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Introduction

Let X be a normal projective variety over the complex number field C. We
call X a Fano variety if X is Q-Gorenstein and the anti-canonical divisor —Kx
is ample. A Fano variety X is said to be a log Fano variety if X has only log
terminal singularities (cf. [6]). A Fano variety X is called a canonical Fano
variety if X has only canonical singularities (cf. [6]). The Cartier index c(X) is
the smallest positive integer such that ¢(X)Kx is a Cartier divisor. The Fano
index, denoted by 7(X), is the largest positive rational number such that —Kx~¢
7(X)H (Q-linear equivalence) for a Cartier divisor H.

This note consists of two sections. In §1, we shall consider canonical Fano
3-folds and prove the following :

Theorem 1. Let X be a canonical Fano 3-fold. Let X°:=X—Sing X be
the smooth part of X. Assume that X has only isolated singularities. Then we
have :

(1) Suppose the Fano index v(X) is 1. Then m(X°)=Z/c(X)Z (cf. Remark 1.1
in §1).

(2) Suppose that the canonical divisor Kx is a Cartier divisor. Then X° is
simply connected.

REMARK. (1) The assumption that X has only isolated singularities is used to
prove Lemma 1.3 in §1.

(2) Using the same proof (see §1) one can show that m(X°)=Z/c(X)Z
when X is a log Fano variety of Fano index one and with only isolated singular-
ities because even in this case the Z/c(X)Z-covering Y constructed in §1 has only
isolated canonical singularities.

In [19], we shall give a universal bound for ¢(X). Under the much stronger
condition that X has only terminal and cyclic quotient singularities, T. Sano
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proved that ¢(X)<2 (cf. [15]).
In §2, we shall consider n-dimensional log Fano varieties and prove the
following :

Theorem 2. Let X be a log Fano variety of Fano index r(X)>dim X —2.
Let X°:=X—Sing X be the smooth part of X. Then we have :
(1) The fundamental group m(X°) of X° is a finite group.
(2) Suppose that X has only canonical singularities. Then m(X°) is an abelian
group of order < 9. (See [9] for the unique canonical Fano surface X with
|m(X°)|=9.)
(3) Suppose that r(X)>dim X—1. Then m(X°) is a finite abelian group
generated by two elements, and has order<9.
(4) Suppose 7(X)>dim X—1. Then the smooth part X° of X is simply
connected.

To prove Theorem 2, we manage to reduce to the dimension two case. In the
dimension two case, Theorem 2(1) was proved in our joint works [3, 4] (see [18],
and also [2] for a differential geometric proof), and Theorem 2(2) proved in [8, 9].
In this reduction process, in order to apply the crucial theorem due to Alexeev, we
need the hypothesis about the Fano index 7(X). We hope this hypothesis can be
eventually dropped.

Note that in Theorem 2(2) the hypothesis “X has only canonical singularities”
is necessary. Indeed, in [17] we have a lot of examples of log Fano surfaces X with
exactly one triple point and several double points but with a non-abelian m(X?°).

We want to remove the condition about the Fano index 7(X) in the above
theorems and raise the following question :

Let X be a Fano variety. Let X°:=X—Sing X be the smooth part of X.
Suppose that X has only log-terminal (or canonical, or terminal) singularities. Is
m(X°) a finite group ?

In general, it is not true that the smooth part of a rational variety with only
log-terminal singularities has finite fundamental group. Just consider the example
(P'XE)/t in [3, §1.15] where E is an elliptic curve and 7 is an involution acting
on both P! and E non-trivially and diagonally. So, the ampleness of —Kx is an
essential condition.

This work was started during the author’s stay in Max-Planck-Institut in Bonn.
The author thanks very much to the institute and Professor F. Hirzebruch for the
hospitality and financial support. The author also thanks the referee for very
careful reading.
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1. Proof of Theorem 1

We shall first show that Theorem 1(1) follows from Theorem 1(2). Let X be
as in Theorem 1(1). We have a linear equivalence —cKx ~cH where c=c(X) is
the Cartier index and H is a primitive Cartier divisor. Here we say that a Cartier
divisor H on X is primitive if O (H) is not divisible in the Picard group of X. Let

Y := Spec jE;B: O x(i(Kx+H)).

Then the natural Z/cZ-covering morphism f: Y—X is etale over the smooth
part X°:=X—Sing X of X. Moreover, —Ky=—f*Kx~f*H. So, Y is a
(Gorenstein) Fano variety with only canonical singularities. Thus, the hypotheses
in Theorem 1(2) are satisfied by Y. Note that m(Y°)=m(f"'(X°)) because Y°
— 7" X°) has codimension =2 in the smooth 3-fold Y°:=Y —Sing Y. So,
Theorem 1(1) will follow form Theorem 1(2). Moreover, we have

REMARK 1.1. f7}(X°) is the universal covering of X°.

Now we shall prove Theorem 1(2). Let X be as in Theorem 1(2). We can write
—Kx=7H where r=7(X)EZ> is the Fano index and H an ample Cartier
divisor. Let S&|—Kx| be a general member. By [12], we know that S is a
K3-surface possibly with rational double singularities. Let 6 : 7—S be a minimal
resolution of singularities. Then 7 is a K3-surface. The first assertion of the
following Lemma 1.2 is from [13] or [10, Theorem 5] and the second is a
consequence of the first.

Lemma 1.2. Let T be a K3-surface defined over C. Let L be a nonzero
numerically effective divisor on T. Then we have :
(1) |L| has base points if and only if there exist irreducible curves E, I, and
an integer k=2 such that L~kE+T, (E*)=0, (I'")=—2, E.I'=1. In this case,
every member of |I'| is of the form E'+1I, where E' is a sum of k effective
divisors E\, -+, Ex such that E;~E for all i; in particular, there is an elliptic
fibration ¢ : T— P" such that E is a fiber and I' is a cross-section.
(2) |sL| is base point free for all s=>2.

We need the following lemma which is proved in [16, Theorem 0.5].

Lemma 1.3. (1) The singular locus Sing S of a general member S<|— Kx|
contains SN Sing X.
(2) If r(X)>1 then |—Kx| is base point free. Hence a general member SE
|— Kx| is disjoint from Sing X.
(3) Let Bs|—Kx| be the base locus. If dim Bs|—Kx|=1 then Bs|—Kx| is
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disjoint from Sing X. Hence a general member SE|—Kx| is disjoint from
Sing X.

(4) If dim Bs|—Kx|=0 then P :=Bs|—Kx| is a single point and P is a rational
double point of S of Dynkin type Ai. So, SNSing X=¢ or {P}. (Indeed, SN
Sing X={P} (cf. [16])).

Proof. (1) follows from the condition that the divisor S is a Cartier divisor on
X.
(2) and (3) are proved in [16]. Moreover, we have Bs|— Kx|=Bs|(— Kx)s|.
(4) By Lemma 1.2 and by dim Bs|(—Kx);s| (=dim Bs|—Kx|)=0, we see that
|o*((— Kx)is)|=|kE|+I". Here E is a fiber of an elliptic fibration ¢ : T—P', I'
is a cross-section of ¢ and P :=0o(I") is a singularity on S with ¢ '(P)=TI". So,
P is a rational double point of S of Dynkin type Ai. We have also Bs|— Kx|=
{P}. (4)is proved.

Since the Kodaira D-dimension (X, S)>2, the following natural homomor-
phism is surjective (see Theorem 2.4 below and the arguments after Theorem 2.4)

m(S—SNSing X)—m(X°).

To finish the proof of Theorem 1(2), we need to prove that m(S—SNSing X)
=(1). If SNSing X=¢, then m(S)=(1) and we are done because S is a
K 3-surface possibly with rational double singularities. Suppose P :=SNSing X+
@, then by Lemma 1.3, P is a single point and a rational double point of S of
Dynkin type Ai. Using the notations in Lemmas 1.2 and 1.3, we have S— SN Sing
X=S—{P}=T'—TI. Here T’ is the resolution of the singularity P on S.
Without loss of generality, we may assume that 7'=T and it suffices to prove the
following lemma in order to finish the proof of Theorem 1(2).

Lemma 14. Let T be a K3-surface. Let ¢ : T— P" be an elliptic fibration.
Let I' be a (—2)-curve which is a cross-section of ¢. Then T —1I' is simply
connected.

Proof. Consider the long cohomology exact sequence :
HXT,Z)— H¥I', Z)— HXT,I'; Z)— HXT, Z).

Since T is simply connected we have H*(T, Z)=0. Let E be a fiber of ¢. Then
E.I'=1. So the map HXT, Z) — H*I', Z) takes E to the generator. Thus, by
the duality we have Hi(T —TI", Z)=(0).

To prove Lemma 1.4, we have only to show that m(7 —1I) is abelian. Let E\
be a singular fiber of ¢. Since the blowing-up of smooth points in the open surface
T — I does not affect the fundamental group of this open surface, one may assume
that E) is simple normal crossing and hence E: consists of P"s. Clearly, (T,
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Ei+T')=2. So, we can apply [11, Cor. 2.3, see Theorem 2.4 below]. Let Ui, U,
be (open) tubular neighborhoods of sufficiently small radii in 7" of the curves E1,
I', respectively. Then U1 U U: is an open tubular neighborhood of E1+1I". Hence
the following natural homomorphism is surjective :

7Z‘1((U1—Fm Ul)U(UZ—F))—’ ﬂl(T_F).

Thus, to finish the proof of Lemma 1.4, we have only to prove that m((Uy
—I'NU)U(U:—1T)) is abelian. Applying Van-Kampen Theorem, we see easily
that m((Ui—I'NU)U(U—T)=m(Ui—I' N Uy). Indeed, m(U.—1T") is generat-
ed by a loop ¢ around I', and we may assume that ¢ is taken from (Ui—1I"N Uh)
N(U.—TI"). We may even assume that ¢ is a loop in E1—I"N E; around the point
I'NE:. So, o is contractible in U1—1I"N Ui because E1—1'N E1 is a union of one
A' and several P"s.

Now the proof of Lemma 1.4 is reduced to the proof that m(Ui—I"N Uh) is
abelian. Note that m(Ui—I'N U1)=m(E1—the smooth point I'NE; of E))
because E: is a strong deformation retract of Ui, and m(E;—the smooth point
I'NE; of E1)=m(E)) because E; is a divisor with simple normal crossing whose
irreducible components are all isomorphic to P' and E) meets I" transversally in
a single point. Note that m(E)) is equal to (1) when E) is a tree of P"s, and equal
to Z when E\ is a simple loop of P"s. So m(Ui—I'N Uh) is abelian.

The proof of Lemma 1.4 is completed. This proof does not work when I is
a multiple section.

2. Proof of Theorem 2

Let X be a log Fano variety of dimension d(d >2) satisfying the hypothesis
in Theorem 2. Write — Kx~qo7H where 7 is a positive rational number such that
r>d—2 and H is an ample Cartier divisor. This is possible by the hypothesis in
Theorem 2. We need the following:

Theorem 2.1 (cf. Theorem 0.5 in [1]). Let X be a log Fano variety. With the
above notations and assumptions, then |H| is non-empty and base component
free, and a general member Xa_1 in |H| is a normal projective variety with only
log terminal singularities.

By the adjunction formula, we have — Kxuy.s~o(r —1)Hx. Hence when d =
3, Xa-1is a log Fano variety by the definition and its Fano index 7(X4-1)=>7—1
>dim Xg-1—2.

Applying Alexeev’s Theorem (d —1)-times, we get a ladder below such that
the assertions in the following lemma hold true:

(XdZX, Hd=H), (Xd—l, Hd—l), Y (XI, Hl)-
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Lemma 2.2. (1) We have Xz‘EIHi+1|, H:=H;..x, and "‘KX{"Q(”"’i
—d)H; for all i=1. Moreover, X;’s (i=2) are log Fano varieties of Fano index
7(X:)>dim X;—2.

(2) If v=d—1, then Xi is a nonsingular elliptic curve.
(3) If »>d—1, then Xi is a nonsingular rational curve.

The following lemma is, though easy, crucial in order to reduce to the
dimension two case.

Lemma 2.3. Let X be a log Fano variety of dimension d (d =2). With the
notations and assumptions at the beginning of the section, we have :
(1) |H| has at most isolated base points and the base locus Bs|H| is contained
in the smooth part X° of X.
(2) The singular locus Sing Xa—1 of Xa-1 contains Xa-1NSing X.
(3) If X has only canonical singularity then so does Xa-1.

Proof. Note that (2) follows from the condition that Xy-; is a Cartier divisor
on X. The assertion (3) follows from (1) and the definiton of canonical singularity.
Now we shall prove (1). Consider the following exact sequence :

00— 0x— OX(H)_’ @Xd_l(H)_’ 0.

By Kawamata’s vanishing theorem (cf. [6, Theorem 1-2-5]), we have H'(X, Ox)
=0 and hence we have a surjection :

(%) H(X, Ox(H))— H"Xa-1, O xei(H)).

By the result (%), we have Bs|H|=Bs|Hqa-1| where Ha-1:=Hx,... So if
|Ha-1| has at most isolated base points then the same is true for |H|. If a point P
in Bs|Ha-1| is a smooth point on X, then P is also a smooth point on X because
Xa-11is a Cartier divisor on X. Thus, we are reduced to prove a statement similar
to (1) for Xa-1 (cf. Lemma 2.2). By the same argument, we can reduce to prove (1)
for Xz. So to prove (1), we may assume that dim X =2.

By Alexeev’s Theorem, we may assume that H is normal. Hence H is
nonsingular because dim A =1. This, together with the condition that H is a
Cartier divisor on X, implies that H is contained in the smooth part of X. Hence
follows the second part of (1). Thus (1) follows because | H| is base component free
by Alexeev’s Theorem.

Now we shall apply the following:
Theorem 2.4 (cf. [11 Cor. 2.3]). Let X bea nonsingular pro;ecttve variety.

Let H be a divisor on X such that the Kodaira D-diminsion (X, H)>2. Let
A be a Zariski-closed proper subset. Let U be any open tubular neighborhood of
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H in X. Then the Sfollowing natural homomorphism is a surjection :

n(U—-ANU)—>m(X—A).

Let : X— X be a resolution of singularities such that 7* Xy_1+A is a normal
crossing divisor. Here A is the exceptional divisor of /. By Lemma 2.3(2), X$-1
:=Xa-1—Sing Xa-1 is a Zariski-open subset of Xs-1—Sing X=7*X,_1—A. So
one has a surjective homomorphism

7Z'1(Xa?—1)—" ﬂ'l(f*Xd—l - A).

Applying Nori’s Theorem to H: =f*X,_,, one obtains a surjective homomor-
phism :

m(f* Xa-1—A)—> m(X°).

Combining these two surjections, we have proved the following Lemma 2.5 when
i=d—1. Applying the same arguments several times, one can prove Lemma 2.5 for
all 1>1.

Lemma 2.5. The natural homomorphism m(X?)— m(X?1) is surjective for
all 1>1.

Now Theorem 2(1) follows from Lemma 2.5 because it is true in the dimension
two case by [3, 4]. Theorem 2(2) follows from Lemma 2.5 and Lemma 2.3(3) since
it is true in the dimesion two case by [8, 9].

Theorem 2(4) follows from Lemma 2.5 and Lemma 2.2(3) because now X’=
Xi= P! and m(XP)=(1).

In view of Lemma 2.5 and Theorem 2(4), it suffices to prove Theorem 2(3) in
the case where d=dim X=2 and »(X)=d —1=1. It is easy to see that Hi(X°,
Z) is finite (cf. e.g. [18, Lemma 1.3]). By Lemma 2.5, m(X?) is a surjective image
of m(XP)=Z XZ because X=X, is a nonsingular elliptic curve by Lemma
2.2(2). Theorem 2(3) is proved via [9] for X; is Gorenstein now by Th. 2.1.

We have proved Theorem 2 stated in the Introduction. Actually, the proofs for
(3) and (4) of Theorem 2 are self-contained. In other words, we obtained a simpler
proof for the result in [3, 4] when 7(X)>dim X —1=1.
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