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Energy Analyses for the Imaging Technique of Bonded Regions and Delaminations 
in a Thin Plate

Takahiro Hayashi* and Shogo Nakao

Graduate School of Engineering, Kyoto University, Kyoto 615–8540, Japan

Defect imaging by a scanning laser source technique has been theoretically and experimentally investigated for a notch and a wall thin-
ning in a plate. This study discusses the applicability of the imaging technique to bonding regions and delaminations in a thin plate. The varia-
tions of �exural wave energy generated at a laser source close to a plate edge, a junction of two thin plates, a bonded region, and a delamina-
tion are discussed using the Kirchhoff–Love plate theory and a semi-analytical �nite element method. The numerical analyses reveal that the 
�exural wave energy generated in the vicinity of the re�ection objects are signi�cantly different in such a source type as normal loading and 
dipole loading modeled for elastic wave generations due to ablation and thermo-elastic effects, respectively. In particular, the numerical analy-
ses reveal that the dipole loading is more effective to the imaging because the generation energy signi�cantly varies at the boundaries between 
bonded and separated regions. Moreover, the images of a plate with a bonded region are obtained using an experimental system in which the 
thermo-elastic effect is dominant for generating elastic waves, and they exhibit similar tendencies with calculated results.  
[doi:10.2320/matertrans.M2017151]
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1.　 Introduction

Material evaluations by noncontact and remote measure-
ments are in great demand in large constructions such as 
pipes and bridges, and large productions such as aircraft fu-
selages, wings, and automobile bodies1–4). Laser ultrason-
ics5–11) is one of the most suitable approaches for such non-
contact remote evaluations. In the laser ultrasonics, an 
ultrasonic pulse in the frequency range of megahertz is typi-
cally generated using a pulse laser equipment, and the pulse 
echo is detected using a laser interferometer. Although the 
noncontact material evaluation technique is in great demand, 
it has not been replaced with the conventional contact ultra-
sonic pulse echo technique. The most crucial problem is 
caused by the limitation of receiving devices. A laser inter-
ferometer can detect elastic waves on a material surface less 
sensitive than contact piezoelectric devices, and it is strongly 
affected by the surface conditions such as roughness and in-
clination because wave detection using laser requires scat-
tered light from the surface.

Therefore, authors12–16) have studied defect imaging of a 
plate-like structure using a scanning laser source (SLS) tech-
nique, in which only the wave source of a laser irradiation 
spot is rastered and a receiving spot is �xed. The stable wave 
detection using a �xed receiver has realized signi�cantly 
rapid wave measurements and defect imaging even in curved 
plate-like structures such as pipes.

Moreover, theoretical and experimental studies veri�ed 
that amplitude and frequency of the received waveforms re-
act sensitively with a crack on the surface or back surface 
stretching in the thickness direction of a plate in the SLS 
technique13–22). For example, Kromine et al.17) and Sohn and 
Krishnaswamy18,19) presented that a surface breaking �ow 
can be detected at a high resolution with amplitude change 
and frequency change in the SLS measurements. Dixon et 
al.20) and Clough and Edwards21,22) showed the phenomena 

that amplitude increases when the laser source is located in 
the vicinity of a �aw located at the surface or back surface 
of a plate and the near-�eld enhancement is useful for �aw 
detection. The authors of the current paper also con�rmed 
the amplitude enhancement at a wall thinning by the SLS 
measurement and veri�ed that a defect image can be ob-
tained by rastering the laser source12). Moreover, the authors 
veri�ed theoretically and experimentally that the energy of 
�exural vibration also increases when laser is irradiated in 
the vicinity of notch-type defects and proved that the ampli-
tude enhancement is caused by the interaction of evanescent 
modes generated at the laser source and the re�ective object 
as defects14). This result indicates that the energy enhance-
ment is affected not by the wavelength of the �exural wave 
but by the dominant range of the evanescent modes and im-
plies that defects can be detected at suf�ciently high resolu-
tion even in the frequency range lower than megahertz. For 
example, the authors successfully created images of defects 
on the back surface of an aluminum alloy plate of 3.0 mm 
thickness in the frequency range of 6–11 kHz13,16). More-
over, the authors demonstrated that defect images can be 
created even for curved plates such as straight pipes and 
branched pipes as well as �at plates because the imaging 
technique precisely uses the energy enhancement of �exural 
waves generated at a laser source.

These previous studies discussed the imaging technique 
for a thin plate with thickness reduction or defects. This 
study investigates the application of the SLS technique to 
the evaluation of adhesive and delamination regions through 
the analysis of �exural wave propagation. Adhesive bonding 
has been widely adopted for automotive steel sheet and air-
plane dissimilar materials, being expected to replace resis-
tance spot welding and rivet bonding. However, adhesive 
bonding is still limitedly used and carefully handled because 
the evaluation technique of the bonding quality has not been 
established. Delamination appears in a layered plate subject-
ed to an impact load, and it signi�cantly decreases the 
strength of an aircraft body.* Corresponding author, E-mail: hayashi@kuaero.kyoto-u.ac.jp
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This paper is organized as follows. The following section 
describes the �exural wave motion generated by laser irradi-
ation based on Kirchhoff–Love plate theory and analyses the 
effect of generation energy with the type of a laser source, 
the thickness of a plate, and a re�ective plate edge in order 
to support discussions of energy variation around a bonded 
region and a delamination in the later sections. In Section 3, 
�exural wave energy is calculated, using a semi-analytical 
�nite element (SAFE) method23–27), for different laser 
source location around a junction where two thin plates 
merge or one thin plate diverges. Section 4 discusses the en-
ergy of the �exural wave generated at a laser source in a 
plate with a bonded region or a delamination and investi-
gates the possibilities of their evaluation with the SLS tech-
nique. Then, the calculation results are veri�ed using the 
SLS experiments for a plate with a bonded region.

2.　 Theoretical Descriptions of Flexural Wave in Thin 
Plates

Lamb waves propagating in an elastic homogeneous plate 
consists of modes with various wavenumbers at a certain 
frequency, and the wavenumbers can be derived from the 
Rayleigh–Lamb equation28–30). The wavenumbers are nu-
merically calculated because the Rayleigh–Lamb equation 
cannot be solved explicitly. However, the approximated 
solutions of �exural waves can be explicitly obtained in the 
low frequency-thickness product range based on Kirchhoff–
Love plate theory29,31). Because the imaging technique using 
the SLS is effective in the low frequency-thickness product 
range, the theoretical solutions are bene�cial for predicting 
the �exural wave motions in several cases. This section de-
scribes �exural wave generated by laser source and total re-
�ection at a plate edge using the Kirchhoff–Love plate theo-
ry before discussing �exural waves at adhesive bonding and 
delamination.

2.1　 Flexural waves generated by laser sources
In the laser ultrasonics, irradiation of laser pulses onto a 

material generates elastic waves. The generation mechanism 
is theoretically and experimentally elucidated5–11). For large 
laser pulse power, a force normal to the object surface is 
dominant due to the effect of plasma emission from a mate-
rial at a laser spot, as Q0 in Fig. 1 (a). Although the elastic 
wave generation by ablation may damage the material sur-
face slightly, it can generate large vibration. For small laser 
pulse power, laser heating induces local and instantaneous 
thermal expansion and vibration. Although the vibration en-
ergy is smaller than that by laser ablation, it does not dam-
age object surface. The thermo-elastic effect induces in-
plane forces parallel to object surface, as P0 in Fig. 1 (b). 
Assuming a plane strain condition with uniform physical pa-
rameters in the direction normal to a plate cross-section (z 
direction) in this section, the in-plane forces are dipole load-
ing. In a thin plate, the dipole loading induces the external 
local moment m0, as shown in Fig. 1 (c). This study discuss-
es these two laser generation mechanisms; normal loading 
for the ablation and dipole loading for the thermo-elastic ef-
fect.

Currently, we consider �exural waves propagating in an 

elastic homogeneous plate of thickness h and density ρ, 
where the propagation direction of the �exural waves and 
the thickness direction are x and y, respectively. The in�ni-
tesimal de�ection u is induced by the normal stress q0 and 
the external moment per unit area m0. N and M are the shear 
force and moment per unit length in the z direction, respec-
tively. The equation of motion in the y direction is expressed 
as follows29,31):

 
∂N
∂x
+ q0 = ρh

∂2u
∂t2
. (1)

Equilibrium of moment at the left edge provides

 
∂M
∂x
+ m0 − N = 0, (2)

where small terms were eliminated.
Based on the Kirchhoff–Love hypothesis and the assump-

tion of plain strain, the relative equation between the dis-
placement u and the moment M is obtained using the bend-
ing stiffness D as follows:

 M = −D
∂2u
∂x2
, D =

Eh3

12(1 − ν2)
, (3)

where E and ν are the Young’s modulus and the Poisson’s ra-
tio, respectively. From eqs. (1)–(3), the wave equation is ex-
pressed as follows:

 −D
∂4u
∂x4
+
∂m0

∂x
+ q0 = ρh

∂2u
∂t2
. (4)

When we consider harmonic responses for harmonic load 
and moment concentrated at x =  0 with angular frequency ω 
(=2πf: f is frequency), the external stress q0, moment m0, and 
displacement u are expressed as follows:

 q0 = Q0e−iωtδ(x), m0 = M0e−iωtδ(x), u = Ue−iωt. (5)

In the imaging technique we introduce, harmonic wave anal-
ysis is effective because narrowband burst wave is generated 
by modulating �ber laser emission. The wave eq. (4) be-
comes

Fig. 1　Schematic �gures of external loading for two different types of la-
ser source and forces and moments applied to plate cross-section with 
in�nitesimal length. (a) Normal loading (ablation), (b) Dipole loading 
(thermo-elastic effect), (c) Element of a plate subjected to forces and 
moments.
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 −D
∂4U
∂x4
+ M0

∂δ(x)
∂x
+ Q0δ(x) = −ρhω2U. (6)

Taking Fourier transform of eq. (6) yields

 −Dk4Ū + iM0k + Q0 = −ρhω2Ū, (7)

where Ū   is the Fourier transform of U with respect to x, and 
k is the wavenumber. Rearranging eq. (7) yields

 Ū =
iM0k + Q0

D(k4 − k4
0)
, (8)

 k0 =
ρhω2

D

1/4

. (9)

From the inverse Fourier transform of eq. (8), the displace-
ment U is expressed as follows:

 U =
1

2π

∞

−∞

iM0k + Q0

D(k4 − k4
0)

eikxdk. (10)

Replacing the in�nite integral to a path integral for an appro-
priate closed path and applying this to the residual theorem 
provides the following solution:

 U =
Q0

4Dk3
0

(ieik0 x − e−k0 x) +
M0

4Dk2
0

(−eik0 x + e−k0 x), x > 0  
 

(11)

where the �rst and second terms are the contributions of the 
external concentrated load Q0 and external moment M0, re-
spectively.

If we consider the normal loading, as shown in Fig. 1(a), 
as a model of laser source by ablation where only the �rst 
term in eq. (11) is effective, then the displacement can be 
written as follows:

 Unormal =
Q0

4Dk3
0

(ieik0 x − e−k0 x), x > 0. (12)

In the dipole loading as shown in Fig. 1 (b), allowing the 
load P0 and −P0 to be applied at x =  Δx/2 and x =  −Δx/2 on 

the surface, respectively, the external moments −P0
h
2
 

(≡ −M0) and P0
h
2
 (≡ M0) are subject at x  =   Δx/2 and x  =   

−∆x/2  on the center of the plate cross-section. Then, the dis-
placement due to the moments is expressed from eq. (11) as 
follows:

 

Udipole =
−M0

4Dk2
0

(−eik0(x−∆x/2) + e−k0(x−∆x/2))

+
M0

4Dk2
0

(−eik0(x+∆x/2) + e−k0(x+∆x/2)),

x > ∆x/2.

 (13)

For small k0Δx, this equation can be approximated to

 
Udipole −M0∆x

4Dk0
(ieik0 x + e−k0 x)

=
−P0∆xh

8Dk0
(ieik0 x + e−k0 x), x > ∆x/2.

 (14)

Summarizing eqs. (12) and (14), the displacement is ex-
pressed as follows:

 U = C0(ieik0 x + S 0e−k0 x), x > ∆x/2 (15)

 C0 =
Q0

4Dk3
0

, S 0 = −1, ∆x = 0, for normal loading (16)

 C0 =
−P0∆xh

8Dk0
, S 0 = 1, for dipole loading. (17)

The term of eik0 x in eq. (15) expresses a propagating mode 
with the wavenumber k0. Because k0 provided in eq. (9) is an 
approximated solution of the A0 mode in the low frequency- 
thickness product range29), the term of eik0 x can be regarded 
as the A0 mode of the Lamb wave. The term of e−k0 x 
(= ei(ik0)x) in eq. (15) is a nonpropagating mode that affects 
in the vicinity of the source, where ik0 is regarded as the 
wavenumber of the nonpropagating mode. Because the pure 
imaginary wavenumber is an approximated solution of the 
wavenumber of the A1 mode in the low frequency-thickness 
product range, this term can be regarded as the A1 mode of 
the Lamb wave. To verify validities of the approximation, 
Fig. 2 shows the dispersion curves for a plate with thickness 
h and longitudinal and transverse velocities cL, cT  =   6300, 
3100 m/s, respectively, in the low frequency-thickness prod-
uct (fh) range. kA0 and kA1 in the �gure are wavenumbers of 
A0 and A1 modes, respectively, being obtained from 
Rayleigh-Lamb equation. The dispersion curves denote that 
kA0 and Im(kA1) become closer to k0 as fh becomes smaller 
and it can be considered that eq. (15) consists of A0 and A1 
modes in the low fh range. Figure 3 shows the displacement 
distributions for normal and dipole loadings. The horizontal 
axis is the normalized distance k0x, and the real parts of the 
term expressed within parentheses in eqs. (12) and (14) are 
plotted. In the far �eld from the source, the curves for both 
source types are almost identical because only the propagat-
ing mode is effective. However, the distributions are signi�-
cantly different in the vicinity of the source x =   0 because 
the nonpropagating mode e−k0 x affects the near �eld and the 
term S 0e−k0 x changes the sign as per the source type.

Subsequently, we consider the vibration energy. The 
time-averaged vibration energy propagating through the unit 
length of the z direction towards the +x direction is ex-
pressed as follows31,32):

Fig. 2　Dispersion curves obtained from Rayleigh-Lamb equation and 
eq. (9).
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 E = −1
2

Re −M
∂

∂t
∂u
∂x

∗
+ N

∂u
∂t

∗
, (18)

where * denotes the complex conjugate. From eq. (2), the 
�rst equation of eq. (3), and the third equation of eq. (5), the 
moment M and the shear force N are expressed in the range 
except the source point as follows:

 M = −D
∂2U
∂x2

e−iωt, N = −D
∂3U
∂x3

e−iωt. (19)

Then, eq. (18) can be rewritten as

 E = −1
2

Re iωD
∂2U
∂x2

∂U∗

∂x
− ∂

3U
∂x3

U∗ . (20)

Substituting eq. (15) into eq. (20) yields an equation inde-
pendent of x as follows:

 E = ωDk3
0C0

2. (21)

Therefore, substituting eqs. (16) and (17) into eq. (21) pro-
vides the time-averaged vibration energy for normal loading 
and dipole loading, respectively, as follows:

 Enormal =
ωQ2

0

16Dk0
3
, x 0, (22)

 Edipole =
ωP2

0∆x2h2k0

64D
, x > ∆x/2 or x < −∆x/2. (23)

When the laser irradiation generates elastic waves, Q0 and 
P0Δx in eqs. (18) and (19) are constant for constant laser 
output5,7). Therefore, considering D ∝   h3 and k0 ∝   h−1/2 in 
the same material, which are expressed in eqs. (3) and (9), 
the following relations hold at the same frequency and the 
same laser output.

 Enormal ∝ h−3/2, Edipole ∝ h−3/2 (24)

Namely, for both types of laser sources, the time-averaged 
vibration energy is proportional to h−3/2. The relationship 
between the generation energy and the plate thickness ap-
proximately corresponds to the experimental results the au-
thors presented in their previous papers12).

2.2　 Flexural wave re�ection at a plate edge
This section discusses the total re�ections at the free and 

�xed edges of a plate as a simple case of re�ections based 
on the Kirchhoff–Love plate theory. We consider the re�ec-
tion at a plate edge x  =   0 for a laser source at x  =   xS, as 

shown in Fig. 4. Then, from eq. (15), the incident waves by 
the laser source at x =  xS is written as follows:

 UI− = C0{ie−ik0(x−xS ) + S 0ek0(x−xS )}, x − xS < −∆x/2 (25)

 UI+ = C0{ieik0(x−xS ) + S 0e−k0(x−xS )} ∆x/2 < x − xS . (26)

Assuming that the re�ected wave is expressed by a linear 
sum of a propagating mode with eik0 x and a nonpropagating 
mode with e−k0 x as

 UR = C1eik0 x +C2e−k0 x, (27)

the following boundary conditions hold at x =   0 for a �xed 
edge where displacement and de�ection angle become zero 
as

 UR + UI− = 0,
∂(UR + UI−)

∂x
= 0. (28)

The following equations hold at x =  0 for a free edge where 
moment and shear force are zero, from eq. (19), as

 
∂2(UR + UI−)

∂x2
= 0,

∂3(UR + UI−)
∂x3

= 0. (29)

The coef�cients C1 and C2 in eq. (27) are determined using 
these boundary conditions. Using the boundary condition in-
dex S1 that indicates −1 for a �xed boundary condition 
eq. (28) and +1 for a free boundary condition eq. (29), the 
coef�cients C1 and C2 are obtained as follows:

 C1 = C0{−eik0 xS + (1 − i)S 0S 1e−k0 xS }, (30)

 C2 = C0{(i − 1)S 1eik0 xS − iS 0e−k0 xS }, (31)

where the source type index S0 is speci�ed by eqs. (16) and 
(17), and the boundary condition index S1 is de�ned as fol-
lows:

 S 1 = −1 for fixed-edge boundary condition, 

 S 1 = +1 for free-edge boundary condition. (32)

The time-averaged vibration energy of the re�ected wave 
is expressed by substituting the displacement of re�ected 
wave eq. (27) into eq. (20) as follows:

 ER = ωDk3
0C1C∗1. (33)

Substituting eq. (30), we obtain the energy of the re�ected 
wave as a function of the source location xS as follows:

 ER = E0[1 − 2S 0S 1e−k0 xS {cos(k0xS ) − sin(k0xS )} + 2e−2k0 xS ],  
 (34)

where E0 is expressed as

Fig. 4　Re�ection at plate edge.

Fig. 3　Displacement distributions for normal and dipole loadings.

1267Energy Analyses for the Imaging Technique of Bonded Regions and Delaminations in a Thin Plate



 E0 = ωDk3
0C2

0. (35)

This is nothing but the time-averaged vibration energy in a 
plate without any re�ections, as shown in eq. (21). Figure 5 
shows the re�ection energy variations with the source loca-
tion, in which the horizontal axis is the normalized source 
location k0xS and the vertical axis is the normalized vibration 
energy E  R/E0. Equation (34) shows two different distribu-
tions for the product of indices S0 and S1. If the source type 
is normal loading and the plate edge is a �xed boundary, or 
if the source type is dipole loading and the plate edge is a 
free boundary, then S0S1 =  +1 and the re�ection energy var-
ies as indicated by the solid line in Fig. 5. On the contrary, if 
the source type is normal loading and the plate edge is a free 
boundary or if the source type is dipole loading and the plate 
edge is a �xed boundary, then S0S1 =   −1 and the re�ection 
energy varies as indicated by the dashed line in Fig. 5. When 
the source is located far from the plate edge, e.g., k0xS >   6, 
E  R/E0 =  1 in both cases. However, when the source is locat-
ed close to the plate edge, the two curves are signi�cantly 
different. For S0S1 =  −1, the re�ection energy becomes larg-
er as the source is closer to the plate edge. In contrast, for 
S0S1  =   +1, the normalized re�ection energy E  R/E0 has the 
maximum point at k0xS ≈  1.3, and it gradually approaches to 
E  R/E0 =  1 as k0xS becomes smaller. The energy variations in 
the vicinity of re�ective objects, such as in Fig. 5, were also 
observed for notch-type defects in our previous study14).

However, one cannot measure only re�ected waves at 
small xS in actual measurements of re�ected waves, and the 
displacement �eld can be obtained at x >   xS in the form of 
interference of re�ected wave U    R and incident wave U    I+ as 
follows:

 

UR + UI+ = C1eik0 x +C2e−k0 x +C0{ieik0(x−xS ) + S 0e−k0(x−xS )}
= (C1 + iC0e−ik0 xS )eik0 x + (C2 +C0S 0ek0 xS )e−k0 x

x > xS .

  
 (36)

The vibration energy of the interfered wave �eld is obtained 
in a similar form of eq. (33) as follows:

 ER&I+ = ωDk3
0(C1 + iC0e−ik0 xS )(C1 + iC0e−ik0 xS )∗. (37)

Substituting eq. (30) into eq. (37) yields

 
ER&I+ = 2E0[1 − sin(2k0xS ) − 2S 0S 1e−k0 xS {cos(k0xS )

− sin(k0xS )} + e−2k0 xS ].
 (38)

Similar to eq. (34), this equation also shows the energy vari-
ations with the source location, being plotted in Fig. 6. For 
large k0xS, because e−k0 xS becomes negligibly small and 
E  R&I+ is approximated to 2E0{1 −   sin(2k0xS)}, E  R&I+/E0 be-
comes a sinusoidal distribution independent from S0S1, with 
the mean level of 2.0 and with the variation period of λ/2, 
where λ is the wavelength of the �exural wave. When a 
source is located in the vicinity of the plate edge, E  R&I+ be-
comes larger as k0xS becomes small for S0S1  =   −1, and 
E  R&I+/E0 converges to zero for S0S1 =  +1.

3.　 Energy Analysis for a Plate with a Junction Using a 
Semi-Analytical Finite Element Method

As the classical plate theory based on the Kirchhoff–Love 
hypothesis explicitly expresses vibration energy as eqs. (22), 
(23), (34), and (38), it is considerably effective to analyze 
the �exural vibration in a plate. However, the classical theo-
ry, considering the displacement only in the plate thickness 
direction, cannot be used when longitudinal vibration such 
as the S0 mode of the Lamb wave and other higher order 
modes affect vibration in a plate, which implies that it can-
not be applied to partial re�ection and transmission at re�ec-
tive objects such as cracks, defects, delamination, and bond-
ing areas, precisely. Therefore, many theoretical studies 
were presented to solve the problems. For example, Mindlin 
derived approximated solutions for Rayleigh-Lamb exact 
theory that can be applied in higher fh range by considering 
rotary inertia and shear stresses33,34). Rokhlin investigated 
Lamb wave propagation in a plate with an inner crack with 
�nite width and revealed resonance phenomena due to mul-
tiple re�ections at the edges of a delamination35,36). More-
over, Rokhlin and Bendec theoretically elucidated Lamb 
wave motions around a junction and a bonded region of two 
elastic sheets and con�rmed turning phenomena at a junc-
tion and resonance in a bonded region37). However, theoreti-
cal treatment generally escalates the complexity as the geo-
metric shape and boundary conditions become complex. 
Calculation techniques such as �nite difference method and 
�nite element method are powerful tools to clarify such 

Fig. 5　Re�ection energy from plate edge for various source locations. Fig. 6　Total energy at x <  xs for various source locations.
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complex wave propagation23,38,39). The �rst author also de-
veloped a SAFE method and its combination technique with 
a �nite element method for examining the Lamb wave mo-
tion at defects such as cracks and wall thinning14,24). Our 
previous paper14) discussed the effect of a vertical crack to 
images obtained in the SLS measurements, in which the ver-
tical crack was expressed by connecting two SAFE regions. 
Prior to discussing �exural wave around a bonded region 
and delamination, this section investigates the �exural wave 
energy generated at a laser source close to a branch junction 
point of two thin plates.

Figure 7 is a schematic �gure of the branch junction part 
in the SAFE calculations. One plate of thickness h1 (region 
1: x <   0) and two thinner plates of thickness h2 (regions 2 
and 3: x >  0) connect at x =  0. Displacement �elds in the re-
gions 1, 2, and 3 were calculated so that the displacements 
and nodal forces could satisfy their continuities at the junc-
tion x =  014,23,24). The number of layered elements in region 
1 was set to 33, and those in regions 2 and 3 were set to 16. 
All layer elements had identical thickness, and one layer gap 
of thickness h1/33 was inserted between regions 2 and 3, re-
sulting in h2 =  16h1/33. All regions were assumed to be alu-
minum alloy plates with longitudinal velocity cL =  6300 m/s 
and transverse velocity cT  =   3100 m/s in the calculations 
shown below.

The time-averaged energy by the waves propagating 
through the cross-section of a plate of thickness h is ex-
pressed by the following form using a velocity vector v and 
a stress matrix T14,28),

 E = −1
4

h/2

−h/2
(v∗ · T + v · T∗) · x̂dy , (39)

where x̂ is a unit vector normal to the cross-section through 
which the vibration propagates. Figure 8 shows the varia-
tions of energy traveling toward the −x direction in region 1 
(E1) and traveling toward the +x direction in region 2 (E2) 
for various source locations xS. The energies E1 and E2 are 
obtained as eq. (39) by integrating over the cross-section 
with thickness of h1 and h2 respectively and normalized by 
E01 and E02 in the graph, where E01 and E02 are the time-av-
eraged cross-sectional energies propagating in one direction 
in a plate of thickness h1 and h2, respectively, without any 
re�ective objects for the same incident conditions: (a)–(d) 
for normal loading; (e)–(h) for dipole loading; (a), (c), (e), 
(g) for E1/E01; (b), (d), (f), (h) for E2/E02; (a), (b), (e), (f) for 
fh1 =  10 kHz mm; and (c), (d), (g), (h) for fh1 =  50 kHz mm.

E1/E01 (Fig. 8(a), (c), (e), (g)) at xS/h1 <   0 are approxi-
mately sinusoidal curves with an amplitude of approximate-
ly 0.5, a mean level of 1.0, and a period of λA0−1/2, where 
λA0−1 is the wavelength of the A0 mode in region 1. Howev-
er, E2/E02 (Fig. 8(b), (d), (f), (h)) at xS/h1 >   0 are curves 

with a mean level of approximately 1.3 and with a period of 
λA0−2/2, where λA0−2 is the wavelength of the A0 mode in re-
gion 2. These results denote that the energy variations are 
caused by the interferences between the re�ected waves at 
the junction and the incident wave propagating away from 
the junction, which corresponds to the results in the total re-
�ection at a plate edge, as shown in Fig. 6, in the previous 
section. The difference in the mean level between E1/E01 
and E2/E02 is caused by the difference in the re�ection level 
at the junction. Namely, the re�ection is small when waves 
travel from the thick region 1 to the thin region 2. In con-
trast, the re�ection becomes larger when the waves transmit 
from the thin region 2 to the thick region 1. Moreover, in all 
cases, when the laser source is located at the thin region 2 
(xS/h1 >   0), the mean level of energy becomes larger. This 
corresponds to eq. (24), in which the �exural wave energy 
becomes larger for a thinner plate.

Similar sinusoidal curves can be seen at xS/h1  >   0 in 
Fig. 8 (g). The curve in this region indicates the variations of 
transmitted energy and a period of the curve is slightly larg-
er than the wavelength of A0 mode in the region 2 (λA0−2). 

Fig. 7　Schematic �gure of the junction of three SAFE regions.

Fig. 8　Variation in elastic wave energy generated for various source loca-
tions. (a) E1, normal loading, fh1 =  10 kHz mm, (b) E2, normal loading, 
fh1 =  10 kHz mm, (c) E1, normal loading, fh1 =  50 kHz mm, (d) E2, nor-
mal loading, fh1 =  50 kHz mm, (e) E1, dipole loading, fh1 =  10 kHz mm, 
(f) E2, dipole loading, fh1  =   10 kHz mm, (g) E1, dipole loading, fh1  =   
50 kHz mm, (h) E2, dipole loading, fh1 =  50 kHz mm.
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Therefore, we cannot conclude the reason of the periodical 
variation only from the result. It would be consequences of 
phase of the incident wave at the junction as well as trans-
mitted wave in region 1 and re�ected wave in region 3.

Comparing these curves in the source types, the energy 
variations are signi�cantly different in the vicinity of xS/h1 =  
0. For normal loading, the energy varies continuously at xS/
h1 =  0, whereas, for dipole loading, the energy variations be-
come discontinuous at xS/h1 =  0. For example, if we careful-
ly observe E2 ((b), (d), (f), (h)) at the source location of xS/
h1 >   0, the energy E2 becomes small around xS/h1  =   0 for 
normal loading ((b), (d)), but considerably large at xS/h1 =  0 
for dipole loading ((f), (h)). These calculation results agree 
well with the theoretical solutions for the total re�ection, as 
shown in Fig. 6, if the junction xS/h1  =   0 is regarded as a 
�xed boundary. The difference of energy variation in the 
source types around xS/h1  =   0 corresponds to the effect of 
the S0S1 term in eq. (38) that is caused by the interference 
between an evanescent mode generated at a laser source, the 
term of ek0(x−xS ) in eq. (25), and an evanescent mode generat-
ed at the boundary, the term of e−k0 x in eq. (27).

4.　 Energy Analysis for a Plate with a Bonded Region 
and a Delamination

This section discusses the �exural wave energy generated 
by laser around a bonded region and a delamination. These 
structures consist of two junctions that were discussed in the 
previous section. Bonded regions and delaminations were 
modeled by the combinations of SAFE regions and a �nite 
element (FE) region. Figure 9(a) is the bonded region model 
expressed by four SAFE regions and one FE region, and 
Fig. 9(b) is the delamination model by two SAFE regions 
and one FE region. The SAFE regions and the FE region 
were divided into elements at regular intervals in the thick-
ness direction, where the numbers of elements are 33 for 
thickness h1 and 16 for thickness h2. In Fig. 9(a), one layer 
gap is inserted between the SAFE regions 1 and 2, and the 
SAFE regions 3 and 4. In Fig. 9(b), small elastic coef�cients 
were set to the center layer in the FE region to model a layer 
gap of the delamination. The widths of the FE region w =  h1, 
5h1, and 10h1 were considered, where the numbers of ele-

ments in the width direction were 30, 150, and 300, respec-
tively.

Figure 10 shows the variations of the energy propagating 
towards the +x direction in the SAFE region 1 in Fig. 9(a) 
(E1) for various source locations xS around a bonded region. 
The energy E1 is normalized by E01, that is, the energy prop-
agates in one direction in a plate of thickness h1 without any 
re�ective objects under the same generation conditions. The 
bonded regions are shown in gray, where the center of the 
regions are x =  0. Figure 10 shows the variations in the ener-
gy generated around a bonded region at two different fre-
quencies fh1  =   10 kHz mm ((a) and (c)) and fh1  =   50 kHz 
mm ((b) and (d)), and for two source types of normal load-
ing ((a) and (b)) and dipole loading ((c) and (d)). All curves 
at the right regions of the gray zones xS/h1 >  w/(2h1), indi-
cating the energies generated at the right regions and propa-
gated towards the right direction, are caused by the interfer-
ences between the incident wave from the source and the 
re�ected waves at the bonded region because they have a pe-
riod of λA0−1/2. The mean levels at the right regions were 
larger than the energy levels of the gray bonded regions. 
This phenomenon roughly agrees with eq. (24) in which 
larger energy is generated at a thinner plate. The curves at 
the left regions show the energies transmitted through the 
bonded regions for a laser source at the left region 3. The 
transmitted energies are slightly larger than the energies at 
the gray bonded regions, which are also caused by the phe-
nomena that the �exural wave energy generated is smaller at 
the bonded region.

Comparing normal and dipole loadings, the energy varia-
tions at the boundaries are signi�cantly different; the energy 
curves vary continuously at the boundaries between the 
bonded region and the separation regions in normal loading, 
while the energy curves vary discontinuously at the bound-

Fig. 9　Calculation regions in the SAFE and FE combined method. (a) 
Bonded region model, (b) Delamination model.

Fig. 10　Variation in elastic wave energy generated for various source loca-
tions around a bonded region. (a) fh1 =  10 kHz mm, normal loading, (b) 
fh1 =  50 kHz mm, normal loading, (c) fh1 =  10 kHz mm, dipole loading, 
(d) fh1 =  50 kHz mm, dipole loading.
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aries in dipole loading. In particular, signi�cant energy 
change is observed at the right boundary in dipole loading. 
This abrupt change in energy was also observed for a junc-
tion in Fig. 8.

Figure 11 shows the variations of energy propagating in a 
plate with a delamination towards the +x direction for a laser 
source located at various positions xS. The energy E1 is nor-
malized by E01, that is, the energy generated and propagated 
in an in�nite plate with the same thickness (h1). The energy 
curves were calculated at two different frequency-thickness 
products and for two types of laser sources.

In the case of small width w =  h1, E1/E01 is approximately 
1.0 at any source positions because waves transmit through 
the small delamination without re�ections at both frequen-
cy-thickness products and for both source types. We can un-
derstand this phenomenon qualitatively by considering lon-
gitudinal waves through two parallel boundaries of 
semi-in�nite media and a thin plate. When the plate inserted 

between two semi-in�nite media is in�nitely thin, the re�ec-
tion at the boundaries becomes zero. A small delamination 
of w =  h1 also did not affect the re�ection and transmission 
like the longitudinal wave at the in�nitely thin plate. In the 
case of w =  5h1 and 10h1, the energies vary due to re�ections 
at the delamination. As seen in Fig. 8 and Fig. 10, the energy 
varies at a period of λA0−1/2 in the region 1 showing the in-
terference between incident wave and re�ected wave. The 
energy variations are continuous at the left and right bound-
aries of the delamination (xS =  ±w/2) for normal loading in 
Fig. 11(a) and (b), while the energy variations abruptly 
change at the boundaries for dipole loading in Fig. 11(c) and 
(d). These energy variations also correspond to those in 
Fig. 8 where the curves were continuous at the junction for 
normal loading and discontinuous for dipole loading.

Considering the above-mentioned results, we can con-
clude that the dipole loading is more effective for detecting a 
bonded region and a delamination because distinct energy 
variations can be obtained at boundaries between bonded 
and separated regions.

5.　 Experimental Veri�cations by Imaging Bonded Re-
gions

In this section, the calculation results discussed earlier are 
veri�ed using the SLS imaging experiments for a bonded 
plate. Figure 12 shows the experimental setup and the speci-
men used. Because the experimental system is the same as 
that in our previous studies14–16), it is brie�y described in 
this section. The �ber laser equipment of 50 W and 1070 nm 
irradiated laser pulses at the repetition rate of 580 kHz, and 
the laser pulses were modulated by 5-kHz and 6-cycle rect-
angular burst signals. This resulted in the generation of 
5-kHz and 6-cycle burst elastic waves in the test plate. The 
laser from the �ber laser equipment was focused on the plate 
surface using a collimator and a focusing lens. The laser 
spot was rastered at 2-mm increment over the region of 
200 mm ×  100 mm (101 ×  51 grid points). Because the laser 
burst trains were irradiated at the repetition frequency of 
20 Hz, it required approximately 1/20 Hz  ×   101  ×   51  =   
260 s to complete the measurements. The elastic waves were 
received by a piezoelectric device with the nominal frequen-
cy of 4.0 kHz attached on the plate surface at the center of 
the right edge. The signals received were ampli�ed at 60 dB 

Fig. 11　Variation in elastic wave energy generated for various source loca-
tions around a delamination region. (a) fh1 =  10 kHz mm, normal load-
ing, (b) fh1 =  50 kHz mm, normal loading, (c) fh1 =  10 kHz mm, dipole 
loading, (d) fh1 =  50 kHz mm, dipole loading.

Fig. 12　Experimental setup and a test plate.
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and the digitized waveforms in 3 ms were recorded. The test 
plate is shown in Fig. 12; two aluminum alloy plates with di-
mensions 600 mm ×   400 mm ×   1 mm were adhered by ep-
oxy adhesive at the center band of w =  20 mm, as indicated 
by dashed lines on the plate in Fig. 12.

Because the laser output is not considerably high as to 
damage the plate surface due to ablation, the thermo-elastic 
effect, i.e., dipole loading, is dominant in the elastic wave 
generation. In the experiments, the laser beam was focused 
to a small circular spot and the radial stress generates axi- 
symmetrically, which is not exactly equivalent to the dipole 
loading we discussed so far. However, the experimental re-
sults can be discussed qualitatively by comparing with the 
calculation results Fig. 10 (c) for the dipole loading and for 
the bonded region as shown in Fig. 9 (a).

Fourier spectra of the received signals were calculated, 
and the peak values of the Fourier spectra at 5 kHz were 
normalized by the maximum value and were plotted for ras-
tering positions in gray scale as shown in Fig. 13. A straight 
light gray band of width 20 mm can be clearly observed at 
the center of the image, which indicates that the energy gen-
erated at the bonded region and reached the receiving device 
was small. In particular, the boundaries between the bonded 
region and the separated regions can be distinctly observed 
due to discontinuity of the distribution. Moreover, vertical 
striped patterns are observed in the right separated region. 
Because the wavelength of the A0 mode in a 1-mm-thick 
aluminum plate is approximately 45 mm at 5 kHz, the wavy 
patterns are about a half period of the wavelength of the A0 
mode, indicating the interference between incident wave and 
re�ected wave. The black and gray lines in Fig. 14 are the 
distribution of the peak values at the horizontal centerline of 
Fig. 13 and the calculation results shown in Fig. 10 (c). This 
�gure clearly shows these features of the distribution; i.e. 
abrupt change at the boundaries and periodical variation 
with λA0_1/2. Although the experimental amplitude gradual-
ly decreases from the right to the left due to the diffusion 
and attenuation, these features of the distribution agree well 
with the calculation result, which depict that the calculation 
results obtained are valid and the imaging technique using 
the SLS is bene�cial for bonded regions.

6.　 Conclusions

Flexural wave energy generated by laser was examined 
using the Kirchhoff–Love plate theory and a SAFE method 
in order to investigate the application of the SLS technique 
to imaging of bonded regions and delaminations in plate 
structures. First, the theoretical solutions for �exural wave 
energy reveal that the energies generated in both source 
types, normal loading and dipole loading, are proportional to 
h−3/2, where h is the plate thickness. Theoretical solutions 
also revealed that the energy re�ected at a plate edge varies 
with the source type when a laser source is located close to 
the plate edge. Subsequently, �exural wave energies generat-
ed in a plate with a junction, a bonded region, or a delamina-
tion were calculated using the SAFE. The calculation results 
showed a decrease in the generation energy when a laser 
source is located at a thick bonded region. Moreover, the en-
ergy variations were caused by the interference between in-

cident and re�ected waves. For dipole loading, the genera-
tion energy varies discontinuously at the boundaries between 
bonded and separated regions, which imply that a bonded re-
gion and a delamination can be detected more distinctly for 
the dipole loading. In the SLS experiment, the image of a 
bonded region provided similar results with the calculated 
results; this experimental result revealed that the imaging 
technique using the SLS is bene�cial for the bonded region.
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