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Abstract: Nonlinear dynamics of a model of acoustic metamaterials with local resonators are
investigated numerically and theoretically. We focus on dynamics of band edge modes (BEMs)
and zone boundary modes (ZBMs) which are on the upper bounds of acoustic bands and optical
bands of the phonon dispersion band. It is found that, in a region of weak anharmonicity,
higher harmonics of a fundamental mode and static displacement are excited in both BEM and
ZBM if the geometrical relation between the main lattice and the local resonators has even-
order nonlinearity. Numerical solutions of nonlinear periodic orbits which are continued from
vibrations in the small amplitude limit by the shooting method indicate that structure of the
periodic orbits of the local resonators depends on the form of nonlinear terms of the geometrical
relation. Moreover, the nonlinear periodic orbits become unstable when the amplitude of the
periodic orbit becomes larger. Direct numerical simulations show that unstable dynamics occur
due to modulational instability. After destabilization of the nonlinear periodic orbits, spatial
energy localization is also observed.

Key Words: nonlinear vibration, stability, energy localization

1. Introduction
Recently, metamaterials have been of great interest in various fields of engineering and science [1, 2].
The metamaterial is an artificial material with fine discrete structures in which functional elements
are incorporated.

Metamaterials have firstly attracted in electromagnetic engineering. Veselago has predicted the
existence of materials with negative permittivity and magnetic permeability [3]. Pendry has shown
the possibility of a perfect lens based on the materials with the negative permittivity and magnetic
permeability [4]. A practical artificial periodic structure which realizes the negative permittivity and
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magnetic permeability has been proposed by Smith et al. [5]. Since these milestones, various studies
on the electromagnetic metamaterial has been performed [6, 7].

An acoustic metamaterial can be regarded as an analogy of electromagnetic metamaterial [8, 9]. The
acoustic metamaterials can be used to deal with elastic waves instead of electromagnetic waves by a
periodic structure with the larger scale than that of the electromagnetic metamaterial. By designing
and manufacturing various functional periodic structures, negative effective bulk modulus [10–12],
negative effective mass density [13–16] can be realized. Moreover, acoustic metamaterials with both
negative effective bulk modulus and negative effective mass density have been proposed theoretically
and experimentally [17–21]. Using the negative effective bulk modulus and the negative effective mass
density, various pioneering and important applications such as acoustic cloaking [22–32], acoustic
superlens and hyperlens [33–42], and acoustic black hole devices [43, 44] have been proposed.

It has been pointed out that the local resonator is one of the key factors for realizing the negative
effective elastic modulus. Liu et al. has made a sonic crystal with localized resonant structures [45].
In the theoretical study, it has been shown that the effective elastic modulus of the sonic crystal
becomes negative [46]. In general, the local resonators are connected to the oscillators in the main
lattice. The local resonators interact only with the main lattice. The geometric relation between
the main lattice and the local resonators, which dominates the way of interaction between the main
lattice and the local resonators, can be described by a certain geometric function. The geometric
connection intrinsically has nonlinearity since it has the complex geometry. The nonlinearity due to
the geometry can be dominant in vibration if the amplitude of vibration is large. In this sense, we
can construct a mechanical model of the acoustic metamaterials as a nonlinear lattice model.

By introducing the nonlinearity to the mechanical model, a variety of complex dynamics such as
excitation of higher harmonics, instability, and energy localized structure arises in the system. In this
direction, various investigations on nonlinear acoustic metamaterials have been reported [47–55]. For
the future development of nonlinear acoustic metamaterials, it is important to construct a mechanical
model for nonlinear acoustic metamaterials and to deeply investigate basic dynamical properties of
the mechanical model.

One of the expected dynamics in the nonlinear acoustic metamaterials is energy localization called
discrete breathers (DBs) or intrinsic localized modes (ILMs) [56]. DBs are vibration modes with a
higher frequency out of dispersion band of linear phonon modes. DBs are excited due to discreteness
and nonlinearity of the system. Various studies have been performed theoretically and experimen-
tally [57–59]. Considering nonlinear vibrations such as DBs, we can find much wider applications of
metamaterials such as energy transportation, and local activation of functional elements. For this
purpose, it is required to construct the method for exciting the DBs in the system. The most popular
mechanism for the excitation of DBs is modulational instability of particular phonon modes. For the-
oretical lattices such as Fermi-Pasta-Ulam β (FPU-β) systems, nonlinear energy localization called
chaotic breathers is excited from the modulational instability [60]. Therefore, it is important to inves-
tigate dynamics and stability of phonon modes of the acoustic metamaterials for future investigation
of DBs in the acoustic metamaterials.

In this study, we construct a one-dimensional nonlinear lattice model for the acoustic metamaterials
with inter-site local resonators. By using the constructed model, the effect of nonlinearity of geometric
relation between the main lattice and the local resonators on the dynamics of the nonlinear lattice
model is investigated.

The present paper is organized as follows. In section 2, the one-dimensional nonlinear lattice model
is introduced. The linear dispersion relation of the system is discussed in section 3. In section 4, the
dynamics of the lattice model in the region of weak nonlinearity is investigated by the perturbation
analysis. Numerical results of the temporal evolution of the system in the linear approximation, weak
nonlinearity, and strong nonlinearity are presented in section 5. The nonlinear periodic orbit obtained
by the shooting method is discussed in Section 6. Finally, conclusions are given in section 7.
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2. Model
We consider a one-dimensional lattice model which represents acoustic metamaterials with local res-
onators. The schematic description of the model is shown in Fig. 1. The Hamiltonian of the system
is given as follows:

Fig. 1. Model.

H =
N∑

n=1

[
1
2
mu̇2

n +
1
2
MU̇2

n + vn + Vn

]
, (1)

where un is the displacement of the nth particle in the main lattice, Un is the displacement of the nth
local resonator, m and M are the mass of the particle in the main lattice and the local resonators,
respectively. The interaction between neighboring particles in the main lattice is vn and the interaction
between the nth local resonator and the nth and (n + 1)th particles in the main lattice is Vn:

vn =
1
2
k2(un+1 − un)2 (2)

Vn =
1
2
K2(Un − gn(u))2, (3)

where k2 represents the strength of the linear interaction between the particles in the main lattice, K2

represents the strength of interaction between the local resonators and the main lattice. We consider
the periodic boundary condition.

The equilibrium position of the nth local resonator is determined by the position of particles in the
main lattice, which are connected to the nth local resonator. We introduce a function gn in terms
of u = (u1, u2, · · · , uN ) which describes the geometric relation between the local resonators and the
connecting particles in the main lattice.

From Eq. (1), the equations of motion for the particles in the main lattice and the local resonators
are

mün − k2(un+1 − 2un + un−1) −
∑

l

K2(Ul − gl(u))
∂gl(u)
∂un

= 0, (4)

MÜn + K2(Un − gn(u)) = 0. (5)

Hereafter, we introduce some constants shown in Table I. We assume that ωmain
0 = 1 without loss

of the generality.
Next, we assume that the nth local resonator is connected to the nth and (n + 1)th particles in the
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Table I. Definition of constants.

Definition Description
θ = M/m Mass ratio
δ = K2/k2 Spring constant ratio of K2 to k2

ωmain
0 =

√
k2/m Eigenfrequency of the main lattice

ωlr
0 =

√
K2/m Eigenfrequency of the local resonators

main lattice. Therefore, the function gn(u) can be described in terms of un and un+1. Considering
the nonlinear effect due to the geometry of system, gn(un, un+1) becomes the following form:

gn = β1(un+1 − un) + β2(un+1 − un)2 + β3(un+1 − un)3, (6)

where β1 is the harmonic coefficient, β2 is the asymmetric anharmonic coefficient, β3 is the symmetric
anharmonic coefficient. Asymmetric anharmonicity usually appears due to the geometrical constraint
of the system. The symmetric anharmonicity is introduced in order to investigate nonlinear interac-
tion, i.e., FPU β lattices.

Substituting Eq. (6) into Eq. (4) and (5), and ignoring the higher than 4th order terms, we obtain
the equations of motion as follows:

ün =
(
1 + δβ2

1

) {(un+1 − un) − (un − un−1)} − δβ2
1 (Un − Un−1)

+3δβ1β2

{
(un+1 − un)2 − (un − un−1)2

}
−2δβ2 {Un(un+1 − un) − Un−1(un − un−1)} (7)

+δ
(
4β1β3 + 2β2

2

) {
(un+1 − un)3 − (un − un−1)3

}
−3δβ3

{
Un(un+1 − un)2 − Un−1(un − un−1)2

}
,

Ün =
δ

θ

{−Un + β1(un+1 − un) + β2(un+1 − un)2 + β3(un+1 − un)3
}

. (8)

3. Linear dispersion relation

By neglecting the higher order terms in Eq. (7) and Eq. (8), we obtain the linearized equations of
motion:

ün = (1 + δβ2
1)(un+1 − 2un + un−1) − δβ2

1(Un − Un−1), (9)

Ün =
δ

θ
[−Un + β1(un+1 − un)] . (10)

Substituting a plane wave form with a wave number κ and an angular frequency ω

un =
1
2

[
C1e

i(nκ−ωt) + C∗
1e−i(nκ−ωt)

]
, (11)

Un =
1
2

[
C2e

i(nκ−ωt) + C∗
2e−i(nκ−ωt)

]
, (12)

into Eq. (9)–(10) and some calculations, we obtain the dispersion relation

ω4 −
[
δ

θ
+ 2(1 + δβ2

1)(1 − cos κ)
]

ω2 +
2δ

θ
(1 − cos κ) = 0, (13)

where C1 and C2 are complex constants and ∗ indicates complex conjugate.
Figure 2 shows the dispersion curve with β1 = 1, δ = 1 and θ = 1. It is found that two branches

are formed in the dispersion curve, i.e., the acoustic branch and the optical branch. The forbidden
bands appear above the optical band and between the acoustic band and optical band which is shown
as the gray regions in Fig. 2. Nonlinear vibration modes including DBs [58] can be excited in these
forbidden bands. The range of frequency of the forbidden band is characterized by zone boundary
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Fig. 2. Dispersion relation of the system. The parameters are β1 = 1, δ = 1
and θ = 1.

mode (ZBM) and band edge mode (BEM) which are the normal modes with the maximum frequency
in the optic band and acoustic band, respectively. The angular frequencies of ZBM and BEM are

ωZBM =
√

2
2

√√√√δ

θ
+ 4(1 + δβ2

1) +

√[
δ

θ
+ 4(1 + δβ2

1)
]2

− 16δ

θ
(14)

ωBEM =
√

2
2

√√√√δ

θ
+ 4(1 + δβ2

1) −
√[

δ

θ
+ 4(1 + δβ2

1)
]2

− 16δ

θ
. (15)

It is known that the dynamics and stability of the ZBM are important for understanding nonlinear
dynamics of the discrete systems since the instability can lead to exciting the nonlinear coherent
structure such as nonlinear normal mode and DBs. We investigate the behavior of the ZBM and the
BEM with large amplitude in the next section.

4. Perturbation analysis of ZBM and BEM in weak nonlinearity
In nonlinear lattices, normal modes are affected by the nonlinearity of system. One of the most
significant effects is the appearance of instability. Unstable dynamics leads to spatial modulation of
the homogeneous vibration. It is well known that the modulational instability of the ZBEs and BEMs
excites energy localization called discrete breathers. Therefore, we are interested in the behavior of
ZBM and BEM which leads to the excitation of energy localization.

In order to investigate the behavior of the vibration in weak nonlinear region of the system, we
perform the perturbation analysis of the equation of motion (7) and (8) by expanding un and Un:

un = u(0)
n + εu(1)

n + O(ε2), (16)

Un = U (0)
n + εU (1)

n + O(ε2), (17)

where ε is a small constant.
Substituting (16) and (17) into (7) and (8), and collecting terms in terms of ε, we obtain the

following equations at the leading order:

d2u
(0)
n

dt2
=

(
1 + δβ2

1

) (
u

(0)
n+1 − 2u(0)

n + u
(0)
n−1

)
− δβ1

(
U (0)

n − U
(0)
n−1

)
, (18)
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d2U
(0)
n

dt2
=

δ

θ

{
−U (0)

n + β1

(
u

(0)
n+1 − u(0)

n

)}
. (19)

This is just a linearized version of the equation of motion (9)–(10). Therefore, the solutions of the
leading order are given as:

u(0)
n =

1
2

{
C̄1e

i(nκ1−ω1t) + C̄∗
1e−i(nκ1−ω1t)

}
, (20)

U (0)
n =

1
2

{
β1 (δ/θ)

(
1 − eiκ1

)
ω2

1 − δ/θ
C̄1e

i(nκ1−ω1t) +
β1 (δ/θ)

(
1 − e−iκ1

)
ω2

1 − δ/θ
C̄∗

1e−i(nκ1−ω1t)

}
, (21)

where C̄1 and C̄∗
1 are complex constants, ω1 and κ1 satisfy the dispersion relation (13).

In the next order ε, we obtain equations as

d2u
(1)
n

dt2
=

(
1 + δβ2

1

) (
u

(1)
n+1 − 2u(1)

n + u
(1)
n−1

)
− δβ1

(
U (1)

n − U
(1)
n−1

)
+3δβ1β2

{(
u

(0)
n+1 − u(0)

n

)2

−
(
u(0)

n − u
(0)
n−1

)2
}

(22)

−2δβ2

{
U (0)

n

(
u

(0)
n+1 − u(0)

n

)
− U

(0)
n−1

(
u(0)

n − u
(0)
n−1

)}
d2U

(1)
n

dt2
=

δ

θ

{
−U (1)

n + β1

(
u

(1)
n+1 − u(1)

n

)}
+

δ

θ
β2

(
u

(0)
n+1 − u(0)

n

)2

. (23)

Substituting the solutions of the leading order (20) and (21) into (22) and (23), we obtain

d2u
(1)
n

dt2
=

(
1 + δβ2

1

) (
u

(1)
n+1 − 2u(1)

n + u
(1)
n−1

)
− δβ1

(
U (1)

n − U
(1)
n−1

)
−iδβ1β2

3ω2
1 − δ/θ

ω2
1 − δ/θ

sinκ1(1 − cos κ1)C̄2
1e2i(nκ1−ω1t)

+iδβ1β2
3ω2

1 − δ/θ

ω2
1 − δ/θ

sinκ1(1 − cos κ1)C̄∗2
1 e−2i(nκ1−ω1t), (24)

d2U
(1)
n

dt2
=

δ

θ

{
−U (1)

n + β1

(
u

(1)
n+1 − u(1)

n

)}
+

1
4

δ

θ
β2

(
1 − eiκ1

)2
C̄2

1e2i(nκ1−ω1t) +
1
4

δ

θ
β2

(
1 − e−iκ1

)2
C̄∗2

1 e−2i(nκ1−ω1t)

+
δ

θ
β2(1 − cos κ1)|C̄1|2. (25)

By substituting κ1 = π into (24) and (25), we obtain the equations for ZBM and BEM as follows,

d2u
(1)
n

dt2
=

(
1 + δβ2

1

) (
u

(1)
n+1 − 2u(1)

n + u
(1)
n−1

)
− δβ1

(
U (1)

n − U
(1)
n−1

)
, (26)

d2U
(1)
n

dt2
=

δ

θ

{
−U (1)

n + β1

(
u

(1)
n+1 − u(1)

n

)}
+

δ

θ
β2C̄

2
1e−2iω1t +

δ

θ
β2C̄

∗2
1 e2iω1t

+2
δ

θ
β2|C̄1|2. (27)

It is found that the homogeneous part of Eq. (26) and (27) is the same form as the equation at the
leading order (18) and (19). Therefore, the homogeneous solution of Eq. (26) and (27) are given as

u(h)
n =

1
2

[
C3e

i(nκ2−ω2t) + C∗
3e−i(nκ2−ω2t)

]
, (28)

U (h)
n =

1
2

[
C4e

i(nκ2−ω2t) + C∗
4e−i(nκ2−ω2t)

]
, (29)

which are the same form as Eq. (20) and (21). The parameters C3, C∗
3 , C4, and C∗

4 are complex
constants. The wavenumber κ2 and angular frequency ω2 satisfy the relation (13).
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When β2 = 0, the inhomogeneous terms in Eq. (27) vanish. This means that the homogeneous
solutions (28) and (29) are just the solutions. Moreover, if we set the initial condition as u

(1)
n (0) =

U
(1)
n (0) = 0, any excitation does not arise.
When β2 �= 0, we have to consider the particular solution of Eq. (26) and (27) since the inhomoge-

neous terms in Eq. (27) do not vanish. In terms of u
(1)
n , we can set the particular solution u

(p)
n = 0.

In terms of U
(1)
n , the particular solution is U

(p)
n (t) = b exp(−2iω1t) + b∗ exp (2iω1t) + C, since the

inhomogeneous terms have the frequency 2ω1 and do not depend on n in Eq. (27). Substituting this
into Eq. (27) and solving in terms of the constants b, b∗ and C, we obtain

U (p)
n (t) = − δ/θ

4ω2
1 − δ/θ

β2C̄
2
1 exp(−2iω1t) + 2β2

∣∣C̄1

∣∣2 − δ/θ

4ω2
1 − δ/θ

β2C̄
∗2
1 exp(2iω1t). (30)

We can choose C3 = 0 which corresponds to the initial conditions Δun(0) = 0 in terms of the
homogeneous solutions. In this case, the homogeneous Eq. (27) becomes

d2U
(1)
n

dt2
= −δ

θ
U (1)

n . (31)

Therefore, the homogeneous solution for ΔUn solved as

U (h)
n (t) =

1
2

(
B exp(−i

√
δ/θt) + B∗ exp(i

√
δ/θt)

)
, (32)

where B and B∗ are complex constants. Combining the homogeneous solution and the particular
solution with the initial condition U

(1)
n (0) = 0, we obtain

U (1)
n = β2

(
δ/θ

4ω2
1 − δ/θ

C̄2
1 − |C̄1|2

)
e−i

√
δ/θt + β2

(
δ/θ

4ω2
1 − δ/θ

C̄∗2
1 − |C̄1|2

)
ei
√

δ/θt

−β2
δ/θ

4ω2
1 − δ/θ

C̄2
1e−2iω1t − β2

δ/θ

4ω2
1 − δ/θ

C̄∗2
1 e2iω1t + 2β2

∣∣C̄1

∣∣2 . (33)

Equation (33) indicates that, in the case that β2 �= 0, the vibration due the particular term is
excited in the local resonator even if we set ΔUn(0) = 0. The frequencies of the perturbation of the
local resonator are the natural frequency of the local resonator and the second harmonics of the ZBM
or BEM. Moreover, the local resonators have static displacement 2β2

∣∣C̄1

∣∣2.
Substituting (21) and (33) into (17), it is found that the local resonators have frequencies of the

ZBM (14) or BEM (15), and the natural frequency
√

δ/θ. In general, the ratio of these frequencies
is an irrational number. Therefore, the vibrations of the local resonator become the quasi-periodic
orbit.

5. Temporal evolution of ZBM and BEM

In this section, we investigate the temporal evolution of the ZBM and BEM of Eq. (7) and (8).
Initial displacement of particles of the ZBM and BEM is

un(0) = (−1)nA,

Un(0) = (−1)n 2β1
δ
θ

ω2 − δ
θ

A, (34)

where we set δ = θ = 1 and β1 = 1, A is the amplitude of the ZBM and BEM, ω is the angular
frequency of the ZBM and BEM, respectively. Initial velocity of the particles is u̇n(0) = U̇n(0) = 0.
The ZBM and BEM are excited to the system by taking the initial displacement (34) with the angular
frequency ω = ωZBM (14) and ωBEM (15), respectively. In the present case, we can set ωZBM = 2.92
and ωBEM = 0.685.

The numerical integration of the equation of motion (7) and (8) is performed by the 4th order
Runge-Kutta method. A time step of the numerical integration is Δt = 0.0001.
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Fig. 3. Spectrum of vibration from initial conditions of ZBM with A = 0.0001
for β1 = β2 = β3 = 1: (Left)main lattice and (Right)local resonator.

Fig. 4. Spectrum of vibration from initial conditions of ZBM with A = 0.005
for β1 = β2 = β3 = 1: (Left)main lattice and (Right)local resonator.

Fig. 5. Spectrum of vibration from initial conditions of BEM with A = 0.0001
for β1 = β2 = β3 = 1: (Left)main lattice and (Right)local resonator.

Figure 3 shows the temporal spectrum of ZBM with A = 0.0001 for β1 = 1, β2 = 1 and β3 = 1.
The gray bands represent the forbidden bands of the system. A single peak at the upper bound of
the optic branch is observed both in the main lattice and the local resonators. This peak corresponds
to the fundamental frequency ω = 2.92. It is found that the initial amplitude A = 0.0001 is so small
that the vibration can be regarded as the linear vibration.

In the case that A = 0.005 as shown in Fig. 4, a single peak is observed in the main lattice. However,
several new peaks are observed at ω = 1.0 =

√
δ/θ and ω = 5.89 = 2ωZBM in the local resonators.

This is because the nonlinear interaction between the local resonator and the main lattice becomes
significant. These frequencies correspond to the vibration which is described by Eq. (33).

Figures 5 and 6 show the spectrum of BEM with A = 0.0001 and A = 0.005, respectively. Effect of
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Fig. 6. Spectrum of vibration from initial conditions of BEM with A = 0.005
for β1 = β2 = β3 = 1: (Left)main lattice and (Right)local resonator.

Fig. 7. Spectrum of vibration from initial conditions of ZBM with A = 0.005
for β1 = 1,β2 = 0, and β3 = 1: (Left)main lattice and (Right)local resonator.

Fig. 8. Spectrum of vibration from initial conditions of BEM with A = 0.005
for β1 = 1, β2 = 0, and β3 = 1: (Left)main lattice and (Right)local resonator.

the nonlinearity of the interaction between the local resonator and the main lattice becomes significant
as the peaks at ω = 1.0 =

√
δ/θ and ω = 1.37 = 2ωBEM in the spectrum of the local resonator in

Fig. 6. These peaks of the spectrum can be also explained by Eq. (33).
Figure 7 and 8 show the spectrum of vibration of ZBM and BEM for β1 = 1, β2 = 0 and β3 = 1.

Unlike the case of β2 �= 0 shown in Fig. 4 and Fig. 6, only a single peak which corresponds to ωZBM or
ωBEM is observed in the local resonators. Therefore, no perturbation which has the frequency,

√
δ/θ

or 2ωZBM,BEM is excited. This result is consistent with the discussion in Section 4.
We also investigate the temporal evolution of the system in the large anharmonic case which can

not be able to investigate by the perturbation analysis discussed in Section 4. Figure 9 shows the
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Fig. 9. Temporal evolution of distribution of kinetic energy of particles in
ZBM with A = 0.31 for β1 = 1, β2 = 1, and β3 = 1: (Left)main lattice and
(Right)local resonator. The horizontal axis indicates time and the vertical axis
indicates site number n of particles.

Fig. 10. Spectrum of vibration from initial conditions of ZBM with A = 0.31
for β1 = 1, β2 = 1, and β3 = 1: (Left)main lattice and (Right)local resonator.

distribution of kinetic energy of particles in the ZBM for A = 0.31, β1 = 1, β2 = 1 and β3 = 1. The
energy localization due to the modulational instability of ZBM can be observed at t = 163 in the main
lattice. Then, non-uniform energy distribution arises in both the main lattice and the local resonators.
Figure 10 shows the spectrum of vibration before t = 163. In the main lattice, the largest peak is at
ω = 3.96 and two side peaks are at ω = 2.96 and ω = 4.88. These peaks are in the forbidden bands.
In the local resonators, the larger peaks are at ω = 1 in the lower forbidden band and at ω = 4.88 in
the higher forbidden band, and side peaks are at ω = 0.769 in the lower band and at ω = 3.96 in the
higher forbidden band. We also find the largest peak at ω = 0 in the local resonators.

In hard (positive) nonlinearity of the system, the frequency of vibration can increas as the amplitude
of the vibration increases. Therefore, in the case of much larger amplitude with A = 0.31 than the
linear approximation, the large (positive) shift of elementary frequency is observed from ωZBM = 2.92
to ω = 3.96 in the main lattice. Several side peaks are observed both in the main lattice and the local
resonators. This can be regarded as the excitation of modulational instability of the ZBM in which
envelope is modulated with longer wavelength.

Figure 11 shows the distribution of kinetic energy of particles in the ZBM for A = 0.31, β1 = 1,
β2 = 0 and β3 = 1. In the main lattice, the spatial energy localized structures are excited at t = 50.
The localized structures wanders in the system with keeping their structure. This is like chaotic
breathers which are observed in wide class of nonlinear discrete systems [60]. Figure 12 shows the
spectrum before the excitation of the localized structure. The frequency shift of ZBM is also observed
in the case of Fig. 10 as observed in Fig. 12.

It is concluded that, in the large anharmonic case, the unstable dynamics due to the modulational
instability arises in both cases that β2 = 0 and β2 �= 0. Moreover, the spatial energy localized
structures are excited after unstable dynamics arises. In the case that β2 = 0, chaotic breather is
observed. This fact indicates that the present system can support the excitation of DBs [58].
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Fig. 11. Temporal evolution of distribution of kinetic energy of particles in
ZBM with A = 0.31 for β1 = 1, β2 = 0, and β3 = 1: (Left)main lattice and
(Right)local resonator. The horizontal axis indicates time and the vertical axis
indicates site number n of particles.

Fig. 12. Spectrum of vibration from initial conditions of ZBM with A = 0.31
for β1 = 1, β2 = 0, and β3 = 1: (Left)main lattice and (Right)local resonator.

6. Nonlinear periodic solution from ZBM

In order to investigate the dependence of frequency and stability on the amplitude of vibration,
we search the nonlinear periodic orbits which are continued from the vibration modes in the small
amplitude limit by the shooting method. Moreover, we investigate linear stability of the numerical
solution of periodic orbits.

Let ũn(t) and Ũn(t) be numerical solutions of the periodic orbit with a period of T and Δun(t)
and ΔUn(t) be small deviation from the periodic orbit. Substituting un(t) = ũn(t) + Δun(t) and
Un(t) = Ũn(t) + ΔUn(t) into Eq. (7)–(8) and subtracting equations of motion with un(t) = ũn(t) and
Un(t) = Ũn(t), we obtain equation for Δun(t)) and ΔUn(t):

Δün =
(
1 + δβ2

1

) {(Δun+1 − Δun) − (Δun − Δun−1)} − δβ2
1 (ΔUn − ΔUn−1)

+6δβ1β2 {(ũn+1 − ũn)(Δun+1 − Δun) − (ũn − ũn−1)(Δun − Δun−1)}
−2δβ2

{
Ũn(Δun+1−Δun)+(ũn+1−ũn)ΔUn−Ũn−1(Δun−Δun−1)−(ũn−ũn−1)ΔUn−1

}
+6δ

(
2β1β3 + β2

2

) {
(ũn+1 − ũn)2(Δun+1 − Δun) − (ũn − ũn−1)2(Δun − Δun−1)

}
−3δβ3

{
(ũn+1 − ũn)2ΔUn − (ũn − ũn−1)2ΔUn−1 + 2Ũn(ũn+1 − ũn)(Δun+1 − Δun)

−2Ũn−1(ũn − ũn−1)(Δun − Δun−1)
}

, (35)

ΔÜn =
δ

θ
{−ΔUn + β1(Δun+1 − Δun) + 2β2(ũn+1 − ũn)(Δun+1 − Δun)

+3β3(ũn+1 − ũn)2(Δun+1 − Δun)
}

. (36)

Let X = {un, Un, u̇n, U̇n} be the state variable. The variational Eqs. (35) and (36) is rewritten to
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Fig. 13. Displacement of ZBM with ω = 2.9475: (Left)main lattice and
(Right)local resonator for β1 = 1, β2 = 1 and β3 = 1.

ΔẊ =
∂F
∂X

ΔX, (37)

where F indicates {u̇n, U̇n, RHS of Eq. (7), RHS of Eq. (8)}. Since ∂F/∂X consists of ũn and Ũn,
∂F/∂X is T -periodic. In this case, there exists a regular matrix M(T ) such that

X(t + T ) = M(T )X(t). (38)

The matrix M(t) is called monodromy matrix. Let σ be eigenvalues of M(t). The periodic orbit is
unstable if an eigenvalue is outside the unit circle in the complex plane. In Hamilton systems, if σ is
an eigenvalue of the monodromy matrix, 1/σ is also an eigenvalue. Therefore, the periodic orbit is
stable if and only if all eigenvalues are on the unit circle in the complex plane.

Figure 13 shows the displacement of the nonlinear periodic solution from the ZBM with ω = 2.9475
in the system for β1 = 1, β2 = 1, and β3 = 1. The displacement of the main lattice is the same form
as in the linear vibration

un = (−1)nA′ cos ωt, (39)

where A′ is a real constant. The local resonators, on the other hand, has a constant displacement:

Un = (−1)nB′ cos ωt + C ′, (40)

where B′ and C ′ are real constants.
Figure 14(a) shows the relation between the amplitude of the main lattice A′ and the angular

frequency ω. The angular frequency increases as the amplitude increases. Figure 14(b) indicates the
relation between the amplitude of the main lattice A′ and the amplitude of the local resonators B′.
The amplitude of the local resonator also increases as the amplitude of the main lattice increases.
However, the derivative dB′/dA′ gradually decreases. The static displacement C ′ and its derivative
dC ′/dA′ increase as the amplitude A′ increases. As to the local resonators, the static displacement
becomes dominant as the amplitude of the main system becomes larger.

We calculate the eigenvalues of the monodromy matrix which give the growth rates of variation from
the periodic orbit. The periodic orbit is unstable if one of the eigenvalues is greater than 1 since the
present system is the Hamiltonian system. Figure 14(d) shows the relation between the eigenvalues
|σ| and the amplitude A′. It is found that the eigenvalue greater than 1 appears at A′ = 0.0178.
Therefore, the periodic orbit from ZBM becomes unstable when the amplitude A′ ≥ 0.0178.

In the case that β2 = 0, it is found that the angular frequency ω and the amplitude of the local
resonators B′ increase as the amplitude of the main system A′ increases as shown in Figs. 15(a) and
(b). However, the static displacement C ′ vanishes.

Figure 15(c) indicates the eigenvalues of the monodromy matrix. All eigenvalues are one up to
A′ = 0.0177 which is almost same as the case that β2 = 1.
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Fig. 14. Amplitude A′ dependence on the periodic orbit from ZBM for
β1 = 1, β2 = 1 and β3 = 1: (a)angular frequency, (b)amplitude of local
resonator, (c)static displacement of the local resonator, and (d)eigenvalues of
the monodoromy matrix.

Fig. 15. Amplitude A′ dependence on the periodic orbit from ZBM for β1 =
1, β2 = 0 and β3 = 1: (a)angular frequency, (b)amplitude of the local resonator,
and (c)eigenvalues of the monodoromy matrix.
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In summary, the structure of nonlinear periodic orbit which are continued from ZBM depends on
the parameter β2. In case that β2 �= 0, the static displacement arises in the local resonators. In case
that β2 = 0, the static displacement vanishes. This result is consistent with the temporal evolution
of ZBM with large amplitude discussed in Section 5. The linear stability of the nonlinear periodic
orbits is almost same in both cases.

7. Conclusions
In this paper, we investigate the nonlinear dynamics of the mechanical model of the acoustic meta-
materials with the local resonators. In our model, the geometric relation between the main lattice
and the local resonators is described by the nonlinear function gn. Due to the local resonators, the
phonon band is divided into the acoustic band and the optic band. Therefore, two upper bounds of
the phonon band or ZBM and BEM exist in the system.

The dynamics of ZBM and BEM in the region of weak nonlinearity is investigated by the direct
numerical integration of the equation of motion and perturbation analysis. When the function gn has
the even-order nonlinearity, the vibrations with the second harmonics of the main frequency and the
natural frequency of the local resonator is excited. Moreover, the stationary displacement is excited.

The numerical solutions of the nonlinear periodic orbit which are continued from the ZBM in the
small amplitude limit are calculated by the shooting method. The static displacement of the local
resonator arises when the function gn has the even-order nonlinearity. The nonlinear periodic orbit
becomes unstable when the amplitude of the main lattice reaches to the particular value.

The dynamics of ZBM and BEM beyond the region of weak nonlinearity is investigated by the
numerical integration of the equation of motion with the initial condition of large amplitude. The
initial displacement becomes unstable due to the modulational instability regardless of the existence
of the even-order terms in the function gn. After destabilization of the initial displacement, the
spatial energy localized structure are excited. This fact implies that the present system supports the
existence of DB.

Acknowledgments

The second author (Y.D.) was partially supported by a Grant-in-Aid for Scientific Research (C), No.
16K05041 from Japan Society for the Promotion of Science (JSPS).

References
[1] M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, “Metamaterials beyond electromag-

netism,” Reports on Progress in Physics, vol. 76, no. 12, 126501, November 2013.
[2] J. Christensen, M. Kadic, O. Kraft, and M. Wegener, “Vibrant times for mechanical metama-

terials,” MRS Communications, vol. 5, no. 3, pp. 453–462, July 2015.
[3] V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε

and μ,” Physics-Uspekhi, vol. 10, no. 4, pp. 509–514, January 1968.
[4] J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, “Magnetism from conductors and

enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques,
vol. 47, no. 11, pp. 2075–2084, November 1999.

[5] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, “Composite medium
with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, no. 18,
4184, May 2000.

[6] J.B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, no. 18, 3966,
October 2000.

[7] J.B. Pendry, D. Schurig, and D.R. Smith, “Controlling electromagnetic fields,” Science, vol. 312,
no. 5781, pp. 1780–1782, June 2006.

[8] L. Fok, M. Ambati, and X. Zhang, “Acoustic metamaterials,” MRS Bulletin, vol. 33, pp. 931–
934, October 2008.

[9] G. Ma and P. Sheng, “Acoustic metamaterials: From local resonances to broad horizons,”
Science Advances, vol. 2, no. 2, e1501595, February 2016.

142



[10] Z.Y. Liu, X. Zhang, Y. Mao, Y.Y. Zhu, Z. Yang, C.T. Chan, and P. Sheng, “Locally resonant
sonic materials,” Science, vol. 289, no. 5485, pp. 1734–1736, September 2000.

[11] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “Ultrasonic
metamaterials with negative modulus,” Nat. Mater., vol. 5, no. 6, pp. 452–456, April 2006.

[12] S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, and C.K. Kim, “Acoustic metamaterial with
negative modulus,” J. Phys. Condens. Matter., vol. 21, no. 17, 175704, March 2009.

[13] S. Yao, X. Zhou, and G. Hu, “Experimental study on negative effective mass in a 1D mass-spring
system,” New J. Phys., vol. 10, 043020, April 2008.

[14] Z. Yang, J. Mei, M. Yang, N.H. Chan, and P. Sheng, “Membrane-type acoustic metamaterial
with negative dynamic mass,” Phys. Rev. Lett., vol. 101, 204301, November 2008.

[15] H.H. Huang, C.T. Sun, and G.L. Huang, “On the negative effective mass density in acoustic
metamaterials,” International Journal of Engineering Science, vol. 47, no. 4, pp. 610–617, April
2009.

[16] S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, and C.K. Kim, “Acoustic metamaterial with
negative density,” Phys. Lett. A, vol. 373, no. 48, pp. 4464–4469, December 2009.

[17] J. Li and C.T. Chan, “Double negative acoustic metamaterial,” Phys. Rev. E, vol. 70, no. 5,
055602, November 2004.

[18] Y. Ding, Z. Liu, C. Qiu, and J. Shi, “Metamaterial with simultaneously negative bulk modulus
and mass density,” Phys. Rev. Lett., vol. 99, no. 9, 093904, August 2007.

[19] S.H. Lee, C.M. Park, Y.M. Seo, Z.G. Wang, and C.K. Kim, “Composite acoustic medium with
simultaneously negative density and modulus,” Phys. Rev. Lett., vol. 104, 054301, February
2010.

[20] L. Fok and X. Zhang, “Negative acoustic index metamaterial,” Phys. Rev. B, vol. 83, no. 21,
214304, June 2011.

[21] N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic su-
perlens from multiple scattering in single negative metamaterials,” Nature, vol. 525, pp. 77–81,
September 2015.

[22] G.W. Milton, M. Briane, and J.R. Willis, “On cloaking for elasticity and physical equations
with a transformation invariant form,” New J. Phys., vol. 8, 248, October 2006.

[23] S.A. Cummer and D. Schurig, “One path to acoustic cloaking,” New J. Phys., vol. 9, 45, March
2007.

[24] H. Chen and C.T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,”
Appl. Phys. Lett., vol. 91, 183518, November 2007.

[25] H. Chen and C.T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,”
Appl. Phys. Lett., vol. 91, no. 18, 183518, November 2007.

[26] S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J.B. Pendry, M. Rahm, and A. Starr, “Scat-
tering theory derivation of a 3D acoustic cloaking shell,” Phys. Rev. Lett., vol. 100, 024301,
January 2008.

[27] Y. Cheng, F. Yang, J.Y. Xu, and X.J. Liu, “A multilayer structured acoustic cloak with homo-
geneous isotropic materials,” Appl. Phys. Lett., vol. 92, no. 15, 151913, April 2008.

[28] D. Torrent and J. Sánchez-Dehesa, “Acoustic cloaking in two dimensions: A feasible approach,”
New J. Phys., vol. 10, 063015, June 2008.

[29] J. Hu, X. Zhou, and G. Hu, “A numerical method for designing acoustic cloak with arbitrary
shapes,” Computational Materials Science, vol. 46, no. 3, pp. 708–712, September 2009.

[30] S. Zhang, C. Xia, and N. Fang, “Broadband Acoustic Cloak for Ultrasound Waves,” Phys. Rev.
Lett., vol. 106, no. 2, 024301, January 2011.

[31] N. Stenger, M. Wilhelm, and M. Wegener, “Experiments on elastic cloaking in thin plates,”
Phys. Rev. Lett., vol. 108, 014301, January 2012.

[32] J. Zhu, T. Chen, Q. Liang, X. Wang, J. Xiong, and P. Jiang, “A unidirectional acoustic cloak
for multilayered background media with homogeneous metamaterials,” J. Phys. D: Appl. Phys.,
vol. 48, no. 30, 305502, July 2015.

[33] M. Ambati, N. Fang, C. Sun, and X. Zhang, “Surface resonant states and superlensing in

143



acoustic metamaterials,” Phys. Rev. B, vol. 75, no. 19, 195447, May 2007.
[34] Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical

superlens,” Nano Lett., vol. 7, pp. 403–408, January 2007.
[35] M.H. Lu, C. Zhang, L. Feng, J. Zhao, Y.F. Chen, Y.W. Mao, J. Zi, Y.Y. Zhu, S.N. Zhu, and

N.B. Ming, “Superlenses to overcome the diffraction limit,” Nat. Mater., vol. 6, pp. 744–748,
June 2007.

[36] X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater., vol. 7,
pp. 435–441, June 2008.

[37] J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic
magnifying hyperlens,” Nat. Mater., vol. 8, no. 12, pp. 931–934, October 2009.

[38] S. Zhang, L. Yin, and N. Fang, “Focusing ultrasound with an acoustic metamaterial network,”
Phys. Rev. Lett., vol. 102, 194301, May 2009.

[39] J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, “Experimental demonstration of an acoustic
magnifying hyperlens,” Nat. Mater., vol. 8, pp. 931–934, October 2009.

[40] Y. Lai, Y. Wu, P. Sheng, and Z.Q. Zhang, “Hybrid elastic solids,” Nat. Mater., vol. 10, pp. 620–
624, June 2011.
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