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There are two kinds of ‘“‘quotient ring”. One is called a classical
quotient ring, that is, an extension ring Q(R) of a ring R is called an classical right
quotient ring of R if

(i) B>,

(i1) every element of Q(R) has the form ac”
regular element of R,

(iii) every regular element of R has an inverse in Q.

In [6], [7], [19], [20] and [21] etc., many authors studied the structure of
those rings which have an artinian classical right quotient ring. Such rings have
finite dimensions in the sense of Goldie. It seems to the author that there does
not exist too many rings with infinite dimensions which have the classical
right quotient ring (even when the right singular ideal of such rings vanishes).

The other quotient ring is called a (homological) quotient ring and was
defined by R. E. Johnson [10], Y. Utumi [22], G. D. Findlay and J. Lambek
[5]- An extension ring S of a ring R is a right quotient ring of R if for each
a, 0£be S, there exist r&R and n=Z such that ar+nasR and br+nb=0,
where Z is the ring of integers. If R is a left faithful ring, then R has a unique
maximal right quotient ring R. In particular, if R has zero right singular ideal,
then Risa right self-injective von Neumann regular ring. So when we investigate
rings with zero right singular ideal, it is useful to consider the (homological)
maximal right quotient rings of such rings. But a ring R need not be semi-prime
even in the case where R is simple and artinian, as the following example shows.
Let D be a right Ore domain and let F be the right quotient division ring of D.
We put

! where a,cERand ¢ is a

all
R=1{| %

aﬁl

0---0
0011 4,eD [ and R = (), .

Then R is the maximal right quotient ring of R. The above example suggests
that there are even various those rings which have the simple artinian maximal
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right quotient ring. So it is important to investigate those rings which have a
self-injective von Neumann regular ring as the maximal right quotient ring.
In [15] R. E. Johnson defined potent rings and determined those potent rings
which have the simple artinian maximal right quotient ring. A ring R is
called a potent ring if every non-zero closed right ideal 4 of R is potent, that is,
A”+0 for all n>>0. The main theme of this paper is to investigate those potent
rings which have a right self-injective von Neumann regular ring as the maximal
right quotient ring. After several definitions (section 1) we define, in section 2,
the concepts of residue-finite and locally residue-finite rings and show that a
right locally uniform potent ring with zero right singular ideal which is locally
residue-finite is an essentially irredundant subdirect sum of potent irreducible
rings with zero right singular ideal and conversely. In section 3, we investigate
countably dimensional potent irreducible rings with zero right singular ideal (for
short: CPI-rings). We define the concept of rings which have matrix repre-
sentable conditions (m. r. conditions) and give examples of residue-finite CPI-
rings with m. r. conditions. If R is a residue-finite CPI-ring, then the set of
closed two-sided ideals is a chain and there are the following two cases:

A: R=T,>OT,D>T,D>--DT,D-+and (|5,T,=0,
(B): There exists an integer p such that
R=T>oT>T,5---2T,OT,,=0.

If R satisfies the condition (A), then we call the ring R of type (A). If R
satisfies the condition (B), then we call the ring R of type (B). We give, in
Theorem 3. 22, a characterization of CPI-rings with m. r. conditions which are
of type (A). In section 4, we give a characterization of CPI-rings with m. r.
conditions which are of type (B). We also show that if the maximal right quotient
ring Rofa ring R is also a left quotient ring of R, then R is of type (B) which has
m. r. conditions. This is a generalization of Faith’s result [2] on prime rings.
In section 5, we give a necessary and sufficient condition that the maximal right
quotient ring of a right locally uniform potent ring with zero right singular ideal
is a left quotient ring of the same ring. In section 6, we generalize some of
Goldie’s results on semi-prime Goldie rings to the cases of potent rings or
infinite dimensional semi-prime rings. In section 7, applying the methods
developed in section 2 to modules, we give a characterization of semi-prime
modules over a locally uniform semi-prime ring with zero right singular ideal.

Some of the results in this paper were announced without proofs in [17]

and [18].

1. Definitions and notations

Let R be an associative ring and let M be a right R-module. A non-zero
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R-submodule U of M is uniform if U is an essential extension of every non-
zero R-submodule contained in U. An R-module M is said to be locally
uniform if any non-zero R-submodule of M contains a uniform R-submodule.
Clearly, if M is finite dimensional in the sense of Goldie, then M is locally
uniform. M is called countably dimensional if M contains a direct sum of coun-
table infinite R-submodules but M does not contain a direct sum of non-
countable R-submodules. An R-submodule C of M is called closed if it has
no proper essential extensions in M. Clearly, the concept of closed submodules
of M coincides with the one of complemented submodules in the sense of Goldie
[7]. A submodule L of M is called large if M is an essential extension of L (in
symbol: Lc’M). ‘

In the case M=R, adapting the terminology of the above, we use the terms
uniform right ideal and right locally uniform ring and so on. We call Zx(M)=
{meM|mE=0 for some EC’R} the singular R-submodule of M. In particular,
Zg(R) is an ideal. We call Zz(R) the right singular ideal of R and denote it by
Z,(R). If Zp(M)=0, then each non-zero submodule N of M has a unique
maximal essential extension N* in M. In this paper, we assume that all rings
have zero right singular ideals. If S is a non-empty set of elements of R, then
we define S"={x=R|Sx=0}. The set S” is a right ideal of R and is the right
annihilator of S. The left ideal S’ is defined in a similar manner and is the left
annihilator of S. Any right ideal of the form S”, where S is a non-empty subset
of R, is an annihilator right ideal. 'The set L,(R) (=L,) of closed right ideals is
a complete complemented modular lattice under the inclusion. If {C;|i=I} is
any collection of closed right ideals of R, then X, C;=(3c; C)* If
(J,: N, U) denotes the lattice of all annihilator right ideals of R, then it is
easily seen that J,SL,. For convenience, we put L,,=L,NL,and J,,=],NL,
where L, is the set of two-sided ideals of R. Corresponding left properties of a
ring R are indicated by replacing each ‘“#”’ by an “I”. If R is right locally
uniform, then L, is an atomic lattice and A< L, is an atom if and only if 4 is a
closed uniform right ideal. We say that right ideals I and J are similar if and
only if Ep(I)=Eg(]), where Eg(I) is an injective hull of I as a right R-module
(in symbol: I~ J). Itis clear that if 4 and B are uniform right ideals of R,
then A~B if and only if 4 and B contain mutually isomorphic non-zero right
ideals A’ and B’ respectively. A ring Rissaid to be right irreducible if and only
if R is right locally uniform and A~B for all uniform right ideals 4 and B of
R. A right locally uniform irreducible ring with zero right singular ideal is
called an I-ring. We note that a ring R is an [-ring if and only if R is an I-ring
in the sense of R.E. Johnson [15]. Following R. E. Johnson, we call a ring R
a right potent ring (for short: P-ring) if every non-zero closed right ideal of R is
potent. An I-ring which is also a P-ring will be called a PI-ring. A ring R is
said to be residue-finite if the following conditions is satisfied:
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The factor ring R/T is finite dimensional as a right R-module for any non-
zero T€L,,.

If R is finite dimensional, then R is residue-finite. If R is a prime ring,
then R is residue-finite, because L,,={0, R}. A PI-ring which is countably
dimensional will be called a CPI-ring. Let M be a right R-module. If M is
n-dimensional in the sense of Goldie, then we write n=dimzp M. A ring S is
called a right quotient ring of a subring R if for each a, 0=bES, there exist
rER and nEZ such that ar+nac=R and 0=£br-+nr, where Z is the ring of
integers (in symbol: R<.S). A left quotient ring is defined similarly. If Sisa
left and right quotient ring of R, then we write R<,S. If R has zero right
- singular ideal, then S is a right quotient ring of R if and only if S is a right
quotient ring of R in the sense of R. E. Johnson (see. [2]).

Concerning the terminologies we refer to [7] and [15].

2. Locally residue-finite P-rings

In this section it is shown that it suffices to find the structure of a residue-
finite PI-ring in order to determine the structure of an arbitrary locally
residue-finite P-ring” which is a right locally uniform ring with zero right
singular ideal. We start with the proposition which is a generalization of
Goldie’s result [7] on finite dimensional rings to infinite dimensional modules.

Proposition 2. 1. Let M be a right locally uniform R-module with
Zg(M)=0 and let N be an R-submodule of M and let N* be a unique maximal
essential extension of N in M. Then N*={me&M |mESN for some EC'R}.

Proof. We put N'={meM|mEZN for some EC’R}. Clearly, N’ is an
R-submodule which contains N. If meN’, then 0mE < N, where E is a
large right ideal and thus 0=mECmRNN. Hence NC’N’ as right R-modules
and thus N*2N’. Conversely, let x&N* and let E={r&R|xr&N}. Then
we have EC’R and xES N. Hence N*< N’ and we obtain N*= N’ as
desired.

Let R be a right locally uniform ring with Z,(R)=0 and let R be the
maximal right quotient ring of R. Then K is a right self-injective (von Neumann)
regular ring and the mappings

A — Eg(A), ASL,(R); A— ANR, AcL,(R)
are mutually inverse isomorphisms between L,(R) and L,(fé), where Eg(4) is

a right R-injective hull of 4 in R (see [2]). Let A be a right ideal of R. Then
we write the R-injective hull of 4 in K by A. Clearly, A is a right ideal of R

1) The term “locally residue-finite rings” will be defined in this section,
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R and is right Ii’-injective. Now the set of all uniform right ideals of R can be
classified by the similartity. {4,} will denote the class containing the uniform
right ideal 4,. We set R,=(34c(as 4)* and call R, an irreducible component
of R. Then we obtain

Proposition 2.2. Let R be a right locally uniform ring with Z,(R)=0.
Then

(1) Daciam 4 s a two-sided ideal.

(2) R, is a two-sided ideal.

(3) If B is a uniform right ideal of R and if BE R, then B~A4,,.

(4) The sum 3 R, is a direct sum.

Proof. (1) Let A be a uniform right ideal and let 4* be a unique maximal
essential extension of 4 in R. Then A* is an atom of L,. Hence if x is an
element of R, then we obtain #"24* or x"N A*=0. From these (1) follows
immediately. ‘

(2) Weput R,’=>4c(a, 4 and let a be an element of R, and let 7 be an
element of R. Then, by Proposition 2. 1, aESR,’ for some EC’R and hence
(ra)E=r(aE)SR,’ by (1). Again, by Proposition 2. 1, 7acR,. Hence R, is
an ideal. '

(3) Let B be a uniform right ideal of R, and BE R, for some . Then
there exists an independent set {B;} of uniform right ideals which satisfies
Ay~B; and ), $B;c’R,’, because R is right locally uniform. Then
BN (3 ®B;)+0 and the mapping

0;:5—b;, where b=73,b,=BNC; BB),

is a monomorphism or zero by Lemma 5. 4 of [8]. Hence B~B; for each
7 such that 6,0 and thus B~A4,,.

(4) We assume that R,N (3s+, Re)=F0. Then, applying the method of
proof of (3) for a uniform right ideal B contained in R, N (> g+4 Rpg), we obtain
B~A4, and B~A4; for some B=+«. This is a contradiction and hence the
sum >, R, is a direct sum.

Proposition 2. 3. Let R be a right locally uniform ring with Z (R)=0, let
{RslaaEA} be the irreducible components of R and let R be the maximal right
quotient ring of R. Then

(1) R, is a right self-injective, regular and prime ring with a minimal right
ideal.

2) R, is the maximal right quotient ring of R,.

(3) L(R)—{IEL(R)ISR,}.

(4) If R is a potent ring, then R, is a Pl-ring.

Proof. (1) If 4 and B are uniform right ideals such that A~B, then
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A=B and A is a minimal right ideal of R. Hence R, is an R -injective hull of
the sum of all mlnlmal right ideals which are isomorphic to A, and thus R, is a
direct summand of R and is an two-sided ideal of R by the same argument as in
(2) of Proposmon 2.2. From these (1) follows immediately.

(2) Since R is a regular ring and is a right self-injective ring by (1), it is
enough to prove that R,\DOR,asa right R,-module. Let ¢ be a non-zero element
of R,. Then there exists 7R such that 0+greRN R,=R,. Since R,R;=0
(a=%R), >}s DR,C'R and Z,(R)=0, we obtain ¢grR,+0. Hence there exists
' €R,, such that 0%¢(rr')=(qr)” =R, and r’ ER,, as desired.

(3) Letl be a closed right ideal of R such that ICR,,. Then Ii is a direct
summand of R,,, and hence Je L,(R,,,) Since I=InR= (In Rm) NR=
In (R NR)=INR,, we obtain I L,(R,). Conversely, let I be a closed right
ideal of R, and let I_E ro(I). Then clearly I is a right ideal of R and is a
direct summand of K. Hence I L,(I@) Since INR=(In R,,,) NR=IN
(R,NR)=INR,=I, we obtain IcL,(R) and ISR,

(4) follows from (1) and (3).

Let R be a right locally uniform potent ring with Z,(R)=0. Then R is
saidt to be locally residue-finite if and only if the irreducible components of R
are residue-finite as a ring. By Proposition 2. 3, if R is locally residue-finite,
then R, is a residue-finite PI-ring for each a.

Now we set

(2.4) P, = (Zp+aRe)* and R,=R/P, for each &. Then the following lemma
holds.

Lemma 2.5. (1) P, is a two-sided ideal of R.
(2) N waZO and n Brl:mpﬂzlzo'

(3) R,\DR, as right R,-modules.

(4) If R, is a residue-finite PI-ring, then so is R,

Proof. (1) and (2) are trivial.
(3) The mapping
x—>x=xt+P,

is a ring monomorphism from R, to R,, where x&R,. Hence we may assume
that R,OR,. Let & be a non-zero element of R, where x&P,, x=R. By
Proposition 2. 1, xEC R, PP, for some EC’R. Clearly (ENR,)B(ENP,)C'R.
If x(EN R,)=0. then x[(ENP,)P(ENR,)]=xENP,)SP,, because P, is an
ideal and hence x= P¥=P, by Proposition 2. 1. This is a contradiction and
hence 0%+ x(ENR,)SR,, ie., xR,NR,2xENR,)*0. Hence R,'\DOR, as
right R,-modules.

(4) By (3), we may assume that R,2 R, 2R, By Theorem 4 of [2, p. 70],
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L,(R,) is isomorphic to L,(R,) under the contraction. Hence if R, is a residue-
finite PI-ring, then R, is a residue-finite P/-ring.

RemMARK. If R is a right locally uniform ring with Z,(R)=0, then (1)~(3)
hold and R, is an I-ring.

Let S be a subdirect sum of a family {S,} of rings (that is, ScII, S, and
the projection S — S, is onto for each a). The subdirect sum will be called
essentially irredundant if and only if I1, S,'\D>PB(SNS,) as right S-modules
(see [2]).

Let #=(%,) be a non-zero element of II, R, and let X,=0 for some a.
We put E,={reR,|2,rR,}. Then, since R,c’R,, we obtain R,\DE, as
right R,-modules. Since Z (R,)=0, there exists an element r of E, such
that 0+x,7=R,. Hence 0+xr=%,,ZR,Z 3 D(RN R,).

Now, we can summarize the above-mentioned results as follows:

Theorem 2.6. Let R be a right locally uniform (potent) ring with Z ,(R)=0
and let {R,} be as in (2.4). Then R is an essentially irredundant subdirect sum of
{R,} and R, is a (potent) I-ring for each cr. Furthermor, if R is locally residue-
finite, then R, is residue-finite.

We now give a converse of Theorem 2. 6.

Theorem 2.7. Let {R,} be a family of Pl-rings and R be an essentially
irredundant subdirect sum of {R,}. Then

(1) R s a right locally unifrom potent ring with Z (R)=0.

(2) If R, is residue-finite for each o, then R is locally residue-finite.

Before proving this, we establish the following proposition, which is of
interest in itself.

Proposition 2.8. Let S be a ring. Then S is a right locally uniform ring
with Z,(S)=0 if and only if S is an essentially irredundant subdirect sum of {S,},
where S, is an I-ring for each . Furthermore {S,} are the irreducible components
of S, where S,=S,N S.

Proof. The “only if”’ part was proved by Theorem 2. 6. The “if”’ part:
we first prove that S is a right locally uniform ring with Z,(S)=0. Let S, be

the maximal right quotient ring of S, for each @. Then S, is a full left linear
ring over a diviAsion ring. We set K=II,S,. Then, by Proposition of [16,
p. 72], K=I1, S, is the maximal right quotient ring of S. By Theorem 3. 9 of
[2, p. 117], K is right self-injective, right locally uniform and regular as a ring.
Hence S is a right locally uniform ring with Z,(S)=0.

~ Before proving that {S,} are the irreducible components of .S, where S,=
S, NS, we need the following two lemmas.
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Lemma 2.9. S, is a right quotient ring of S,,.

Proof. Let 5, be a non-zero element of S,. Then 035,53, BS, for
some s&S and hence 5,s€8,. Since Z,(S)=0, 3,HS,c’S and S,Ss=0
(a=+RB), we obtain §,5S,+0. Hence 0%5,5€35,5,NS, for some s'&S,.
Since Z,(S,)=0, S, is a right quotient ring of S,.

Lemma 2.10. (1) S,=L,(S)and S, is an I-ring as a ring for each o.

(2) If A is a uniform right ideal of S contained in S,, then A is a uniform
right ideal of the ring S,,.

(3) If A, is a fixed uniform right ideal of S contained in S, and if A is an
arbitrary uniform right ideal of S, then A~A, if and only if ASS,.

Proof. (1) Clearly S, is an ideal and S,N (X g+, Sg)=0. Let L bea
right ideal of S such that L22.S, and let a=(a,)eL, a&§S,. Then a0 for
some B=a. Since, by lemma 2.9, S, is a right quotient ring of S,, there
exists an element xg of Sy such that 04=azxs=.Ss and OA:l:anB=axgeLﬂ Spg.

Hence LN (32 g4 Sp)+0 and thus S,&L,,(S). Since §m=§m is the full ring
of linear transformations in a right vector space over a division ring, S, is an
I-ring as a ring.

(2)  We may assume that A4 is closed. Assume that A4 is not a uniform
right ideal of S,. Then there exist right ideals 4; (=1, 2) of S, such that
A2A,PA, Since S=TI, S,, we obtain Es(4)=Es(A)2Es,(4,)®Es,(4,) in
S and Es,(4,) is a right ideal of S (j=1,2). Hence E,(4,)NS=+0 and
A=E{A)N S2(Es,(4,)NS)PB(Es,(4;)NS). This is a contradiction and hence
A is a uniform right ideal of S,,.

(3) First suppose that S,24. By (1) and (2), 4, and 4 contain non-
zero right ideals 4,” and A4’ of S,, respectively, such that 4,’~A4’ as an S,-
module. Then Ey(A)=Es,(A)=Es,(A")=Es,(A,))=Es,(4,)=Es(4,) and
thus A~A4,. Conversely, suppose that A~A,and A<ES,. If ALSs for
each 3, then AN S;=0 and hence A" 2.S,, because S is an ideal of S. This
contadicts Z,(S)=0 and $'D 33, S,. Hence A Sgfor some B+« and thus
AQSAB. On the other hand, since A~A, we obtain A~ fim and hence
0:|:AAAO,;§B§‘,,=0, which is a contradiction. Hence if A~A4,, then A4S S,,.
This completes the proof of Lemma 2. 10.

Clearly S,=(3la~4,4)* by Lemma 2. 10 and > ,S,c’S. Hence {S,}
are the irreducible components of S. This completes the proof of Proposition
2.8.

The proof of Theorem 2.7: By Proposition 2.8, R is a right locally uniform
ring with Z AR)=0 and {R,} are the irreducible components of R, where R,=

R,NR. For the sake of the completion of the proof of Theorem 2.7, we need
several lemmas.
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Lemma 2.11. Let I be a closed right ideal of R and let I,—={x,=R,|a=
(%4)E1 for some ac1}. Then I, is a closed right ideal of R,.

Proof. Let K be a relative complement of I in the sense of Goldie and let
K, ,= {x,,EI?,,,Ia:(xw)EK for some a=K}. We shall prove that I,N K,=0.
Suppose that I,NK,+0 and 0*x,€I,NK,. Then there exist a=/(---x,,
)€l and b=(--, x,, -)EK. Since R, is a right quotient ring of R, by
Lemma 2 .9, 0%x,,= R, for some r,&R,. Then O%ar,=br,eIN K, which
is a contradiction. Hence I,NK,=0. Suppose that I, is not a closed right
ideal of R, for some . Then there exists a right ideal L, of R, such that
L,21,and L,NK,=0. Now we set L,=I, for a=%v and put L= {r=(r,)
|rER and r,&L, for each a}. Then L is a right ideal of R which contains
I. If L=1, then L,=1,, which is a contradiction. Hence LRI and thus
LNK=+0. Leta=(a,)beanon-zero element of LN K. Then OFascL,NKp
for some B. This is a contradiction. Hence I, is a closed right ideal for
each a.

Lemma 2.12. Let T be a non-zero element of L,,(R,). Then
(1) TeL,(R). L
(2) TeL,(R,), where T=TNR,.

Proof. (1) we put T*=N{4"|A"2T and 4 is an atom of L,(R)}.
Clearly T*=L,,(R) and T*2T. Suppose that T*22T. Thensince T=L,(R),
by (3) of Proposition 2. 3, there exists an atom B of L,(R) such that 7*2 B and
BNT=0. If B&R,, then B&S Ry for some B+« and B'2R,2T. Hence
B’ 2T* and thus B*=0. This is a contradiction. If BER,, then since
TeL,,(R,) and TN B=0, we obtain B"27T. Hence B"2T* by the definition
of T* and thus B°=0. This is a contradiction and hence T=T*<L,(R).

(2) Let K be a relative complement of 7 in R and let K=KNR. Then
clearly TN K=0. Suppose that T is not an ideal of R. Then x,f& T for
some 8, R, and 7= T. Hence (%,7R,'+T)*NK=*0. Letk be a non-zero
element of KN (%,7R,'+T) and let k=F, 43, 8,87 ;+nR,F, where f,€ T
and 7,€R,. Since Z,(R,)=0 and R, is a right quotient ring of R,, there
exists an element of 7r&R,, such that 0%kr&K and f,r, {77, fr&T. Since R
is a subdirect sum of {R,}, there exists s€R such that s=(---&,, ---). Since
TeL,(R) and #7,r, treT, we obtain X7 ;r=si7 7, R, fr=sir&T. Hence
0%+kreTNK=0. This is a contradiction and hence T€L,,(R,). This com-
pletes the proof of Lemma 2. 12.

By Lemma 2. 11, R is a potent ring. Since P,(R,,,)’ZVL,(R,) under the
contraction, R, is residue-finite by Lemma 2. 12 if R, is residue-finite. Hence

2) The principal right ideal of a ring R, generated by g, is denoted by aR".
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if R, is residue-finite for each o, then R is locally residue-finite. This completes
the proof of Theorem 2. 7.

3. Residue-finite PI-rings which are of type (A)

-Theorem 3.1. Let R be a residue-finite CPI-ring. Then

() L,=J,,={4"|A<L,: atom} U {0, R}.

(2) L,, is a chain and there are the following two cases:

(4): L,,is an infinite chain R=T,DT,DT,D - such that N5, T ,=0.

(B): L,, s a finite chain R=T,>T,>T,>--DT,OT,,,=0.

(3) For each non-zero T ,EL,,, there exists an independent set {4,, ---, 4,}
of atoms of L, such that A, U*--- U*A,U*T ,=T, ,and(4,U*---U*4,)N T,=0.
(4) If Ais an atom of L,, then AST ,and AELT ., if and only if A”=T ,.,.

Proof. (1) By Proposition 5 of [2,p.71], L,,2{4"|4A<L,: atom}.
Conversely, if T'eL,, such that T=R, T=+0, then the set S={A4"|4"2T,
AeL,: atom} is non-empty, becauce there exists an atom 4L, such that
ANT=0 and hence A"27T. Since dimy R/T <oo, there exists a minimal
element A" in S by Lemma 3. 6 of [9]. If A”27T, then there exists an atom
CeL, such that 472C and CNT=0. Hence C"'27T, ie, C&S. By
Theorem 1. 4 of [15], A”2C” or C"24". If C"24", then C"24"2C and
C?=0. This is a contradiction. If A”22C”, then this contradicts the choice of
A”. Hence we obtain T=A", as desired.

(2) It is clear that L,, is a chain by (1) and Theorem 1. 4 of [15]. We
shall show that the condition (B) holds if and only if there exists an atom 4 of
L, such that A”=0. At first, suppose that 7,0 and T,,,=0 for some p.
Then there exists an atom 4 of L, such that T,2A4. By (1), A"=Tfor some
k. If k<p, then A"=T,2T ,2 4 and thus A’=0. This is a contradiction and
hence A"=T,,,=0. Conversely, suppose that A”=0 for some A of L, and
that L,, is an infinite chain, i.e.,

L,:R=T>OT,D-+DT,D-.

Let T=N%- T, Then T'=0, because R is residue-finite. Hence we may
assume that T, 24 and T ,24 for some p. Then 4N T,=0, because 4 is
an atom. Thus 4”27, and hence T',=0, which is a contradiction. Hence
L,, is a finite chain. If L,, is an infinite chain, then it is clear that N 5_, T ,=0,
because R is residue-finite.

Since R is a right locally uniform residue-finite ring, (3) follows from the
definition of Goldie’s dimension.

(4) First we suppose that ACT ,and A% T,,,. By (1), A”=T} for some
k. If k<p, then A"=T,2T,2A4 and thus A°=0. This is a contradiction.
Hence we obtain 2=p and thus 4"<T,,,. Since A% T,,,, it is clear that
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A"2T,,, and hence A"=T,,,. Conversely, suppose that A"=T,,,. Then if
A%T, then A"2T,, which is a contradiction. Hence AST, Itis clear that
T,., 24, because 4 is potent.

The lattices J, and J, are dual isomorphic under the correspondence A— 4,
A<],. Hence if J,, consists of {T,}5_, such that R=T,DT,D-...,
N 5-0T ,=D0, then J,, consists of {T;}7-, such that

3.2) 0=TicTic-- Ty, UsTp=R.

If J,, consists of {7}%%5 such that R=T,DT,D>.-DT,DOT,,,=0, then
J 1, consists of {T'}}225 such that

(3.3) 0=T¢cTic.-cT,cT,,,=R.

Lemma 3.4. Let R be a residue-finite CPI-ring and J,,—{T%, T%, ---} be
given by (3.2) or by (3.3). Then

(1) For each T.+R, there exists a potent atom BE J, such that B& T}, ,
and BN T,=0.

(2) If B is a potent atom of J,, then BE T, ., and BE T, if and only if
B'=T}.

Proof. (1) By Theorem 3.1, there exists an atom A of L, such that
A"=T,,, and T,2A4. Since A4 is potent, a4=+0 for some acA4 and thus
a’NA=0, because 4 is atomic. By Theorem 6.9 of [12], a” is maximally
closed and thus a” is a maximal annihilator. Hence B=a"’ is an atom of J,.
Furthermore, since a”N A=0 and a= 4, we obtain that B is potent and B& T%,,.
If BNT,+0, then BET, and B"=a"2T,2A4. This contradicts the choice
of a. Hence BN T}=0.

(2) First we assume that BET,,, B&T, and B is potent. Then it is
clear that BN T;=0 and hence B’2T,. If B’RT},, then B'2T},, and thus
B?’=0. This is a contradiction and hence B’=T.. Conversely, suppose that
B'=T} and B is potent. Then clearly T;2B. If T}, 2B, then BN T}, ,=0
and thus B’27T},,. This is a contradiction and hence T}, ,2B.

By Theorem 2.3 of [14], the lattice J, is upper semi-modular. Now let
Be]J,. If there exists a finite chain in J, 0=B,<B,<::--<By=B such that B;
is a cover of B;_, (1<i=<d), then, by Theorem 14 of [1], we can define the
dimention of B as such an integer d and write d=dim B.

Following R. E. Johnson [13], R is said to be a right stable ring if R is a
right locally uniform ring with Z,(R)=0 and (3} 4,) =0, where 4, runs all
over uniform right ideals. Clearly, if R is a PI-ring, then R is a right stable ring.
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Lemma 3.5. Let R be a right stable ring and let B be an atom of J,. Then
B is maximally closed.

Proof. Since R is a right stable ring, there exists an atom 4 of L, such
that AB=+0. Then 4" is maximally closed for 03BN A. Hence b” is a
minimal annihilator and /N B=+0. Thus B=54"* and hence B"=15" is maxi-

mally closed.

Lemma 3.6. Let R be a residue-finite CPI-ring. Then

(1) dimg(R/T,)=d,, if and only if dim Tj=d,

(2) For each non-zero T ,, there exists an independent set {B;}}_, of potent
atoms of J, such that T:=T:_ U(B,U--UB,), (B,U-+UB,)N T:_,=0, where
n=dimgT, ,/T,.

Proof. Since dimg(R/T,) is finite, (1) immediately follows from Lemma
2.2 of [14].

(2) By Lemma 3. 4, there exists a potent atom B, of J, such that T,2B,
and T}_,N B,=0. Assume that we have selected an independent set {B,, -+, B}
of potent atoms of J, such that CS T} and C N T}_,=0, where C=B, U --- UB,.
IfCUT, T, then C'NT, ,2T, Hence there exists an atom A& L, such
that C'NT,.,24 and ANT,=0. By (4) of Theorem 3.1, A"=T,. By the
same way as in (1) of Lemma 3. 4, there exists an atom B of J, such that B& T%,
BN T._,=0and B=a" with ac 4, a"N A=0. Assume that BN(CUT}_,)=0.
Then B&(CUT;_,) and so B"=a"2C"N T, ,2A4, which is a contradiction.
Hence we obtain that BN (C UT,_,)=0. Then, by the same way as in Corollary
2.4 of [14], we obtain that (BUC)N T';_,=0 and thus, by (1), the assertion of
(2) now follows by induction.

Let dimg(R/T,)=d, for each non-zero T,EL,, Then evidently
dimg(T,,/T,)=d,—d, ,. If R satisfies (A) in Theorem 3.1, then we shall
call the ring R of type (A) and (d,, d,—d,, --,d,~d,_,, -++) the set of block
numbers of R.

If R satisfies (B) in Theorem 3. 1, then we shall call the 7ing R of type (B)
and (d,, d,—d,, -+, d,—d,_,, ) the set of block numbers of R.

Let L be an atomic lattice with 1. A set {a;} of atoms of L is independent
if ¢;N (U ;4 a;)=0 for eachi. An independent set {a;} of atoms of L is called
a basis of L if U; a;=1.

In order to make further progress we need the following definitions:

Let R be a residue-finite CPI-ring which is of type (A), let
L,,={T, T,, T, ---} and let dimgR/T ,—=d, for each p. Then we say that R
has matrix representable conditions (for short: m.r. conditions), if there exists a
set {B;}%-, of potent atoms of J, such that
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(a) Tf,: Tzlz—1 U (de_1+1 U UBd,), Tzl,_l n (Bd,,_lﬂ U UBJ,)=O
for each p,

(b) T,U*T;=R and T,N T;=0 for each p, where T;=(U jsq4, B;),
(¢) U Ti=R.

Let R be a residue-finite CPI-ring which is of type (B) and let L,,=
{r, T,, -, T, T,.}, where T,,,=0 and let dimgR/T,=d, for each k<p.
Then we say that R has m.r. conditions if there exists a basis {B;}-1 of potent
atoms of J, such that

(d) Ti=Ti,U(Bs,_ 1 U UBy,), TioyN(Ba,_y+: U+ UBy,,)=0 for each

(e) U¥n A,=R, where A;=(U ;+;B;)” for each i.

Now, for the sake of giving examples of residue-finite CPI-rings with m.r.
conditions, we shall generalize the concept of T-rings which was defined on finite
dimensional rings in [15] to the case when the ring considered is infinite dimen-
sional. Let F be a division ring and let o be a countable ordinal number. We
denote by (F), the ring of all column-finite » X & matrices over F. Let F;; be
additive subgroups of F such that

(3 7) Fiijk;Fik (iaj’ k= 1) 2, "') .
Let
(3.9) S = {ace(F).la=(a;,), a;;EF;;} .

Clearly S is the subring of (F),. The ring S will be called a T-ring
(¢riangular-block matrix ring) with type (4) in (F), if there exist integers d,, such
that 0=d,<d,<--<d,<<-:+ and

(3‘ 9) F,]:‘:(]@i>dp and dp<j§dp+1 (p:o’ 1’ ...)'

The ring S will be called a T-ring with type (B) in (F), if there exist
integers d,, such that 0=d,<d,<---<d, and

(3. 10) F, &0 (i) if j<d, and if dy<j=<d},,

for some k (0<k<p), then i>d,, (ii) if j>>d,,, then i>d,.
In both cases, we let
(3.11) M = {ae(F),|la = (a;,), a;;€F;;} , where Fj;
= F whenever F, ;%0 and F,,=0 otherwise.
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Following R. E. Johnson, we shall call M the full cover of S. Let A and B
be subsets of a division ring F. The set {ab™*|a= A4, 0b< B} will be denoted
by AB™.

Since (F), is column-finite, we obtain the following two propositions by the
same arguments as in Theorems 3. 5 and 3. 7 of [15].

Proposition 3.12. Let S be a T-ring in (F), given by (3.9) or by (3. 10).
Then S<(F), if and only if F ,F}=F.

Proposition 3.13. Let S be a T-ring in (F), given &y (3.9) or by (3.10)
such that S=(F),. Then S is potent if and only if F;;Fi}=F for j<k
(7, k=2, 3, --+).

Proposition 3. 14. Let S be a T-ring with type (A) in (F),, whose blocks are
defined by the numbers d,, d,, -+, d,,, --+ with 0=d,<d,<---d,<--- in (3.9). If
S<(F), and if S is potent, then

(1) S is a residue- finite PI-ring with m.r. conditions which is of type (4).

@ L,={r,T,--,T, -}, where T,=S and T,={acS|a=(a;;),
a;;=01ifi<d,} for each n.

Proof. (2) follows from the same argument as in Theorem 3. 9 of [15].
(1) Let B;={acS|a=(a;,), a;;EF;, and a,;=0 if k=1} for each positive
integer 7 and let

0

where 0=f,=F,; and other positions are all zero. Then it is clear that §;'=B;
and that {B;}7.1 is a set of potent atoms of J,. Further, it is easily checked
that the set {B,}7-. satisfies the conditions (a), (b) and (c). The other assertions
are evident.

Corollary 3.15. If M is the full cover of S which is a T-ring with type (A4)
in (F),, then M is a residue-finite PI-ring with m.r. conditions which is of type (A).

Proposition 3. 16. Let S be a T-ring with type (B) in (F), whose blocks are
defined by the numbers d,, d,, -+, d, with 0=d,<d,<--<d, as in (3.10). If
S<(F), and if S is potent, then

(1) S is a residue-finite PI-ring with m.r. conditions of type (B).

2 L,={T,T, T, T,.}, where T,=S, T,.,=0 and T,={a<s S|
a=(a;;), a;;=0if i<d,} for ISk=<p.
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Proof. (2) follows from the same argument as in Theorem 3. 9 of [15].

(1) Let {B;}7-1 be as in the proof of Proposition 3. 14. Then it is easily
checked that {B;} is a basis of potent atoms of J, and that it satisfies the condi-
tions (d) and (e).

Corollary 3.17. If M is the full cover of S which is a T-ring with type (B)
in (F),, then M is a residue-finite PI-ring with m.r. conditions of type (B).

Let R be a residue-finite PI-ring of type (A) with m.r. conditions, and let
{B;} be a set of potent atoms of ], which satisfies the conditions (a), (b) and (c).
Now we set A;=(U ;+; B,)". Then the following lemma holds:

Lemma 3.18. (1) {4} and {B,} arebases of potent atoms of L, and J,
respectively.

(2) For each p, T, ,=T,U*(dq, ;;U*-U*4,,) and T,N (A4, 1
U*.er U*A, )=0.

(3) B(U%e4).

Proof. (1) We first prove that {B;} is an independent set of atoms of J,.
If B;NA{+0 for some i (d, ,<i<d,), then B,SCUT} and B;2C"NT,,
where C=B,U--UB;_,UB; U+ UB,, and T;=( U,>q,B;)". Since Ti=
B,U---UB,,, we obtain that T,=B;NC”". By the assumption, T',U*T;=R.
Hence C"=C"N(T,U*T5)=C"N[(BINC)U*T;]=(C"NT)U¥BiNC")<B;
by the modular law and we obtain C2B;. Thisis a contradiction, because
{B,, ---, B,,} is an independent set of atoms of J,. Hence B;N(B,U--UB;_,U
B,,,U-)=0, i.e., {B;} is independent. Since U%_,7:=R, U;B;=R and
hence {B;} is a basis of J,. Clearly B;NA4,=0, BjUA;,=R and B} is a
maximal closed right ideal by Lemma 3. 5. Hence B; U*4,=R and thus 4, is
an atom of L,. If A;,N(4,U*.-U*4;_,U*4;,,U*.--)==0, then R3+=A4;U
(4in--nA4i_,NnA4i.,N--)2 U; B;=R, which is contradiction. Hence {4,} is
an idependent set of atoms of L,. Since 7;24,®---P4,, and dimgR/T ,=d,,
we obtain Ti= U} A;. Since U} T;=R by the assumption, we obtain
R=U¥ A,, as desired.

(2) follows from the same way as in the proof of (1).

(3) Clearly B,S(U%;; 4;) and (U¥y A;)" is an atom of J,. Hence
B;=(U%x4;)".

Theorem 3.19. If R is a residue-finite PI-ring with m.r. conditions of type
(A) and if (d,, -+, d,, +++) is the set of block numbers of R, where d; is a positive
integer, then there exist potent atomic bases {B;} for J, and {A;} for L, such that:

(1) A=(U B, and B—(Uta 4) (=12, ).

(2) ]rzerzz {A”lzl: 2, "‘}, ]12: {Bi li=1, 2, '}

(3) 4i2432---24;2-+, N5, 4,=0 and 0=BiSB;S - SB,& -,
U= B;=R.
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(4) A4i=A4; and B}=B)} if and only if d,+d,++-+d,<i and j<d,+
d,+-+d,.,, for some p, where d,=0.

(5) A:B;#0 if and only if i>d+---+d, and d+-+d,<j<d,+ -+
d 4., for some p.

Proof. Let {B;} be potent atoms of J, which satisfies the conditions (a),
(b) and (c). And let 4,=(U ;4; B,)" for each i. Then, by Theorem 3.1,
Lemmas 3. 4 and 3. 18, (1)~(4) are evident.

(5) For any B, there exists an integer p such that d,4--+-4-d,<j<d,+--+
d,.;. Then B}=T} by Lemma3.4. Suppose that A,B;=0. Then the
following implications hold:

AB,=0=T;=B}2A4,>T,CA}=T, for some k=p=k=i=d++d,

Hence 4;B;=0 if and only if i>d,4----+d,.

Let R be a residue-finite PI-ring with m.r. conditions of type (A) and let
{4;} and {B;} be atomic bases given by Theorem 3.19. Then {4} is an
atomic basis of L,(ﬁ) which corresponds to the atomic basis {4,} of L,(R). By
Theorem 1. 11 of [2, p. 108], there exist matrix units {e;;|7, j=1, 2, -} in
such that A,«ze,-,-é and IA€=(F )o, Where Fis a divisionring. Clearly A,-:e,-,-lé NR
and B;=(U ;4; Aj)’zRe,-,- NR. Let

ANB;=Fe; (ij=1,2 ).

Then F, ; are additive subgroups of F satisfying (3. 7).
If we put

(3. 20) S = {aeR|a= (a;;), a;;,€F;},
then S is a subring of R. By Theorem 3. 19,
F;;#0=i>d+--+d,and dy+ - +d,<j<d,+--+d,,, for some p.

Thus, Sis a T-ring in (F), with the same block numbers as in R. Let M
be the full cover of S. Then we have

Lemma 3.21. If R is a residue-finite PI-ring with m.r. conditions of type
(A), if S is a T-ring given by (3. 20) and if M is the full cover of S in (F),, then

(1) S=R=M.

(2) S is a potent ring.

Proof. Since Bi=0, itis clear that B;<R. Since {4;N B,}7-11s an atomic
basis of the ring B, and Z,(B,)=0, we obtain > 7., (4;NB,)<B, Hence
2i-1(4;NB)=R by Lemma 2 of [2, p. 88]. Since X1 (4;NB)SS, we
obtain S<R. Let b be a non-zero element of R, then bR and b=(b; ) for
some b,;EF. If b,,+0, then c=(e,,f)b(e,;;,g) =R for any non-zero fEF,, and
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gEF,, and thus ¢=fb,,ge,,cA,NB,. Hence fb,,gcF,,, ie., F,;#+=0. Thus
beM.
By the same argument as in Theorem 4. 3 of [15], (2) follows immediately.

By Lemma 3. 21, we have

Theorem 3.22. Let R be a left faithful ring and let R be the maximal
right quotient ring of R. Then R is a residue-finite PI-ring with m.r. conditions of
type (A) if and only if it satisfies the following two conditions:

(1) R=(F)., where F is a division ring,
(2) S=R=<M, where S is a potent T-ring with type (A) in (F), and M is
the full cover of S in (F),,.

4. Residue-finite PI-rings which are of type (B)

Throughout this section, let R be a residue-finite CPI-ring. Let Rbe a
ring of type (B) with m.r. conditions, let L,,={T, T,, :--, Tp, T,.,} and let
dimgR/T,=d, for each k<p. And let {B;} be a basis of J, which satisfies the
conditions (e) and (d). Now we put A;=(U ;+; B;)” for each ¢. Then, by the
same arguement as in Lemma 3. 18, the following lemma holds:

Lemma 4.1. (1) {A,} and {B;} are bases of L, and J, respectively,
(@) ToormTaUH( sy s Ure U*Ag), ToN(dg, i Ukers U*A,) =0 for
each kR<p and T ;= U%, 4,4

) Bi=(U%s 4"

By the validity of Lemma 4. 1, the proof of the following theorem proceeds
just like that of Theorem 3. 19 did.

Theorem 4.2. Let R be a residue-finite PI-ring with m.r. conditions which
is of type (B) and let (d,, d,, -+, d p» @) be the set of block numbers of R, where d;
is a positive integer. Then there exist potent atomic bases {B;} for ], and {4;} for
L, such that

(1) A=(U ;1 B)Y and B—=(U%sd), (i=1,2, ).

(2’) Jrz—er:{Ariizl 2,. } ]12 {Blll"l 2, }

(3) 4i24;2---24,+0, 47=0 (j>n) and 0=Bi<BiZ---SB.&B;,,
=B} ,,=, where n=d,{---+d,.

(4) For 1<i,j<n, A;=A)and Bi=B}if and only if d+d,+---+d,<i
and j<d,+d,+--+dy., for some 0<k<p, where n=d,+---+d, and d,=0.

(5) AB;*+0= () If j<d,+-+d, and if dj+-+d,<j=d,t+-+dps,
for some k (0<k<p), then i>d++--+d,, (&) if j>d+--+4-d,, then i>d+---+
d,, where d,=0.
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Let R be a residue-finite PI-ring with m.r. conditions which is of type (B)
and let {4,;} and {B,} be given as in Theorem 4.2. Then we obtain 1@=(F Do
and A =e,R, where F is a division ring and {¢;;} are matrix units for (F),.
Clearly A;—e,RNR and B;=(U*%., A,))=Re;NR. Let

ANB,=F e, Gj=12,.).

XAty

Then F;; are additive subgroups of F satisfying (3. 7).
If we put

(4.3) S = {aeR|a = (a;,), a;;EF,}},

then S is a subring of R. By Theorem 4. 2, we obtain
Fi;#0= () Ifj<d,+--+d,and if d 4+ +d,<j=<d,+ - +dp,, for some
k (1=k<p), then i>d,++:-+d,, (i) if j>d,+-++d, then i>d,4----+d,.
Thus, S is a T-ring in (F), with the same blook numbers as in R. Let M
be the full cover of S. Then, by the same argument as in Lemma 3. 21, we
obtain SSR=<M and S is a potent ring. Hence we obtain the following:

Theorem 4.4. Let R be a left faithful ring and let R be the maximal right
quotient ring of R. Then R is a residue-finite PI-ring with m.r. conditions of
type (B) if and only if it satisfies the following two conditions :

(1) R=(F),, were F is a division ring,

(2) S<R<M, where S is a potent T-ring with type (B) in (F), and M is the
full cover of S in (F),.

Proposition 4.5. Let R be a residue-finite CPI-ring and let R be the
maximal right quotient ring of R. If Risa left quotient ring of R, then R is of type
(B).

Proof. Assume that R is of type (A) and let L,,={T,, T,, --}. By
Theorem 3. 1, there exists an independent set {4} of atoms of L, such that
Ty, .=T,U*(Aa, s; U*-+U*4,) and T,N(Ag, 4 U*ee- U*A4,,)=0 for each
p. Now we put Ty=A4,U*--U*4,,. Then we obtain

(*) T,UT;=R and T;NT;'=0 foreachp,

because L,=], by Theorem 2. 2 of [23]. If U, T;=*R, then I=n,T,’ con-
tains an atom B of J,. Since B’ ],,, B’=T.=+R for some p. If B’=0, then
BCB'=T\cTL,, If B*#0, then B&T},, by Lemma 3.4. In either case
we have BC T}, NIS T}, NTgL,=0 by (%), a contradiction. Thus we obtain
R=U,T;=U; A;=U¥ A;. Hence there exists a set {¢;|i, j=1, 2, -} of
matrix units in R such that A;=e;,;R and R=(F),, where F is a division ring.
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Hence 4; _(e,,R) NR. We put B,=(U%*y; 4;)'. Then the following properties
hold:

(1) {B} is an independent set of atoms of J, and B,—Re,; 2 B, for each i.

(2) T,=B,U-UB,, for each p.

(1) Since L,=], is a dual-isomorphism to J, and B is a maximal right
annihilator, it is clear that B; is an atom of J,. Furthermore, we obtain

BiZ(Uﬂ;:h‘ ) "'(U J¥i Aj)lnR: IAeeiinR-

If B,n(B,U+UB;_,UB;;,U::)=0, then we have R=(U%4; 4,) U*4;&
B;U*BiNn--NB;_,NB;,,N-)ER, which is a contradiction. Hence {B;} is
an independent set.

(2) By the construction of {4}, it is clear that T ,= U ;54,4;. Hence
T,2B; (1<i<d,). Since dim T}= d,, we obtain T} B U-+ UBy,

Now, let ¢ be the element of R such that 9=(4:;), 9,;=1 for each j and
¢:x=0 otherwise. Since R is a left quotient ring of R, there exists an element
r of R such that 0==r¢g=R. Hence there exists an integer 7 such that

*

*
(*%) rqg = {rn s Tirs e } O%r,eF.

Since qeeuI%, r(IA?, ¢)={a=R|qa=0} is maximally closed in R. Hence
q'=r(ﬁ, g)N R is maximally closed in R and hence (rg)"=¢q". By Theorem 6.9
of [12], r¢R' is a uniform right ideal of R. Since U¥ A,=R, there exists an
integer p such that rqeA,U*.- U*4,,. Clearly 4,U*.-- U*4, S T:CB,®-®
B, ,» Where B; —=Re,, for each i. This contradicts (**). Hence R is of type (B).

Theorem 4.6. Let R be a left faithful ring and let R be the maximal
right quotient ring of R. Then R is a residue-finite CPI-ring and Risa left quotient
ring of R if and only if the following two conditions are satisfied:

(1) R<, R and R=(F),, where F is a division ring,

(2) S<,R<, M, where S is a potent T-ring with type (B) in (F), and M is
the full cover of S in (F),.

Proof. The “if” part is clear. “Only if” part: By Proposition 4. 5, R is
of type (B). Hence L,,={T,, T,, -, Tp, T,.,} for some integer p, where
T,=R, T,.,=0. We put dimpR/T,=d, for I<k<p. By Lemma 3.6, there
exists an independent set {B;’} (1=7{=d,), each of which is a potent atom of J,
such that

Ti=B/UB/U-UBj, (k=1,2,,p).

Since J,=L,, there exists T,€ J, such that T,U*T;=R and T ,N T3=0.
For each i (1=<:=d,), we put
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A;= (B/U-UB|_,UB/,,U--UB,YNT;.

Then the following properties hold:

(1) {4;} (1=i=<d,) are independent atoms of L,.

(2) T4p..=TwU*(44, 1 U*--U*4,,) and TN (44, 4 U™ U *A4)=0
for 1<k<p.

(3) T3;=A4,U*---U*4,,

To prove (1), we put B=B,/U---UB{_,UB{,,UBj,. Then T,&B" and
hence A,=B"NT;+0. Suppose that B’,”NA4;+£0. Then B/UA;+R. On
the other hand, by the definition of A;, we have B/UA;=R. This is a
contradiction and hence B}"N A4;=0. Since B}” is maximally closed, 4; is an
atom of L,. Itis clear that {4,}¢2, are independent by the definition of 4,.

To prove (2), we suppose that TN (A4, ,+U*-- U*4,,)+0. Then

iUl N--N4i)+=R. On the other hand TiU(4;, ..N-NA4z)=2
T,UT;'=R. This is a contradiction and thus TN (A4, ,+:U*: U*4,,)=0.
If T,_,24; for some i (d,_,<i<d,), then T',_,N A;=0 and R=T,_, UA4;=B/
U-+UB,_,UB; ., U-- UBj,U T3, which is a contradiction. Hence T, ,24;
for d,_,<i<d,. Since dimpT_,/Ty=d,—d,_,, the assertion of (2) is clear.

(3) Clearly T;24,U*---U*4,,. Since dimgR/T ,=d ,, we have T;,=A4,
U*eer U* Ad,,-

Since L,=], and T, is countably dimensional as an R-module, by Zorn’s
lemma, there exist independent atoms {4,}7., of L, such that T ,= U714/
For a convinience, we put 4/=4,,,; for each 7. Now we put

Bi = (Uﬂ;’#i AJ‘)I (i =12, ) .

Then we shall prove that {B;} is a potent atomic basis for J, which satisfies the
conditions (d) and (e). Itis clear that {B,} is a basis of J,. For 1=:i=<d,, B;=
(Ukes Ay =(A, U U*A,_, U*4,,, U U*A, )\ TS2B/. Thus B—B/
and hence B, is potent for 1<7<d, and the {B;} satisfies the condition (d).
For j>d,,, since A7=0, we obtain 4;B,;30. Itis clear that B;A;=+0. Hence
b;A,;%0 for 0£b,€4;NB; and thus 4N A;=0. Hence B;=b} and so B;
is potent. It is clear that (U B;Y'=4; and U, 4;,=R. Hence {B;}
satisfies the condition (¢). Thus R is a residue-finite P/-ring with m.r. condi-
tions which is of type (B). Hence, by Theorem 4.4., SSR<M §IA3=(F)Q,,
where F is a division ring, S is a potent T-ring with type (B) in (F), and M is
the full cover of S. To prove that S<, R, we shall prove that R is a left stable
ring. Since R is a left quoient ring of R, R is a left I-ring. For each non-zero
xeA;N B, x’z(ei,-lé)’ﬂRzllé(l—e,-,-)ﬂR is a maximal closed left ideal of R.
Hence R'x is a uniform left ideal of R by Theorem 6. 9 of [12], where R'x is the
principal left ideal generated by x. Since (3)r-1 B(4;N B,))'=0, R is a left
stable ring. Hence {B} is a basis of L,(R), because B; is an atom of -L,(R) by
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Corollary 2.3 of [13] and N7..B;=0. On the other hand, since A}=0 for
1>d,, R is a left quotient ring of the ring A;. Hence {4;N B;}5.1 s a basis of
L,(A4,) and thus 4, is a left quotient ring of >%; B(4;N B;), Z,(4;)=0. Hence
S<,R<,M<,R by Lemma 2 of [2, p. 88]. This completes the proof of
Theorem 4. 6.

5. Left quotient rings of right locally uniform potent rings with
zero right singular ideal

In this section, let R be a right locally uniform potent ring with Z,(R)=0
and let R be the maximal right quotient ring of R. We study the conditions
under which R is a left quotient ring of R.

Proposition 5. 1. Let R be a right locally uniform potent ring with Z (R)=0
and let {R,} be the irreducible components of R. Then R is a left quotient ring of
R if and only if R, is a left quotient ring of R, for each c.

Proof. Suppose that R is a left quotient ring of R and let O%¢ge R,.
Then 0+r¢= R for somer=R. Since R, is an ideal of R, 0%rge R,NR=R,.
Since R is a right stable ring and RgR,=0 (B8=+a), it is clear that R,rq=0.
Hence 0=7,4(rq)=(r,r)g=R,gN R,. Since Z;(R,)=0 by Lemma 2.1 of [14],

» 18 a left quotient ring of R,. Conversely, suppose that IA?‘,, is a left quotient
ring of R, for each « and let 04=qu§’. Then qﬁw:i:O for some a. Since R,
is an ideal of R and is direct summand, we have ﬁmzewé for some central idem-
potent e,. And thus O=e,g= qewEIA?w. There exists r&R, such that
O0=r(ge,)=R,. Again, for 0=rge, =R, re,,,elé,,,, there exists 7 € R, such that
0%r'res=R,, 0%r'rge,. Thus 0 (r're,)g=7(rges)ER,qNR,. Since RgN
R2R4NR,, R is a left quotient ring of R.

Theorem 5.2. Let R be a residue-finite CPI-ring and let R be the maxi-
mal right quotient ring of R. Then Risa left quotient ring of R if and only if the
Sollowing two conditions are satisfied:

(1)  There exists an atom A of L, such that A”=0.

(2) Let A be an atom satisfying A"=0. Put T'=Homg(A4, A) and
A=Homg(A, A). Then A is a left quotient ring of T and AA= A.

Proof. First, assume that R is also a left quotient ring of R. Then, by
Proposition 4. 5, R is of type (B) with m.r. conditions and R is a left stable ring.
There exists an atom A of L, such that 4”=0. Let 6 and ¢ be non-zero
elements of " and let # be a non-zero element of 4. Then O(u)=0, ¢(u)=0,
because every non-zero element of T" is a non-singular mapping by Lemma 5. 4
of [8]. Since 6(u)"=u", we obtain (Qu)"=(¢u)” and (fu)*=(¢pu)™*. Since (fu)”
is a maximal closed right ideal, (fu)” is a minimal annihilator left ideal and

hence (Qu)"'=(¢u)" .is an atom of L, by Corollary 2.3 of [13]. Hence there
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exist a, bR such that af(u)=bp(u)+0. Since A"=0, Aaf(u)+0 and hence
there exists v A such that vaf (u)=vbd(u)+0. This means that (1,,0)(w)=
(Ns9)(®), where N, (x)=vax for x=A. From which we obtain 0=\,
because the elements of T, other than zero, are non-singular mappings.
Evidently A,,, 1,, T and T'9N P(j):f:() thus T is a left Ore domain. Let d be
any non-zero element of A. Since A is R-rlght injective, there exists e=é 2= R
such that A=eR. For 0= 3(e), there exists r & R such that 0=7r8(e)=R.
Since A”=0, there exists a= A such that 0=%ard(e)e 4 and OfarcA.
Clearly A,,0€T, A,, T and 2,830, because O:t:?x,,,&(e) This means that
Ais a left quotient ring of T'.  Evidently AAC A. Assume that ¢ is a non-zero
element of A. Then there exists r&R such that 0%+rgeR. Since A"=0,
Arq=0 and there exists uc 4 such that 0=urq. Smce q" is a maximal closed
right ideal, (urq)'—(rq) =q". Now define ¢: uqu - A by ¢(urqy)= qy for each
ye Then since A is right R- -injective, ¢ can be extended to d=A and
qS(urq) ¢(urq)=gq, urge A. This means that AA2A. Hence we have AA=A4,
as desired.

Conversely, assume that (1) and (2) hold. If O=%ge R, then A =0
implies Aq=+0. There exists ac 4 such that w=aq=+0. Since we A=AA,
there exist §,, -+, 5, A and a,, -++, a,& 4 such that w=37_,58,a;, Now Aisa
left quotient ring of T. Hence there exists 0=y &T" such that 0Fv3,=v;€T,
i=1, .--,m. Since TAS A, we obtain that 0yw=(ya)g=>)v,a;,=AqN A.
Thus we have RgN R+0. This means that R is a left quotient ring of R.

6. On closed right ideals and annihilator right ideals of right
locally uniform rings with zero right singular ideal

In this section, we generalize Goldie’s results on closed right ideals and
annihilator right ideals of (semi-) prime right Goldie rings to right stable rings
or to infinite dimensional semi-prime rings with zero right singular ideal.

Proposition 6. 1. Let M be a faithful locally uniform right R-module and let
K be a closed submodule of M. Then K is an intersection of maximal closed sub-
modules of M.

Proof. Let K bearelative complement of a submodule L (see. [7]). Then
there exists an independent set {4;} of uniform submodules such that
L\D3Y, ®A4;. We set N;=K& >, PA; for each 7, then N;NA4;=0.
Choose a maximal closed submodule N¥* such that N¥2N; and N¥NA4;=0
for each 7. If (N; NN P4,)+0, then there exist {A4;}7., such that
NEN-NNHN(A4,D--PA4,)+0. On the other hand (N¥N---NN¥N
(4,D---PA,)=0, as may be seen by repeated application of the modular law.
Hence (N; N¥)N (23, ®4;)=0 and K=, N¥, as desired.,
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Following Goldie [7], an element u of R is said to be right uniform if uR"* is
a uniform right ideal.

Proposition 6.2. If R is a right stable ring, then a right ideal M is a maxi-
mal right annihilator ideal if and only if M=u" for some right uniform element u of
R. In particular, u” is maximally closed.

Proof. The “if” part is immediately by Theorem 6.9 of [12]. Suppose
that M is a maximal annihilator. Then there exists a uniform right ideal 4 such
that AM*+0, because R is a right stable ring. For 0uc AN M’ we have
u"2M. Hence u"=M, as desired.

Corollary 6.3. If R is a right locally uniform potent ring with Z,(R)=0,
then a right ideal M is a maximal right annihilator ideal if and only if M=u" for
some right uniform element u of R. In particular, u” is maximally closed.

Theorem 6.4. Let R be a right stable ring and let R be the maximal right
quotient ring of R. If R is a left quotient ring of R, then every closed right ideal of
R is of the form N , (u,)”, where {u,} are right uniform elements of R.

Proof. By Theorem 2.2 of [23], L,=],. Hence the assertion follows
immediately from Propositions 6. 1 and 6. 2.

Theorem 6.5. Let R be a finite dimensional right stable ring. Then every
proper right annihilator of R is of the form uiN --- N\ u}, where {u;} are right uniform
elements of R.

Proof. Let I be a non-zero right annihilator ideal of R and let K be a rela-
tive complement of . Choose a uniform right ideal 4,2 K. If I’4,=0, then
I2A,. This is a contradiction. Hence I‘4,#+0. There exists a uniform
right ideal C, such that C,1’4,+0, because R is a right stable ring. Hence
there exists an element u, of I* N C, such that u, 4,20 and therefore u7N 4,=0,
w;21. If uin K=0, then clearly I=uj. Otherwise we choose a uniform right
ideal 4, in ¥JN K. By the same argument as above, there exists a uniform
element u, of R such that u3N 4,=0 and u321. Since 124, and u3N A4,=0,
we have w;2uiNus. If uiNuyN K=0, then we obtain I=u]Nus. Otherwise
we choose a uniform right ideal 4, in ;N %3N K and a uniform element u, of R
such that #3271 and u3N 4,=0. Clearly »iNu32uiNuzNu;. The process is
continued until it terminates, which must occur after not more than dimzR
terms, because the chain #]22u]Nuz2u;NuzNu322 -+ can not have more than
dimyR terms. Hence there is an integer k=0 such that (u{N ---Nui)N K=0
and (#iN---Nu;)21. Hence we obtain I=uiNu; N« N uj.

Corollary 6.7. Let R be a finite dimensional potent ring with Z,(R)=0.
Then every proper right annihilator of R is of the form wiN -+ N\ u}, where {u;} are
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right uniform elements of R.

In the remaining of this section, let R be a right locally uniform semi-prime
ring with Z,(R)=0 and let {R,|a A} be the irreducible components of R,
where A is an index set. - Then we have

Lemma 6.8. (1) If A and B are uniform right ideals, then A~B if and
only if A”=B".
(2) R, is a prime ring.

Proof. (1) Suppose that A~B. Then A and B contain mutually iso-
morphic non-zero right ideals A4’ and B’ respectively. Clearly A’”=B"" and
B”?+0. Hence 0%=A'B and 0F=aB=B for some acA4. Therefore we obtain
A’S(aBY=B". Similarly, A"2B" and hence 4A"=B". Conversely, suppose
that A”=B". Then 0% A4B and 0+aB=B for some ac 4. Hence A~B.

(2) LetI be a non-zero ideal of R,. Then clearly 041R, and IR, is a
right ideal of R. Since R is semi-prime, we have 0%=(IR,)*SI" for each n.
Hence R, is a semi-prime ring. Since R, is a prime ring, R, is a prime ring by
Theorem 3. 2 of [2, p. 114].

Following Goldie [7], an ideal I of R is an annihilator ideal if I=K" for
some right ideal K of R. Since K™""=K”, we may assume that K is an ideal..

Theorem 6.9. . Let R be a right locally uniform semi-prime ring with
Z (R)=0 and let {R,|a= A} be the irreducible components of R. Then

(1) Ra=Ngsq Ap, where Ag is a uniform right ideal contained in Rg.

(2) {Rn,lacs A} is the set of minimal annihilator ideals of R.

(3) R, is a prime I-ring.

Proof. (1) Since RgR,=0(c=8), we have R, C N gi, Ap. If R, & N p1ra AE,
then there exists a uniform right ideal 4 such that AL R, and AZ N gy Ap-
Hence A~ A, for some y= A with y=+«, and 4,4=0. But by Lemma 6. §,
03 4,4, which is a contradiction. Hence we have R,= N gy, Af.

(2) If R,2K" 40, where K is an ideal, then K” contains a uniform right
ideal B such that B~ A,, where 4, is a fixed uniform right ideal contained in
R,. Since R is semi-prime, KB=0 implies that BK=0, i.e., B2K. LetC
be any uniform right ideal such that C~A4,. Then, since B"=C" by Lemma
6.8, C"2K. Again, since R is semi-prime, K"2C and thus K"2R,. Hence
K"=R, and thus R, is a minimal annihilator ideal of R. Conversely, let I be a
minimal annihilator ideal of R. Then IR,=+0 for somea=A and thus IR,C
INR, Hence I=R,.

(3) follows from the remark of Lemma 2. 5 and Lemma 6. 8.

Following Goldie, right ideals I and [ are said to be related (I~ ) provided
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that TN X=0 holds if and only if J N X=0, where X is a right ideal of R.

Lemma 6.10. Let R be a right locally uniform semi-prime ring with
Z,(R)=0. Then

(1) If Iisaright ideal of R and if ] is an ideal such that I~ ], then I*=J".

(2) If Iis a closed ideal of R, then IN R is an annihilator ideal of R.

(3) If I is a right ideal of R, then there exists an ideal J~ I if and only if I
is an ideal of

Proof. (1) Itis clear that J‘N J*"=0, J¢ is a relative complement of J
in the sense of Goldie and /"2 . Hence we obtain I*=J*=]"".

(2) Clearly INR is a closed ideal of R. Hence I ﬂR (INR)” is an
annihilator ideal by (1).

(3) The “if” part follows from (2). The “only if”’ part: suppose that
J~ I, where J is an ideal of R. Then J*"2R, or J*"NR,=0 for each a=A
by Theorem 6. 9. Now we put A,={a=A|J"2R,}. If J* is not an essential
extension of >l,cp, DRa, then there exists a uniform right ideal 4 such that
J”" 24 and R,N A=0 for eachacA,. Thus AC RN J* for some B A, and
hence Rs< J*”. This is a contradiction and hence /D3 ,cp, DRs.  Since
J"\DJ, we have 3 laep, DR, C’]"—] as right R-modules. Hence, by Lemma
1.2 of [24], I=] is an ideal of R.

Theorem 6.11. Let R be a right locally uniform semi-prime ring with
Z/(R)=0, let {R,|aa=A} be the irreducible components of R and let R be the
maximal right quotient ring of R. Then every closed ideal of R is of the form I Ao
where I, =>uer, DRy and A, is a subset of A.

Proof. It is clear that [ Ao eL,z(I@) by Lemma 6. 10. Conversely, suppose
that [ L,Z(ﬁ) Then, by Lemma 6. 10, IN R is an annihilator ideal of R. Now
we put A,={aeA|INR2R,} and assume that IN R is not an essential exten-
sion of K, where K=31,c4,R,. Then there exists an atom 4 of L,(R) such
that ASINR and ANK=0. Hence ASR; for some Be&A, and thus
(INR)NRz+0. Hence we obtain IN R2R,, because R; is a minimal annihi-
lator ideal. 'This is a contradiction. Hence IN R'DK and thus [=K.

Corollary 6.12. {R,|axc A} is the set of minimal closed ideals of R.

7. Semi-prime modules

In this section, let R be a right locally uniform semi-prime ring with
Z(R)=0, let{R,|a = A} be the irreducible components of R, let A, be a fixed
uniform right ideal contained in R, and let Po=(2p+4, scaRe)* as in (2. 4).

Applying the methods developed in section 2 to modules, we shall give, in
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this section, more detailed results on semi-prime modules, which investigated
in [4]. Let M be a right R-module such that Zg(M)=0. Thenit is clear that
M is locally uniform. Let U be a uniform R-submodule of M. If 4, and U
contain mutually isomorphic non-zero R-submodules 4,” and U’ respectively,
then 4, and U are said to be similar (4,~U). If M is faithful, then MA4,+0
and thus 0=%mA, for some meM. By Theorem 2.4 of [3], mA,=A, and thus
mA,~A,. Conversely, let U be a uniform R-submodule. Then there exists a
uniform right ideal 4 such that 0% U4, because Zx(M)=0. Hence ud=A4
for some u= U and thus U~ 4, for some a € A. Now we put M ,=(3y~4,U)*,
where U runs over uniform R-submodules of M which are similar to 4,. We
call M, an irreducible component of M. By the same methods as in Proposition
2.2 we can easily prove that the sum >, M, is a direct sum and that if U is
a uniform R-submodule of M, then U~ 4, if and only if US M,. We assemble
these results below.

Proposition 7. 1. Let M be a faithful R-module such that Z x(M)=0. Then

(1) There is one-to-ome correspondence between the irreducible components
{R,laE A} of R and the irreducible components {M,lac A} of M, in the sense
of similarity.

(2) Let {M,lacsA} be the irreducible components of M. Then the sum
SueaM, is direct.

(3) Let U be a uniform R-submodule. Then U~ A, if and only if US M,,.

In the remainder of this section, M, will denote an irrcducible component
of M which corresponds to R,, in the sense of similarity and we put
0,=sa.pen Mg)*. If N is a submodule of M and if I is a right ideal of
R, then we denote (N: I)={meM|mISN}. Similarly, for submodules K and
L, we denote (K: L)={reR|Lr<K}.

Following [4], a submodule NV of an R-module }/ is said to be closed-prime if

(i) LISN=LCN or IS(N: M), where L is a submodule of M and I is
a right ideal of R.

(it) N is a closed submodule of M.

Proposition 7. 2. Let M be a faithful R-module such that Z o(M)=0. Then
(1) 0O,=(0: R,).

(2) Q, is closed-prime and (Q,: M)=P,.

(3) N sen Qc»:O and N B+w, BEA QB:*:O

Proof. (1) Suppose that mR,=+0 for some meQ,. Then OF+mreQ,
for some r&R,. Then there exists a right ideal ES’R such that 7ES Y 44, 4
Hence 0+mrEC M ,N Q,=0, which is a contradiction and thus Q,R,=
Hence we obtain Q,Z(0: R,). Suppose that (0: R,)20,. Then there
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exists a uniform R-submodule U of M such that UL Q, and UR,=0. Since
ULQ,, we have USM, and hence U~A,. Then clearly U"<S A7, where
U = {x€R|Ux=0} and thus UR,=+0. This is a contradiction and thus
0,=(0: R,), as desired.

(2) First we shall prove that P,=(Q,: M). Letm be a non-zero element
of M and let r be a non-zero element of Rg. Then rES>V,-4, A for some
Ec’R. Hence mESMy < Q,. Hence mmeQ*=0Q,, i.e.,Re<=(Q,: M). Now
let x be a non-zero element of P,. Then xLCS >, Rs for some LC’R and
MxL<Q,. Hence MxSQ¥=0Q,and thus x(Q,: M). Hence P,=(Q,: M).
If (Q,: M)=2P,, then there exists a uniform right ideal B such that B& P, and
B<(Q,: M). Hence BER, and MBS Q,. By Proposition 2.2, B~A4, and
0=+mB=B for some meM. Thus 0&=mBSQ,N M, =0, which is a contra-
diction. Hence (Q,: M)=P,. To prove that Q,is a closed-prime R-submodule,
we assume that NISQ,, I<(0,: M) and NEQ,, where N is an R-submodule
and [ is a right ideal of R. 'Then there exists a uniform right ideal B such that
B< I and BE(Q,: M). Since (Q,: M)=P,, we have B~4, and thus B"=A47,
by Lemma 6.8. Since N=20Q,, there exists a uniform R-submodule U such
that USN and U<LQ,, ie,, U~A, Hence U'C A’ and thus we have
0+=UBSNICS(Q,. On the other hand, since U~4,, UBS M, by Proposition
7.1. 'This is a contradiction. Hence Q, is a closed-prime R-submodule of M.

(3) is obvious.

Following [4], we shall denote the intersection of all closed-prime R-
submodules by P(M) and called P(M) the prime radical of M. In [4], Feller
and Swokowski showed that P(M)2Zg(M). By Proposition 7. 2, in our case,
we have

Corollary 7.3. Let R be a right locally uniform semi-prime ring with
Z,(R)=0 and let M be a faithful R-module. Then Zg(M)=0 if and only if
P(M)=0.

Let an R-module M be a subdirect sum of R-modules {M,|ac A} and let
7, be a canonical epimorphism from M to M ,: 7,(m)=m,, where m=(m,) e M<
I,M,. The subdirect sum M is irredundant if for each a € A, the kernel of the
map: m—{ng(m)| B+, B A} of M into Mgy, Mp is non-zero.

Let a ring R be an irredundant subdirect sum of rings {R,|a €A} and let
0, be a canonical epimorphism from R to R,. We say that an R-module M is a
canonical R,-module if M(ker 6,)=0. This condition satisfies if and only if M
becomes an R,-module when multiplication is defined by mr,—mr, where
meM and r=(r,)=REI1, R,.

Following Feller and Swokowski ([3], [4]), an R-module M is called
annthilator-prime if (0) is a closed-prime submodule of M. M is called a prime
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R-module if the following two conditions are satisfied:
(i) N7=O0 for every non-zero submodule N of M.
(i) Zgr(M)=0.
An R-module M is said to be semi-prime if P(M)=0. Now we have

Theorem 7.4. Let R be a right locally uniform semi-prime ring with
Z,(R)=0, let {R,|a = A} be the irreducible components of R and let R,=R|P,,
where P,=(3ls+s Re)*. Let M be a faithful semi-prime R-module and let
{M,|lasA} be the irreducible components of M and let M,=M]|Q,, where
Qo=(Zpso Mp)*. Then M is an irredundant subdirect sum of {M,|acA},
where M, is an annihilator-prime R-module as well as M, is a canonical prime
R -module.

Proof. By Proposition 7. 2, it is clear that M is an irredundant subdirect
sum of {M,|acA}. Since Q, is closed-prime by Proposition 7. 2, we have
M,=M]|Q, is an annihilator-prime R-module by Proposition 2. 3 of [4]. Since
MP,<Q, by Proposition 7. 2, M, is an canonical R,-module. To prove that
M, is a prime R,-module, we assume that Zz,(M,)==0. Then Zz,(},) con-
tains a non-zero R,-submodule N, where N is an R-submodule of M. Hence
there exists a uniform R-submodule U of M such that USN and ULQ,. Thus
U~A,, ie., USM,. Let u be a non-zero element of U. Then #E=0 for
some EC’R,, because USZ5 (M,). Let E be the inverse image of E in R.
Then clearly EC’R and we have uECM,NQ,=0, which is a contradiction
and thus Zz,(M,)=0. Since R, is a prime ring, M, is a prime R,-module by
Proposition 1. 3 of [3]. 'This completes the proof of Theorem 7. 4.

We now prove the converse of Theorem 7. 4.

Theorem 7.5. Let R, {R,|a=A} and {R,} be as in Theorem 7.4. Let
M be an irredundant subdirect sum of {M,|oc A}, where M, is an annihilator-
prime R-module and is a canonical prime R ,-module. Then M is a faithful semi-
prime R-module.

Proof. First we shall prove that M is faithful. If Mr=0, where r=(7,)
(11, R,NR), then M,7,—0 and thus 7,=0 for all a=A. Hence r=0. To
prove that M is semi-prime, we let m=(m,)EZx(M) and #m,=M,. Then
mE=0 for some EC’R. It follows that EN R,C’R, as right R,-modules and
that m(ENR,)=m,(ENR,)=0. Since R, is a right quotient ring of
R,, Zg(M,)=Zg,(M,). Hence #,=0 and thus m—=0. Hence Zx(M)=0
and thus M is a semi-prime R-module by Corollary 7. 3.
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