leaky media. This study describes leaky Lamb wave calculation with the 

SAFE. We formulated a new solution using a feature that a single Lamb wave mode 

generates a harmonic plane wave in leaky media. Dispersion curves obtained with the 

SAFE agreed well with the previous theoretical studies, which represents that the SAFE 

calculation was conducted with sufficient accuracy. Moreover, we discussed dispersion 

curves, attenuation curves, and displacement distributions for total transmission modes 

and leaky plate modes in a single side and both two side water-loaded plate. 

 

Keywords: Leaky Lamb waves, Semi-analytical finite element method, Non-destructive 

evaluation 

 

Contact author: Takahiro Hayashi: Graduate School of Engineering, Kyoto University 

C3 Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, Japan  

+81-75-383-3797 (phone&fax) e-mail: hayashi@kuaero.kyoto-u.ac.jp 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/ultras/viewRCResults.aspx?pdf=1&docID=3407&rev=3&fileID=110180&msid={918A9352-A72F-434A-967C-787573E72B51}


2 

 

1. Introduction 

When low frequency ultrasonic wave is made incident to such elongated 

structures as plates, pipes and rails, we can observe ultrasonic modes propagating in the 

longitudinal direction, called guided waves. The guided waves, which are the ultrasonic 

modes with resonating within the cross-section, often propagate a long distance of the 

order of ten or hundred meters. However, as the ultrasonic energy leaks significantly to 

surrounding objects such as water, anti-rust tapes, soil, and concrete, guided wave 

inspection is still limited in its application to existing structures [1, 2]. 

Theoretical studies on guided waves with such energy loss have been done 

since long ago. In 1945, Osborne and Hart [3] derived theoretical dispersion curves in a 

plate with leaky fluids and presented the existence of non-damping wave appearing at a 

solid-fluid interface, called Scholte wave. In the late 1980's, Rokhlin et. al. [4] and 

Chimenti and Rokhlin [5] discussed variation of spectrum branches for various density 

of leaky medium. Dayal and Kinra [6] calculated and experimentally verified phase 

velocity dispersion curves and attenuation curves for both isotropic and anisotropic 

plates in water. Lowe [7] and Pavlokovic et. al. [8] showed the matrix technique can 

provide guided wave dispersion curves and displacement distributions even for plates 

and pipes with leaky media. Nowadays, the software calculating dispersion curves using 

the matrix technique has been widely used in the field of guided wave inspection. 

A similar numerical calculation technique called a semi - analytical finite 

element method (SAFE) has been developed by Liu and Achenbach [9], Gavrić [10], 

Gry [11], Thompson and Jones [12], and authors [13-18]. Generally, the conventional 

calculation techniques such as finite element and finite difference methods, where 

whole structure is divided into sufficiently small and large number of elements, requires 

large amount of calculation time and memory. On the other hand, as only a cross-section 
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is divided into small elements in the SAFE, calculations of guided waves propagating in 

a long waveguide are efficiently carried out. The SAFE also has many advantages for 

guided wave calculation other than the efficiency. For example, the SAFE is useful for 

calculating dispersion curve and analyzing wave structures for homogeneous plate like 

theoretical techniques as well as laminated plates and pipes, and it is feasible to 

calculate transient waves in such elongated structures. Therefore, many researchers have 

used the SAFE for guided wave calculation [19, 20]. 

Recently, the SAFE has been applied for calculating guided waves in a 

waveguide surrounded by leaky media. Castings and Lowe [21] and Danerjee and 

Kundu [22] used absorbing layers and attenuated materials for the leaky media. Mozaoti 

et. al. [23] modeled leaky waves radiating to infinity by using a boundary element 

method. 

This study also deals with calculation of leaky Lamb waves using the SAFE. 

We formulate a new solution using a feature that a single Lamb wave mode generates a 

harmonic plane wave in leaky media. Moreover, we calculate dispersion curves and 

displacement distributions for an aluminum plate surrounded by water, and discuss 

some characteristic modes. 
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2. Semi-analytical finite element calculation for leaky Lamb waves  

2.1 Governing equation in a thin plate 

 Now we consider Lamb waves propagate in the z direction on a cross-sectional 

y-z plane under plane-strain conditions as shown in Fig.1, where a plate is divided into 

M layered elements. A semi-analytical finite element method is formulated for a plate 

coupled with media of the densities, longitudinal and transverse velocities 1 , L1c , T1c  

and 
2

 , L2c , T2c  on upper and lower surfaces, respectively. When the displacement, 

strain, stress, and external traction vectors are written as, 

 Tzy uuu ,    Tyzzzyy ε , 

 Tyzzzyy σ ,   T
zy ttt ,    (1) 

the virtual work principle gives the following governing equations for the jth elastic 

layered element (j=1, 2 ..... M). 

   
jj

j
j A

j

T

j
A

lay

T

C
j

T dAdAdC σεuutu      (2) 

where T in Eq. (1) and (2) denotes transposed matrices,   is a second differentiation 

with respect to time t, 
jlay  is density in the jth layered element,  

jC jdC  and 

 
jA jdA are the line integral on the upper and lower boundaries and the surface integral 

for the jth layered element. The left side of the equation (2) denotes the work done by 

the external traction t, and the first and second term of the right-hand side are the 

increment of kinetic energy and potential energy, respectively. 

 When considering a harmonic wave with respect to the space z and time t, the 

displacement vector at an arbitrary point in the jth element is expressed as, 

)exp()( tiziy z

j   UNu .     (3) 

For a two-node line element, )(yN  is the function for interpolating two values on the 
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two nodes as, 

 
   

    













2/102/10

02/102/1




yN , 

12

21 )(2

jj

jj

yy

yyy




  (4) 

where y is the arbitrary position in the thickness direction within the element, 1
jy  and   

2
jy are the y position of the lower and upper nodes of the jth element, respectively. In 

Eq. (4), jU , the displacement vector expressing nodal displacements at z=0, consists of 

nodal displacement vectors 1jU  and 2jU  on 1
jy  and 2

jy  as, 













































2

2

2

1

1

1

2

1

,,
j

z

j

yj

j

z

j

yj

j

j

j

U

U

U

U
UU

U

U
U .   (5) 

The strain vector is written with the strain-displacement relation as, 

uLLε 


















zy
zy , 



















10

00

01

yL , 



















01

10

00

zL .  (6) 

Substituting Eq. (3) into Eq. (6) yields 

   tizii z

j

z   exp21 UBBε , yy ,1 NLB  , NLB z2 . (7) 

where y,N  is the differentiation of the interpolation function yN with respect to y, 

giving, 



















1010

0101

2

1
,

y
y


N , 

12

2
jj yyy 





.   (8) 

The stress vector σ  is written with the stress-strain relation as 

cεσ  .        (9) 

where c  is an elastic coefficient matrix (3×3). Like the displacement vector u in Eq. 

(3), the external traction vector is described using the nodal external traction vector   

j
T  as, 

 tizi z

j   expNTt .      (10) 
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Letting an imaginary displacement u be 

 )exp( tizi z

j   UNu ,     (11) 

a strain by the imaginary displacement can be written as, 

    tizii z

j   exp21 UBBε .    (12) 

Substituting Eq. (3) - (12) into Eq. (2) gives 

j

j
A

T

lay

jT

C

j

j

TjT dAdC
j

j
j

UNNUTNNU    2     

      j

A
j

TTTTjT

j

dAii UBBcBBU   2121  ,  (13) 

where the surface integral in the right-hand side and the line integral in the left-hand 

side can be rewritten as, 

  
z

y

yA
j dydzdA

j

j
j

2

1

,  
z

j
C

T dzdC
j

INN , 









10

01
I .  (14) 

Then, as the both sides of Eq. (13) commonly have dz
z

jT

U , taking the inside of the 

integral gives the following governing equations for the jth layered element. 

  jjjj

z

j

z

jj i UMUKKKF 2

3

2

21      (15) 

 Tj

z

j

y

j

z

j

y

jj TTTT
2211

TF  

dy
j

j

y

y

Tj


2

1
111 cBBK ,   dy

j

j

y

y

TTj

 
2

1
12212 cBBcBBK   (16) 

dy
j

j

y

y

Tj


2

1
223 cBBK , dy

j

j j

y

y

T

lay

j


2

1

NNM   

Calculating all values in Eq. (16) with numerical integration for all elements and 

overlapping the values with respect to the common nodes provide the following 

governing equations for the total system. 

  FUMKKK  2

3

2

21  zzi ,    (17) 
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U
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U

 , F





























2

12)1(

2112

11

M

MM

T

TΤ

TT

T

  .   (18) 

where, for a two-node line element, letting the number of line nodes be N (= M+1), U  

and F  are 2N vectors and 1K , 2K , 3K , and M are 2N×2N matrices. 

When the external traction is applied only on the boundaries between the plate 

and leaky media at 1yy   and 2y , the nodal traction vectors from 2112
TT   to 

12)1( MM
TT   in the external force vector F  become zero, and letting the nodal 

traction applied by the leaky media at 1yy   and 2y  be leak1
T  and leak2

T , 

respectively, the following relations are satisfied, 

 0leak111 TT ， 0leak22 TT
M .     (19) 

The external force vector results in 

F



























leak2

leak1

0

0

T

T

 .       (20) 

 

2.2 Leaky waves in elastic media surrounding a thin plate 

2.2.1 General description on leaky waves in elastic media 

A harmonic wave in a plate with the wavenumber of z  generates a harmonic 

plane wave with the same z component of wavenumber in leaky media. From this 

feature, ultrasonic wave propagating in lower and upper media can be represented as 

following equations by omitting a common term of temporal harmonic wave )exp( ti . 

For the lower medium of 1yy  , 
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)exp()exp( T1T1L1L1 yiziyizi yzyz   AAu .   (21) 

For the upper medium of 2yy  , 

)exp()exp( T2T2L2L2 yiziyizi yzyz   AAu .   (22) 

In these equations, L1,2y and T1,2y  are a y direction component of the wavenumber for 

longitudinal (L) and transverse (T) waves in the lower (1) and upper (2) media, 

respectively. Letting X=1, 2, the following relationships are satisfied in the 

wavenumbers,  

22

L

2

L zXXy   , 
22

T

2

T zXXy   ， 

X

X
cL

L


  ,  

X

X
cT

T


  .    (23) 

L1A ， T1A ， L2A ，and T2A  are vibration direction vectors for longitudinal and 

transverse waves in the lower and upper media, respectively. As shown in Fig. 2, the 

vibration directions of longitudinal and transverse waves are parallel and transverse to 

the propagation directions. Considering wave propagation in the upper medium 

( 2yy  ), first, the vibration direction vector for longitudinal wave 2LA  is represented 

using the wavenumbers Ly and z  as well as an arbitrary constant L2A  as, 

L2

L2

L2 A
z

y














A .      (24) 

Similarly, using arbitrary constant T2A , the vibration direction vector T2A  is 

T2

T2

T2 A
y

z



















A .      (25) 

Substituting z=0 and 2yy   to Eq. (22), the amplitude vector on the upper surface 

  )(
222

TM

z

M

y

M UUU  is written as, 
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)exp()exp( 2TT22LL2

2 yiy yy

M  AAU  .    (26) 

From Eqs. (24) and (25), 2MU  is rewritten as, 

)exp()exp( 2T2T2

T2

2L2L2

L22 yiAyiA y

y

z

y

z

yM 






























U  



































 


T2

L2

2T2

2L2

T2

L2

)exp(0

0)exp(

A

A

yi

yi

y

y

yz

zy








  (27) 











T2

L2

2 )(
A

A
yEΞ ,      

where 













 


2T

L2

yz

zy




Ξ , 















)exp(0

0)exp(
)(

T2

L2

yi

yi
y

y

y




E .  (28) 

From Eq. (27), the arbitrary constants L2A  and T2A  are determined as, 

  21

2

T2

L2 My
A

A
UΞE 








 .     (29) 

Now, substituting Eqs. (24), (25), and (29) to Eq. (22) provides the displacement vector 

at an arbitrary position in the upper leaky medium 2yy  as, 

 )exp()exp( T2T2

T2

L2L2

L2
yiziAyiziA yz

y

z

yz

z

y

































u  

   )e x p ()(
T2

L2
zi

A

A
y z








 EΞ   )e x p ()( 21

2 ziyy z

M UΞEEΞ
  (30) 

   )e x p ()( 21

2 ziyy z

M UΞEΞ  .     

Then, the strain vector for leaky wave is represented using the displacement vector as 

uLLε 


















zy
zy )exp()( 21

2 ziyy
zy

z

M

zy UΞEΞLL 
















 . 

         (31) 

Since the partial differentiation of )( 2yy E  with respect to y is 
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)(
)(

2
2 yy

y

yy





GE

E
, 















2

2

0

0

yT

yL

i

i




G ,   (32) 

the strain vector becomes 

)exp()(

)exp()(

21

2

21

2

ziyyi

ziyy

z

M

zz

z

M

y





UΞEΞL

UΞGEΞLε








.   (33) 

Using the relationship )0(E 













10

01  at 2yy  , the strain vector on the upper surface 

can be described as, 

)exp()exp()( 221

2 ziiziyy z

M

zzz

M

y  ULUGΞΞLε  
 

  )exp(21 zii z

M

zzy  ULGΞΞL  
.   (34) 

The stress-strain relation is described using the stiffness matrix in the upper leaky 

medium leak2c as 

εcσ
leak2 .       (35) 

As a direction normal to the leaky medium region is y  at 2yy  , the surface 

traction that the leaky medium applies on the upper surface of the Mth layered element 

is expressed as, 

 )(
100

001
2

leak2

2

yy

yyyz

zz

yy






























εnct







 

  )exp(21leak2 zii z

M

zzy  ULGΞΞLnc  
,   (36) 

where the normal direction matrix n is defined as, 











100

001
n .       (37) 

Removing )exp( zi z  from Eq. (36) provides a nodal external force vector that the 

leaky medium applies to the plate as, 
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 22leak2 MM
UPT  ,  zzy

M i LGΞΞLncP  1leak22 .  (38) 

 Similarly, a nodal external traction vector at 1yy   can be obtained by 

replacing L2y , T2y  to L1y , T1y  , n  to n ， leak2c  to 
leak1c , and 2MU  to 11

U  

respectively as, 

 1111leak1
UPT  ,  zzy i LΞGΞLncP  1leak111 .  (39) 

where Ξ  and G  are  obtained by replacing L2y  and T2y  in Ξ  and G  to 

L1y  and T1y , respectively. 

 Substituting Eqs. (38) and (39) to Eq. (20) gives 

PUF  , 

























2

11

000

000

000

000

M
P

P

P







.   (40) 

Since the matrix P  is a function of z , the governing equation (15) can be represented 

as, 

   0,2

3

2

21  UPMKKK  zzzi .   (41) 

For a certain angular frequency , Eq. (41) is regarded as a generalized nonlinear 

eigenvalue problem with respect to the wavenumber z . Although a wide variety of 

solutions have been developed for many kinds of nonlinear eigenvalue problems [23], 

the simplest kind of nonlinear problem is the polynomial eigenvalue problem. Therefore, 

in the section 2.3, we transform Eq. (41) into the form of 3rd order polynomial 

eigenvalue problem under the condition that leaky media are non-viscous fluids with the 

same sound velocities. 

 

2.2.2 Total transmission and leaky plate mode in liquid media 
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 For non-viscous fluid leaky media, 2M
P  and 11

P  in Eq. (38) and (39) are 

obtained in the following simple form by setting transverse velocity in the leaky media 

to zero ( 0, T2T1 cc ), 











00

01

L1

2

111

y

i




P ， 










00

01

L2

2

22

y

M i




P .   (42) 

Supposing sound velocities in the lower and upper media are the same, Eq. (41) can be 

rewritten by using the wavenumber in the y direction of the leaky media 

y ( 2L1L yy   ) as, 

0
2

2

3

2

21 













 UQMKKK

y

zzi



     (43) 

























0000

00

000

000

2

1











i

i

Q .     (44) 

For positive wavenumber in the y direction y , Eq. (44) represents the total 

transmission case when ultrasonic wave is incident from the lower fluid and leaks and 

radiates to the upper fluid. 

 Negating the sign of the wavenumber in the lower medium 

( )( 2L1L yyy   ) can model leaky plate modes where ultrasonic wave leaks to the 

both media from the plate as, 

 

























0000

00

000

000

2

1











i

i

Q .     (45) 

 Eqs. (44) and (45) can deal with leaky media with different densities, and we 

can calculate leaky Lamb waves in a plate coupled with fluid medium on a single side 
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by setting 01   or 02  . 

 

2.3 Linearization of nonlinear eigenvalue problem using the symmetry of Lamb 

wave modes 

Although Eq. (43) is still a nonlinear eigenvalue problem, the equation can be 

deformed in the form of 3rd order polynomial eigenvalue problem using the symmetry 

of possible Lamb wave modes and then be linearized in the ordinary way. Letting the 

mth eigenvalues and right eigenvector be ym , zm , and mφ , the nonlinear eigenvalue 

problem Eq. (43) satisfies 

0
2

2

3

2

21 













 m

ym

zmzm ii φQMKKK



 ,    (46) 

where the eigenvalues and right eigenvector correspond to the wavenumbers in the y 

and z directions and displacement distribution of the mth mode. ym  and zm  satisfies 

the following equation like Eq. (23) as, 

222

fzmym   .      (47) 

Now, we divide the displacement distribution vector mφ  into two components of 

displacement in the y and z directions. 











zm

ym

m
φ

φ
φ        (48) 

Then, Eq. (46) is also satisfied by changing the sigh of the wavenumber and 

displacement distribution vector in the z direction like zmzm    and zmzm φφ   

in order to retain the symmetry in the ±z direction, giving 

0
2

2

3

2

21 























zm

ym

ym

zmzm ii
φ

φ
QMKKK




 .   (49) 
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When matrices 1K , 2K , 3K , M , and Q  are also divided into two parts with respect to 

displacements in the y and z directions like  zy 111 KKK   , Eqs. (46) and (49) are 

rewritten as, 

      zyzmzyzmzy i 33

2

2211 KKKKKK       

       0
2

2 















zm

ym

zy

ym

zy i
φ

φ
QQMM




  (50) 

     
zyzmzyzmzy i 33

2

2211 KKKKKK       

       0
2

2 















zm

ym

zy

ym

zy i
φ

φ
QQMM




  (51) 

Considering 0zQ  and calculating {Eq. (50) + Eq. (51)}/2 + zm {Eq. (50) − Eq. 

(51)}/2 yields 

0
2

12

2

11 























zmzm

ym

ym

zm i
φ

φ
QHH




 ,    (52) 

where  

    zyzzy i MMKKKH
2

21111  ,  zyyi 33212 KKKH  . (53) 

Substituting Eq. (47) to Eq. (52) and rearranging it provide the following 3rd order 

polynomial eigenvalue problem. 

  03

3

10  mymym φHHH   

QH
2

0 i , 
12

2

111 HHH f , 
123 HH  , 










zmzm

ym

m
φ

φ
φ


 (54) 

 The general polynomial eigenvalue problem can be deformed to linear 

eigenvalue problem as, 
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
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
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

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
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









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
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φ

φ

I00

0I0

00H

0I0

00I

HH0





    (55) 

Q  and 0H  have non-zero elements only in the 1st row and 1st column and in the 

(2N-1)th row and (2N-1)th column as shown in Eqs. (44) and (45). Removing the zero 

elements from Eq. (55) results in the linear eigenvalue problem consisting of (4N+2) × 

(4N+2) matrices. 

0

2

301
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

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
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
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
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






























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







m

mym
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φ

φ

φ

I00

0I0

00H

0I0

00I
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



 ,   (56) 

where 

QH  2

0 i , 

























00

0

0

0

0

2

1









Q , 









0100

0001




I ,  

 









10

01
I , 














1

1

mN

m

m



φ      (57) 

1m  and 1

mN  in Eq. (57) are the 1st and (2N-1)th elements of mφ . Solving the 

eigenvalue problem yields 4N+2 eigenvalues ym , which corresponds to the 

wavenumber in the y direction, and right and left eigenvectors m
R

v  and m
Lv  

(m=1,2...4N+2). 

 

2.4 Derivation of group velocity 

 Eq. (56) can be expressed using the right and left eigenvectors m
R

v  and m
Lv  

as, 

   0 m
R

ym vBA        (58) 
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  0 BAv ymm
L        (59) 

where 






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










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
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
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



I00

0I0

00H

B

3

.    (60) 

Then,  
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        (61) 

Differentiating Eq. (58) with gives 

  0


















 d

d

d

d

d

d m
R

ymm
Rym v

BAvB
A

.    (62) 

Applying m
L

v  to this equation from the left, the second term becomes zero from Eq. 

(59) and the following relation can be derived. 

0









 m

Rym
m

L
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d

d

d
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




     (63) 

m
R

m
L

m
R

m
L

ym d

d

d

d

Bvv

v
A

v





      (64) 

Differentiating Eq. (47) with  gives 
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

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

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

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zm
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ym  .     (65) 

Using the relation of  fff cdd 1 , Eq. (65) becomes 

zm
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f

zm d

d

d
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
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





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.      (66) 
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Group velocities of Lamb waves propagating in the z direction are 
















d

dd

d
c

ym

ym

f

zm

zm

gm




2

.     (67) 

Namely, the group velocity Eq. (67) can be calculated from Eqs. (60), (61), and (64) 

using eigenvalues ym , zm , right and left eigenvectors m
R

v  and m
L

v . 

 

3. Calculation results 

3.1 Validation of calculation by comparing with theoretical solutions and by 

checking energy balance 

 Solving the eigenvalue problem Eq. (56) yields eigenvalues ym  (m = 1, 

2...4N+2) and then the wavenumber zm  is obtained by the following equation derived 

from Eq. (47). 

22

ymfzm         (68) 

A pair of positive and negative values stands for a pair of the mth modes of 

Lamb wave propagating in the ±z directions. Solid lines in Fig. 3 (a) and (b) are 

frequency spectra of real and imaginary parts of wavenumber zm  for leaky Lamb 

modes obtained with Eq. (45). The number of layered elements M was set to 64 in this 

study. Calculation results with the SAFE indicated (solid lines) agree well with 

theoretical solutions (circles) obtained in Ref. [5] by Chimenti and Rocklin, which 

designates that the calculation with the SAFE is carried out with sufficiently high 

accuracy. 

 A displacement distribution vector mφ  in Eq. (48) is obtained from a right 

eigenvector m
R

v  that is calculated by solving the eigenvalue problem Eq. (56) for each 
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mode. Then, substituting a displacement distribution vector mφ  to the nodal 

displacement vector in Eq. (3) or (30) gives a displacement vector u  at an arbitrary 

position and time for the mth mode. Fig. 4 shows a displacement distribution for a mode 

at (A) in dispersion curve of Fig. 3 in the area of 4d × 5d at a certain time, where 

displacements are magnified to show the wave motion clearly. Color in the figure 

represents the displacement in the y direction, which proves that displacement in the y 

direction is continuous at the boundary of the plate and water.  

 The point (A) in Fig. 3 (a) corresponds to two conjugate solutions zm  and 

*

zm , which are calculated from a solution pair of ym  and *
ym  in Eq. (56). 

Namely, the possible solution at the point (A) are  

 
I

ym

R

ymym i  , 
I

zm

R

zmzm i     (69) 

 
I

ym

R

ymym i 
*

, 
I

zm

R

zmzm i 
*

.    (70) 

where 0,0,0,0 
I

zm

R

zm

I

ym

R

ym  . Eq. (69) stands for a mode leaking out from 

the plate to the water and attenuating as it propagates due to the leakage (Fig. 4 (a)), 

while Eq. (70) is a mode propagating inward from the water to the plate and amplifying 

as it propagates due to the incident waves (Fig. 4 (b)). 

 From displacements at an arbitrary position and time, we can calculate velocity, 

strain, stress as well as energy flux using the SAFE. Now we calculate energy flux 

across the plate cross-section 0 and 1 and the plate-water boundaries with the length 

of the plate thickness d, 2 and 3, as shown in Fig. 5. Fig. 6 shows frequency 

dependence of energy flux rate )( 011 EEP  , )( 022 EEP  , and )( 033 EEP  , where 

E0, E1, E2, and E3 are energy flux across the boundaries 0, 1, 2, and 3 , respectively, 

taking their positive in the arrow direction in Fig. 5. 
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 Since Fig. 6 (a) shows a mode that flows into from 0 and leaks out from 1, 2, 

and 3, the energy flux rate P1, P2, P3 are positive and the energy flux leaking out from 

the upper and lower boundaries 1 and 2 are identical. Moreover, P1+P2+P3=1 showing 

the natural consequences that the energy flowing into at 0 leaks out from 1, 2 and 3. 

While, in the increasing mode (Fig. 6 (b)), the energy fluxes at 2 and 3 (P2, P3) are 

negative, which shows that energy flows into at the upper and lower boundaries. And 

the energy flux across 1 is larger than the input energy at 0. 

3.2 Characteristic properties on leaky guided waves 

 Fig. 7 shows frequency spectra of wavenumber (real and imaginary parts), 

phase velocity, and group velocity calculated with the SAFE for four different cases. 

Black lines in Figs. 7 (a) - (d) denote the case without leaky media ( 021    in Eqs. 

(44) or (45)), and blue lines are total transmission modes in the same leaky media as 

21    in Eq. (44), and red lines are leaky plate modes in the same leaky media as 

21    in Eq. (45), and gray lines represents the case when leaky liquid medium 

exists at one side by setting 01  . Unnecessary equations and unknown valuables 

appearing in Eq. (56) for 01   and/or 02   were removed before solving the 

eigenvalue problem. 

 When water exists as leaky media, some characteristic solutions were observed. 

The first one is that a mode with phase and group velocities slightly smaller than the 

velocity of water, 1500 m/s, appears only when water exists. The second feature is that 

group velocity dispersion curves are significantly distorted in the frequency range where 

the phase velocities of A0 and S0 modes become close in total transmission modes. The 

third one is that attenuation curves are significantly different in the conditions of leaky 

media. These three features are discussed below in detail.  
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3.2.1 Non-dispersive modes with a velocity close to that of a leaky medium 

 Fig. 8 shows a displacement distribution at (B) in Fig. 7 (c), where the phase 

velocity is )Re( zpc   =1496.4 m/s, and wavenumbers in the y and z directions are 

a pure imaginary number 1.16×10
3
 i and a real number 1.68×10

4
, respectively. As this 

mode propagates in the z direction with the energy distribution localized on the solid - 

fluid boundaries, its attenuation, the imaginary part of z , becomes zero. This mode is 

known as Scholte waves propagating on solid-liquid boundaries. Since this mode also 

has an energy distribution within a solid at the vicinity of the boundaries, the localized 

energy distribution affects the opposite boundary gradually as the plate becomes thinner. 

Therefore, the Scholte mode exhibit a non-flat frequency range fd = 0.5 MHz mm in Fig. 

7(c). 

 

3.2.2 A0 and S0 total transmission modes  

 In total transmission modes designated in blue lines in Fig. 7, distinctive 

features were exhibited at the range of fd = 3-5 MHz mm where phase velocities of A0 

and S0 modes become close. Phase and group velocity dispersion curves, Figs. 7 (a) and 

(b) are zoomed around fd=3-5 MHz mm as shown in Figs. 9 (a) and (b). The A0 and S0 

modes below about fd = 3.78 MHz mm show similar curves with the cases of non-leaky 

media and leaky modes, while the curves of A0 and S0 modes merge together at fd = 

3.78 MHz mm and vary with the identical phase and group velocities beyond the fd 

value.  

 Fig. 10 represents displacement distributions of four modes calculated for the 

point (C) in Fig. 9 (fd = 5). Figs. 10 (a) and (b) are modes with large vibration at a 

single side of the plate-water boundaries from which leaky wave flows out, while in (c) 
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and (d), incident wave flows into from a large vibrating boundary. Both (a), (b) and (c), 

(d) are symmetric with respect to the centerline of the plate, from which we can infer 

their phase and group velocities are identical. These modes correspond to the solution 

pair of ym  and 
*

ym  as given in Eqs. (69) and (70). Although these fundamental 

Lamb wave modes are far from antisymmetric and symmetric distributions, we call 

them A0 and S0 for the sake of convenience. 

 Around the frequency range where curves of S0 and A0 modes merge, group 

velocity dispersion curves become discontinuous. We consider that this feature is caused 

by non-smooth variation of attenuation coefficient as shown in Fig. 7 (b) and Fig. 11. 

Because the attenuation curves suddenly vary from zero to a certain value at the 

junction of S0 and A0 modes, the differentiation of the curve, corresponding to group 

velocity, becomes discontinuous.  

3.2.3 Attenuation curves 

 Fig. 7 (b) shows that attenuation coefficients significantly differ in boundary 

conditions. For the case of non-leaky media (black lines), attenuation coefficients have 

non-zero values only below the cutoff frequencies of A1 and S1 modes, showing 

evanescent modes. Modes with leaky media also have almost identical values with the 

attenuation coefficients of evanescent modes, and therefore blue, red, and gray lines are 

behind the black line in Fig. 7 (b).  

 Fig. 11 shows attenuation curves only for A0 (solid line) and S0 (dashed line) 

modes in a water-coupled plate. As shown in the previous section, attenuation curves 

abruptly change from zero to a non-zero value at fd =3.78 MHz mm for total 

transmission modes and the attenuation coefficients for A0 and S0 modes are identical, 

which corresponds to Figs. 10 (a) and (b).  

 For leaky plate modes, attenuation in a water-loaded plate on both two sides 
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(red lines) is approximately double that in a one sided plate (gray lines) below about fd 

= 3 MHz mm. This is caused by the Lamb wave feature that A0 and S0 modes in the 

low frequency range propagate with almost uniform displacement distributions in the 

thickness direction with or without leaky media as shown in Fig. 12. As ultrasonic 

energy leak out from a single side in Fig. 12 (b), attenuation became half of that in a 

water - loaded plate on both boundaries (Fig. 12(a)). While, in the high frequency range 

as shown in Fig. 11 (E), displacement distributions were obtained as Fig. 13. When 

leaky media exist at both sides of boundaries, the S0 mode kept symmetric distribution 

with respect to the plate center (Fig. 13 (a)), while for a water-loaded plate on a single 

side, the "S0 mode" have significantly different displacement distribution where 

vibration is localized at the free boundary (Fig. 13(b)). This unique feature results in 

reducing attenuation as shown in the solid gray line of Fig. 11 over fd = 4 MHz mm. 

 

5. Conclusions 

 This paper described calculation of Lamb waves in a plate surrounded by leaky 

media using a SAFE. The SAFE formulation provided a nonlinear eigenvalue problem 

for leaky Lamb waves in a plate coupled with leaky media including elastic solids and 

fluids. The nonlinear eigenvalue problem, obtained for a plate coupled with leaky media, 

was deformed into the linear eigenvalue problem using the symmetry of Lamb wave 

modes under the conditions that leaky media are non-viscous fluids with the same sound 

velocities. Dispersion curves calculated with the SAFE agreed well with theoretical 

solutions, which proves the validity and accuracy of the SAFE calculations. Moreover, 

we discussed displacement distributions for characteristic modes strongly affected by 

leaky media. 
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Figure 1 

Layered elements and leaky media in the SAFE calculation. 
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Figure 2 

Wavenumbers and vibration directions. 
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Figure 3 

Comparison of dispersion curves for leaky plate modes with the previous theoretical solutions 
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(a) Wave number  zmxRe  
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(b) Attenuation (  zmxIm ) 

 



Figure 4 

Displacement distributions at the point (A) in Fig.3(a). 
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Figure 5 

Energy flow at the boundaries. 
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Figure 6 

Energy flow rate for the mode including the point (A). 
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(a) Attenuated mode with outgoing leaky wave 
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Figure 7 

Frequency spectra for water-loaded and unloaded aluminum plates. 
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(a) Wave number ( )Re( zmx ) 
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Figure 7   (contd.) 

Frequency spectra for water-loaded and unloaded aluminum plates. 

 

 

 
 

(c) Phase velocity dispersion curves ( )Re( zpc x ) 
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 (d) Group velocity dispersion curves 



Figure 8 

Wave structure at the point (B) in Fig.7 (c). 
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Figure 9 

A0 and S0 mode dispersion curves for four different boundary conditions. 

 

 

 
 

(a) Phase velocity 

 

 

 

 
 

(b) Group velocity 



Figure 10 

Displacement distributions of four modes calculated for the point (C) in Fig. 9 (fd=5) 
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Figure 11 

Attenuation curves for A0 and S0 modes in a water-loaded plate. 

 

 
 



Figure 12 

Displacement distributions for the point (D) in Fig. 11. 

              

Plate 

thickness d 

 

 

Figure 13 

Displacement distributions for the point (E) in Fig. 11. 
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We developed a semi-analytical finite element method for calculating leaky Lamb waves. The 

calculation results agreed well with the previous theoretical studies. We discussed dispersion curves, 

attenuation curves, and displacement distributions for total transmission modes and leaky plate 

modes in a single side and both two side water-loaded plate 
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