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Abstract 
Guided waves, i.e., ultrasonic wave packets propagating in the longitudinal 
direction, are a promising technique for rapid long-range nondestructive inspection 
of bar-like structures such as pipes and rails. Guided wave inspection requires 
determining guided wave velocities (dispersion curves) and wave structures. A 
computational technique is available to obtain the dispersion curves and wave 
structures for structures with complex cross-sections. This study develops a more 
accurate technique using the mirror relation of guided wave modes and an iteration 
method for solving the eigenproblem. Experimental studies of a JIS 6-kg rail verify 
that dispersion curves and wave structures can be obtained with sufficient accuracy 
for typical out-of-plain vibration modes. Wave structures were obtained by 
measuring waveforms at several points on the curved surface of the rail with a laser 
interferometer controlled by robot arms. 

Key words: Ultrasonic nondestructive inspection, Guided waves, Dispersion curves, 
Rail, Curved surface scanning 

 

1. Introduction 

When a low-frequency ultrasonic wave below a few hundred kHz is input into pipes 
and rails, ultrasonic modes propagating in the longitudinal direction, called a guided wave, 
are observed. Guided waves exhibit long-range propagation of the order of ten to a hundred 
meters. It is expected that the long-range propagation in guided waves will enable fast 
inspection of large structures and remote inspection of unreachable parts (1)–(3). 

In defect detection in pipes and rails with guided waves, the arrival time of defect 
echoes and guided wave velocities are used to determine the location of a defect, similar to 
ordinary ultrasonic inspection. The guided wave velocities can be analytically obtained for 
such simple structures as plates and pipes (4), (5). The velocities can be graphed as curves 
with frequency versus phase velocity or group velocity, called dispersion curves. The 
dispersion curves describe the number of guided wave modes and dispersion in the 
frequency region. Wave structures in a cross-section can also be obtained analytically, 
enabling the most suitable guided wave mode to be selected, allowing the design of exciting 
and receiving transducers for guided wave inspection. 

Thus, dispersion curves and wave structures are fundamental information for guided 
wave analysis. Although they cannot be obtained analytically for a bar with a complex 
cross-section, such as railway rails and H shape beams, guided waves are known to 
propagate long range in large structures(6) and are regarded as a promising technique for 
large structure inspection. *Received XX Xxx, 200X (No. XX-XXXX) 
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The authors have developed a technique for deriving dispersion curves and wave 
structures for a bar with an arbitrary cross-section using a special finite element method 
called the semi-analytical finite element method (SAFEM) (7)–(9). In SAFEM, the 
cross-section is divided two-dimensionally and the longitudinal direction is expressed by an 
orthogonal function )exp(ikz . Then, as a necessary condition for the governing equation to 
obtain solutions, an eigenvalue problem with respect to wave number k is solved. The 
eigenvalues and eigenvectors obtained from the eigensystem denote the wave numbers and 
wave structures of the eigenmodes. Dispersion curves calculated by SAFEM have been 
experimentally confirmed in reference (8) with a two-dimensional Fourier transform 
technique. 

However, our previously determined eigenvalues and eigenvectors were limited to 
about 100 nodes using common personal computers due to the large computational time and 
memory required (8). Therefore, our previous solutions exhibited problems, such as 
eigenvalues having slightly different values and certain eigenvalues not appearing in some 
subdivisions. Theoretical dispersion curves obtained by calculation were compared with 
experimental dispersion curves with a two-dimensional Fourier transform technique, but the 
theoretical wave structures could not be confirmed in our previous work. In order to obtain 
wave structures experimentally, a large number of waveforms should be measured at 
sufficiently close discrete points, which is difficult for curved surfaces such as railway rails. 

This study describes a highly accurate computational technique for dispersion curves 
and wave structures with small cross-sectional subdivisions using the symmetric 
characteristic of guided wave modes and a projection method for the large eigenvalue 
problem called the implicit restarted Arnordi method. Guided waves are also measured at a 
large number of points on a curved surface of a rail to obtain wave structures 
experimentally using a laser Doppler interferometer equipped with a robot arm. 

 

2. Derivation of dispersion curves and wave structures by the semi-analytical 
finite element method 

2.1 Brief description of the semi-analytical finite element method 
In the ordinary finite element method, the calculation region is divided into small 

elements and the wave field in the region is expressed by the displacements at the vertexes 
of the elements (nodes) and the interpolation function (shape function). Generally, a 
governing equation is obtained by minimizing the potential energy in the whole region 
when the displacements at the nodes are taken to be unknown parameters: 

MUKUF 2ω−= , (1) 
where F  and U  are the nodal force and displacement vectors, respectively, and K  and 
M  are the kinetic and mass matrices, respectively. This governing equation can be solved 
for a certain angular frequency ω . In contrast, in SAFEM, only the cross-section is divided 
into small elements, and the longitudinal (z) direction is expressed by )exp( ziξ . Then, the 
wave field with respect to the wave number ξ  is expressed. The following eigenvalue 
problem is obtained by minimizing the potential energy in the whole region expressed by 
the nodal displacements: 

( )UMKKKF 2
3

2
21 ωξξ −++= i , (2) 

where 1K , 2K , 3K and M are M×M real symmetric matrices, with M the degree of freedom. 
In three-dimensional cases, there are three times the number of nodes. This eigenvalue 
problem can be transformed into the following generalized eigenvalue problem using 2M × 
2M matrices A  and B , following references (10) and (11): 

( ) pQBA =−ξ  (3) 
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In order to obtain a solution for eq. (3), ξ  should be a set of 2M eigenvalues for the 
following eigenvalue problem: 

( ) 0QBA =− ξ  (5) 
The 2M eigenvalues mξ  (m = 1…2M) represent the wave numbers of the eigenmodes. 
Assuming that the nodal displacement vector for the mth eigenmode is mU , the eigenvector 
corresponding to the eigenvalue mξ  is given by 

=mΦ ⎥
⎦

⎤
⎢
⎣

⎡

mm

m

U
U

ξ
. (6) 

The 2M eigenvalues include M wave numbers for forward waves and M for backward 
waves (7)–(9). It should be noted that, in this case, the nodal force vector shown in eq. (5) is 
set to zero. Namely, the solution obtained here is for the case of zero external loading. This 
corresponds to the fact that dispersion curves are obtained for regions without fastenings 
and supports in the experiments in Section 3 in this paper. 

2.2 Reduction of the order of the eigenvalue problem using the symmetry of forward 
and backward waves 

All eigenvalues and eigenvectors obtained from eq. (5) consist of M pairs of wave 
numbers for forward and backward waves. A pair of forward and backward waves is 
symmetric in having the same wave number with different signs, and the same wave 
structure with different signs only in the z-direction. That is, the eigenvalue for a backwards 
wave can be written -ξ, corresponding to the eigenvalue of ξ for the forward wave. The 
eigenvectors of the backward and forward waves can be written 
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respectively, where zU  denotes a vector with M/3 displacement components in the z 
direction and xyU  denotes the other 2M/3 components. 

We now consider the following equation: 
( ) 03

2
2

2
1 =++− UKKMK ξξω i , (9) 

which is obtained by setting the nodal force vector to zero in eq. (2). For the forward wave, 
separated only in the z direction we have 

( ) ( ) ( )[ ] 03231
2
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( )1211
2

1 KKMK =− ω , ( )22212 KKK = , ( )32313 KKK = .  (11) 
The following equation applies for backward waves: 
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The following equation is obtained from [(eq.(10)+eq.(12)) × ξ + (eq.(10) - eq.(12))]/2: 
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This equation can be transformed into an eigenvalue problem consisting of M × M matrices 
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1H and 2H : 
( ) 021 =− VHH η , (14) 

( )1221111 KKKH i+= ， ( )3222312 KKKH −−−= i ， (15) 
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For the M eigenvalues obtained from eq. (14), mη  (m=1,2,…,M), taking mm ηξ ±=  
gives the wave numbers for the forward and backward waves. The eigenvectors obtained 
give 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

mz

mxym
m U

U
V

ξ
. (16) 

Hence, dividing the components in the x and y directions by mξ  gives the cross-sectional 
displacement vector for the mth mode as 

⎟⎟
⎠
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mxy
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U
U . (17) 

Using the above process, the size of the matrices in the eigenvalue problem decreases 
by half and the number of nodes can be double that of other previous techniques. 

2.3 Calculating eigenvalues for lower order modes using the projection method for the 
large eigenvalue problem 

Eigenvalue problems with complex generalized matrices can be solved using programs 
such as the GVCCG subroutine for IMSL. GVCCG calculates all the eigenvalues and 
eigenvectors, but it is not suitable for large eigenvalue problems due to the large 
computational time required, approximately proportional to the cube of the matrix size. 

Therefore, in this study we use the implicit restarted Arnordi method, a projection 
method for large eigenvalue problems, to calculate dispersion curves for a rail structure with 
high accuracy. The Arnordi method can solve a very large eigenvalue problem Ax=λx 
because the large eigenvalue problem is approximated by a smaller eigenvalue problem by 
the projection of subspaces. In this method, not all the eigenvalues and eigenvectors are 
obtained, however, since dispersion curves for guided wave inspection need only 
propagating modes with real wave numbers, this method gives sufficiently accurate 
solutions. In this paper, we use a Fortran subroutine for the Arnordi method called 
ARPACK(14).  

 

3. Dispersion curves for a 6-kg rail 

As an example, dispersion curves for a JIS 6-kg rail are obtained here. Fig. 1 shows 
cross-sectional meshes with the maximum number of nodes (a) for the IMSL subroutine 
GVCCV from our previous work, with 107 nodes, and (b) for the ARPACK subroutine, 
with 718 nodes, using a common PC. In our previous work using GVCCV, we obtained 
very course cross-sectional elements (Fig. 1 (a)), for which the calculations were likely to 
be less accurate. Fig. 2 shows dispersion curves obtained for these cross-sectional elements, 
as well as for 360 nodes using the ARPACK (red square). In the low-frequency region 
below 20 kHz, the solutions are almost the same. However, the differences between them 
increase as the frequency increases. The 360-node data is closer to the 718-node data than 
the 107-node data, showing a shift to higher accuracy as the number of nodes increases. As 
observed from several further results for different node numbers, the calculation results are 
sufficiently accurate in the case of Fig. 1 (b). 

The cross-sectional subdivisions shown in Fig.1 were set to be symmetric with respect 
to the center vertical line. If the subdivisions are not symmetric, even for a symmetric 
cross-section, a symmetric mode shape may sometimes distort, resulting in a small error in 
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the solutions of the dispersion curves and wave structures (12). 
 

      
(a)                      (b) 

Fig. 1 Cross sectional division for calculations of dispersion curves 
 with (a) IMSL GVCCV (107 nodes) and (b) ARPACK (718 nodes). 
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Fig. 2 Group velocity dispersion curves for JIS 6-kg rails derived from (a) (107 nodes, blue 

triangle) and (b) (718 nodes, black circle) in Fig.1 and a 360-node model (red square).  
 

4. Experimental verification of wave structures 

Fig. 3 shows dispersion curves for a JIS 6-kg rail obtained by the cross-sectional 
division of Fig. 1 (b) below 60 kHz. At 37 kHz, two modes with large group velocities can 
be seen, indicated by (A) and (B). These are longitudinal vibrating modes observed 
experimentally in our previous work (14). We found that the mode with the largest group 
velocity (A) vibrates with the same phase at the upper and lower areas of the cross-section. 
Mode (B) exhibits the opposite vibration at the upper and lower areas. In this section, 
measured wave structures for the other modes with lower group velocities (a)–(e) at 37 kHz 
are presented.  

Fig. 4 shows the wave structures (a)–(e) corresponding to the eigenvectors obtained by 
the SAFE calculation described in the previous section. Displacements normal to the 
cross-section are not shown in these figures because they were small compared to the 
in-plane displacements. The red and black lines denote the original position of the structure 
and the position of the deformed structure after a quarter period, respectively, which 
correspond to the imaginary and real parts of the eigenvectors described by eq. (17). 

Inspecting these wave structures reveals that (a) and (b) are modes vibrating 
horizontally at the web, (c) is a mode vibrating vertically at the head, and (d) and (e) are 
modes vibrating flexurally at the bottom. 

In order to verify these calculated wave structures, guided waves were measured at 
several points on the surface of a rail with a laser Doppler vibrometer equipped with a robot 
arm. Fig. 5 shows the experimental set-up. A function generator generated a four-cycle burst 
wave at a center frequency of 37 kHz. A voltage of about 150Vp-p was applied to an 
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Fig. 3 Group velocity dispersion curves for JIS 6-kg rails (718 nodes).  

The vertical line denotes 37 kHz. (A) and (B) are modes with longitudinal vibrations.  
The wave structures for (a)–(e) are given in Fig. 4.  

 
 

          
(a)                   (b)                   (c) 

            
 (d)                         (e) 

Fig. 4 Wave structures for several guided wave modes in a JIS 6-kg rail at 37 kHz.  
The structures (a)–(e) correspond to dispersion curves (a)–(e) in Fig. 3. The red and black 

lines denote the original position of the structure and the position of the deformed structure 
after a quarter period, respectively. 

 

 
Fig. 5 Experimental set-up for guided wave measurement. 
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excitation contact transducer. 
The low frequency transducer was set on the web for (a) and (b), on the upper surface 

of the head for (c) and on the upper surface of the bottom for (d) and (e) so as to excite each 
mode effectively. The dimension of a JIS 6-kg rail is 50.8 mm in height and 50.8 mm in 
width, which is about 1/3 of the cross-section of general railway rails. The length of the rail 
was 5.5 m. Guided waves were excited at one end of the rail and received 4.3 m from that 
end. The laser Doppler vibrometer (Ono Sokki, LV-1720) was used as a receiver and 
reflection tapes (Ono Sokki, LV-0012) were attached at the measurement areas to receive 
waves stably even with auto scanning by the robot arm. The sensing part of the laser 
Doppler vibrometer was equipped with a robot arm (Mitsubishi Electric, RV-6S) and the 
laser beam was set to be incident normal to the rail surface. At the receiving points at 4.3 m, 
reflected waves from the far end 5.5 m away from the excitation transducer did not interfere 
with the direct incident waves of the modes (a)–(e). However, the reflected waves from the 
end close to the excitation transducer did interfere with the direct incident waves, but since 
the transducer was located very close to the end, the direct incident and reflected waves 
were superposed perfectly. Other reflected waves, such as those from supported points, 
were not seen in the detected signals. Therefore, reflected waves from either end did not 
affect the experimental wave structures, as shown later. Fig. 6 shows the scanning regions 
on the rail. Due to the limited motion space of the robot arm, the scanning areas were set to 
encompass only the right half of the rail, areas A–E. Vibration normal to the surface was 
detected at each region in 1-mm increments. The positioning accuracy of the robot arm was 
±0.02 mm, which was sufficiently accurate to detect guided waves in this frequency range. 
In the regions A, B, C, D and E, there were 12, 7, 22, 17 and 26 measurement points, 
respectively, which were sufficient to describe the wave structures shown in Fig. 4. 

 

 
Fig. 6 Cross-section of a JIS 6-kg rail and scanning regions. 

 
Fig. 7 shows the waveforms measured at 12 points in the region A when the excitation 

transducer was put on the web to verify the modes (a) and (b) in Figs. 3 and 4. The 
horizontal axis denotes the propagating time. Since the arrival time for these modes can be 
estimated at about 1520 μs and 1590 μs, respectively, from the group velocities of (a) and 
(b) in Fig. 3, the first wave packet seen in the time range from 1500 μs to 2000 μs contains 
both modes (a) and (b). Using the signals detected in the region A–E, wave structures are 
constructed in Fig. 8, where the signals are expressed as out-of-plane displacement at the 
measured points. Figs. 8 (a) and (b) show the distortion of the cross-section at 1585 μs and 
1720 μs for web excitation, which could correspond to the modes (a) and (b) in Figs. 3 and 
4. Fig. 8 (a) agrees well with Fig. 4 (a), where region A inclines upward and region C (web) 
has a node, i.e. a symmetric point of deformation, at the center. Fig. 8 (b) also agrees well 
with Fig. 4 (b), where region C vibrates with nodes at the upper and lower edges and with 
an anti-node at the center. Similarly, Fig. 8 (c), showing the cross-sectional wave structure 
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obtained when the excitation transducer was put on the railhead, agrees well with Fig. 4 (c), 
showing the calculated cross-sectional wave structure. Fig. 8 (d) shows the distortion when 
an ultrasonic vibration is applied on the rail bottom. This wave structure appears to show a 
mixed mode of (d) and (e), because the group velocities of (d) and (e) are almost identical 
in the dispersion curves of Figs. 3(d) and (e). Since both these modes vibrate largely at the 
bottom of the rail, Fig. 8(d) expresses them very well. 
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Fig. 7 Waveforms detected at region A for normal incidence on the rail web. 

 

              
(a)              (b)               (c)              (d) 

Fig. 8 Displacement detected at several points on the rail surface with a laser interferometer. 
(a)–(c) show the modes (a)–(c) from Fig. 4 and (d) shows a mixed mode of (d) and (e) from 
Fig. 4. The blue and red lines denote the original position of the structure and the position 

obtained from the measured waveforms 
 

6. Conclusions 

As method to derive guided wave dispersion curves and wave structures for a bar with 
an arbitrary cross-section with high accuracy, the symmetry of guided wave modes and the 
Arnordi projection method for large eigenvalue problems were applied to the 
semi-analytical finite element method. The computational technique was verified through a 
comparison between the wave structures obtained by calculation and experiment for a JIS 
6-kg rail. The experimental wave structures were obtained by measuring wave forms at 
several points on the surface of a rail using a laser Doppler vibrometer equipped with a 
robot arm with sufficient positioning accuracy. 

This scanning technique can be applied to any curved structures by changing the 
scanning program. 
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