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0. Introduction

Let E be an associative ring spectrum with unit, and X, ¥ be CW-spectra.
We say that X is quasi Ey-equivalent to Y if there exists a map A: Y — EA X such
that the composite (. ,1)(1,/): EA Y—EA X is an equivalence where p: EAE—
E stands for the multiplication of E. In this case we write X+ Y, and we call
such a map h: Y—EAX a quasi Ey-equivalence. We shall be concerned with
the quasi KOy- and KUy-equivalences where KO and KU denote the real and
complex K-spectrum respectively.

The conjugation ¢ on KU gives rise to an involution #x on KU4X for any
CW-spectrum X. Thus the KU-homology KU, X is regarded as a Z/2-graded
abelian group with involution. Note that there is an isomorphism between
KUyX and KU,Y as Z|2-graded abelian groups with involution if X is quasi
KOy-equivalent to Y.

For any abelian group G we denote by SG the Moore spectrum of type
G. Evidently KU;SG=G on which f4=1 and KU,SG=0. Let us denote
by P and @ the cofibers of the maps 7: 3'—3° and 7»*: 32— =° respectively
where 5: 3'—3? is the stable Hopf map of order 2. It is well known that

KU,P=Z@Z on which t*=<(1) é) and KU,P=0. On the other hand, KU,Q
=7 and KU_,Q==Z on both of which #,=1.

Let H be a 2-torsion free abelian group which is written into a direct sum
of cyclic groups. If the cyclic group Z/2 acts on H, then H admits a direct
sum decomposition H=APBPC @C so that the involution p behaves as

©1) p=1ond p=—1onB and p=<(1) 5) on CBC

respectively (see [6, Proposition 3.7] or [7]).
By observing these facts, Bousfield [6, Theorem 3.7] has proved the follow-
ing satisfactory result.

Theorem 1 (Bousfield). Let X be a CW-spectrum such that KUxX is a
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direct sum of 2-torsion free cyclic groups. Then there exist abelian groups A; (0=
1<7),C; (0=5=<1) and G, (0=k=3) so that X is quasi KOy-equivalent to the
wedge sum \/ (2 SA;)V V (Z'PA\SC;) vV (Z*1Q A SG,).

In [12, Theorems 1 and 2] or [9] a partial result of the above theorem was
proved by a different method from Bousfield’s. In the forthcoming paper [15,
Theorem 1] we will give a new proof of the above theorem by our method de-
veloped in [12, 13].

Let H be a direct sum of 2-torsion free cyclic groups. If the cyclic group
Z|2 acts on the direct sum H@Z/2m, m=2°, then its matrix representation is
divided into one of the following types:

02 o +(f (1’) i) :E(S ml1) (6Z2) on H®Zpm,

o 00 70 0

iii) i(o 1 0) iv) i(o 10 on H'®ZDZ?2m,
0 1 1 0 m 1

V) i(g 9 8) on H'®ZOZBZ2m
0 1 m 1

where H=H'®Z ~H"PZ PZ and p, p' or p” is an involution on H, H' or H”
respectively which is decomposed as in (0.1).
We denote by M,,,, Qsmy Nom, Rom, Vs, and Wy, the cofibers of the maps

in: 2> SZ2m, #y: 32— SZ2m, %Y:3'SZ2m—3°,
7 S SZ2m 30, in: S'SZJ2 — SZim and  in+aj: SSZJ2 — SZ|4m

respectively where 7: 3%— SZ/2m and 7: 3! SZ/2m— 3° stand for a coextension
and an extension of 5 satisfying j5j=% and %i=7. In [12, Propositions 4.1, 4.2
and Corollary 4.6] we have investigated the KU- and KO-homologies of these
elementary spectra.

We will moreover introduce some elementary spectra MQ,,,, NP{,, NR},
and R'Q,, constructed by the cofibers of the maps

ipVim: TV — SZ2m, (7%, m): ' SZ}4m — 3V 30,
(%, n°7): S38Z[2m — 3?3 and Jign: 37— Ry
respectively where %z: 35— R}, is a coextension of # satisfying jihe=#.
After studying the KU- and KO-homologies of these spectra with four cells (Pro-

positions 1.2, 1.3, 2.3 and 2.4) we will prove the following result which is our
main theorem in this note.

Theorem 2. Let X be a CW-spectrum and H be a direct sum of 2-torsion
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Jree cyclic groups.  Assume that KU, X=H®Z|2m, m=2°, and KU, X=0. Then
there exist abelian groups Ay, A,, B,, By and C and a certain CW-spectrum Y so
that X is quasi KO y-equivalent to the wedge sum SAy\ =SB, Z*SA,V Z5SB;
(PANSC)V'Y. Here Y is taken to be one of the following elementary spectra
EZiSZ/Zm, SHY,,., SEW,, (ng), S5 M,,, S%Qym, SHN S, SE RS, EZjMsz)
SY¥NP;,, S¥NR},, and S¥R'Q,,, for 0<i<3 and 0<j<1.

In order to obtain our main theorem as a corollary we will give three the-
orems (Theorems 3.3, 4.2 and 4.4) in a slightly general form. The first theorem
is established in the situation when the conjugation ¢4, on KUyX behaves as the
types (0.2) ii) and v), and the second or the third theorem is done in the situation
as the type (0.2) i) or the types (0.2) iii) and iv) respectively.

This paper is a continuation of [12] with the same title and we will use the
same notations as in it.

1. Some elementary spectra XY,, and XY}, with four cells

1.1. For any map f: Y — X we denote by C; its cofiber. Thus YiX—l-ic
C fﬁ 'Y is a cofiber sequence. The Moore spectrum SZ/2m is obtained as the
cofiber of multiplication by 2m on °. In this case the maps 7,,: =°— SZ/2m
and Jy,: SZ/2m—> 3} are often abbreviated to be 7 and j respectively. By apply-
ing Verdier’s lemma (see [2]) we can easily show

Lemma 1.1. i) Given two maps f: Y—>X, g: Z—X the cofiber C, of
the map [\ g: YN Z—X coincides with the cofiber C, , of the composite isg: Z—>
Cy. In particular, the cofiber C,,, coincides with the wedge sum C,N 3'Z if
g: Z— X is factorized through Y as g=fh: Z— Y — X for some map h.

ii) Given two maps f: X—Y, g: X— Z the cofiber C(; ,, of the map (f, g):
X—YVZ coincides with the cofiber Cy;, of the composite gj;: S7'Cr—Z. In
particular, the cofiber C s, coincides with the wedge sum C,\VZ if g: X—Z is
factorized through Y as g=hf: X—Y — Z for some map h.

Let #y,: 22— SZ/2m be a coextension of % satisfying j,,#,,=» and
Tom: ' SZ[2m—>=° an extension of % satisfying 7,,%,,=» where 7: S'—3°
denotes the stable Hopf map of order 2. 'The maps #,, and 7,, are often ab-
breviated to be 7 and 7% respectively. After choosing these maps suitably there
holds the following relation

(11) 77/\1 = 772mj2m+i2m"_72m: 21 SZ,/zm - SZ/Zm

(see [5, Lemma 7.2]).
Let us denote by M,,,, Now, Poms Qoms Roms Mimy Nim, Pin, Q4r and R3,

respectively the elementary spectra constructed by the following cofiber sequen-
ces as in [12, (4.1) and (4.2)]:
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! i SZ[2m Ly Mz,,,];"-i 2 SZ|2m 1 30 4 M ém]ﬁ 3'SZ[2m
sz o SZ|2m it Now In, =2 SISZ[2m 7 = i Niw 1L 3SZ|2m
12) =L szpmtp, B3 mszom % p Lk siszm
=7 SZ|2m K3 Qun 19 5 528Z)2m L 59 2 Qim 1 S*SZ[2m
P @Zzs/gm Zi R, ]_"; S5 33SZ2m 22)’720 i R}, ]—% SASZ[2m

In [12, Propositions 4.1 and 4.2] we have calculated the KU- and KO-homologies
of these elementary spectra with three cells.

Given two cofibers X,,, Y,, of any maps f: %'—SZ/2m, g: 3/ — SZ[2m
({=j) we denote by XY,, the cofiber of the maps fVg: Z'VZ/— SZ[2m.
Dually we denote by XY, the cofiber of the map (f, g): Z/SZ/2m—Z/" V=’
for two cofibers X4, Y4, of any maps f: S'SZ[2m— 3, g: S'SZ[2m—3" (i< ).
We will only deal with the CW-spectra XY,,, and XY}, when X=M or N and
Y=P, @ or R as Lemma 1.1 may be applicable to the other cases. Note that

(1.3) MP,, = Z*D(MP3,), MQ,, = 2*D(MQ}»), MR,, = 3D(MR;,)
NP,, = S*D(NPin), NQun = SD(NQ$n), NRyy = SSD(NR}y)
where DW stands for the Spanier-Whitehead dual of W (cf. [12, (4.3)]).
1.2. We will now compute the KU homologies of the above mentioned

spectra W=XY,,,, XY}, with four cells, by making use of the results in [12,
Proposition 4.1].

Proposition 1.2. The KU homologies KU W, KU,W and the conjugation

ty on them are given as follows:

W = MP,, MQ;., MR;,, NP,y NQ,,, NR,,
KUW=ZDZ/m ZDZDZ/2m ZDZ/2m Z/m ZDZ/2m Z/2m
-1 00
-1 0 -1 0 01
t = 01 0) 1 1
c=(1Y (eig (P o G
KuW= Z 0 VA ZPZ z Zdz
-1 0 -1 0
e = -1 1 (5 1) 1 (75 %)
W = MP;, MQsm MR;, NP}, NQ;., NR;,
KUW = ZDZ/m zbz ZDzZ/2m ZDZDZ/m VA ZDZDZ/2m
10 O -1 00
1 0 —1 0 10
t = 01 O 1 010
Gl (F) 69 [ (o2 0)
KW= Z Z/2m zZ 0 ZDZ/2m 0

w1 o 69
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where the matrices behave as left action on abelian groups.

Proof. The W=MP,, case has been computed in [14, Proposition 1.2 i)].
We will investigate the behaviour of the conjugation #, on KUyxW only when
W=MaQ,,,, NP}, and NR},, the other cases being easy.

i) The W=MQ,, case: Consider the two commutative diagrams

23 J— 23
iuin | v 0
> —————» SZ2m - M,, - =*
V I y ¥
SV —— SZ/Zm - MQ,,,— V3!
inVim ) i
24 f— 24
21 —_ 21
iqin | 0

P ————>SZ/2m—> sz - =t

v v v
SV —— SZ/Zm — MQ,, — Z*V =

iV iy ) J
¥ = X
involving cofiber sequences. Evidently KUM@, =KUyZ*V )P KU,SZ|2m
=ZDZBZ2m and KUMQ,,=0. In order to observe the behaviour of 4
on KUMQ,, we use the three split short exact sequences 0— KU,SZ/2m—
KU,MQ,,,— KU\(3*V 3%)—0, 0—KU,M,,—KU,MQ,,,— KU,3*—0 and
0— KUQ,n— KUMQ,,,— KU3?—0. Since [12, Proposition 4.1] says that

b= ("1 O) on KU,My,=Z&Z|2m and t*=(}n ‘1)) on KU@ue=Z@Z|2m,

11
—100
we can easily verify that ty,={ 0 1 0| on KUMQ,,=ZPBZBZ|2m as desired.
1m1
ity The W=NPj, case: Consider the two commutative diagrams
=X
) Vi y
s157/2m T2 T) 500 S0 NPy, — 5257)2m

| | m Y I
SISZ[2m ——> 3°  — Ni, — S2SZ[2m
i w glﬁj;v

3 = 3
i Vu y
s157/2m 2T 50V . NPL, - 287)2m

[ Im I
S'SZ2m —— X — Pj, — S2SZ[2m
730 _ it
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involving cofiber sequnces, where ¢: Z°— ="V =’ and 7,: 2V E'—2%(k=1, 2)
denote the k-th injection and projection respectively. We can easily see that the
short exact sequence 0— KU,3'— KU,NP},,—KU,P;,—0 is split, by using
the following commutative diagram

20 — 20
|
s257/2m ") 75 7) 50 %0 s Nbpy > 2SZ/2m
| 7 Y |
SISZ2m ——> 30— Njn—> S2SZ/2m
v I ¥ VJ
22 . 5 20 — Q — 23
n

with z,6,=1. Thus KU,NP},=~KUZ"®KU,Psn=Z BZ D Z[m and KU NP;,

=0. Since t*=<i _(1)> on KU,P},=Z@Z|m by means of [12, Proposition

1 0 0
4.1]), it follows immediately that t*=(0 1 O) on KUNP},=ZBZDZ|m
0 1-1

as desired.
iii) The W=NR}, case: Use the commutative diagram

SQVR=3'QVeQ
. Gon) o, } .
S3SZ2m -2 SAVE f -3 Sﬁ/Zm
[ 2 2
S3SZ[2m TR 22v2° — NR}, — 2'SZ[2m
(77]9 7 ﬁ) 4 4
SV =QVQ

involving cofiber sequences, in which the upper row becomes a cofiber sequence
by means of Lemma 1.1 ii). Then we can easily see that the short exact sequence
0— KUyZ*V =) — KU,NR},,— KU,3*SZ[2m— 0 is split, and KU, NR}, =0.
Hence it is immediate that KU,NR},=~KU\(Z*V ZYPKUZ'SZ2m=ZDZD

—1 0 0
Z[2m on which t,=( 0 1 O0].
0 0 1

We will next compute the KO homologies of the above mentioned spectra
W=XY,, and XY},, by making use of the results in [12, Proposition 4.2].

Proposition 1.3. The KO homologies KO;W are tabled as follows:

) = 0 1 2 3 2 = 0 1 2 3

MP,, Z/2m 0 zZ 4 MP;,, zZ VA Z/2m 0
MQ,, | ZDZ/2m 0 VA YA 0 MQim zZ Z/2 4 Z/2m

MR;,, Z/2m 4 ZBZ/2  Z/2 MR;,, | ZDZ/2m Z/2 zZ/2 V4
NP, Z/2m zZ/2 0 Z&®Z | NP;, VASYA Z/2 Z/[2m 0
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NQow | ZDHZ/2m Z/2 Z/2 V4 NQ},, V4 Z®z/2 Z/2 Z/2m
NR;, Z/2m ZDZ/2 Z/2 Z@Z/ZlNR;,,, ’Z@Z/Zm Z/2 ZDZ/2 Z/2

in which = stands for the congruence modulo 4.

Proof. We have computed KOy MP,, in [14, Proposition 1.2 ii)]. In the
other cases we can similarly compute KO, W, by using the long exact sequences
of KO homologies induced by the cofiber seqeunces as appeared in the proof
of Proposition 1.2. In computing KOxW we may moreover apply the univer-
sal coefficient sequence 0— Ext(KO;_yDW, Z)— KOy W— Hom(KO,_,DW, Z)
—0 (see [11]) combined with (1.3).

2. Some elementary spectra Y’X,, with four cells

2.1. Let X,,, Y}, denote the cofibers of maps f: 3 — SZ[2m, g: 3/SZ|2m
—3? respectively. If the composite gf: S/ — 30 is trivial, then there exists a
coextension h: 3+ Y}, of fand an extension k: 37X, — 3° of g so that the
following diagram is commutative

2i+j+l — Ex‘+j+1
\h Ry
30— Y, — SSZ2m = 3}
I y ! E

20'_) Ch,k i 2j+1X2m _>21

St —  Sitit2

with four cofiber sequences. Here the maps 4 and k are dependent on each
other so that their cofibers coincide. We will here choose suitable pairs (%, k)
to construct some elementary spectra Y'X,,=C, ;.

There exist maps

(21) kM: M2m - 20 ’ kR: R2m - 20: EQ: 21Q2m - 20 ’ EN: EZNZM - Eo
hig: Z'—> M3, , hi: 3= Riw, ho: 3°—Qhn, hy: 35— Nj,

such that kyiy=j: SZ[2m— 3}, kpiz=nj: SZ[2m— 3°, keiq=7: Z'SZ[2m— 3,
Byiy=nm: S:SZ[2m—> 30, jihi=i: 30— SZ2|m, jhhh=in: Z'— SZ[2m, jhhe—
#: 32— SZ/2m and j§hy=7n: Z*— SZ/2m. Such maps kg, ke, ky, h%, g and
hy are uniquely chosen, and moreover the composites k), and hjm are also de-
termined uniquely although k&, and Aj, are not so.
Let X,,, Y,, be the cofibers of maps f: 3/ — SZ/2m, f: 5 — SZ/2m, and
4my X4m the cofibers of maps g: 3/SZ/2m— 3, ng: S/*'SZ[2m— 3" respec-
tively. Then there exist maps Ay y: ' X5, — Vs, py.xt You—X,, and dually
Mey: DY 4n—> Xim, phy 1 Xim— Y4, related by the following commutative
diagrams:
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zi+l I) ZISZ/Zm — 21){2 — 2:’-&-2 E,f“SZ/Zm i Zl Elyém — j+2SZ/2m

2 I | Vn i Al
2x+1f"7 SZ/Zm R YZMXL Si+2 Zj+lSZ/2mn—>gE°-—> X4 vx — 3/*2872m

V7 Il VP V7 RE) I | pk.y V7
= Sz - xS sisihm 30 Vi, — iSZem
g

By composing the maps chosen in (2.1) with the above maps we set
ky = kyupy i Now — =} hiy = Ny hir: 52— N,
ko = kpho,r * Z'Qum — = o = pr.ohk : 30— Qiy
(2.2) B =FRopro : SRy —> 3" By = Ny rho: Z°— R},
Bp=FRohpo : 3Py —> 3" hp = pb, phg 2 3% — P},
ky= ENXM.N: S3M,,,—> =° hM= PN,MhN: 5> Mj,.

These maps satisfy the following equalities respectively:

(23) kyiv=j, koiq = 7% , kx’}e:”?, kpip =7, EMiM=7)2”7,
]IIVhs’:z’ j&h/=i7)2, ]ﬁh}e:ﬁ’ ]PhP—"T'?’ ]MhM“ﬂ"?'

Note that such maps ko, kp, By, b, };P and %, are uniquely determined, and
moreover the composites %°ky and kj’ are so, too.

Using suitable pairs (k, k) consisting of maps chosen in (2.1) and (2.2), we
can construct some elementary spectra Y'X,,=C, , taken to be the cofiber of the
two maps A, k as follows:

Y Xom kit 5 Y, ki3 Xy — 30
M'M,,, u? ¢ 22— M, ka2 My, — 20
M’ Ny, Bun? : 23 — My, nky i Nopy — 20
N'M,,, Byn 33— Njm P2hy © SIMy,, — 20
N’'Ny Ry7? s 34— N Phy @ SNy, — 20
P'Qom hp 1 35— Py, Fq: 31Qy, — 30
PRy hpy 1 36 — P, Fr : SRy, — =0
Q' Py ﬁQ D4 4 kp : 22P,, — 20
QQn hon 1 28— Q;y kgt 27Qyy — 20
(2.4) Q’Rzm 719772 27> Q5 7]ER . ZZRZ,,, — 20
R'P;,y hr: 28— Rhy 7kp : 33P,, — 2°
R'Qom hry i 27 = Rhy PRq : 23Qy, — 2°
R'R,,, hrn? . 38 - Rh kg 23Ry, — 20
M'R,,, hag 2 25 — Moy kR : Rppy — 30
NQ,,, byt 35— Nb, ko : 31Q,, — 3°
N’R,,, Byn : 26 = Nb 2kg SRy, — 20
Q' Ny Wy : 35 = Qb Ex : 22Ny — 2
R'M,, Wy i 25— Ry Far : 23My,, — 3°
R'Nym h;aﬂ : 26—~ Ry ﬂEN 1 23Ny, — 30
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For all of these elementary spectra we notice that
(2.5) Y' X, = 2 D(X'Y,,)
where DWW stands for the Spanier-Whitehead dual of W.

2 .

2.2. Consider the cofiber sequence sz E°—ZSQ'—I-223. Then the square
7 has a unique coextension £: 3°*— @ and a unique extension : 3?Q— 3 satis-
fying joE=n* and Zig=»". Denote by QQ the cofiber of £ which coincides with
the cofiber of £. Then we have

Lemma 2.1. i) KU,QQ=Z®Z on which t*=(—1 0), and KU,QQ=

11
Z on which t,=—1.
i) KOQQ=ZPZ|2,2Z|2,Z, Z, Z, 0, Z, Z according as i=0, 1, ---, 7.

Proof. Use the following commutative diagram

zl): 20
o~ i i .
559 - 195
Il V y I
S5 3% > 33Q — P
7Ty |E
St 3

involving four cofiber sequences. Then it is obvious that KU,QQ=KU,3*D
KUQ=ZPZ and KU,QQ=KU,Q=Z. Moreover KO;QQ are easily com-
puted except =0 and 1. On the other hand, the Bott cofiber sequence induces
two exact sequences 0— KO,QQ —~KU;QQ—KO0,QQ—0 and 0—KU,QQ—
KO,QQ—KO0,QQ—KUQQ — KOLQ —0. Since the above monomorphisms
are both multiplications by 2 on Z, we can also determine KO,QQ (=0, 1)
immediately.
We next consider the commutative diagram

0~ 0
KUQ K0,QQ
\
} /KU4QQ l
K0,QQ “tox Q’ KU

0 )

with exact diagonals. Here the two vertical arrows are both multiplications by

2on Z. Asin[12,(2.3)] we can easily observe that t*=(—_i (1)) on KU,QQ=

KUS@®KUQ=Z@Z by replacing suitably the splitting of joox if necessary.
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On the other hand, it is obvious that t,=—1 on KU,QQ=KU,Q=Z.
Combining Lemma 2.1 with Theorem 1 we get
Corollary 2.2. QQ~PVZ’

Choose two maps Ag: @.,— ='Q, po: @ — @, making the diagram below
commutative

2

>3 @ SZ/Zm - @z, — ' p ) 1]) N Q — >3

| v vae | Vi I ¥ Pe y

S 3 >3Q -3 TSZ2m— 30— Q4 — SZJ2m.
n 77

Then the following equalities hold:
(26) 57\‘0 = kQ: EIQZM - 20 ) PQE = hé 25 - Qém .

2.3. We will now compute the KU homologies of the elementary spectra
W=Y"X,, with four cells mentioned in (2.4).

Proposition 2.3. The KU homologies KU,W, KU, W and the conjugation
ty on them are given as follows:

W = M/MZm M/NZm N/MZm N/NZm P,sz
KUy W =~ V4 ASYA ZOZDZ/2m ZDZ/2m ZDZDZ/m
1 0 O -1 0 0 -1 0 O
e = 1 © 9 (01 0) 6 =) (11 o)(01 0)
1 0 -1 0 0 -1 m/2 1 —1
m . odd m . even
KUW= ZOZ/2m Z/2m 0 zZ 0
o= (71 9) 1 1
W = P/Rz,,, Q/sz Q/QZm Q’RZm R/PZm RIsz
KUW = Z®Z/m VASYA z Z®Z Z®DZ/m ZDZDZ/2m
100
(1 0 -1 0y (=1 0 100 (10
t "(1 29 (11)(01) 1 (o 1) (0 1) (0(1)‘1’)
m:.odd m: even m
KU, W =~ A Z/m Z®Z/2m Z/2m VA 0
o - o SR
W = RIRzm MIRZm NIQZm N/RZm Q/sz R/MZm R/sz

KUW= ZDZ/2m ZDZ ZPBZDZ/2m ZDZ/2m ZHZ ZPZDBZ/2m ZDZ/2m

— -10 0 _ -100

wo- G (ED (i) 6N (21 (Y
KU W =~ VA Z/2m 0 VA Z/2m 0 A
by = 1 1 -1 -1 -1
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where the matrices behave as left action on abelian groups.

Proof. By making use of [12, Propositions 4.1 and 4.2] we will investigate
the behaviour of the conjugation £y on KUxW when W=N'M,,,, P'Q,,, Q'P,.,
R'Q,,, M'R,,,, N'Q,,,, @'N,, and R'M,,, the other cases being easy. Denote
by #4 the conjugation ¢, on KU4W for convenience sake.

i) The W=N'M,, case: Use the commutative diagram

A
X J J
3% N4, - N'M,, — S}

I ¥ y I
38— 32SZ[2m — 3*M,, —> =t
7 l' 772] i "7sz

=

involving four cofiber sequences. Evidently KU,N'M,,~KUS*@KU,N}n»

10 0
ZOZDZ/2m and KUN'M,,=0. Set ’”"’:(Z 1 o) on KU,N'M,,=
| 0 —1
0

ZPZPZ2m for some integers a, b because tN/:((l) _1) on KU,Nj,=

ZPZ[2m. Since tM:(i __(1)) on KU_,M,,=Z®Z|2m, we may take to be

b=1. On the other hand, the equality #3.»=1 implies that a=0. Thus ty/,=

1 0 O
(0 1 0) as desired.

R

1 0 -1
ity The W=P'Q,,, case: Use the commutative diagram

20 —_— 20
h y Y
25""{ Pém '_)PIQZ.m'—) 26
I VP Vjrae |l
5P — S2SZ[2m — 37Q,, — =°
m % | ke
21 — 21

involving four cofiber sequences. Evidently KU P'Q,,=KU,3*® KU,P},==
Z®ZPZImand KU,P'Q,,,=0. The induced homomorphism jprq ox: KUP'Q;,,

—KU_,Q,, may be expressed by the matrix ((1) (1) _g): ZHZBZIm—ZP

Z[2m since jpy: KUyP4m— KU_,SZ|2m is given by the row (1 —2): ZHZ/m—

-1 0 O
Z[2m. Set tPfQ=< a 1 O) on KUP'Q,,=ZBZPBZ|m for some integers
b 1 —1,

a, b. Recall that tQ=<_"ll _(1)) on KU_,@,,. Then the equality jpq oxlpreq=
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tofprq.qx implies that a—2b=m mod 2m, thus a=m mod 2. So we may take to
be (a, b)=(1, m+1/2) or (0, m/2) according as m is odd or even. Since the

—1 0 0 -1 0 0
matrix < 1 1 O)iscongruentto | 1 1 0}, the result is immediate.
m+1/2 1 —1 0 0—1
iii) The W=Q'P,, case: Use the commutative diagram
3 - 3
he |
355 Qi —Q'Py >3
| Y jorp.el
38— S38Z2m — 3P, — =P

7 2\|r177’7 _ E‘)LIEP

involving four cofiber sequences. It follows immediately that KU,Q'P,, =
KU_,P,,®KU,>° on which t*=<-¢lz (1)) for some integer a, and KU,Q'P,,,==

KU_,P;,,=Z[m on which z4=—1. We will show that the integer ¢ may be
taken to be 1 or 0 according as m is odd or even.

We will first compute the KO homologies KO,Q'P,,. By using the above
commutative diagram it is easily checked that KO,;Q'P,,=Z, KOQ'P,, =
KO,Q'P,,~=Z|m and KOJQ'P,,=Z/mQZ|2. In order to determine the re-
mainder KO,Q'P,, we consider the exact sequence KO;Q'P,, — KU,Q'P,,—
KO,Q'P,,,— 0 induced by the Bott cofiber sequence. Since there exists a short
exact sequence 0— KO,Q4,— KU,Q%n— KO,Q%,—0, it is easily seen that
KOQ'P,,=Z|mQZ|2.

We next use the commutative diagram

0 0
KU>? ~ KO,Q'P,,
¥ KURQ'P,, v
e . ~~
KOQ'P,, Eox Je’p, px KU_,P,,

/

KO.Q'P,, N
0<

with exact diagonals. Here the left vertical arrow is just multiplication by 2 on
Z, and the right one is multiplication by 2 or 1 on Z according as m is odd or
even. By a parallel discussion to [12, (2.3)] it is easily observed that a is odd or
even according as m is odd or even. Therefore we may take a to be 1 or 0
according as m is odd or even, by replacing suitably the splitting of jo/p py if

necessary. Thus tqu=<_% ?) or <_(1) ?) on KUQ'P,,=Z@Z according
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as m is odd or even.
iv) The W=R'Q,, case is shown similarly to the case i).
v) The W=N'Q,, case: We have the following commutative diagram

20 o 20
v Vo kg
20 - N,sz g 22QZm - El
I Ve dde |l
> QQ - TQ 3
[
21 = 21
involving four cofiber sequences, because of (2.6). Evidently KUyN'Q,,==
—1 00
KU_,Q,,®KU,3'~Z PZ2mPZ and KU,N'Q,,=0. Set thqz( m —1 O)
a 01
on KUN'Q,,=Z DZ2mPZ for some integer a. Then the equality Aysq+tyseo
=%goMyvq+ implies that a=1 because tQQ=<—% ?) on KUQQ by Lemma 2.1.
-1 0 0 —1 0 0
Since the matrix( m —1 O) is congruent to ( 0 —1 O), the result is im-
1 01 1 0 1

mediate.
vi) The W=M'R,, case: Consider the commutative diagram

_SZ2mNP = SZ]2mA\P
By }
2 7 Nia - NQ,, —3°
I | Ph.m ! |
5> Mj, - M'R,, —3°
J J
SISZ2m A\ P = S*SZ|2m A\ P
involving four cofiber sequences. Evidently KUM'R,,~KU,3*@KU,M 4, ==
-1 0 O
Z®Z and KUM'R,,=~KUM},=Z[2m. Since tyq = ( 11 0) on
0 0 —1
KUN'Q,,=Z PZPZ|2m, it is easily seen that -, = <_% ?) on KUM'R,,
=7 @®Z. Hence the result follows.
vii) The W=Q'N,,, case: We have the following commutative diagram

23 — 23

gl |
23 S Q — QQ — 26
||3 | po , Y Pary I
2 }7,; 2m - ]I]zm - 2
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involving four cofiber sequences, because of (2.6). Then it is easily obtained
that KU,@'N,,=KUQQ=Z®Z on which t*=<_% (1’) and KU,Q'N,, =

KU ,Q5n=Z|2m on which t4=—1.
viii) The W=R'M,, case: Consider the commutative diagram

SESZ[2m AP = 3*SZ[2m A\ P

foo !
PR - — R'M,, — 3F
I ! Pk.@ \lpR’M,Q’N I
S5 o — ’ om — 38

v |
S3SZ[2m NP = 3?SZ[2m \ P

involving four cofiber sequences. Evidently KU R'M,, =~ KU S*@KU,R}, ==

—1 0 0

ZPZPZ[2m and KU,R'M,,=0. Set tR/M=< a 1 0) on KU,R'M,,==
b 0 1

ZOZDZ2m for some integers a, b. Then the equality pery o/n*tern=

to'nPry, @y implies that a=1 because thN=<_% ?) on KUQ'N,,=ZPBZ/|2m.

-1 0 0
So the result follows immediately, since the matrix ( 11 0) is always con-
—1 0 0 b 0 1
gruent to ( 11 0> for any integer b.
. 0 0 1

2.4. Finally we will compute the KO homologies of the elementary spectra
W=Y'"X,, with four cells mentioned in (2.4).

Proposition 2.4. The KO homologies KO, W are tabled as follows:

i M/MZm M/sz N/Mzm NIsz P’sz P,RZM
0,4 z VA4 ez Z ZB(Z/2QZ/m) ZEB(Z/2QZ/[m)
1,5 Z/4m Z/4m Z/2 zPz/2 0 Z/2
2,6 0 Z/2 Z/4m Z/4m ZDZ/m Z/m
3,7 z 0 0 z/2 0 z

i Q' Pom QQzm Q' Ronm R Py R'Qom R'Rem
0,4 VA zZ VASYA ZDZ/m ZHZDZ/m ZPZ/m
L5 | Z/2QZ/m (O (*)m z/2 Z/2 Zdz/2
2,6 z 0 Z/2 Z/2QZ/m (%) (%)m
3,7 Z/m ZPZ/m Z/m zZ 0 zZ/2
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i MR 3 N'Qzm N'Rym &Ny R'Mym R'Nyp
0 Zpz/2 ZPz/2 ZDz/2 ZPz/2 Z®DZ/4m ZDZ/4m
1 Z/4m Z/2 Z/2Z/2 zZ/2 Z/2 Z/2DZ/2
2 Z®Z/2 ZDZ/4m Z/4m zZ ZDZ/2 Z/2
3 Z/2 Z/2 ZPZ/2 Z/m 0 zZ
4 z zpz/2 Zpz/2 zZ ZPBZ/m Z®Z/m
5 Z/m 0 Z/2 Z/2 0 Z/2
6 4 ZBZ/m Z/m Z®Z/2 ZPZ/2 Z/2
7 Z/2 0 V4 Z/4m Z/2 Z®z/2

in which (x),, stands for Z|4 or Z|2@Z|2 according as m is odd or even.

Proof. We have computed KO4Q'P,, in the proof of Proposition 2.3.
In the other cases we can similarly compute by using the long exact sequences of
KO homologies induced by the cofiber sequences as appeared in the proof of
Proposition 2.3. We may also apply the universal coefficient sequence com-
bined with (2.5) as in the proof of Proposition 1.3.

3. Elementary Z/2-actions

3.1. Let H be a direct sum of 2-torsion free cyclic groups. If the cyclic
group Z/2 of order 2 acts on the abelian group H, then there exists a direct sum
decomposition H=A@PBPC PHC with C free on which the Z/2-action p, is

1 0 0 0
represented by the matrix (8 _(1) 8 (1)) (use [6, Propositions 3.7 and 3.8] or
[7D)- 0 01 0

If the cyclic group Z/2 acts on the direct sum H@Z[2:*!, s=0, then its
matrix representation is written into one of the following types:

ey o =8 ) 0 2§yl 22 o Hezzw

par 0 0 par 0 0

i) +{0—1 0)iv) +(0 1 0 on H'®ZBZ2+
0 11 0 21
,PH’ 0 O O

v) i(g _é (1) 8) on H'®ZOZBZ2
0 1 21

where the matrices behave as left action on H@Z/2:*' and HeH'PZ==
H'"®ZDZ.
A Z|2-action p on an abelian group H is said to be elementary if the pair
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(H, p) is one of the following kinds of pairs (cf. [12, 5.1]):
‘ 0 1
(62 @A, &-1, e (] (), @smmy),

(ZDZ2m, i(% _?)), (ZDZ[2m, :f(,l,, (1))),

—1 0 0
(ZBZDZ|2m, :i:( 01 0)) .
1 m 1

We here deal with a CW-spectrum X such that the conjugation 4 on

KU,X is decomposed into a direct sum of the above elementary Z/2-actions,
and KU, X=0. Thus

3.3) KUX = AGBBH(CHCYPA' B BDDDYD(EDE")
DEFOF)BGOG)DUDIBIND(JDI/DJ)

where each of the summands A’ and B’ is a direct sum of the forms Z/8m, each

of the summands DPD’, EQE’', FOF' and GPG' is a direct sum of the forms

Z BZ[2m, and each of the summands I BT PI and JPH JP J' is a direct sum of

the form Z@Z@Z/2m. Moreover the conjugation £ acts on each component
of KU,X as follows:

01

G4 te=1, -1, (§ o) on 4, B, C&C.

ty = 4m-+1, 4m—1 on the component Z/8m of A’, B'.

1 0 —1 0 10 —1 0
t*:<1 _1>, < 1 1), <m 1),( m _1)onthecomponent

Z®Z2m of DOD', EQE', FRF', GHG'.

—1 0 O 1 0 0
by = ( 0 1 0),({0 —1 0])on the component ZBZPZ/2m of
1 m 1 1 m-—1

Ielier, Jjoje] .
For any direct sum H=¢Z/2m; we denote by H(x) the direct sum D (*),,

where (%), =Z[4 or Z|2@©Z|2 according as m; is odd or even. Moreover we
write 2H=@Z|m; and 1/2 H=®Z|4m,.

Let KC denote the self-conjugate K-spectrum, which is obtained as the
fiber of the map 1—¢: KU— KU (see [3]). Given a CW-spectrum X satisfying
(3.3) with (3.4) we can easily compute its KC homology as in [12, Lemma 5.1].

Lemma 3.1. Assume that KU ,X=0.



Quast K-HOMOLOGY EQUIVALENCES 515

i) KC,X~A®(B+Z2)DC B2A")D(B'*Z|2)®(DDD'+Z/2)DE’
SFDF)D(G'+Z[2)(IDI')B(J D J'*Z]2)
KC,X=(AQZ2)®BDCH(A' ®Z|2)D(2B")®(1/2 D')DE
SF (x)D(GD2GDUDI'RZ[2)Q(JD T
KC,X=(A*Z|2)®BDC B(A'*Z|2)D(2B')D D' D(E BE'+Z/2)
DF*Z[)DGCHG)DUBI*Z[DDJDT')
KC,X=A®BRZ/2)DC H2A")®(B'QZ2)®DS(1/2 E’)
BF D2F DG (*DUDI)D(J D ®Z[2)
i) KOX®KO;X=(AQZ/2)B(B+Z/2)D(D'*Z[2)®(F' QZ/2)
KO,X ®KO,X=(AxZ[2)®(BRQZ|2)D(E'+Z[2)B(G' RZ/2)

Let us denote by V,, and W,, respectively the elementary spectra con-
structed by the following cofiber sequences:

(3.5) 515222 SZjm % Vie tid EZSZ/Z

51522 sz0m % w,, % 25702
By observing [12, (5.4)] and Propositions 1.2 and 2.3 we here list up some
of CW-spectra X with a few cells such that KU X contains only one 2-torsion
cyclic group and KU, X=0.

X = Vi Wem Mem Qom Nim Rim

KUX = Z/2m Z/sm  ZDZ/om  ZDZ/2m  ZDZ/2m  ZDZ/2m
w1 i (19 Y G- 69
X =  MQn NP, NR,, N'M,

KUX =~ ZDIDZ/2m  IDIDZ/2m  ZDIDZ/2m  ZBZIDZ/2m

(3.6) ~10 0 10 0 ~100 10 0
t*=<010) (01 o) (010) <o1 o)

01 —1 001 01 —1

1 ml
P'Q; R'Qp N'Q;, R'M,m
KUX =~ ZHZDZ/2m ZDZDZ/2m ZPDZDZ/2m ZDZDBZ/2m

1 0 0 100 —-10 0 -1 00
ty = {0 =1 0 (010) (11 0> 110
1 m -1 0m 1 00 -1 001

We will write simply YH_\/ Y,n, for any direct sum H== G}Z/Zm when
Y=V, W, M, Q and so on.

X

If

3.2. For later use we will here study the induced homomorphism
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&+t KO, X—KC;X when X=Q,p, Ntm, Rom, NPim, NR}, and R'Q,,.

Lemma 3.2. The induced homomorphisms Ex: KO, X —KC;X are repre-
sented by the following matrices M,(X):
1) My(Qm) = <(1) ?) ZDZ2m — ZDZ|2m

M,(Q,) = (o 2) Z®ZIm — ZDZ/2m

i) My (0) 7272
M(N%,)— (} 8); 2D — ZBZ)2
i) My(Rs) — ((1) g): ZDZ/2m — ZBZ|2m
1
M,(Riw) = (1 g): Z®Zjm — ZOZ/2m

10
iv) MO(NP,i,,,)z(O 1> 287 = 1B IBZ2
0 0
10
M(NP},) — <0 1) Z®Z - ZDIDZ2
10
. (10
v) MO(NRQ,,,)::(O 2) Z®Z12m — Z®Z|2m
M,(NR}) — ((1) 0): z@z2—~ Z@2Z]2
M,(NRS) = (i %): zoz2m— Z@7]2m
M,(NR,) — G 8): 28712 > ZDZ2
10 0
vi) M(,(R'sz):(o 1 0>: ZOIOZIm — ZDLDZ2m
0 0 2
10 0
M4(R'Q2,,,)=<0 1 o): Z®ZDZIm — ZOIDZ2m
10 2

where the matrices behave as left action.

Proof. 1) The X=@Q,, case: Obviously &x: KOyQ,,—> KCiQ,, is an

isomorphism, and moreover we have the following commutative diagram

0 — KOS — KO,SZ[2m — KO,Q,, — KO,3* — KO,SZ|2m — 0
Y
0 — KU,SZ2m — KU,Q,, — KU, St — 0

with exact rows. As is easily seen, the central arrow &y+: KO,Q,,—> KU,Q,,
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is expressed as the matrix (g g) ZPZlm—>ZBZ2m. The result is now

immediate.
il) The X=N}, case: Using the commutative diagram

KOS KOloNém
1, ~
0 — KU,3° = KUyN4%, — KUgSZ|2m — 0

with a split exact row, it is easily checked that My(N 5,,,):((1)).

We next compare the two commutative diagrams

0 0 0 0
~. ~ ™~ o
Koz KO¥ KU KU s?
J KON}, v J KUN J
e ~N e ~
KO,Q K0,S7/2m KUQ KU,SZ|2m
0 / \0 0 / \ 0

with exact diagonals. Since KO,N}%,=~KOQPKOS*~ZPZ/2 and KUN},
=KUZ*®KU,SZ2m=Z ®Z|2m, the induced homomorphism &,+: KO,N},, —

KU,N}, is expressed as the matrix (11n 8) 1 ZBZI2—->ZPBZ|2m. Therefore it

follows immediately that M (N é,,,)z(% 8) .

iii) The X=R}, case: Compare the two commutative diagrams

0 0 0 0
KO3 KO, _, Pl KU KU._,P},
! KO,R},, - ! ! KU;R}, J
/
KO.Q KO,_,SZ|2m KUQ — KU, ,8Z/2m
0 S 0 Sy

with exact diagonals, in dimensions :=0 and 4. Since KO,;R},=KO0,Q D
KO,_,P}, and KUR},=KUZS*®KU,;_,SZ|2m for i=0 and 4, the induced

homomorphism &y+: KO,;R},,— KU;R},, is represented by the matrix ((1) g) or
(% g) according as =0 or 4. The result is now immediate.

iv) The X=NPj, case: Use the following commutative diagram
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0 — KO,3° — KO,NP/n, — KON [, = 0
y ¥ V
0 — KC,S* — KC,NP},, = KC;Ni»n — 0

with exact rows, in dimensions 7=0 and 4. Then the result follows from ii)
by a routine computation.
v) The X=NR/, case: Use the following commutative diagrams

KO,NR},, = KO,R}, 0— KO,5?— KO,NR},, — KO,R}» — 0
¥ 3 V - |
KCyNR}w = KC,Rbm KC,NR}n S KC,Rin
KO,NR}, S Kong,,; 0 — KO,3° - KO,NRY,, — KOyN4, — 0
| — | _ y
KCyNR}pw S KC,N}y, KC,NR}y S KCyNinm

with exact rows. Then the result follows immediately from ii) and iii).

vi) The X=R'Q,, case is shown by a similar argument to the case iv) us-
pou

k
ing the cofiber sequence 2°—>R’Q2,,,—>2“Q2m2——9> 5! and the above result 1).

3.3. As a special case of (3.3) we here deal with a CW-spectrum X such
that KU X has a direct sum decomposition

(3.7) KU X=ADPBH(COC)DA' OB’ DUIDIDI"YDB(JDJDB]')

in which the conjugation #, acts on KUyX asin(3.4). For such a CW-spectrum
X Lemma 2.1 ii) asserts that KO, X QKO X =(AQZ/2)P(B+Z/2) and KO, X D
KO, X=(AxZ|2)®(BQZ/2) under the assumption that KU, X=0. We will

now show the first one of our main results.

Theorem 3.3. Let X be a CW-spectrum such that KUy X has a direct sum
decomposition as (3.7) and KU X=0. Assume that A and B are both direct sums
of 2-torsion free cyclic groups. Then there exist abelian groups A,, A,, B, and By
with A, PA,=A, B, Bs==B so that X is quasi KOy-equivalent to the wedge sum
SA,V Z28B,V Z'SA, N Z8SBs N (PASC)N W N Z2 WV MQ N Z2PMQ .

Proof. Consider the exact sequence

KU, X2 KC,x X KO, X KO, X — 0

(—7y77¢) &V ey
—

induced by the cofiber sequence 'KC KOVZ*KO — KU

858072'(_]1

—— 3?KC when j=0 and 2. Since KO XPKO;X=ARZ/2 and KO, X P
KO,X=B®Z|2, we can choose direct sum decompositions A= A,PA,, B=B,P
B; with A,, Bg free so that (4;)=A;QZ[2==KO,,, X, Yr)(B;13)=B;.,QZ|2 =
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KO, ;X for i=0 and 4.

Our proof will be established by the same method as in [12, Theorem 5.2]
or [13, Theorem 2.5]. Abbreviate by Y the desired wedge sum of nine elemen-
tary spectra. For each component Y of the wedge sum Y we choose a unique
map fgy: Y;— KU AX whose induced homomorphism in KU homologies is the
canonical injection. Here H is taken to be Ay, 4,, B,, Bs, C, A’, B, I' or J'.
Notice that there exists a map gy Y;—KC A X satisfying (£ ,1)ggz=fx for each
H. We will find a map Ay: Yz;—KOAX such that (§,,1)hy;=fy for each H,
and then apply [12, Proposition 1.1] to show that the map A= }{hﬂ: Y= \‘{ Yy—

KOAX becomes a quasi KOy-equivalence. We will only find such maps 4
in the cases H=A4,, C, A’ and I, the other cases being done similarly.
i) The H=A, case: Consider the commutative diagram

0 — Ext (4o, KO:X) — [S4,, S’ KON X] £ Hom (4o, KOs;X) — 0
¥ M b (a1« ¥ Dxx
0 — Ext(4,, KO, X) — [S4,, Z’KOAX] — Hom(4,, KO:X)— 0
Kko

with the universal coefficient sequences, in which the arrows &g, assign to any
map f its induced homomorphism of KO homologies in dimension 0. Note that
the induced homomorphism #go((77c',1)g4,): KOpSAy—> KOz X becomes trivial
because KO; X=¢+r(4,). Then the composite (p,1)(r7c'\1)g4,=(Eomv'A1)fa,:
3*SA,—KOAX is in fact trivial becasuse Ext(4,, KO,X)=0. So we can find a
desired map &, .

ii) The H=C case: Recall that P is self dual, thus P=3?DP. Since
nalt B KOAP—KOAP is trivial, it is easily seen that the composite
() (77t \D)ge=(Eomi* 1) fc: PASC— Z2KO A X becomes trivial. So we can
find a desired map A.

iii) The H=A'case: Set A'=®Z[2m,, and then write 24’ =P Z/4m; and

A"=@®ZJ2. We will first find vertical arrows A,, h, making the diagram below

commutative
’ iW jW 2 7
S24 - W, — 28
| hy \L F 9% iy
KOANX - KCANX - 3PKOANX
wL § 1 i 77/\1

I A
KOAX - KUANX - P KOAX

after replacing the map g, with (§,1)g,,=f4 suitably if necessary. The induced
homomorphisms #xo((77c' \1)g47): KO;W »o— KO, ,sX are trivial in dimensions

7=0 and 2 because vr(24")=0=1J(A'*Z/2). So we get a map hf: VZ'—
S’ KOAX such that hfj,,=(t2c' \1)guiy: S(24")>Z*KOA X and in addition
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(A Dht=0 where jp,r= \/ Jam;: y SZ[4m;— y 3! Consequently the composite

(A D) (et \1)gariy: S(2A")—>Z*KOA X becomes trivial. Hence we can obtain
desired maps %, and %, by applying [12, Lemma 1.3].

We will next find vertical maps k,, k, making the diagram below commu-
tative

k ] /l.
My 2% w, " ys
Vv ko V8a "k
KOANX — KCANX —> 3PKONX
l'g/\l l ’7/\1

I
KOAX — KUANX —> S’ KOANX

with j»=V jp: VSZ|2— /3, after replacing the map g, with (¢, 1)gw=Ffy
again if necessary. Notice that the composite (y,1)ivjy: My —3S'SA” is
trivial because (9, 1)ia=V (Pum, stam;m): V2'— V SZ|2 where py, ,: SZ[4m;,—
SZ|2 denotes the associated map with the canonical epimorphism. Since
Jwkuw=1arjyu: Myy—3*SA”, the composite (p,1) (772 \1)gakarw: Mosr—
32KO A X coincides with the composite (p,1)Ai ]y, which is trivial. So we
can obtain desired maps k, and k, by applying [12, Lemma 1.3] again. How-
ever the composite (7, 1)j4jw: War— V Z* becomes trivial because (,1)j,/=

V (JamGamTlet Tam,J2)): V SZ[2—\V Z°.  Hence there exists a map hy: Wp—

KO A\ X with (&y 1)y =fy as desired.
iv) The H=I" case: Setting I'=@Z/2m; we will find vertical maps

hy, b, making the diagram below commutative

ST’ lﬁl}@ MQ[’ ]_L_l)o \/(22\/24)
I by Ve T h
KOAX - KCAX — KON

i ! Ea 1 ! A 1

KOAX - KUANX — S’ KOANX
after replacing the map g,» with (¢ ,1)g,»= f)/ suitably if necessary. 'The induced
homomorphisms &g ((t7c'11)g1): KO;MQ— KO,,sX are trivial in dimen-
sions j=0 and 2 because yro(I BI")=0=nr,(IPI'+Z]2). So we get a map hi:
V= —3PKOAX such that hfj; = (o' \1)griye: SI'>Z’KOAX and in ad-

dition (,1)44=0. Since the composite (,1)(77c*\1)g1siyq: SI'>Z*KO A X be-
comes trivial, we can obtain desired maps %, and %, by applying [12, Lemma 1.3].
Choose maps ki: °—>3’KOAX, k}’: 3°— KO A X satisfying h, =V (kinV

kip): V(2°VE)—S'KOA X, and then set k= (ki +k} jom,): SI'>Z' KON
X. Notice that (p,1)a="F(V (lgmnV iizmm)): V(Z'VZ)—>KOAX because
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E(Viz,,,.r;)=Vk£772 and B(V %, n) =V Eki'n*. Hence the composite (7, 1)A;7ye:
i 4 i i 4 i J

MQ,,—3?KO A X becomes trivial. So there exists a map 4y: MQ,—~KOAX
with (&g, 1) hp=f;s as desired.

4. KU,X containing only one 2-cyclic group Z/2:*!

4.1. We first deal with a CW-spectrum X such that KU,X has a direct
sum decomposition

(4.1) KU X=A®BD(C HC)DZ/2m

with 4, B direct sums of 2-torsion free cyclic groups, and KU X=0. Here
the conjugation ¢, behaves on 4, B and C@®C as in (3.4), and t,=1 on the last
factor Z/2m. For such a CW-spectrum X we consider the exact sequence

V;

KU, X% KC, X ¥ KO, X®DKO, 15X > 0

in dimensions j=0 and 2 as in the proof of Theorem 3.2. Recall that KCoX =<
APCPHZ2m, KC,X=BPHCPZ2, KO XPKO;X=(AQRZ[2)PZ|2 and
KO;X KO, X ~=(BQZ|2)DZ|2.

Using the isomorphism 6,: (AQZ[2)D Z[2— KO, XD KO; X, we put
040, 1)=(x, y)€ KO, X ®KO;X. Then the pair (x, y) is divided into the three
types:

i) x=%0, y=0 i) x»=0, y*£0 i) x=0, y=0.

Corresponding to each type we can choose a direct sum decomposition of 4
as follows:

42) i) A=A,PA, with A4, free so that (4, DZ/2m)=<(4,QZ|2)DZ|2{x)>
=KO, X and Jr(4,)=A,QZ[2=KO;X.
i) A=A,PA, with 4, free so that yro(4,)=A4,QZ/2==KO,X and
VoA DZI2m)=(A,BZD)DZI2 y>=KOX.
i) A=A,DAPZ with A, free so that (4, DZ/2m)=(4,QZ/|2)D
Z|2(x) == KO\ X, (A, B Z[2m) = (A,RZ|2)DZ|2{ y> = KO; X and
Vo Z)=Z[23.

Similarly we can choose a direct sum decomposition of B corresponding to
each of the three types. Consequently we have

Lemma 4.1. Let X be a CW-spectrum satisfying (4.1).
1) KCX=ADCDZ[2m is decomposed into one of the following three types:
Al) KC X=APADPCDZ2m so that KO X=(A,PZ2m)QZ|2, KOsX =
ARQZ|2 and both 14: KC, X — KO X and (17¢")y: KCoX — KO;X are the
canonical epimorphisms.

A2) KCX =A,BA,DCBZ[2m so that KO, X=A,QZ|2, KOX==(A,BZ|2m)
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®Z|2 and both 14: KC X —KO, X and (1nc')y: KC X —> KOs X are the
canonical epimorphisms.

A3) KC X=A,PADPZBCDZ[2m so that KO X =(A,QZ[2)DZ|2, KO;X =
(A,PZ2m)QZ|2 and (vnc")s: KCoX —KO;X is the canonical epimorphism,
but 74: KC,X— KO, X is the epimorphism whose restriction to ZPBZ|2m is
given by the matrix ((1’ ‘1)) Z8Z2m—(4,07)2)DZ)2.

i) KC,X=B@®C BZ|2 is similarly decomposed into one of the three types:

Bl) KC,X=B,®B;PCDZ|2 with KO, X=(B,PZ|2)QZ|2, KO, X=B;QZ|2.

B2) KC,X=B,PBPCPZ|2 with KO, X=B,RZ|2, KO,X=(B;DZ[2)RQZ]2.

B3) KC,X=B,®BBZBCPHZ/2 with KO,X =(B,QZ[2)PZ|2, KO, X=
(BsPZ[2)RZ]2.

Here 74: KC,X— KO;X and (tn¢")y: KC,X — KO, X are epimorphisms as given

in A1), A2) and A3) respectively.

4.2. By making use of Lemma 4.1 we will now show the second one of our
main results.

Theorem 4.2. Let X be a CW-spectrum such that KUy X has a direct sum
decomposition as (4.1) and KU X=0. Then there exist abelian groups A,, A,, B,
and By and a certain CW-spectrum Y so that X is quasi KOy-equivalent to the
wedge sum SA,N Z*SB,V 3'SA,NV Z5SBs\ (PASC)V Y. Here Y is taken to be
one of the following elementary spectra 3'SZ|2m, Z'V,,,, Z**'N},, 3'R}, and NR},,
for i=0, 4.

Proof. Set Y, ,=S8Z[2m, Y,=3'V,,, Y3=3Nj., Yy=V,, Y,=
S!SZ2m, Yy3=2 N}, Yy=3"R},, Yi=Rj, and Yyu=NR;,. According to
Lemma 4.1 KCyX and KC,X are respectively decomposed with the three types
A1)-A3) and BI1)-B3). We will prove that X is quasi KO4-equivalent to the
wedge sum SA,V 2*SB,V 3'SA4,V 3°SB;V (P,SC)V Y, in each type (4i, Bj).
In each type (4i, Bj) we choose a unique map f;;: Y;;— KU A X whose induced
homomorphism in KU homologies is the canonical injection. Then there exists
amap g;;: Y;;—KCAX satisfying (¢,1)g;;=f;;. Itis sufficient to find a map
h;;: Y;;—KOAX such that (&,,1)h;;=f,; for each pair (4i, Bj), because the
other cases has been established in the proof of Theorem 3.3.

i) The Y, =S8Z/2m case: Consider the commutative diagram

0 — Ext(Z/2m, KOs X) — [SZ[2m, S*KOA X]'%° Hom (Z/2m, KO, X) — 0
Nk x A 1) i
0 — Ext(Z/2m, KO, X) - [SZ|2m, S?KO A X] — Hom(Z]2m, KO, X) — 0
K

KO

with the universal coefficient sequences. The induced homomorphisms
Rro((t7c* \1)g1): KO,;SZ|2m— KO, s X become trivial in dimensions i=0 and 2
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because of Lemma 4.1 Al) and B1). So it is easily verified that the composite
(A D) (rr e A )gu=(Eont' \1)fu: SZ|2m—>3?KO A X is trivial. Hence we can find
a desired map 5,;.

ii) The Y,=V,, case: We will first find vertical arrows A, and k, mak-
ing the diagram below commutative

Szm % v, 2% swszp
J B | & \ hy
KOANX - KCAX - PKOANX
” ‘Jré‘/\l \'f"?/\l
KOANX - KUANX - 2 KONX.

The induced homomorphisms Zxo((7725' 4 1)g5): KO,V,, —> KO, s X are trivial in
dimensions =0 and 2 because KO, V,,,=<Z|m, KCoV,,,2=Z|2m and KO,X =<r(B;)
by Lemma 4.1 Bl). So we get a map hj: °— Z2KOAX such that Afj,=
(te' \1)goty: SZ/m—Z'KOAX and in addition (5,1)k;=0 when m is even.
Hence the composite (5, 1)(t7c'\ 1) 2oty : SZ/m—3? KO A\ X becomes trivial when
m is even as well as odd. By applying [12, Lemma 1.3] we can obtain desired
maps 4, and &, after replacing the map g,, with (£ ,1)g,, =/, suitably if necessary.

Moreover we note that h: KO,SZ/2— KO,X becomes trivial since the
induced homomorphism #go((T7c'A1)g2): KOV, — KO, X is also trivial by
means of Lemma 4.1 A2). This implies that the composite %,7,: ='—KOA X is
trivial. Hence it follows that (y,1)h,=hi,n,: SZ/2—-KOAX because 5,1=
TlaJatimy: ZWSZ|2—SZ[2 by (1.1). When m is even, we see that (p,1)h, =
7P stmT2: SZ|2— KO A X where p,, ,: SZ|/m— SZ|2 denotes the associated map
with the canonical epimorphism. Hence it follows that the composite (3, 1)4,jy:
Vom—S*KOA X is trivial when m is even. When m is odd, A: KO,SZ[2—
KO,X becomes also trivial because &, j,=(77¢',\1)g,. Using the fact that
hyx: KO;SZ|2— KO, ,X are trivial in dimensions =0 and 2, we can then verify
that the composite (3, 1)A,: SZ/2—KO A X is trivial when m is odd. Conseqently
there exists a map h,,: V,,, — KO A X satisfying (o' s 1)y =f>, for any m.

iii) The Ygu=Rj, case: Note that the induced homomorphisms
Zxo((T25 A\ 1)g3): KO;R;,—KO, ;X are trivial in dimensions /=0, 4 and 6 by
means of Lemmas 3.2 iii) and 4.1 A3), B2). Then we can find vertical arrows
hy, b, making the diagram below commutative

>/ >/
s 2B R Esiszm
V by | & I h
KOAX - KCAX — SSKOAX

” \LCAI \|/77A1
KOANX - KUANX - 3KOANX .

Moreover we can see that h: KO,SZ[2m—KO,, X are trivial in dimensions
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t=0 and 2 because h jr=(tzc'\1)gn. So we can verify that the composite
(pal)hy: Z2SZ2m— KO A X becomes trivial. Hence there exists a desired map
ha.

iv) The Y,=3*Nj, case is shown similarly to the case iii), by means of
Lemmas 3.2 ii) and 4.1 A2), B3) in place of Lemmas 3.2 iii) and 4.1 A3), B2).

v) The Y;=NRj, case: Note that the induced homomorphisms
Rro((77c' \1)gss): KO;NR},,—KO, X are trivial in dimensions =0, 2, 4 and 6,
by means of Lemmas 3.2 v) and 4.1 A3), B3). Then we can find vertical arrows
hy, h, making the diagram below commutative

zz\f}zl° "Nk Nfg,,, Nz 24S¢ZéLZm
g
KOAX — KCAX — SKOAX

I V¢ l\l ! 77/\1
KOANX — KUAX — S’KONX.

Moreover we can see that Ay: KO,SZ/2m—KO,,,X are trivial in dimensions
#=0, 2. 'This implies that the composite (y,1)h,: 22SZ/2m— KO A X is trivial.
The result is now immediate.

The other cases Y,,=3*SZ/2m, Y ,=3*V,,, Y5;=2'R}, and Y ;=3°N},
are evidently shown by parallel discussions to the above cases 1), ii), iii) and
iv) respectively.

4.3. We next deal with a CW-spectrum X such that KU X has a direct
sum decomposition

43) i) KUX=A®B®(CDC)B(ZPZ/2m) or
i) KU,X=~ADBD(CBC)D(ZDZ2m)D(ZDZ|2n)

with 4, B direct sums of 2-torsion free cyclic groups, and KU, X=0. Here
the conjugation ¢4 behaves on 4, B and CHC as in (3.3), and moreover on
ZDZ[2m, Z PZ|2n as follows:

th(i _(1)) or tF=<1 ‘1)) on Z@Z2m,

m
ty = (—% (1)) or tc;:(—,lz __(1)) on ZDZ2n.

For such a CW-spectrum X we recall that KO,.X KO X=(AQZ/2)P
Z|2 and KO X@PKO,X=BQRZ|2 or =(BQRZ[2)PZ|2 in the case (4.3) i) or
ii). By a parallel discussion to (4.2) we can show

Lemma 4.3. Let X be a CW-spectrum satisfying (4.3).
i) When ty=t, on ZBZ|2m, KC,X=<ADCD(ZBZ2)PH with H=0,
Z[2n or Z|2 and 1t is decomposed into either of the following three types:
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Dl) KCX=A,DADPCHZDZ2)BH so that KO X=(4,DZ2)QZ/2,
KO;X =A,QZ|2 and both 7,: KC,X—KO X and (tnc")4: KC,.X—KO:X
are the canonical epimorphisms.

D2) KCX=A,PAPBCHB(ZBZ2)PH so that KOX=A,RZ|2, KOX =
(ABZ[2)RZ|2 and both T4: KC X — KO, X and (t7c")y: KCoX - KO:;X
are the canonical epimorphisms.

D3) KCX=A,PAPZBCB(ZBZ/2)PH so that KO, X = (4,QZ|2)PZ|2,
KO X =(A,DZ2)QZ|2 and (trc")x: KCoX —KO,X is the canonical
epimorphism, but 74: KC, X — KO, X is the epimorphism whose restriction to

ZE(ZDZ|2) is given by the matrix (‘1) 0 V) zozozp—~4@zR)®

Z|2.

ii) When ty=tp on ZBZ|2m, KC, X =ADC B(Z DZ|2m)PH with H=0,
Z|2n or Z|2 and it is decomposed similarly into ome of the three types D4), D5)
and D6) corresponding to the above D1), D2) and D3).

i) When ty=t, on Z@DZ[2n, KC,.X =BOCPHD(ZPZ[2) with H=
Z[2m or Z|2 and it is also decomposed into one of the three types E1), E2) and E3)
as the case 1).

iv) When ty=t; on ZDZ[2n, KC,X=BOC PHDB(ZDZ|2n) with H=
Z|2m or Z|2 and it is also decomposed into one of the three types E4), E5) and E6)
as the case ii).

4.4. By making use of Lemma 4.3 we will here show the third one of our
main results.

Theorem 4.4. Let X be a CW-spectrum such that KUyX has a direct sum
decomposition as (4.3) and KU, X=0. Then there exist abelain groups A,, A,, B,
and Bg and certain CW-spectra Y and Y' so that X is quasi KOy-equivalent to
the wedge sum SA)\ Z2SB,\V S*SANZESB;\V YV Y'. Here Y is taken to be
= M,y ZiQomy NP iy or R'Q,, for i=0, 4 and Y’ to be {pt} in the (4.3) i) case
and Y' to be Z'M,,, Z**Q,,, SENP}, or S*R'Q,, for i=0, 4 in the (4.3) ii) case.

Proof. Set Y,=3*M,,, Y,=3*M,,, Ys=NPiw, Y,=@Q,, Y5;=3'Qs,
Ys=R’'Q,, and then Y;=3?Y; for I=j=<6. According to Lemma 4.3 KC,X is
decomposed with the six types D1)-D6), and KC,X is decomposed with the
six types E1)-E6) in the case (4.3)ii). We will prove that X is quasi KO-
equivalent to the wedge sum S4,V 2*SB,V 2*SA4,VZ*SB,V(PASC)VY; VY
in each type (Di, Ej). In each type Di) we choose a unique map f;: Y;>KUAX
whose induced homomorphism in KU-homologies is the canonical injection.
Then there exists a map g;: Y;—>KC A X satisfying (£ \1)g;=f;. It is sufficient to
find a map A;: Y;—>KOAX such that (&;,1)h;=f; for each 7, the Y'=Y case
being similarly done.

i) The Y,=3?M,, case: We will find vertical arrows Ao, &, making the
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diagram below commutative

5287/2m % s2M,, 1% s
¥ By V& IV
KOAX — KCAX — SSKOAX

I gl | 7,1
KOAX — KUAX — S’KOAX

by replacing the map g, with (¢,1)g,=f, suitably if necessary. The induced
homomorphisms &go((t7c',\1)g2): KO; M,, — KO, ,X become trivial in dimen-
sions =0, 2 because of Lemma 4.3 D2) and E1)-E3). Hence it is easily seen
that the composite (y,1)(77c' \1)gsin: Z2SZ[2m—>KO A X is trivial. So we get
desired maps Ay, h, by applying [12, Lemma 1.3]. However the map A;: 3'—
KOAX has an extension %,: 3'SZ/2m—>KO A X satisfying hi=h,. Since (5,1)
hy=nh,(in): 3*— KO A X, the result is now immediate.

i) The Y,=NP}, case: Note that the induced homomorphisms
Rro((tmc'\1)gs: KO;NP},— KO, ;X are trivial in dimensions i=0 and 4, by
means of Lemmas 3.2 iv) and 4.3 D3). Then we can find vertical arrows A, h,
making the diagram below commutative

4
sovse % Npn N 528 714m
VA | & I hy
KOAX — KEAX — ZaKO/\X

I } C ! 77/\
KOAX > KUAX — S2KOAX.

Moreover we notice that the composite £,5: '—>KO A X becomes trivial because
hjip=(12c',1)gs. Then it follows from (1.1) that (9, 1)h=hi7="h iy (7%, 7):
SZ|4m— KO A\ X where z,: Z°V 3 — 3 stands for the second projection. The
result is now immediate.

iii) The Y,=@Q,, case: As in the case i) we can find vertical arrows A,,
h, making the diagram below commutative

szpm % Q. & s

¥ kg ) & \ by
KOAX - KCAX — ZaKO/\X

I ‘L Ea 1 l‘ 77/\
KOANX — KU/\X—-> SPKONX

since the induced homomorphisms #go((77c'A1)2,): KOQy—> KO, s X are trivial
in dimensions :=0, 2 by means of Lemma 4.3 D4) and E4)-E6). The map
hy: Z'->KO A X is written as the composite #,=Fk,n for some map k,: Z*—>KOA
X. Hence we see that (,1)h,=Fk, j(77): Z*— KO A X which implies our result
immediately.

iv) The Yy=R'Q,, case: We will find vertical arrows 7%, &, making the
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diagram below commutative

IR/, RQ Jr'Q

Rém — R,QZm Ea— 28

y ko V& \h
KOANX — KCAX —3KOAX

I VEal V741

KOANX — KUAX —> Z’KOANX

by replacing the map gy with (£,1)ge=Ffs suitably if necessary. The induced
homomorphisms #xo((T7c',1)g): KO;R'Q,,—KO, ;X become trivial in dimen-
sions =0, 4 and 6 by means of Lemmas 3.2 vi) and 4.1 D6), E4)-E6). Then
we get a map hj: 2—KO A X such that (77¢' \ 1)getrr rre=hbjjr': Rin—>Z* KON X
and in addition (5,1)h=0. So we obtain desired maps 4, and A, by applying
[12, Lemma 1.3]. Since there exists a map &;: 3*—KOA X with kn=h,, it
follows from (2.3) that (p,1)k, =k, jj%(hzn): S*—>KOAX. The result is now
immediate.

The other cases Y,=3°M,, and Y;=3'Q,, are evidently shown by pa-
rallel discussions to the cases 1) and iii) respectively.

4.5. We will finally prove our main theorem as a corollary by putting
Theorems 3.3, 4.2 and 4.4 together.

Proof of Theorem 2. Recall that the conjugation t4 on KU, X =~ H @ Z/|2m,
m=2°, is represented by one of the matrices given in (3.1) i)-v). If its matrix
representation has the type i), we may apply Theorem 4.2 in order to observe
that Y is taken to be one of the elementary spectra 3*SZ/2m, 3%V ,,,, %N},
%R}, and Z¥NRj,, for 0=i<3 and 0=<j=<1. If it has the type iii) or iv), we
may apply Theorem 4.4 in order to observe that Y is taken to be one of the
elementary spectra 3¥M,,,, 3%Q,,, S¥NP}, and Z¥R’'Q,,, for the above 7, j. If
it has the type ii) or v), we may apply Theorem 3.3 in order to observe that Y is
taken to be one of the elementary spectra 3% W, (m=4n) and S¥MQ,,, for the
above j.

Combining Theorem 2 with Propositions 1.2, 2.3 and 2.4, and then apply-
ing [12, Corollary 1.6] with (1.3) and (2.5) we obtain

Corollary 4.5. i) N'MzuzgNPin, N'QonggP VN 2V 3y R' Mangg P\ 2V,
P'Qunzy ZMQ,,, and P'Q2zy P\ 32SZ|n for n odd.

i) M'Newrg SINP,yy M'Ropg PV 2V g, @ Nomgg PV 32V 4,
Q'PinggMQ), and Q'Po, g PN Z3SZ|n for n odd.

iil) MQomgyZ*MQuy, NPy Z* NP}y, NRGnzyZ*NRsy and
R'Q:ni32'R'Qyn

V) MQnrsS'MQ4, NPsygS*NPy,, NRopgySNR,,, and
Q,RZm%24Q/R2m’
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Z. YOSIMURA

ReEMARK. By applying [14, Theorem 2.6] we can observe that
M'Momzyg 2" MP,y , MPonpy Z*MP,,, and MP},~3'MP}, .
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