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Abstract. We construct a nonlinear lattice that has a particular symmetry in

its potential function consisting of long-range pairwise interactions. The symmetry

enhances smooth propagation of discrete breathers, and it is defined by an invariance

of the potential function with respect to a map acting on the complex normal mode

coordinates. Condition of the symmetry is given by a set of algebraic equations with

respect to coefficients of the pairwise interactions. We prove that the set of algebraic

equations has a unique solution, and moreover we solve it explicitly. We present an

explicit Hamiltonian for the symmetric lattice, which has coefficients given by the

solution. We demonstrate that the present symmetric lattice is useful for numerically

computing traveling discrete breathers in various lattices. We propose an algorithm

using it.
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1. Introduction

Wave propagation is one of the fundamental phenomena in physics. It has been of crucial

importance to understand the nature of wave propagation in spatially discrete media.

For example, phonons are plane waves in crystals, and their characteristics dominate

various material properties such as thermal transport. In addition to the discreteness,

a variety of discrete media are inherently nonlinear. Therefore, wave propagation in

nonlinear discrete media has been of increasing importance.

Discrete breathers (DBs) are space-localized modes that ubiquitously emerge in a

variety of nonlinear discrete media. The concept of DB was introduced by Takeno and

Sievers [1], and it has been of great interest [2, 3]. Two types of DBs are known to

be possible, i.e., stationary and traveling DBs. Long-lived traveling DBs have been

found numerically in various nonlinear lattice models [4, 5, 6, 7]: they propagate

along the lattices without noticeable decay for a long time. Such traveling DBs are

of considerable interest from the viewpoint of energy transport, and their properties

have been investigated [8, 9, 10, 11].

Discreteness effects manifest in propagation property of traveling DB. The lattice

discreteness in general tends to reduce the mobility of DB: for instance, an approximate

traveling DB produced by perturbing a stationary DB loses its velocity during its

propagation, and it is eventually trapped at a certain lattice site [7]. On the other

hand, it is possible to precisely compute a traveling DB solution without velocity loss

by combining the Newton method with numerical integration of the equations of motion.

A remarkable feature is that it does not propagate with a constant velocity but with

periodically varying velocity, i.e., the non-smooth propagation [9, 12]. The period of

this velocity variation is just a time needed for propagating one lattice space. Both

the velocity loss of an approximate traveling DB and the velocity variation of a precise

traveling DB vanish in the continuum limit, where the DB is very weakly localized

[10, 13]. This fact indicates that the two features are just manifestations of the lattice

discreteness effects.

A fundamental issue is to clarify the origin of such discreteness effects, in other

words, an essential property of the lattice potential that causes the discreteness effects.

Addressing this issue, we pointed out the relevance of a particular symmetry of the lattice

potential [10]. Recently, we have proposed a nonlinear lattice having this symmetry,

which has a potential function consisting of pairwise long-range interactions. We have

numerically demonstrated that this lattice allows constant-velocity traveling DBs and

moreover exhibits a high mobility of approximate traveling DBs, i.e., the lattice is free

from the discreteness effect [12]. In contrast, it is possible to break the symmetry

by adding a perturbation to the lattice potential. As the perturbation increases, the

velocity variation of precise traveling DB becomes larger (cf. Sec. 5) and the velocity loss

of approximate traveling DB also increases [12]. These results indicate that breaking

the symmetry is the origin of the discreteness effects in propagation of DBs.

It also should be emphasized that the ballistic thermal transport has been
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numerically observed in lattices with the potential symmetry [16, 17, 18]. In addition,

when the symmetry is broken by adding a perturbation of the potential, the lattice

exhibits a transition from the ballistic to a non-ballistic (but still anomalous) thermal

transport as the lattice size increases [17]. The threshold lattice size Nc depends on

the magnitude of the perturbation: Nc decreases as the perturbation is increased.

These observations indicate that the thermal resistance appears and becomes stronger

as the symmetry breaks gradually. Thus, it is expected that a study of the thermal

transport by gradually breaking the symmetry in the present lattice will lead to a better

understanding of the mechanism of thermal resistance. The present symmetric lattice

may be of much significance also from the point of view of thermal transport.

In our previous paper [12], we stated that there exists such a symmetric lattice

without a proof. In the present paper, we give a proof of its existence. Moreover, we

give an explicit Hamiltonian for the symmetric lattice. Analytical expressions for the

coefficients appearing in the symmetric lattice’s potential were not given, but they were

only numerically obtained in [12]. Here, we obtain the coefficients explicitly.

The symmetric lattice is useful for numerically computing traveling DB solutions.

Precise computation of traveling DB usually employs the Newton method, which needs

a good approximate solution as an initial guess. This approximation is obtained by

perturbing a stationary DB, but this method does not always work successfully because

the domain of convergence of the Newton method is very small for ordinary nonlinear

lattices such as the Fermi-Pasta-Ulam (FPU) lattice and the approximation is not precise

enough. A useful feature of the symmetric lattice is that it is possible to find a precise

enough approximation by perturbation. Given a lattice model to compute a traveling

DB such as the FPU one, our idea for the algorithm is to introduce a lattice that has

a potential function parameterized between the symmetric lattice and the given one,

compute a precise traveling DB for the symmetric lattice case, and then continue it

to the given lattice case by gradually changing the parameter value. This idea has

already been proposed in [14, 15]. However, only the four-particle symmetric lattice

was constructed at that point, and the N -particle one has been lacking. The present

lattice is an extension of the four-particle symmetric lattice to an arbitrary degrees of

freedom. We demonstrate that our algorithm using the present lattice successfully works

for computing traveling DBs in the FPU lattice.

The rest of paper is organized as follows. In section 2, the definition of the

symmetric lattice is given. In section 3, we give a pairwise interaction symmetric lattice,

as well as the main results on the existence and uniqueness of the proposed model. The

explicit expression of the proposed model is also given. In section 4, the numerical

method for finding traveling DBs using the proposed model is presented. In section 5,

we discuss physical effects of breaking the symmetry. In section 6, we give a preliminary

discussion of the proof. In section 7 and 8, several lemmas are proved to prepare the

proof of main result. The proof of main result is given in section 9.
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2. Definition of symmetric lattice

Let us consider a nonlinear lattice described by the Hamiltonian

H =
1

2

N∑
n=1

p2n + Φ(q1, q2, . . . , qN), (1)

where pn ∈ R and qn ∈ R represent the linear momentum and the position of nth

particle, respectively, N is the number of particles of the system, and Φ(q1, q2, . . . , qN):

RN → R is a C2 function of (q1, q2, . . . , qN). We assume the case of even N and the

periodic boundary conditions pN+1 = p1, p0 = pN , qN+1 = q1 and q0 = qN .

Consider the variable transformation defined by

qn =
(−1)n√
N

N/2∑
m=−N/2+1

Um exp

[
−i2πn

N
m

]
, n = 1, 2, · · · , N, (2)

where Um ∈ C, m = −N/2+1,−N/2+2, . . . , N/2 are called the complex normal mode

coordinates. Note that the N/2th mode represents the uniform displacement of the

lattice. Substituting Eq. (2), Hamiltonian (1) can be written in terms of Um and reads

H =
1

2

Nh+1∑
m=−Nh

U̇mU̇−m + Φ(U, UN/2), (3)

where Nh = N/2− 1 and U = (U−Nh
, U−Nh+1, . . . , UNh

). The potential Φ(U, UN/2) can

be decomposed as

Φ(U, UN/2) = Φ(U, 0) + G(U, UN/2), (4)

where G(U, UN/2) ≡ Φ(U, UN/2)− Φ(U, 0).

Consider the map Tλ : CN−1 → CN−1 defined by

Tλ : Um 7→ Um exp(−imλ), m = −Nh, . . . , Nh, (5)

where λ is a real parameter. This map Tλ forms a one-parameter transformation group.

When λ = 2π/N , given an arbitrary displacement pattern q = (q1, q2, · · · , qN) satisfying
UN/2 =

∑N
n=1 qn/

√
N = 0, the map Tλ represents successive operations of shifting q by

one lattice spacing and reversing the sign of the resulting displacement. Therefore, Tλ

with an arbitrary λ may be regarded as a continuous extension of this one-lattice-space

shifting and sign-inverting transformation.

The UN/2-independent part of potential function Φ(U, 0) in Eq. (4) can be divided

into two parts: Φs(U) and Φa(U). The former part is invariant with respect to

the map Tλ for any λ ∈ R and any U ∈ CN−1, i.e., Φs(TλU) = Φs(U), while

Φa(U) = Φ(U, 0)− Φs(U) is the rest part of Φ(U, 0) and not invariant with respect to

Tλ for any λ. We call the former part Φs(U) the symmetric part. This decomposition

in Eq.(3) provides

H =
1

2

Nh+1∑
m=−Nh

U̇mU̇−m + Φs(U) + Ψ(U, UN/2), (6)
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where Ψ = Φa(U)+G(U, UN/2) is the asymmetric part of the whole potential Φ(U, UN/2).

Let I = {(q,p) ∈ R2N |
∑N

n=1 qn =
∑N

n=1 pn = 0}. This is the subspace which is specified

by UN/2 = U̇N/2 = 0. We give the following definition.

Definition 1. The lattice (3) or (6) is said to be a symmetric lattice if I is an invariant

subspace and Ψ(U, 0) = 0.

By this definition, the Hamiltonian of the reduced dynamical system on I of a

symmetric lattice is given in the form

H =
1

2

Nh∑
m=−Nh

U̇mU̇−m + Φs(U). (7)

It has been reported that the following two propositions hold in the symmetric

lattice[15].

Proposition 2. Suppose that the symmetric lattice (7) has a solution Um(t) =

um(t),m = −Nh, . . . , Nh, UN/2(t) = 0. Then for any λ ∈ R, Um(t) =

um(t) exp (−imλ),m = −Nh, . . . , Nh, UN/2(t) = 0 is also a solution.

Proposition 3. The symmetric lattice (7) has an additional first integral given by

I =

N/2−1∑
m=1

m(U̇mU−m − UmU̇−m). (8)

3. Model and main result

It is possible to construct a symmetric lattice from any lattice system defined by

Hamiltonian (3), because it is enough to eliminate its asymmetric terms. However,

such a model is in general unphysical when it is transformed into the Hamiltonian in

terms of qn. For example, such lattice is not composed of pairwise interactions. Our

purpose is to construct a symmetric lattice that has a potential consisting of pairwise

interactions only.

In section 2, we considered the symmetric lattice defined for even N . For simplicity

of the proof, we restrict the following discussion to the case that N is a multiple of 4,

i.e, N/2 is even. We have not given the proof for the case that N/2 is odd. However, it

may be possible to prove as the same manner. Let us consider the Hamiltonian which

has pairwise interaction terms as follows:

H =
N∑

n=1

1

2
p2n +

N∑
n=1

[µ0

2
q2n +

µ1

2
(qn+1 − qn)

2
]
+

1

4

N∑
n=1

N/2∑
r=1

br(qn+r − qn)
4,

(9)

where br ∈ R is a constant which represents the coupling strength between the rth

neighboring particles, µ0 and µ1 are the coefficients of harmonic on-site potential and

harmonic intersite potential, respectively. Hamiltonian (9) reduces to the FPU-type

lattice when µ0 = 0 and br = 0 (r ≥ 2).
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Substituting Eq. (2) into Eq. (9), we rewrite the Hamiltonian in terms of Um into

the form

H =
1

2

Nh+1∑
m=−Nh

U̇mU̇−m + Φs(U) + Φa(U) +
µ0

2
U2
N/2. (10)

It is easy to see that Hamiltonian (10) has the invariant subspace I. Comparing Eq.(10)

with Eq.(6), we see Ψ(U, UN/2) = Φa(U) + (µ0/2)U
2
N/2. This asymmetric part reduces

Ψ(U, 0) = Φa(U) on I. In order to construct a symmetric lattice, it is enough to

consider Φa(U) as the asymmetric part. The symmetric part and asymmetric part in

the lattice potential are given as follows:

Φs(U) =
1

2

Nh∑
m=−Nh

[
µ0 + 4µ1 cos

2
(πm
N

)]
UmU−m

+
4

N

Nh∑
i,j,k,l=−Nh

ϕ(i,j,k,l)(b)UiUjUkUl∆(i+ j + k + l) (11)

Φa(U) = − 4

N

Nh∑
i,j,k,l=−Nh

ψ(i,j,k,l)(b)UiUjUkUl∆(i+ j + k + l +N)

− 4

N

Nh∑
i,j,k,l=−Nh

ψ(i,j,k,l)(b)UiUjUkUl∆(i+ j + k + l −N) (12)

with

ϕ(i,j,k,l)(b) =

N/2∑
q=1

bqf
(i,j,k,l)
q (13)

ψ(i,j,k,l)(b) = −
N/2∑
q=1

(−1)qbqf
(i,j,k,l)
q , (14)

where b = [b1, b2, . . . , bN/2]
T and

f (i,j,k,l)
q =

{
ciqcjqckqclq for odd q

siqsjqskqslq for even q,
(15)

where cα = cos(απ/N) and sα = sin(απ/N). The function ∆(d) is defined by

∆(d) =

{
1 if d = 0

0 otherwise.
(16)

Let S± = {(i, j, k, l) ∈ Z4| −Nh ≤ i, j, k, l ≤ Nh, i + j + k + l = ±N}. The lattice

(10) becomes symmetric if and only if the asymmetric part (12) vanishes. The condition

Φa(U) = 0 is equivalent to

ψ(i,j,k,l)(b) = 0, ∀(i, j, k, l) ∈ S±. (17)

As for Eq. (17), we can readily obtain the following lemma.
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Lemma 4. Suppose that ψ(i,j,k,l)(b) = 0 holds for (i, j, k, l) ∈ Z4 and b ∈ RN/2, then

we have ψ(−i,−j,−k,−l)(b) = 0.

Proof: For any q ∈ Z, s−(2q−1)i = −s(2q−1)i and c−2qi = c2qi hold. This fact implies

f
(−i,−j,−k,−l)
q = f

(i,j,k,l)
q . Therefore, we have ψ(−i,−j,−k,−l)(b) = ψ(i,j,k,l)(b). 2

Since Eq.(17) is invariant under any exchange of indices, we can restrict our

discussion to the subset S0 = {(i, j, k, l)| − Nh ≤ i ≤ j ≤ k ≤ l ≤ Nh, i + j + k + l =

±N} ⊂ S± without loss of generality. Using this fact and Lemma 4, we can further

restrict our discussions to the set S = {(i, j, k, l)| − Nh ≤ i ≤ j ≤ k ≤ l ≤
Nh, i + j + k + l = N} ⊂ S0. Finally, it is enough to discuss the equations in the

set S instead of Eq. (17) which is in the set S±. Therefore, we consider the equations

ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S. (18)

Let S1 = {(0, n + 1, N/2 − n,N/2 − 1)|1 ≤ n ≤ N/4 − 1} ⊂ S and S2 =

{(2 − m,m,N/2 − 1, N/2 − 1)|m = 1 or 3 ≤ m ≤ N/4 + 1} ⊂ S. The following

lemma holds:

Lemma 5. Let N ∈ N be a multiple of 4. Equations ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S1∪S2

are N/2− 1 linearly independent equations and therefore they have a nontrivial solution

b ̸= 0. Moreover, this nontrivial solution b also solves the other equations in S.

We briefly describe the procedure of our proof of Lemma 5 below:

(i) Showing that N/4 − 1 equations ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S1 are linearly

independent by showing the matrix rank of this set of equations is N/4− 1;

(ii) Showing that N/4 equations ψ(i,j,k,l)(b) = 0, ∀(i, j, k, l) ∈ S2 are linearly

independent provided that (i) is satisfied, by showing the matrix rank of this set of

equations is N/4;

(iii) Showing that the nontrivial solution obtained by (i) and (ii) solves the other all

equations ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S \ (S1 ∪ S2).

The proof of this lemma will be given in Secs. 7 and 8.

The solution b of the set of equations in Lemma 5 can also be explicitly obtained

as in Lemma 6. Its detailed derivation will be given in Appendix D.

Lemma 6. Let N ∈ N be a multiple of 4 and b1 be a nonzero constant. The nontrivial

solution of equations ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S1 ∪ S2 is given by

br =


b1 sin

2 π
N

sin2 rπ
N

(r = 1, 2, · · · , N/2− 1),

b1
2
sin2 π

N
(r =

N

2
).

(19)

Combining Lemmas 5 and 6, we can obtain the following main theorem. The lattice

model given in the following main theorem is called the pairwise interaction symmetric

lattice (PISL)[12].
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Theorem 7. Let N ∈ N be a multiple of 4 and b = (b1, b2, · · · , bN/2) be a nontrivial

solution of equations ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S1 ∪ S2. Then, the lattice defined by

the Hamiltonian (9) is a symmetric lattice, and the explicit expression of Hamiltonian

(9) is given as follows:

H =
1

2

N∑
n=1

p2n +
1

2

N∑
n=1

[
µ0q

2
n + µ1(qn+1 − qn)

2
]

+
1

4

N∑
n=1

N/2−1∑
r=1

b1 sin
2 π
N

sin2 rπ
N

(qn+r − qn)
4 +

1

8

N∑
n=1

b1 sin
2
( π
N

)
(qn+N/2 − qn)

4,

(20)

where b1 is an arbitrary nonzero constant.

4. Calculation method for traveling DB

It has been reported in our previous work[12] that one of the good features of the PISL is

that DBs in the PISL have smooth mobility, that is, each traveling DB propagates with

a constant velocity. It has been also reported that the PISL has a rather large tolerance

in the initial perturbation that generates a smoothly propagating traveling DB from

a stationary DB. These results indicate the proposed model is useful for obtaining an

initial guess for finding a traveling DB by iteration method. We propose the following

procedure (i)-(vii) for computing a traveling DB solution, which utilizes the PISL.

(i) Consider the following lattice which has a parameter C controlling the symmetry

of lattice (PISL for C = 1 and FPU-β for C = 0).

H =
N∑

n=1

[
1

2
p2n +

1

2
(qn+1 − qn)

2 +
b1
4
(qn+1 − qn)

4

]

+
C

4

N∑
n=1

N/2∑
r=2

br(qn+r − qn)
4, (21)

where br is given by Eq. (19). This lattice was named the translational asymmetry

controlled lattice (TASCL) [15]. The equations of motion are given by

q̇n = pn, (22)

ṗn = qn+1 + qn−1 − 2qn + b1
[
(qn+1 − qn)

3 + (qn−1 − qn)
3
]

+ C

N/2∑
r=2

br
[
(qn+r − qn)

3 + (qn−r − qn)
3
]
, (23)

where n = 1, 2, · · · , N . Denote (q,p) = (q1, · · · , qN , p1, · · · , pN). The temporal

evolution of a solution with its initial condition (q(0),p(0)) is obtained by

integrating Eqs. (22) and (23). This temporal evolution over the duration τ induces

the map FC,τ : R2N → R2N as follows:

FC,τ (q(0),p(0)) = (q(τ),p(τ)). (24)
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(ii) Construct an approximate stationary DB with a prescribed angular frequency ωDB

in the symmetric lattice (C = 1). Assume the approximate stationary DB solution

in the form

qn(t) = an cosωDBt, n = 1, 2, · · · , N, (25)

where an represents the spatial profile of stationary DB. Substituting Eq. (25) into

Eqs. (22) and (23) and performing the rotating wave approximation, we obtain the

algebraic equations for an as follows:

an+1 + an−1 − (2− ω2
DB)an +

3b1
4

[
(an+1 − an)

3 + (an−1 − an)
3
]

+
3

4

N/2∑
r=2

br
[
(an+r − an)

3 + (an−r − an)
3
]
= 0, n = 1, 2, · · · , N. (26)

The particle amplitudes an, n = 1, 2, · · ·N , of the approximate stationary DB are

obtained by numerically solving Eq.(26).

(iii) Construct a precise numerical solution of stationary DB with the angular frequency

ωDB in the symmetric lattice (C = 1) under the constraint UN/2 = 0. This is

performed by finding the periodic orbit in the phase space. Let (q(s)(0),p(s)(0)) be

the initial state of the stationary DB and T = 2π/ωDB be its internal oscillation

period. The temporal evolution map F1,T (q
(s)(0),p(s)(0)) is defined by integration

of Eqs. (22) and (23) with C = 1 over the period T . The initial state has to satisfy

the condition

F1,T (q
(s)(0),p(s)(0)) = (q(s)(0),p(s)(0)). (27)

This is an equation for (q(s)(0),p(s)(0)). Solve Eq. (27) by the Newton method with

using (a1, · · · , aN , 0, · · · , 0) as an initial guess for (q(s)(0),p(s)(0)).

(iv) Construct an approximate traveling DB with velocity vDB = r/s [site/period] in

the symmetric lattice (C = 1) under the constraint UN/2 = 0 by adding small

perturbation to the stationary DB obtained in step (iii). The parameters r and

s are integers. This means that the traveling DB propagates r lattice spacings

during s internal oscillating periods sT , where T = 2π/ωDB. It is natural to take

the perturbation parallel to the direction dTλ[U]/dλ, since the map Tλ represents

a translational shift of DB along the lattice. Let δUm be each component of the

perturbation vector, and we set

δUm = −imUm · δl, m = −N/2 + 1, · · · , N/2− 1 (28)

from a simple calculation of d/dλ(Um exp(−imλ)) = −imUm exp(−imλ) and

δUN/2 = 0 from UN/2 = 0. The parameter δl determines the magnitude of

perturbation. The perturbation δp = (δp1, δp2, · · · , δpN) in the physical space is

given by

δpn = −δl (−1)n√
N

N/2∑
m=−N/2+1

imUm exp

[
−i2πn

N
m

]
, n = 1, 2, · · · , N.
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(29)

Fig. 1 shows the relation between the parameter δl and the velocity vDB of

the traveling DB constructed by the perturbation (29). The detailed procedure

for estimating the velocity vDB of the approximate traveling DB is described in

Appendix A. It is found that the velocity vDB is proportional to δl in a certain range.

Therefore, the parameter δl is adjusted so that the traveling DB has the prescribed

velocity vDB (cf. Appendix A). We obtain the initial state of the approximate

traveling DB solution as X̄(t)(0) = (q(s)(0),p(s)(0) + δp).

(v) Consider the TASCL with C ∈ [0, 1]. For the prescribed values TDB = 2π/ωDB and

vDB = r/s, define the map MC : R2N → R2N as follows:

MC = (−1)rSr ◦ FC,sT , (30)

where Sr : R2N → R2N is the map that represents the cyclic permutation as follows:

Sr(q1, · · · , qN , p1, · · · , pN) = (q1−r, · · · , qN−r, p1−r, · · · , pN−r), (31)

Note that if the index i−r (i = 1, 2, · · · , N) of qi−r in RHS is not positive, it should

be interpreted as i − r + N since we consider periodic boundary conditions. Let

(q(t)(0),p(t)(0)) be the initial state of the traveling DB with ωDB and vDB. The

initial state has to satisfy the condition

MC(q
(t)(0),p(t)(0)) = (q(t)(0),p(t)(0)). (32)

This is an equation for (q(t)(0),p(t)(0)). It is possible to solve it by using the

Newton method to find the solution precisely. Denote the solution of Eq. (32) with

X
(t)
C (0) = (q(t)(0),p(t)(0)).

(vi) Consider the symmetric lattice (C = 1). Solve Eq. (32) by the Newton method

with using X̄(t)(0) in step (iv) as an initial guess to obtain X
(t)
1 (0).

(vii) Continue the solution X
(t)
1 (0) in step (vi) to the solution X

(t)
0 (0) for the FPU-β

lattice (C = 0). This continuation is performed by repeatedly solving Eq. (32) with

gradually reducing the parameter C until C = 0. Let ∆C > 0 be a small constant

and X
(t)
C (0) be the solution of Eq. (32) for C. Equation (32) for C − ∆C can be

solved by using X
(t)
C (0) as an initial guess for the Newton method.

In steps (iii), (vi), and (vii), we have to find a fixed point z = (q(0),p(0)) of a map

by solving the equation of the form

F [z] = z, (33)

where F : R2N → R2N is a continuously differentiable map. A fixed point z can be

found by using the Newton method described below. Let z0 be a point that is close

to the fixed point z of the map F . Let ∆ = z − z0 be the deviation. Substituting

z = z0 +∆ into Eq. (33) and performing the Taylor expansion with respect to ∆, we

obtain

F [z0] +DF ·∆− (z0 +∆) ≃ 0, (34)



Nonlinear Lattice with Potential Symmetry for Smooth Propagation of DB 11

where DF is the Jacobian matrix of F evaluated at z0. From (34), we obtain

∆ = −(DF − I)−1(F [z0]− z0). (35)

Equation (35) gives the improved approximation z
′
0 = z0 + ∆. We can obtained an

accurate numerical solution of Eq. (33) by repeating this calculation until |∆| becomes

sufficiently small.

In the case of temporal evolution map FC,T , its Jacobian matrix DFC,T can be

evaluated from the variational equation of Eqs. (22) and (23). which is given by

ξ̇n = ηn, (36)

η̇n = ξn+1 + ξn−1 − 2ξn

+ 3b1
[
(qn+1 − qn)

2(ξn+1 − ξn) + (qn−1 − qn)
2(ξn−1 − ξn)

]
+ 3C

N/2∑
r=2

br
[
(qn+r − qn)

2(ξn+r − ξn) + (qn−r − qn)
2(ξn−r − ξn)

]
(37)

where n = 1, 2, · · · , N , ξn and ηn are variations in qn and pn, respectively. Integration of

Eq. (37) over the period T induces the temporal evolution map GT : R2N → R2N given

by

GT [(ξ(0), η(0))] = (ξ(T ), η(T )), (38)

The Jacobian matrix DFC,T is given by

DFC,T = (GT [∆1]
t,GT [∆2]

t, · · · ,GT [∆2N ]
t), (39)

where the superscript t stands for the transposition and ∆n is 2N vector in which only

nth component is one and the other components are zero.

In the case of map MC , its Jacobian matrix DMC , which is needed in steps (vi)

and (vii), is given by

DMC = (−1)rSr ◦ (GsT [∆1]
t,GsT [∆2]

t, · · · ,GsT [∆2N ]
t). (40)

where Sr is the matrix that represents the map (31).

It should be noted that Eq. (27) in step (iii) is degenerate because of the

translational invariance of equation of motion due to the conservation of total angular

momentum and the arbitrariness of spatial symmetry of profile of stationary DB due

to the extra conserved quantity of the symmetric lattices (see Eq. (8)). Therefore, we

perform the Newton method under the constraint of
∑N

n=1 qn = 0 and keeping the spatial

symmetry of profile of stationary DB, i.e., the even or odd mode. Moreover, Eq. (27) is

degenerate because of the arbitrariness of the initial point along the periodic orbit. In

order to remove this degeneracy, we consider the constraint of p(s)(0) = 0 [2].

As the same manner, Eq.(32) in steps (vi) and (vii) is degenerate because of the

translational invariance of equation of motion and the arbitrariness of the initial point

along the trajectory of the traveling DB. In order to remove this degeneracy, we perform

the calculation under the constraints of
∑N

n=1 qn =
∑N

n=1 pn = 0, and ql > 0 and pl = 0,

where l is the index of a particle that has the maximum amplitude.
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Examples of the numerical solutions obtained by the above-mentioned procedure are

presented in Fig. 2. The internal period of DB is TDB = 2 and the velocity vDB = 1/10.

Fig. 2 shows particle energy profiles of DBs with different values of C. The particle

energy is defined by

en =
1

2
p2n +

1

4

[
(qn − qn−1)

2 + (qn+1 − qn)
2
]

+
b1
8

[
(qn − qn−1)

4 + (qn+1 − qn)
4
]

+
C

8

N/2∑
r=2

br
[
(qn − qn−r)

4 + (qn+r − qn)
4
]
. (41)

In the symmetric case (C = 1), the traveling DB has no constant tail. By decreasing C,

the spatially extended tail gradually appears. The trajectory of averaged center position

of traveling DB with different C is presented in Fig. 3. The center position of traveling

DB is defined by

x(t) =
N∑

n=1

nen. (42)

We perform the short-time average of x(t) by

X(t) =
1

2τ

∫ t+τ

t−τ

x(t)dt (43)

in order to reduce fluctuations of x(t) due to the internal vibration of traveling DB.

Figure 3 shows the averaged center position X(t). The DB travels with a constant

velocity in the symmetric case (C = 1). The slope of the trajectory is 1/20, which

is equal to vDB/T . In the FPU-β lattice case (C = 0), the velocity of DB periodically

varies, but the averaged slope of the trajectory still coincides with 1/20. These numerical

results in Figs. 2 and 3 demonstrate that the proposed calculation method works well

and successfully computes the traveling DB in the FPU-β lattice.

In step (iv), we can obtain a good approximate traveling DB in the PISL which has

a constant velocity. This is quite different from the case in the FPU-β lattice because

a traveling DB constructed from the perturbation gradually decreases its velocity. An

advantage of the proposed method is that it is possible to obtain the traveling DB with

a constant velocity easily.

In this section, we focus on the calculation method for the traveling DB in the

FPU-β lattice. The proposed calculation method may apply to compute traveling DBs

by the continuation in the other nonlinear lattices such as the nonlinear Klein-Gordon

lattices and FPU-αβ lattice, provided that no bifurcation occurs during the continuation

from the PISL.



Nonlinear Lattice with Potential Symmetry for Smooth Propagation of DB 13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

v D
B

δl

Figure 1. Relation between δl and the velocity of approximate traveling DB vDB.

The period of internal vibration of the stationary DB is TDB = 2.
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Figure 2. Energy profile of DBs obtained by the iteration method, TDB = 2 and

vDB = 1/10.
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Figure 3. Trajectory of traveling DB with vDB = 1/10 and TDB = 2π/ωDB = 2 in

(a)symmetric lattice (C = 1) and (b)FPU-β lattice (C = 0) with N = 128.
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5. Truncated PISL and effects of breaking symmetry

It is useful for investigating effects of breaking the symmetry to construct a truncated

PISL, in which only up to M -th nearest neighbor interactions are considered:

H =
1

2

N∑
n=1

p2n +
1

2

N∑
n=1

[
µ0q

2
n + µ1(qn+1 − qn)

2
]

+
1

4

N∑
n=1

M∑
r=1

br(qn+r − qn)
4. (44)

The lattice (44) can be regarded as the PISL with the perturbation term ∆H as

follows:

∆H(M) = −1

4

N∑
n=1

N/2∑
r=M+1

b1(qn+r − qn)
4. (45)

This perturbation breaks the symmetry of lattice. The parameter M corresponds to

the magnitude of perturbation. As the parameter M becomes smaller, the magnitude

of perturbation becomes larger.

When the perturbation (45) is introduced, the averaged center position X(t) of

a traveling DB deviates from the straight line xs(t) = (vDB/TDB)t which corresponds

to the case of a constant velocity. Figure 4 shows the deviation for different values of

M . The magnitude of deviation becomes larger as M decreases, i.e., the magnitude of

perturbation becomes larger. It can be concluded that one of the symmetry breaking

effects is the variation of DB’s velocity. In addition to this effect, the symmetry breaking

causes the velocity loss of approximate traveling DB (cf. Supplemental Material of [12])

and a degradation of the ballistic thermal transport observed in the symmetric case [17].

6. Decomposition of Eq. (18)

We have assumed that N is a multiple of 4. Under this assumption, equations (18) can

be rewritten to

cicjckclb1 − s2is2js2ks2lb2 . . .− sN
2
isN

2
jsN

2
ksN

2
lbN/2 = 0. (46)

The function ψ(i,j,k,l)(b) can be decomposed into two parts as follows:

ψ(i,j,k,l)(b) = ψ
(i,j,k,l)
odd (bodd)− ψ(i,j,k,l)

even (beven), (47)

where

ψ
(i,j,k,l)
odd (bodd) =

N/4∑
s=1

b2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l, (48)

ψ(i,j,k,l)
even (beven) =

N/4∑
s=1

b2ss2sis2sjs2sks2sl, (49)

and, bodd = [b1, b3, · · · , bN/2−1]
T and beven = [b2, b4, · · · , bN/2]

T are N/4 vectors.

We will discuss the equations for b2s−1 and b2s separately in the following sections.



Nonlinear Lattice with Potential Symmetry for Smooth Propagation of DB 17

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0  10  20  30  40  50  60

X
(t

)-
x s

(t
)

t

M=20
M=30
M=40
M=50
M=60
M=64

Figure 4. Deviation of the averaged position of traveling DB X(t) from the straight

trajectory xs(t) = (vDB/TDB)t with vDB = 1/10 and TDB = 2π/ωDB = 2 in the

truncated PISL with N = 128, and M = 20, 30, 40, 50, 60. The case of full PISL

M = 64 is also presented.

7. Equations for b2s−1

The set S can be divided into two subsets T1 = {(i = 0, j, k, l)| − Nh ≤ j ≤ k ≤ l ≤
Nh, j + k + l = N} ⊂ S and T2 = S \ T1. When (i, j, k, l) ∈ T1, all terms corresponding

to s0 vanish. Therefore, ψ(i,j,k,l)(b) = 0 ∀(i, j, k, l) ∈ T1 reduces to

ψ
(i,j,k,l)
odd (bodd) =

N/4∑
s=1

b2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l = 0. ∀(i, j, k, l) ∈ T1.

(50)

We consider the equations ψ(i,j,k,l)(b) = 0 ∀(i, j, k, l) ∈ S1 = {(0, n + 1, N/2 −
n,N/2−1)|1 ≤ n ≤ N/4−1} ⊂ T1. Substituting (i, j, k, l) = (0, n+1, N/2−n,N/2−1)

into the LHS of (50), we obtain

ψ
(0,n+1,N/2−n,N/2−1)
odd (bodd) =

N/4∑
s=1

b2s−1c0c(2s−1)(n+1)c(2s−1)(N/2−n)c(2s−1)(N/2−1)

=
1

4

N/4∑
s=1

b2s−1

[
−1− c2(2s−1)(n+1) + c2(2s−1) + c2(2s−1)n

]
(51)
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Therefore, equation (50) reduces to

1

4

N/4∑
s=1

b2s−1

[
−1− c2(2s−1)(n+1) + c2(2s−1) + c2(2s−1)n

]
= 0.

(n = 1, 2, . . . ,
N

4
− 1) (52)

Eq.(52) can be rewritten into the matrix form,

1

4
M1Abodd = 0, (53)

where A is the N/4 ×N/4 matrix whose element is given by Apq = c2(p−1)(2q−1). M1 is

the (N/4− 1)×N/4 matrix defined by

M1 =



−1 2 −1 0 · · · 0

−1 1 1 −1 0 · · · 0

−1 1 0 1 −1 0 · · · 0
...

...
. . .

−1 1 0 · · · 0 1 −1

−1 1 0 · · · 0 0 1


. (54)

Note that in the last row in M1, we use the relation c2(2s−1)N/4 = 0.

For the following discussion we introduce the (N/4 − 1) × (N/4 − 1) matrix P1

defined by:

P1 =
1

N/4


1 1 · · · 1

−(N/4 − 2) 2 · · · 2

−(N/4 − 3) −(N/4 − 3) 3 · · · 3
...

...
. . .

...

−1 −1 · · · −1 N/4 − 1

 . (55)

Lemma 8. P1 is regular matrix.

Proof: Let a matrix T1,p,q be the elementary matrix which represents the elementary

row operation of adding q times of the first row to the p-th row. Applying

T1,m,N/4−m (m = 2, 3, · · · , N/4 − 1) to P1 from left, we obtain an upper triangular

matrix as

T1,N/4−1,1T1,N/4−2,2 · · ·T1,2,N/4−2P1 =
1

N/4


1 1 1 · · · 1

0 N/4 N/4 · · · N/4

0 0 N/4 · · · N/4
...

...
. . .

...

0 0 · · · 0 N/4

 .
(56)

The transformed upper triangular matrix is regular. Therefore P1 is regular matrix. 2
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Applying P1 to M1, we obtain the (N/4− 1)×N/4 matrix

P1M1 =


fN/4(1) 1 0 · · · 0

fN/4(2) 0 1 · · · 0
...

...
. . .

...

fN/4(N/4 − 1) 0 0 · · · 1

 (57)

where fm(n) = −1 + n/m. It is clear from Eq.(57) that the rank of P1M is N/4 − 1.

Then, the following lemma holds:

Lemma 9. Rank of M1 is N/4− 1.

The following proposition for the equations ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ S1 holds:

Proposition 10. The equations ψ
(i,j,k,l)
odd (bodd) = 0, ∀(i, j, k, l) ∈ S1 are the N/4 − 1

linearly independent equations for b2s−1(s = 1, 2, . . . , N/4).

Proof: The rank of matrix A is N/4 (see Appendix B) and that of matrix M1 is

N/4− 1 from Lemma 9. Therefore, the rank of matrix M1A is N/4− 1. Therefore, the

equations ψ
(i,j,k,l)
odd (bodd) = 0, ∀(i, j, k, l) ∈ S1 are N/4− 1 linearly independent equations

for b2s−1(s = 1, 2, · · · , N/4). 2

The equations ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ S1 are N/4− 1 linearly independent

equations. On the other hand, the number of unknown variables b2s−1 is N/4. Therefore,

we can express the nontrivial solutions b2s−1(s = 2, 3, . . . , N/4) in term of b1 as follows:

b2s−1 = w2s−1b1, (58)

where w2s−1 is a real constant. Substituting (58) into (53) and then applying P1 from

the left side, we obtain the equations for w2s−1:

N/4∑
s=1

[
fN/4(n) + c2n(2s−1)

]
w2s−1 = 0 (59)

for n = 1, 2, · · · , N/4− 1. Note that we define w1 = 1.

It can be easily confirmed that Eq.(59) also holds for the case of n = 0 and n = N/4.

We next check that Eq.(59) also holds for a wider range of n. Define a new variable

n′ = N/2− n. Substituting n = N/2− n′ into Eq.(59), we obtain

N/4∑
s=1

[
fN/4(n

′) + c2n′(2s−1)

]
w2s−1 = 0 (60)

for n′ = N/4 + 1, N/4 + 2, ..., N/2 − 1. This indicates that Eq.(59) also holds for

n = N/4 + 1, N/4 + 2, . . . , N/2 − 1. Finally, it is shown that Eq.(59) holds for the

extended range n = 0, 1, ... . . . , N/2− 1.

Next, we consider the equations ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ T1.

Proposition 11. The nontrivial solution b2s−1 = w2s−1b1 of the equations

ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ S1 also solves the other equations in T1.
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Proof: The set T1 can be expressed by (i, j, k, l) = (0, a + b,N/2− b,N/2− a), where

a and b are integer which are in the ranges of 2 ≤ a ≤ N/6 and a ≤ b ≤ (N − 2a)/4.

Substituting solution (58) and using
∑N/4

s=1 c2n(2s−1)w2s−1 = −
∑N/4

s=1 fN/4(n)w2s−1, the

left hand side of equations ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ T1 can be expressed as

ψ
(0,a+b,N/2−b,N/2−a)
odd (w2s−1b1)

= b1

N/4∑
s=1

w2s−1

[
−1− c2(2s−1)(a+b) + c2(2s−1)b + c2(2s−1)a

]
= b1

N/4∑
s=1

w2s−1

[
−1 + fN/4(a+ b)− fN/4(b)− fN/4(a)

]
= 0 (61)

Therefore, the nontrivial solution b2s−1 = w2s−1b1 of the equations ψ
(i,j,k,l)
odd (bodd) =

0,∀(i, j, k, l) ∈ S1 also solves the other equations in T1. 2

8. Equations for b2s

We consider ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S2 = {(2 − m,m,N/2 − 1, N/2 − 1)|m =

1 or 3 ≤ m ≤ N/4 + 1} under the condition that b2s−1 = w2s−1b1 is the nontrivial

solution of ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ S1. Substituting Eq.(58) into ψ(i,j,k,l)(b) =

0, ∀(i, j, k, l) ∈ S2, we obtain

ψ(i,j,k,l)
even (beven) = R(i,j,k,l)(w1, w3, · · · , wN/2−1), ∀(i, j, k, l) ∈ S2, (62)

where beven = [b2, b4, · · · , bN/2]
T is the N/4-dimensional vector, and LHS and RHS of

Eq.(62) are given as

ψ(i,j,k,l)
even (beven) =

N/4∑
s=1

b2ss2sis2sjs2sks2sl, (63)

R(i,j,k,l)(w1, w3, · · · , wN/2−1) = ψ
(i,j,k,l)
odd ({b1w2s−1}s)

=

N/4∑
s=1

b1w2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l,

(64)

respectively.

Substituting i = 2−m, j = m, k = N/2−1, l = N/2−1, Eq. (63) can be rewritten

as follows:

ψ(2−m,m,N/2−1,N/2−1)
even (beven)

=

N/4∑
s=1

b2ss2s(2−m)s2sms2s(N/2−1)s2s(N/2−1)

=
1

8

N/4∑
s=1

[
1− 2c4s + c8s − c4s(m−2) + 2c4s(m−1) − c4sm

]
b2s. (65)
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On the other hand, Eq.(64) becomes,

R(2−m,m,N/2−1,N/2−1)

=

N/4∑
s=1

b1w2s−1c(2s−1)(2−m)c(2s−1)mc(2s−1)(N/2−1)c(2s−1)(N/2−1)

=
b1
8

N/4∑
s=1

w2s−1[−1 + 2c2(2s−1) − c4(2s−1) − c(2s−1)(2m−4) + 2c(2s−1)(2m−2) − c2m(2s−1)].

(m = 1, or 3 ≤ m ≤ N

4
+ 1) (66)

Note that the sign of index of the fourth term in Eq.(66) can change depending on the

value of m. In the case that m = 1, the index becomes negative. The relation (59)

is only valid for nonnegative index of cn. We use the relation c−n = cn to avoid the

negative index. Substituting (59) into (66), we obtain

R(1,1,N/2−1,N/2−1) =
b1
N

N/4∑
s=1

ω2s−1 ≡ Wb1. (67)

When m ≥ 3, substituting (59) into (66), we obtain

R(2−m,m,N/2−1,N/2−1)

=
b1
8

N/4∑
s=1

w2s−1[−1− 2fN/4(1) + fN/4(2) + fN/4(m− 2)− 2fN/4(m− 1) + fN/4(m)]

= 0. (68)

Therefore, Eq.(62) is rewritten as
1

8

N/4∑
s=1

[3− 4c4s + c8s]b2s = Wb1 (m = 1),

1

8

N/4∑
s=1

[1− 2c4s + c8s − c4s(m−2) + 2c4s(m−1) − c4sm]b2s = 0. (m = 3, 4, . . . ,
N

4
+ 1)

(69)

The matrix form of Eq. (69) is written as follows:

1

8
M̃2D̃beven = g, (70)

where M̃2 is the N/4× (N/4 + 1) matrix

M̃2 =



3 −4 1 0 · · · 0

1 −3 3 −1 0 · · · 0

1 −2 0 2 −1 0 · · · 0

1 −2 1 −1 2 −1 0 · · · 0
...

...
. . .

1 −2 1 0 · · · −1 2 −1 0

1 −2 1 0 · · · 0 −1 2 −1

1 −2 1 0 · · · 0 −2 2


, (71)
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Note that in the last row in M̃2, we use the relation c4s(N/4+1) = c4s(N/4−1). D̃ is the

(N/4 + 1) × N/4 matrix that element is given by Dpq = c4(p−1)q, and g is the N/4-

dimensional vector given by

g = [Wb1, 0, · · · , 0]T . (72)

Since M̃2 and D̃ are not square matrix, we convert these matrices to square ones in

order to proceed the proof.

Let x̃ = [x̃1, x̃2, · · · , x̃N/4+1]
T be the (N/4 + 1) vector defined as follows:

x̃ = D̃beven, (73)

or

x̃i = Di,1b2 +Di,2b4 + · · ·+Di,N/4bN/2. (i = 1, 2, · · · , N/4 + 1). (74)

Using the relation (73), Eq. (70) is rewritten as

1

8
M̃2x̃ = g. (75)

Let mi (i = 1, 2, · · · , N/4 + 1) be the column vectors of M̃2. It can be easily

checked that the last column vector mN/4+1 = −
∑N/4

j=1 mj. Using this relation, Eq. (75)

can be transformed into
1

8
M2x = g, (76)

where M2 is the N/4×N/4 matrix

M2 =



3 −4 1 0 · · · 0

1 −3 3 −1 0 · · · 0

1 −2 0 2 −1 0 · · · 0

1 −2 1 −1 2 −1 0 · · · 0
...

...
. . .

1 −2 1 0 · · · 0 −1 2 −1

1 −2 1 0 · · · 0 0 −1 2

1 −2 1 0 · · · 0 0 −2


, (77)

and x is the N/4 vector defined by

x = [x1, x2, · · · , xN/4]
T

= [x̃1 − x̃N/4+1, x̃2 − x̃N/4+1, · · · , x̃N/4 − x̃N/4+1]
T . (78)

Next, we discuss the matrix D̃. Let dp = [Dp,1, Dp,2, · · · , Dp,N/4] (p =

1, 2, · · · , N/4 + 1) be the row vectors of D̃. This immediately leads

d1 = [1, 1, · · · , 1] (79)

dN/4+1 = [−1, 1, · · · ,−1, 1] (80)

Moreover, it can be easily derived that

d1 + d2 + · · ·+ dN/4 = [1, 0, · · · , 1, 0]. (81)
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Therefore, we obtain the following relation

dN/4+1 = d1 − 2(d1 + d2 + · · ·+ dN/4)

= − d1 − 2(d2 + d3 + · · ·+ dN/4) (82)

or

DN/4+1,j = −D1,j − 2(D2,j +D3,j + · · ·+DN/4,j). (j = 1, 2, · · · , N/4)
(83)

Using the relation (74), the element of vector (78) can be rewritten as:

xi = x̃i − x̃N/4+1

= (Di,1 −DN/4+1,1)b2 + (Di,2 −DN/4+1,2)b4

+ · · ·+ (Di,N/4 −DN/4+1,N/4)bN/2

(i = 1, 2, · · · , N/4) (84)

Substituting (83) into (84), we obtain

x1 = 2(D1,1 + · · ·+DN/4,1)b2 + 2(D1,2 + · · ·+DN/4,2)b4 +

· · ·+ 2(D1,N/4 + · · ·DN/4,N/4)bN/2

xi = (D1,1 + 2D2,1 + · · ·+ 3Di,1 + · · ·+ 2DN/4,1)b2

+ (D1,2 + 2D2,2 + · · ·+ 3Di,2 + · · ·+ 2DN/4,2)b4

+ · · ·+ (D1,N/4 + 2D2,N/4 + · · ·+ 3Di,N/4 + · · ·+ 2DN/4,N/4)bN/2.

(i = 2, 3, · · · , N/4) (85)

The matrix form of Eq. (85) is

x = P4Dbeven, (86)

where P4 is the N/4×N/4 matrix

P4 =



2 2 2 2 . . . 2 2

1 3 2 2 . . . 2 2

1 2 3 2 . . . 2 2

1 2 2 3 . . . 2 2
...

...
...

...
. . .

...
...

1 2 2 2 . . . 3 2

1 2 2 2 . . . 2 3


, (87)

and D is the N/4×N/4 matrix constructed by removing the (N/4+ 1)-th row from D̃.

Finally, we obtain the transformed equation of (70) by combining (76) and (86),

1

8
M2P4Dbeven = g. (88)

As to the matrix M2, the following lemma holds:

Lemma 12. M2 is regular matrix.
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Proof: Consider the N/4×N/4 lower triangular matrix P2 as follows

P2 =



1 0 0 0 . . . 0 0 0

0 1 0 0 . . . 0 0 0

0 2 1 0 . . . 0 0 0

0 3 2 1 . . . 0 0 0
...

...
...

...
. . . 0 0 0

0 N/4− 3 N/4− 4 N/4− 5 . . . 1 0 0

0 N/4− 2 N/4− 3 N/4− 4 . . . 2 1 0

0 −2(N/4− 3) −2(N/4− 4) −2(N/4− 5) . . . −2 0 1


.

(89)

All diagonal components of the matrix P2 are nonzero. Therefore P2 is regular.

Applying P2 to M2, we obtain

P2M2 =



3 −4 1 0 · · · 0

a21 a22 a23 −1 0 · · · 0

a31 a32 a33 0 −1 0 · · · 0

a41 a42 a33 0 0 −1 · · · 0
...

...
. . .

aN/4−3,1 aN/4−2,2 aN/4−2,3 0 · · · 0 0 −1

aN/4−1,1 aN/4−1,2 aN/4−1,3 0 · · · 0 0

aN/4,1 aN/4,2 aN/4,3 0 · · · 0 0


, (90)

where

an,1 =

{
n(n− 1)/2 n = 2, 3, . . . , N/4− 1

−(N2 − 20N + 80)/16, n = N/4
(91)

an,2 =

{
1− n2 n = 2, 3, . . . , N/4− 1

(N2 − 16N + 32)/8, n = N/4
(92)

an,3 =

{
n(n+ 1)/2 n = 2, 3, . . . , N/4− 1

−(N2 − 12N + 16)/16. n = N/4
(93)

Finally, we consider the N/4×N/4 regular matrix P3 as follows:

P3 =



N/16 0 0 0 · · · 0 1−N/8 −N/16
0 1 0 0 · · · 0 0 0

0 0 1 0 · · · 0 0 0
...

...
. . .

...
...

0 0 0 0 · · · 1 0 0
(N−4)2

16N
0 0 0 · · · 0 1 + 2/N −N/8 1/N −N/16

(N−8)2

16N
0 0 0 · · · 0 1 + 8/N −N/8 4/N −N/16


(94)
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Applying P3 to P2M2, we obtain

P3P2M2 =



1 0 0 0 · · · 0

a21 a22 a33 −1 0 · · · 0

a31 a32 a43 0 −1 0 · · · 0

a41 a42 a53 0 0 −1 · · · 0
...

...
. . .

aN/4−2,1 aN/4−2,2 aN/4−2,3 0 · · · 0 0 −1

0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0


. (95)

We can eliminate the components ai,j, 2 ≤ i ≤ N/4 − 2, 1 ≤ j ≤ 3 by elementary

operations of adding the first, N/4 − 1 and N/4 rows. It is found that the rank of

P3P2M2 is N/4. Since P2 and P3 is the regular matrix, the rank of M2 is equal to N/4.

Therefore M2 is regular. 2

As to equations ψ
(i,j,k,l)
even (beven) =

∑N/4
s=1 b1w2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l,

∀(i, j, k, l) ∈ S2, the following proposition holds:

Proposition 13. For a given solution b2n−1 = b1w2n−1, n = 1, 2, · · ·N/4 for

the equations ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ S1, equations ψ

(i,j,k,l)
even (beven) =∑N/4

s=1 b1w2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l, ∀(i, j, k, l) ∈ S2 are N/4 linearly independent

equations.

Proof: The equation (70) is equivalent to the transformed equation (88). M2 is a

N/4 × N/4 regular matrix from Lemma 12. Since P4D is the N/4 × N/4 regular

matrix(see Appendix C), M2P4D is the N/4 × N/4 regular matrix. Therefore,

ψ
(i,j,k,l)
even (beven) =

∑N/4
s=1 b1w2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l, ∀(i, j, k, l) ∈ S2 are N/4

linearly independent equations. 2

The solution of Eq. (88) can be written as beven = 8(P4D)−1M−1
2 g, which leads to

b2s = 8[(P4D)−1M−1
2 ]s,1Wb1 (s = 1, 2, · · · , N/4). Therefore, it can be also written in

the form

b2s = w2sb1, (s = 1, 2, · · · , N/4) (96)

where w2s = 8[(P4D)(−1)M−1
2 ]s,1W .

For converting Eq. (88) into a simple form, we introduce the N/4 × N/4 regular

matrices Q2, Q3 and Q4 as follows:

Q2 =



1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0

0 2 2 · · · 2 1 0

0 0 0 · · · 0 2 1


(97)
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Q3 =



1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 24
N(N+2)

− N−4
4(N+2)

0 0 0 · · · 0 48(N−4)
N(N2−4)

−N2−12N+8
2(N2−4)


(98)

Q4 =



1 0 0 · · · 0 0 0

0 −1 0 · · · 0 a22 a23
0 0 −1 · · · 0 a32 a33
...

...
...

. . .
...

...
...

0 0 0 · · · −1 aN/4−2,2 aN/4−2,3

0 0 0 · · · 0 1 0

0 0 0 · · · 0 0 1


(99)

Applying Q4Q3Q2P2 to (88), we obtain

1

8



3 −4 1 0 0 0 · · · 0

hN(3) 0 0 1 0 0 · · · 0

hN(4) 0 0 0 1 0 · · · 0
...

...
...

...
...

. . .
...

hN(N/4− 1) 0 0 0 0 · · · 0 1

hN(1) 1 0 0 0 0 · · · 0

hN(2) 0 1 0 0 0 · · · 0


Dbeven = g. (100)

where hm(n) = −1− 24n2−12nm
m2−4

.

Substituting Eq. (96) into Eq. (100), the following relation holds:

1

8

N/4∑
s=1

[3− 4c4s + c8s]w2s = W, (101)

and

1

8

N/4∑
s=1

[hN(n) + c4ns]w2s = 0. (n = 1, 2, · · · , N/4− 1) (102)

It can be shown that Eq.(102) also holds for n = 0 and n = N/2. Define new variables

n′ = N/2− n. Substituting n = N/2− n′ into Eq.(102), we obtain

1

8

N/4∑
s=1

[hN(n
′) + c4n′s]w2s = 0 (103)

for n′ = N/4 + 1, N/4 + 2, · · · , N/2 − 1. Therefore, Eq.(102) holds for the extended

range n = 0, 1, · · · , N/2.
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Substituting (102) for n = 1, 2 into (101), we obtain the relation

3N

N2 − 4

N/4∑
s=1

w2s = W. (104)

We consider the equations ψ
(i,j,k,l)
even (beven) =

∑N/4
s=1 b1w2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l,

∀(i, j, k, l) ∈ T2.

Proposition 14. For the given solutions b2n−1 = b1w2n−1 (n = 1, 2, · · ·N/4) for the

equations ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ S1, the nontrivial solution of equations

ψ
(i,j,k,l)
even (beven) =

∑N/4
s=1 b1w2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l, ∀(i, j, k, l) ∈ S2 also solves

the other equations in T2.

Proof: The set T2 can be expressed by (i, j, k, l) = (a+b−c, c, N/2−b,N/2−a), where
a, b and c are integers. Substituting i = a+ b− c, j = c, k = N/2− b, l = N/2− a into

Eq.(63) which is LHS of Eq. (62), we obtain

ψ(a+b−c,c,N/2−b,N/2−a)
even (beven)

=

N/4∑
s=1

b2ss2(a+b−c)ss2css(N−2b)ss(N−2a)s

=
1

8

N/4∑
s=1

[
1 + c4(a+b)s − c4(c−a−b)s − c4as − c4bs − c4cs + c4(c−a)s + c4(c−b)s

]
b2s.

(105)

Since i ≤ j ≤ k ≤ l, it is found that (a + b)/2 ≤ c and a ≤ b. Therefore, the relation

a ≤ (a + b)/2 ≤ c holds. Then we have c − a ≥ 0. Moreover, we have a, b ≥ 1 since

N/2− a ≤ N/2− 1 and N/2− b ≤ N/2− 1. Therefore, we have 1 ≤ a ≤ c. In order to

keep the index α of cα positive or zero in the 3rd, 7th and last terms in Eq.(105), three

cases of RHS of Eq. (105) should be considered.

(i) a+ b− c < 0, c− a ≥ 0 and c− b ≥ 0

L1 =
1

8

N/4∑
s=1

[
1 + c4(a+b)s − c4(c−a−b)s − c4as − c4bs − c4cs

+c4(c−a)s + c4(c−b)s

]
b2s

(106)

(ii) a+ b− c ≥ 0, c− a ≥ 0 and c− b ≥ 0

L2 =
1

8

N/4∑
s=1

[
1 + c4(a+b)s − c4(a+b−c)s − c4as − c4bs − c4cs

+c4(c−a)s + c4(c−b)s

]
b2s

(107)
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(iii) a+ b− c ≥ 0, c− a ≥ 0 and c− b < 0

L3 =
1

8

N/4∑
s=1

[
1 + c4(a+b)s − c4(a+b−c)s − c4as − c4bs − c4cs

+c4(c−a)s + c4(b−c)s

]
b2s

(108)

Using (96) and (102), Eq.(106)-(108) are simplified as follows:

L1 =
b1
8

N/4∑
s=1

[1− hN(a+ b) + hN(c− a− b) + hN(a) + hN(b) + hN(c)

−hN(c− a)− hN(c− b)]w2s

= 0. (109)

L2 =
b1
8

N/4∑
s=1

[1− hN(a+ b) + hN(a+ b− c) + hN(a) + hN(b) + hN(c)

−hN(c− a)− hN(c− b)]w2s

=
3Nb1
N2 − 4

(a+ b− c)

N/4∑
s=1

w2s. (110)

L3 =
b1
8

N/4∑
s=1

[1− hN(a+ b) + hN(a+ b− c) + hN(a) + hN(b) + hN(c)

−hN(c− a)− hN(b− c)]w2s

=
3Nb1
N2 − 4

a

N/4∑
s=1

w2s. (111)

Substituting i = a + b − c, j = c, k = N/2 − b, l = N/2 − a into Eq.(64) which is

the RHS of Eq.(62), we obtain

R(a+b−c,c,N/2−b,N/2−a) =

N/4∑
s=1

[
c(2s−1)(a+b−c)c(2s−1)cc(2s−1)(N/2−b)c(2s−1)(N/2−a)

]
b1w2s−1

=
1

8

N/4∑
s=1

[
−1− c2(2s−1)(a+b) + c2(2s−1)a + c2(2s−1)b − c2(2s−1)c

−c2(2s−1)(a+b−c) + c2(2s−1)(a−c) + c2(2s−1)(b−c)

]
b1w2s−1.

(112)

As same as the LHS, three cases should be considered in order to keep the index α of

cα positive or zero. In each case, the equation is simplified by using the relation (59).
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(i) a+ b− c < 0, c− a ≥ 0 and c− b ≥ 0

R1 =
b1
8

N/4∑
s=1

[
−1− c2(2s−1)(a+b) + c2(2s−1)a + c2(2s−1)b

−c2(2s−1)c − c2(2s−1)(c−a−b) + c2(2s−1)(c−a) + c2(2s−1)(c−b)

]
w2s−1

=
b1
8

N/4∑
s=1

[
−1 + fN/4(a+ b)− fN/4(a)− fN/4(b)

+fN/4(c) + fN/4(c− a− b)− fN/4(c− a)− fN/4(c− b)
]
w2s−1

= 0. (113)

(ii) a+ b− c ≥ 0, c− a ≥ 0 and c− b ≥ 0

R2 =
b1
8

N/4∑
s=1

[
−1− c2(2s−1)(a+b) + c2(2s−1)a + c2(2s−1)b

−c2(2s−1)c − c2(2s−1)(a+b−c) + c2(2s−1)(c−a) + c2(2s−1)(c−b)

]
w2s−1.

=
b1
8

N/4∑
s=1

[
−1 + fN/4(a+ b)− fN/4(a)− fN/4(b)

+fN/4(c) + fN/4(a+ b− c)− fN/4(c− a)− fN/4(c− b)
]
w2s−1

= Wb1(a+ b− c). (114)

(iii) a+ b− c ≥ 0, c− a ≥ 0 and c− b < 0

R3 =
b1
8

N/4∑
s=1

[
−1− c2(2s−1)(a+b) + c2(2s−1)a + c2(2s−1)b

−c2(2s−1)c − c2(2s−1)(a+b−c) + c2(2s−1)(c−a) + c2(2s−1)(b−c)

]
w2s−1

=
b1
8

N/4∑
s=1

[
−1 + fN/4(a+ b)− fN/4(a)− fN/4(b)

+fN/4(c) + fN/4(a+ b− c)− fN/4(c− a)− fN/4(b− c)
]
w2s−1

= Wb1a. (115)

From the relation (104), it follows that Li − Ri = 0 (i = 1, 2, 3).

This indicates that the solution beven of the equation ψ
(i,j,k,l)
even (beven) =∑N/4

s=1 b1w2s−1c(2s−1)ic(2s−1)jc(2s−1)kc(2s−1)l, ∀(i, j, k, l) ∈ S2 also solves the other equa-

tions in T2 when b2n−1 = b1w2n−1 (n = 1, 2, · · · , N/4) is the solution of the equations

ψ
(i,j,k,l)
odd (bodd) = 0,∀(i, j, k, l) ∈ S1. 2

9. Proof of Main Results

Proof of Lemma 5. From Proposition 10 and Proposition 13, the equations

ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S1∪S2 are N−1 linearly independent equations. Therefore,

they have a nontrivial solution b ̸= 0 for given b1. From Proposition 11 and Proposition
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14, the nontrivial solution also solves the equations ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ T1∪T2 =
S. From Lemma 4, the solution also solves the equations for S0. 2

Proof of Theorem 7. From Lemma 5, a trivial solution b for ψ(i,j,k,l)(b) =

0,∀(i, j, k, l) ∈ S1 ∪ S2 also solves ψ(i,j,k,l)(b) = 0,∀(i, j, k, l) ∈ S0. Therefore, the

asymmetric part Ψa of Hamiltonian (9) vanishes for such b. Therefore, from Definition

1, the system (9) with the solution b is a symmetric lattice. 2
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Appendix A. Estimating velocity vDB of approximated traveling DB

The map Tλ with an arbitrary λ defined by Eq.(5) represents the arbitrary space shifting

and sign-inverting transformation. This map corresponds to the rotation by the angle

−mλ in each Um component on the complex plane. Therefore, we can estimate the

distance that a DB travels in the lattice from the angle that the component Um rotates

in the complex plane.

Figure A1 shows the trajectory of component Um for an approximated traveling

DB on the complex plane. The trajectory can be decomposed into the fast vibration

corresponding to the internal vibration and the slow rotation corresponding to the

propagation of a traveling DB. From the definition of map (5), the component Um rotates

−2mπ during the DB propagated N lattice spacing. Therefore, the rotation angle

θ1 = −2mπ/N of the component Um corresponds to an one-lattice-space propagation of

the traveling DB.

We can estimate vDB by the following steps:

(i) Perform the numerical integration of (22) and (23) for the traveling DB with a

certain small perturbation δl0 (29). Transform the obtained temporal evolution qn
into Um.

(ii) Find the time t1 and t3 of the first and third extreama of |Um|.
(iii) Estimate the rotation angle |∆θ| between t1 and t3. This corresponds to the rotation

angle one internal vibration:

|∆θ| = argUm(t3)− argUm(t1), (A.1)

where arg indicates the argument of complex numbers.

(iv) Calculate the velocity vDB by

vDB =

∣∣∣∣∆θθ1
∣∣∣∣ = ∣∣∣∣N∆θ

2mπ

∣∣∣∣ . (A.2)
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Figure A1. Trajectory of the component Um in the complex coordinate. ∆θ indicates

the change of angle in one internal vibration. Numerical results are the cases that

TDB = 2, δl = 0.02, and m = 20.

As is shown in Fig. 1, the velocity vDB of approximated traveling DB is precisely

proportional to δl. Therefore, we obtain the relation vDB = Kδl. The coefficient K

can be calculated from one pair of δl0 and vDB for a certain TDB following the above

procedure. Finally, the δl for desired vDB can be obtained by δl = vDB/K.

Appendix B. Proof of regularity of A

A is the N/4 × N/4 matrix whose element is given by Apq = cos 2π
N
(p− 1)(2q − 1).

Consider the N/4×N/4 matrix Ā as follows,

Ā =
8

N



1
2
A11 A21 A31 · · · AN

4
1

1
2
A12 A22 A32 · · · AN

4
2

1
2
A13 A23 A33 · · · AN

4
3

...
...

...
. . .

...
1
2
A1N

4
A2N

4
A3N

4
· · · AN

4
N
4

 (B.1)

It can be easily shown that AĀ = ĀA = I. Therefore, A−1 = Ā and this means that A

is regular.
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Appendix C. Proof of regularity of P4D

P4 is the N/4×N/4 matrix given in (87) and D is the N/4×N/4 matrix that element

is given by Dpq = cos 4(p−1)qπ
N

. Consider the N/4×N/4 matrix D̄ as follows:

D̄ =
8

N



1
2
D11 D21 D31 · · · DN/4,1

1
2
D12 D22 D32 · · · DN/4,2

1
2
D13 D23 D33 · · · DN/4,3

...
...

...
. . .

...
1
2
D1,N/4−1 D2,N/4−1 D3,N/4−1 · · · DN/4,N/4−1
1
4
D1,N/4

1
2
D2,N/4

1
2
D3,N/4 · · · 1

2
DN/4,N/4


. (C.1)

It can be shown that D̄P4D = P4DD̄ = I. Therefore, (P4D)−1 = D̄ and this means

that P4D is regular.

Appendix D. Derivation of explicit solution

At first, we consider Eq. (53). Applying the matrix P1 from left side, we obtain

P1M1Abodd = 0 (D.1)

The matrix P1M1 is given in (57). We introduce the N/4-vector B as follows:

B = [B1, B2, · · · , BN/4]
T = Abodd. (D.2)

The equation (D.1) is rewritten to

P1M1B = 0, (D.3)

and this equation leads to the relation

Bn = −fN/4(n− 1)B1. (n = 2, 3, · · · , N/4) (D.4)

Using (D.4), B can be rewritten to

B = B1[1,−fN/4(1),−fN/4(2), · · · ,−fN/4(N/4− 1)]T . (D.5)

Using (D.1) and (D.5), and considering Appendix C, we obtain

bodd = B1A
−1[1,−fN/4(1),−fN/4(2), · · · ,−fN/4(N/4− 1)]T

= B1Ā[1,−fN/4(1),−fN/4(2), · · · ,−fN/4(N/4− 1)]T

=
8B1

N



1
2
A11 A21 A31 · · · AN

4
1

1
2
A12 A22 A32 · · · AN

4
2

1
2
A13 A23 A33 · · · AN

4
3

...
...

...
. . .

...
1
2
A1N

4
A2N

4
A3N

4
· · · AN

4
N
4




1

−fN/4(1)

−fN/4(2)
...

−fN/4(N/4− 1)

 .
(D.6)
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Therefore, we obtain

b2s−1 =
8B1

N

1

2
A1s −

N/4−1∑
k=1

Ak+1,sfN/4(k)


=

8B1

N

1

2
−

N/4−1∑
k=1

cos
2πk(2s− 1)

N
fN/4(k)


=

8B1

N2

1

sin2 ((2s− 1)π/N)
. (s = 1, 2, · · · , N/4) (D.7)

Moreover, we obtain

w2s−1 =
b2s−1

b1
=

sin2 (π/N)

sin2 ((2s− 1)π/N)
(s = 1, 2, · · · , N/4). (D.8)

Following additional calculations are performed for the further discussion. From

the first row in Eq. (D.2), the following relation holds:

B1 =

N/4∑
s′=1

b2s′−1 = b1

N/4∑
s′=1

w2s′−1 = b1NW, (D.9)

In the last equality, we use Eq. (67). It is also obtained from Eq. (D.7) by setting s = 1.

B1 =
b1
8
N2 sin2 π

N
. (D.10)

Comparing Eq.(D.9) and (D.10), we obtain

W =
N

8
sin2 π

N
(D.11)

Next, we consider Eq. (88). Applying Q4Q3Q2P2 from the left side, we obtain

Eq. (100). We introduce N/4-vector:

G = [G1, G2, · · · , GN/4]
T = Dbeven. (D.12)

Equation (100) is rewritten to

1

8



3 −4 1 0 0 0 · · · 0

hN(3) 0 0 1 0 0 · · · 0

hN(4) 0 0 0 1 0 · · · 0
...

...
...

...
...

. . .
...

hN(N/4− 1) 0 0 0 0 · · · 0 1

hN(1) 1 0 0 0 0 · · · 0

hN(2) 0 1 0 0 0 · · · 0


G = g, (D.13)

and we obtain the relations

3G1 − 4G2 +G3 = 8Wb1, (D.14)

Gn = −hN(n− 1)G1 (n = 2, · · · , N/4). (D.15)

Substituting (D.15) into (D.14), we obtain

G1 =
N2 − 4

3N
Wb1 =

N2 − 4

24
b1 sin

2 π

N
, (D.16)
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where we use Eq. (D.11) for the last equality.

Applying P4 to (D.12) from the left side and substituting (D.15), we obtain

P4Dbeven = G1P4[1,−hN(1),−hN(2), · · · ,−hN(N/4− 1)]T . (D.17)

Let P4[1,−hN(1),−hN(2), · · · ,−hN(N/4 − 1)]T = [H1, H2, · · · , HN/4]
T = H. Elements

of H are given by

H1 = 2(1−
N/4−1∑
n=1

hN(n)) =
3N2

2(N2 − 4)
, (D.18)

Hm = H1 − 1− hN(m− 1) =
3(N − 4m+ 4)2

2(N2 − 4)
(m = 2, 3, · · · , N/4)

(D.19)

Using the relation (P4D)−1 = D̄ (see Appendix C), we obtain

beven = G1D̄H

=
8G1

N



1
2
D11 D21 D31 · · · DN/4,1

1
2
D12 D22 D32 · · · DN/4,2

1
2
D13 D23 D33 · · · DN/4,3

...
...

...
. . .

...
1
2
D1,N/4−1 D2,N/4−1 D3,N/4−1 · · · DN/4,N/4−1
1
4
D1,N/4

1
2
D2,N/4

1
2
D3,N/4 · · · 1

2
DN/4,N/4




H1

H2

...

HN/4

 .

(D.20)

Therefore, we obtain

b2s =
8G1

N

1

2
D1sH1 +

N/4∑
k=2

DksHk


=

8G1

N

1

2
H1 +

N/4∑
k=2

cos
4(k − 1)sπ

N
Hk


=

24G1

(N2 − 4) sin2 (2sπ/N)
(s = 1, 2, · · · , N/4− 1)

bN/2 =
12G1

N2 − 4
(D.21)

From the relation (D.16), we obtain

w2s =
b2s
b1

=
sin2 (π/N)

sin2 (2sπ/N)
(s = 1, 2, · · · , N/4− 1)

wN/2 =
bN/2

b1
=

sin2 (π/N)

2
(s = N/4) (D.22)

Combining (D.8) and (D.22), the explicit solution is

br = b1
sin2 (π/N)

sin2 (rπ/N)
(r = 1, 2, · · · , N/2− 1)

bN/2 =
b1
2
sin2 (π/N) (r = N/2). (D.23)
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