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Abstract 

 

Theoretical and experimental issues of acquiring dispersion curves for bars of arbitrary 

cross-section are discussed. Since a guided wave can propagate over long distances in a 

structure, guided waves have great potential for being applied to the rapid nondestructive 

evaluation of large structures such as rails in the railroad industry. Such fundamental data 

as phase velocity, group velocity, and wave structure for each guided wave mode is 

presented for structures with complicated cross-sectional geometries as rail. Phase 

velocity and group velocity dispersion curves are obtained for bars with an arbitrary 

cross-section using a semi-analytical finite element method (SAFE). Since a large 

number of propagating modes with close phase velocities exist, dispersion curves 

consisting of only dominant modes are obtained by calculating the displacement at a 

received point for each mode. These theoretical dispersion curves agree in characteristic 

parts with the experimental dispersion curves obtained by a two-dimensional Fourier 

transform technique. 

 

PACS numbers: 43.20. Jr,, 43.20. Mv. 

 

Keywords; guided wave, dispersion curve, semi-analytical finite element method, two-
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1. Introduction 

Guided wave ultrasonic modes propagating over long distances along large bar or 

plate-like structures are useful in rapid long-range nondestructive evaluation. Guided 

waves have already been applied to a wide variety of NDE for plate-like structures. 

Recently, applications to pipe and rail inspection have attracted considerable attention [1-

4]. Dispersion curves, representing frequency dependence of guided wave velocities, are 

indispensable for such guided wave NDE. Dispersion curves present fundamental 

information on guided waves such as wavelength and dispersivity as well as phase and 

group velocities at a certain frequency. Such fundamental information plays an important 

role in determining incident and receiving angles of angle beam transducers and spacing 

of comb type transducers such as EMATs and PVDF films and to estimate also the 

traveling time of each mode. Therefore, dispersion curves are theoretically obtained 

initially followed by actual guided wave measurements [5].   

Theoretical studies on dispersion curves for guided waves have been carried out 

for over one hundred years; Pochhammer [6] and Chree [7] first developed the results for 

rods and Rayleigh and Lamb presented them for plates. Then, Davis [8] presented many 

theoretical and experimental investigations. The other early work was carried out by such 

famous individuals as Mindlin [9], Onoe [10], Gazis [11], Viktorov [12], Graff [13], Auld 

[14] and Achenbach [15]. 

As for such simple structures as plates, solid rods and hollow cylinders, detailed 

investigations have been given on wave structures for each mode and for reflection, 

transmission and scattering characteristics of guided waves as well [16-19]. Furthermore, 

complicated guided wave motions have been revealed by computer simulations and 
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visualization [20]. In these numerical analyses, specialized calculation techniques were 

developed so that guided wave propagating over long distances could be expressed, such 

as the hybrid method of the normal expansion theory and the FEM or BEM and the semi-

analytical finite element method (SAFE) where wave motions in the propagation 

direction are theoretically treated and the cross-section is sub-divided. 

As for a bar with an arbitrary cross-section, Nigro [21] and Aalami [22] gave 

approximate solutions using the Rayleigh-Ritz method and showed dispersion curves for 

such simple geometries as square and rectangular bars. Recently, Taweel et. al. [23] 

presented that these solutions are obtainable by the SAFE. Gavrić [24], Gry [25] and 

Thompson and Jones[26]  studied dispersion curves for a rail for the purpose of noise 

reduction. However, there is little study on guided waves in bars with a complicated 

cross-sectional geometry such as a rail for the purpose of ultrasonic non-destructive 

evaluation. Thus, fundamental information on guided waves is required so as to adapt for 

ultrasonic guided waves into a complicated cross-sectional bar. 

Thus, the purpose of this study is to obtain theoretical phase and group velocity 

dispersion curves and to verify them experimentally, in order to apply ultrasonic guided 

waves to NDE for bars with a complex cross-section. First, the approximate solutions of 

the phase velocity dispersion curves by the SAFE are described, and then the derivations 

of the group velocity dispersion curves and displacements at any location are presented. 

Theoretical dispersion curves for a square rod and rail, however, show a large number of 

propagating modes with close phase velocities, which are generally not useful for 

practical NDE applications. Therefore, dispersion curves are represented by shading 

depending on the displacement at a receiver point. Finally, these theoretical dispersion 
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curves, consisting of only dominant modes, are compared with experimental dispersion 

curves obtained by the two-dimensional Fourier transform technique. 

 

2. Semi-analytical FEM  

A. Governing equations 

In Lamb wave calculations by the SAFE method, assuming plain strain, a cross-

section of a plate is divided in the thickness direction into layered elements, and waves in 

the propagating direction z are described by the orthogonal function exp( )ziξ  where ξ is 

the wavenumber of the Lamb wave.  The mth eigenvalue ξm of the eigensystem derived 

here denotes the wavenumber of the mth resonance mode. In the case of a bar with an 

arbitrary cross-section, the two dimensional cross-section is sub-discritized and waves in 

the longitudinal direction z are described by the orthogonal function )exp( ziξ . Similarly, 

wavenumbers are obtained as the eigenvalues ξm of the eigensystem, and then dispersion 

curves can be depicted. 

First, consider a quadratic prism element that consists of a small quadrilateral on a 

cross-sectional x-y plane and straight edges in the z direction. When the displacement, 

strain, stress and external traction vectors at any point (x, y, z) in this element are written 

as 

[ T
zyx uuu=u ]

]

]

]

       (1) 

[ T
xyzxyzzzyyxx γγγεεε=ε      (2) 

[ T
xyzxyzzzyyxx σσσσσσ=σ     (3) 

[ T
zyx ttt=t ,       (4) 
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the virtual work principle gives the following governing equations, 

( ) ∫∫∫ +=Γ
Γ V

T

V

TT dVdVd σεuutu δρδδ &&     (5) 

where T denotes transposed or Hermitian matrices, ρ is density and •&&  is a second 

differentiation with respect to time t.  and are the surface integration on the 

outer surface of the prismatic element and the volume integration of the element, 

respectively. The left hand side denotes the work done by the external traction t, and the 

first and second term of the right hand side are the increment of kinetic energy and 

potential energy, respectively. 

∫
Γ

Γ• d ∫ •
V

dV

Now, considering the harmonic wave )exp( tiω− , the displacement vector at an 

arbitrary point Eq.(1)  can be written as, 

)exp()(),( tizyx j ω−= UNu       (6) 

where  is the interpolation function, and  is the nodal displacement vector 

of the jth element. For four node elements,  is a 3x12 matrix and is a 12 

element vector. Since  is a function of z, this can be rewritten by the Fourier 

transform as, 

),( yxN )(zjU

)y,(xN )(zjU

)(zjU

∫
+∞

∞−
= ξξ dziz jj )exp()( UU .      (7) 

Now considering a certain wavenumber ξ, the displacement vector at an arbitrary point in 

the jth element is 

)exp(),( tiziyx j ωξ −= UNu .      (8) 

The strain vector is written by the strain-displacement relation as, 
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Substituting Eq.(8) into Eq.(9) gives 

( ) ( tizii j ωξξ −+= exp21 UBBε )     (11) 

yyxx ,,1 NLNLB += ， NLB z=2      (12) 

, where and  are the differentiation of the interpolation function N with respect to 

x and y, respectively. The stress vector σ is written by the stress-strain relation as 

x,N y,N

cεσ =          (13) 

, where c is an elastic coefficient matrix. Similarly to the displacement vector u in Eq.(8), 

the external traction vector t is described using the nodal external traction vector jT  as, 

( tizij ωξ −= expTNt ) .      (14) 

Substituting Eqs.(8), (11), (13) and (14) in Eq.(5) and rearranging this gives 

( ) jjjjjjj i UMUKKKf 2
3

2
21 ωξξ −++=     (15) 

∫Γ′
Γ′= djTj TNNf  

∫ ∫=
y x

Tj dxdy111 cBBK  

(∫ ∫ −=
y x

TTj dxdy12212 cBBcBBK )       (16) 

∫ ∫=
y x

Tj dxdy223 cBBK  
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∫ ∫=
y x

Tj dxdyNNM ρ  

, where Γ’ stands for the boundary of the cross-section. Numerical integration gives the 

values in Eq.(16). Calculating Eq.(16) for all elements and overlapping the values with 

respect to the common nodes results in the following governing equations for the total 

system. 

( ) UMUKKKf 2
3

2
21 ωξξ −++= i       (17) 

, where K ，K ，K and  are the MxM matrices determined by the geometry and f is 

the nodal force vector given by the boundary conditions (Mx1; M is three times the 

number of nodes). 

1 2 3 M

U  is the unknown nodal displacement vector. Eq.(17) can be rewritten 

as the following eigensystem with a first-order wavenumber ξ. 

( ) pQBA =− ξ        (18) 










−
−
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2
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      (19) 









=

U
U

Q
ξ

,   







=

f
p

0

Assuming p=0, the eigenvalue ξm (m=1,2…2M) of the eigensystem Eq.(18) corresponds 

to the mth wavenumber of the guided wave modes satisfying the resonant condition of 

this bar. Phase velocity of the mth mode at frequency ω is given by mmc ξω= . These 

eigenvalues consist of wavenumbers for both M forward waves and M backward waves. 

When ξm is a complex number, the mth mode is an evanescent mode, and for real ξm ,  the 
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mth mode is a propagating mode. For the propagating modes, the sign of group velocity 

determines whether it is a forward wave or a backward wave. Since the sign of phase 

velocity and group velocity can be opposite in certain frequency range values, the 

propagating direction cannot be decided by the sign of the phase velocity.  From Eq.(18), 

moreover, 2M left eigenvectorsΦ  (1x2M vector) and 2M right eigenvectors  

(2Mx1) are obtained.  

m
L

m
RΦ

mξ

mξ +

A

ξ∆+

 

B. Group velocity 

The group velocity of the mth mode is written as mmg ddc ξω= . Therefore, in 

order to calculate the group velocity at a frequency ω, the wavenumber mξ ∆+  at the 

frequency ωω ∆+  must be obtained, as well as the wavenumber mξ at the frequency ω . 

The wavenumber mm ξξ ∆+  can be calculated at the frequency ωω ∆+  by the technique 

described above. Since the differentiation is executed by the two wavenumbers mξ∆  

and mξ corresponding to the same mode, the vibration mode must be identified correctly.  

This is very difficult in this case where many modes with close wavenumbers are 

possible. Moreover, a small error in the wavenumbers causes large errors in the 

differentiation of group velocity. Therefore, group velocity should be obtained 

theoretically. 

 Suppose that matrices and  become B AA ∆+  and B B∆+  at the frequency 

ωω ∆+ , and that eigenvalue and left and right eigenvectors are obtained as mmξ , 

 and Φ , respectively. Then, the following eigensystem is 

satisfied. 

m
LΦm

LΦ ∆+ m
R

m
R Φ∆+
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( ) ( )( ){ }( ) 0=∆+∆+∆+−∆+ m
R

m
R

mm ΦΦBBAA ξξ    (20) 

Removing the second-order differential term and rearranging Eq.(20) give 

( ) ( ) m
R

mmm
R

m ΦBBAΦBA ξξξ ∆+∆+∆−=∆−    (21) 

Now, since  is an orthogonal vector,  can be written as the superposition of 

(l=1,2… 2M) as, 

m
RΦ m

RΦ∆

l
RΦ

∑
=

=∆
M

l
lml

R
m

R C
2

１

ΦΦ .        (22) 

where C is an arbitrary constant. Substituting Eq.(22) in Eq.(21) gives lm

( ) ( ) m
R

mmlm

M

l
l

R
m C ΦBBAΦBA ξξξ ∆+∆+∆−=− ∑

=

2

1

   (23) 

Multiplying Φ  from the left of Eq.(23), Eq.(23) can be rewritten as m
L

( )

( ) m
R

mmm
L

lm

M

l
l

R
mm

L C

ΦBBAΦ

ΦBAΦ

ξξ

ξ

∆+∆+∆−=

−∑
=

2

1       (24) 

Considering the following orthogonal condition 





=
m

R
m

Ll
R

m
L

AΦΦ
AΦΦ

0
 

ml
ml

=
≠      (25) 





=
m

R
m

Ll
R

m
L

BΦΦ
BΦΦ

0
 

ml
ml

=
≠       (26) 

m
R

m
L

mm
R

m
L BΦΦAΦΦ ξ=       (27) 

, the left hand side of Eq.(24) becomes zero. Eq.(24) results in 

( )
m

R
m

L
m

R
mm

L

m BΦΦ
ΦBAΦ ∆−∆

=∆
ξξ .     (28) 
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 This equation indicates that we can estimate the wavenumber of the mth mode mm ξξ ∆+  

at the frequency ωω ∆+ by the use of the wavenumber of the mth mode mξ  and the left 

and right eigenvectorΦ , Φ  at the frequency ω . This leads to group velocity  at 

the frequency ω for the mth mode. 

m
L

m
R

mgc

 

C. Displacement field 

The solution of Eq.(18) is obtained as 

∑
=

=
M

m
m

R
mQ

2

1

ΦQ .       (29) 

( ) mm

m
L

m B
Q

ξξ −
−=

pΦ ,      (30) m
R

m
L

mB BΦΦ=

Since the nodal displacement vector U (Mx1 vector) is the upper part of (2Mx1 vector), Q

∑
=

=
M

m
m

Rup
mQ

2

1

ΦU        (31) 

where Φ  is the upper part ofΦ .  m
Rup

m
R

Here we consider point loading on the outer surface at z=zS. Eq.(30) can be 

written as 

( ) ( S
mm

m
L

m zz
B

Q −
−

−= δ
ξξ

pΦ )       (32) 

, where p is the vector given by Eq.(19), having nodal force values only in the 

components corresponding to the loaded nodes. Since the displacement vector  is the 

Fourier transform with respect to the wavenumber ξ as given in Eq.(7), substituting 

Eq.(31) in Eq.(7) and applying the residual theorem gives 

U
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({ Sm

M

m
m

Rup
m zzi −= ∑

=

ξα exp
1

ΦU )}      (33) 

m

m
L

m B
pΦ

−=α ,        (34) 

where, for , Eq.(33) is expressed as the superposition of M forward waves, while 

for , Eq.(33) becomes the superposition of M backward waves. The nodal 

displacement is obtained by Eq.(33), and then the displacement at an arbitrary point is 

calculated by the use of interpolation function N. 

Szz >

Szz <

 

3. Dispersion curves for a square rod  

Iterating the calculation of eigenvalues mξ  at every frequency leads to the phase 

velocity dispersion curves. Calculating the increment of the wavenumber mξ∆  written by 

Eq.(28) at every frequency step provides us with the group velocity dispersion curves. 

Here we investigate the accuracy of this calculation technique by examining dispersion 

curves with various numbers of elements for a square rod. Figure 1 shows the phase 

velocity (a) and group velocity (b) dispersion curves calculated with various numbers of 

elements for a material with Poisson’s ratio ν=0.30, where f is frequency, h is the length 

of the side of a square cross-section and c, cg, cT denote phase velocity, group velocity 

and transverse wave velocity, respectively. As the number of elements increases, 

dispersion curves for all modes shift to lower frequency and lower phase velocity values, 

and then converge. In the fh region below 2.5MHzmm, curves converge with 12x12 

elements, which means that the SAFE calculation is carried out with sufficient accuracy. 

In the higher frequency range and for higher order modes, however, the curves do not 
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converge even with 12x12 elements. However, we notice the tendency that these curves 

shifts toward the low frequency and low phase velocity region (low wavenumber 

direction) and then converges when the elements increase. Thus, satisfactory dispersion 

curves can be obtained even with reduced number of elements. 

In the low frequency range below 2MHz mm shown in Fig.1, three propagating 

modes exist; the fundamental symmetric (S0), fundamental anti-symmetric (A0) and 

shear horizontal mode (SH). These were described in detail in previous papers as the 

longitudinal, flexural and torsional mode[19,20]. The torsional mode is almost a straight 

line as seen in the dispersion curves of guided waves in plates or hollow cylinders, but it 

should be noted that its velocity c is slightly smaller than the transverse velocity cT 

( 92.0≅Tcc ).  These lower order modes given by the SAFE calculation agree well with 

values in the previous papers [19,20]. 

 Next, experimental dispersion curves are obtained for the steel rod 

(cL=5.85mm/µs, cT=3.23mm/µs). The contact transducer (center frequency 50kHz) 

mounted on the upper surface of the square bar (h=5.08mm, about 2.5m length) excited 

tone burst signals from the edge of the bar. A non-contact air-coupled transducer (Ultran, 

60kHz) enables us to measure waveforms with rapid scanning over the bar. This sensor 

was set at the vibrating surface of the air-coupled transducer, parallel to the upper surface 

of the square bar with about a 30mm spacing. Waveforms were recorded at 200 locations 

from L=0.3m to L=2.3m in 10mm increment, where L denotes the distance between the 

contact transmitter and the air-coupled receiver. Since waveforms were stored from t=0 

to 12.8ms, highly dispersive modes with very low group velocity values were detected as 

well as fast modes reflecting iteratively between two edge of the bar. In the two 
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dimensional FFT, two dimensional discrete data in the time direction and in the spatial 

direction are converted into those in the frequency domain and in the wavenumber 

domain, respectively. Figure 2 shows the experimental dispersion curves (a)(c) and the 

theoretical dispersion curves by the SAFE with 12x12 elements (b)(d)(e); (a) and (b) are 

wavenumber ξ x frequency f representations and (c),(d) and (e) are frequency f  x phase 

velocity c representations. In fig. 2 (c), phase velocity c is obtained by the relation 

c=ω/ξ using wavenumberξ given in fig.2 (a). Therefore, phase velocity below 

maxmin ξω=c  cannot be obtained, where ξmax is the maximum value of the wavenumber 

which is given by the increment of the measurement points dz (=10mm) as ξmax=1/2dz.  

Since the mode with the lowest phase velocity can be seen in the frequency range 

considered here, the spatial increment of 10mm was sufficiently small. In the 

experimental dispersion curves (a)(c), darker dots denote larger amplitude where the 

amplitude data are normalized by the maximum amplitude at each frequency. Therefore, 

the results around the center frequency of 50kHz are less influenced by noise and more 

reliable than those as we move further away from 50kHz. However, the flexural mode 

from c=0-3.0mm/µs and f=0-20kHz and the higher modes around 100kHz can be clearly 

seen in Fig.2(c). The darker regions in the experimental results agree well with the 

theoretical solutions (b)(d) in the SAFE calculations, which verifies the SAFE 

calculations. 

However, all curves obtained in the SAFE calculation do not appear in the 

experimental dispersion curves. For instance, the shear horizontal mode and the 

longitudinal mode in a low frequency region cannot be seen because the air-coupled 

transducer does not detect such in-plain modes. Especially in the higher frequency range, 
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many higher order modes exist in the SAFE calculation results (b)(d). Thus, it is not easy 

to verify the dispersion curves given by the SAFE calculation from the experimental 

results. Therefore, to remove modes that cannot be measured and to highlight largely 

influential modes, dispersion curves are plotted by amplitudes at a measured point for 

each mode when point load is applied at the upper surface of the rod (Fig.2 (e)). The 

shading in Fig.2 (e) is similar to the experimental results; e.g., highly dispersive modes 

around 55, 65 and 85kHz agree well with Fig.2(c).  

 

4. Dispersion curves for a rail 

Next, dispersion curves are plotted by the SAFE calculation for a practical rail 

structure. A cross-section and sub-divisions of a rail are shown in Fig.3. The number of 

elements is 68, which may be insufficient to obtain the exact solutions, but we can 

roughly estimate the dispersion curves as shown in the previous section. Phase velocity 

and group velocity dispersion curves for the rail given are given by the SAFE calculation 

as Fig.4. Since many modes exist in this frequency range, these dispersion curves are not 

useful for guided wave analyses. Similarly to the square rod, however, many modes 

should be removed by considering the measurement conditions. 

In order to obtain experimental dispersion curves, waveforms were collected at 

many regularly spaced locations as in the square rod tests. The length of the rail was 

about 2.4m and the cross-section is shown as Fig.3. The contact transmitter was located 

on the upper surface of the head part and the non-contact air-coupled receiver was set 

about 30mm away from the upper and lateral surface of the head to detect the out-of-plain 

displacement on each surface. Waveforms were collected at 200 points in 10mm 
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increments in the longitudinal direction. Fig.5 shows the waveforms captured at L=0.5m 

and L=1.5m; L is the intertransducer distance. Phase velocity dispersion curves are 

shown in Fig.6 by dark dots. Fig.6(a) and (b) are the experimental results from the upper 

surface and the lateral surface measurements, respectively. In Fig.6 (a), three 

characteristic modes can be seen; one is a less dispersive mode from c=2.2 mm/µs to 3.0 

mm/µs over the frequency range of 5kHz and the other two are highly dispersive modes 

over 35kHz. In Fig.6 (b), two characteristic modes are shown; one is a less dispersive 

mode over the frequency range of 5kHz as in Fig.6 (a) and the other one is a highly 

dispersive mode appearing over the frequency range of 25kHz.  

In the dispersion curves by the SAFE calculation (Fig.4), many modes are shown 

in addition to these characteristic modes. In order to compare the SAFE solutions with the 

experimental results, dispersion curves are plotted by changing the shading depending on 

the displacement at the measured point (Fig.6 (c), (d)). These calculation results (c) and 

(d) agree well with the experimental results Fig.6 (a) and (b), respectively. 

Next, Fig.7 (a) and (b) show group velocity dispersion curves plotted depending 

on the displacement. Both figures indicate that all measured modes are below about 

3.2mm/µs and fast modes cannot be seen. Fig.5 shows the waveforms measured at 

L=0.5m and L=1.5m; L is the intertransducer distance. Since these waveforms appear at 

410µs and 720µs, respectively, group velocity is derived to be about 3.2mm/µs from the 

time difference. This result agrees well with the field tests using a long rail4. After the 

first wave appears, many dispersive modes are mixed. Thus, the waveforms do not give 

useful information about the propagating path. Therefore, when raw waveforms without 
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any treatments as 2DFFT are used in NDE of a bar with complicated cross-section, the 

fastest modes with the group velocity around the transverse velocity are useful. 

 

5. Conclusions 

The approximate solutions for phase velocity, group velocity and displacement of 

guided waves by a semi-analytical finite element method (SAFE) were described in this 

paper. It was found in convergence tests on the dispersion curves, that the rough 

approximate curves could be obtained even with a reduced number of elements. 

Dispersion curves for a square bar and rail were shown. A large number of propagating 

modes with close phase velocities occur in the dispersion curves especially for a bar 

with such a complex cross-section as rail. A practical issue of dispersion curve 

modification was made. Dominant modes were obtained by calculating displacements 

under the boundary condition that meets the actual measurement set-up, and then 

dispersion curves were drawn with the dominant modes highlighted. These theoretical 

dispersion curves agree well with the experimental dispersion curves given by the two-

dimensional Fourier transform technique. In the rail structure, three dominant modes 

were seen in the dispersion curves obtained by measurements on the upper surface of 

the rail head, while two dominant modes were obtained for measurements on the lateral 

surface of the rail head. In the SAFE calculations, the group velocities of these 

dominant modes were predicted to be below about 3.2mm/µs, which was verified by 

experimental measurements. 
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Figure Captions 

FIG. 1. Dispersion curves for ν=0.30 by the SAFE calculation  

(a) phase velocity (b) group velocity 

FIG. 2. Comparison between experimental and theoretical dispersion curves for the 

steel rod 

(a) Experimental, wavenumber (ξ) x frequency(f) representation 

(b) Theoretical, ξ x f representation 

(c) Experimental, frequency (f) x phase velocity (c) representation 

(d) Theoretical, f x c representation 

(e) Theoretical, f x c representation, dominant modes are highlighted 

FIG. 3. Rail geometry and sub-divisions 

FIG. 4. Dispersion curves for rail (a) phase velocity, (b) group velocity 

FIG. 5. Typical waveforms at L=0.5 and L=1.5 on an upper surface of a rail head 

FIG. 6. Experimental and theoretical dispersion curves for a rail 

(a) Experimental, upper surface of a rail head 

(b) Experimental, lateral surface of a rail head 

(c) Theoretical, upper surface of a rail head, dominant modes are highlighted. 

(d) Theoretical, lateral surface of a rail head, dominant modes are highlighted. 

FIG. 7. Theoretical group velocity dispersion curves 

Dominant modes are highlighted. 

(a) Upper surface of a rail head 

(b) Lateral surface of a rail head 
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(a) phase velocity 
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(b) group velocity 
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(a) Experimental, wavenumber (ξ) x frequency(f) representation 
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(b) Theoretical, ξ x f representation 
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FIG.2 
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(c) Experimental, frequency (f) x phase velocity (c) representation 
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(d) Theoretical, f x c representation 
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FIG.2 
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(e) Theoretical, f x c representation, dominant modes are highlighted 
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FIG.4 
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(a) phase velocity 
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(b) group velocity 
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FIG.5 
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FIG.6 
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(a) Experimental, upper surface of a rail head 
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(b) Experimental, lateral surface of a rail head 
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FIG.6 
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(c) Theoretical, upper surface of a rail head, dominant modes are highlighted 
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(c) Theoretical, lateral surface of a rail head, dominant modes are highlighted 
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(a) Upper surface of a rail head 
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(b) Lateral surface of a rail head 
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