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There are two kinds of "quotient ring". One is called a classical
quotient ring, that is, an extension ring Q(R) of a ring R is called an classical right
quotient ring of R if

( i ) 0 ( * ) 3 l ,
(ii) every element of Q(R) has the form ac \ where a, c^R and c is a

regular element of R>
(iii) every regular element of R has an inverse in Q.
In [6], [7], [19], [20] and [21] etc., many authors studied the structure of

those rings which have an artinian classical right quotient ring. Such rings have
finite dimensions in the sense of Goldie. It seems to the author that there does
not exist too many rings with infinite dimensions which have the classical
right quotient ring (even when the right singular ideal of such rings vanishes).

The other quotient ring is called a (homological) quotient ring and was
defined by R. E. Johnson [10], Y. Utumi [22], G. D. Findlay and J. Lambek
[5]. An extension ring S of a ring R is a right quotient ring of R if for each
a> Oφb^S, there exist r^R and wGZ such that ar-\-na^R and i r+wiφθ,
where Z is the ring of integers. If R is a left faithful ring, then R has a unique
maximal right quotient ring R. In particular, if R has zero right singular ideal,
then J? is a right self-injective von Neumann regular ring. So when we investigate
rings with zero right singular ideal, it is useful to consider the (homological)
maximal right quotient rings of such rings. But a ring R need not be semi-prime
even in the case where R is simple and artinian, as the following example shows.
Let D be a right Ore domain and let F be the right quotient division ring of D.
We put

and R = (F)n

Then R is the maximal right quotient ring of R. The above example suggests
that there are even various those rings which have the simple artinian maximal

o
o
ό

• 0~
• 0

• Ό .
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right quotient ring. So it is important to investigate those rings which have a
self-injective von Neumann regular ring as the maximal right quotient ring.
In [15] R. E. Johnson defined potent rings and determined those potent rings
which have the simple artinian maximal right quotient ring. A ring R is
called a potent ring if every non-zero closed right ideal A of R is potent, that is,
^4Λ4=0 for all τz>0. The main theme of this paper is to investigate those potent
rings which have a right self-injective von Neumann regular ring as the maximal
right quotient ring. After several definitions (section 1) we define, in section 2,
the concepts of residue-finite and locally residue-finite rings and show that a
right locally uniform potent ring with zero right singular ideal which is locally
residue-finite is an essentially irredundant subdirect sum of potent irreducible
rings with zero right singular ideal and conversely. In section 3, we investigate
countably dimensional potent irreducible rings with zero right singular ideal (for
short: CP/-rings). We define the concept of rings which have matrix repre-
sentable conditions (m. r. conditions) and give examples of residue-finite CPI-
rings with m. r. conditions. If R is a residue-finite CP/-ring, then the set of
closed two-sided ideals is a chain and there are the following two cases:

(A): Λ=Γ 0 DΓ 1 =>Γ a => . =>Γ,=>... and

(B): There exists an integer p such that

R=

If R satisfies the condition (A), then we call the ring R of type (A). If R
satisfies the condition (B), then we call the ring R of type (B). We give, in
Theorem 3. 22, a characterization of CP/-rings with m. r. conditions which are
of type (A). In section 4, we give a characterization of CP/-rings with m. r.
conditions which are of type (B). We also show that if the maximal right quotient
ring R of a ring R is also a left quotient ring of R, then R is of type (B) which has
m. r. conditions. This is a generalization of Faith's result [2] on prime rings.
In section 5, we give a necessary and sufficient condition that the maximal right
quotient ring of a right locally uniform potent ring with zero right singular ideal
is a left quotient ring of the same ring. In section 6, we generalize some of
Goldie's results on semi-prime Goldie rings to the cases of potent rings or
infinite dimensional semi-prime rings. In section 7, applying the methods
developed in section 2 to modules, we give a characterization of semi-prime
modules over a locally uniform semi-prime ring with zero right singular ideal.

Some of the results in this paper were announced without proofs in [17]
and [18].

1. Definitions and notations

Let R be an associative ring and let M be a right i?-module, A non-zero
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i?-submodule U of M is uniform if U is an essential extension of every non-
zero i?-submodule contained in U. An i?-module M is said to be locally
uniform if any non-zero i?-submodule of M contains a uniform Λ-submodule.
Clearly, if M is finite dimensional in the sense of Goldie, then M is locally
uniform. M is called countably dimensional if M contains a direct sum of coun-
table infinite i?-submodules but M does not contain a direct sum of non-
countable i?-submodules. An Λ-submodule C of M is called closed if it has
no proper essential extensions in M. Clearly, the concept of closed submodules
of M coincides with the one of complemented submodules in the sense of Goldie
[7]. A submodule L of M is called large if M is an essential extension of L (in
symbol: Lc'M).

In the case M=R, adapting the terminology of the above, we use the terms
uniform right ideal and right locally uniform ring and so on. We call ZR(M)=
{m^M\mE=0 for some Ea'R} the singular R-submodule of M. In particular,
ZR(R) is an ideal. We call ZR(R) the right singular ideal of R and denote it by
Zr(R). If ZR(M) = 0, then each non-zero submodule N of M has a unique
maximal essential extension iV* in M. In this paper, we assume that all rings
have zero right singular ideals. If S is a non-empty set of elements of i?, then
we define Sr= {x<=R| S#=0}. The set Sr is a right ideal of R and is the right
annihilator of S. The left ideal Sι is defined in a similar manner and is the left
annihilator of S. Any right ideal of the form 5 r , where S is a non-empty subset
of R, is an annihilator right ideal. The set Lr(R) (=Lr) of closed right ideals is
a complete complemented modular lattice under the inclusion. If {Cf |/eΞ/} is
any collection of closed right ideals of R, then (J ?e r C, = ( Σ ej C, )* If
(/r Π, U) denotes the lattice of all annihilator right ideals of R, then it is
easily seen that JrSLr. For convenience, we put Lr2=Lr Π L2 and Jr2

=Jr Π £2>
where L2 is the set of two-sided ideals of R. Corresponding left properties of a
ring R are indicated by replacing each "r" by an "/". If R is right locally
uniform, then Lr is an atomic lattice and A^Lr is an atom if and only if A is a
closed uniform right ideal. We say that right ideals / and / are similar if and
only if ER(I)^ER(J), where ER(I) is an injective hull of / as a right i?-module
(in symbol: I~ J). It is clear that if A and B are uniform right ideals of R,
then A~B if and only if A and B contain mutually isomorphic non-zero right
ideals Af and Br respectively. A ring R is said to be right irreducible if and only
if R is right locally uniform and A~B for all uniform right ideals A and B of
R. A right locally uniform irreducible ring with zero right singular ideal is
called an I-ring. We note that a ring R is an /-ring if and only if R is an /-ring
in the sense of R.E. Johnson [15]. Following R. E. Johnson, we call a ring R
a right potent ring (for short: P-ring) if every non-zero closed right ideal of R is
potent. An /-ring which is also a P-ring will be called a Pi-ring. A ring R is
said to be residue-finite if the following conditions is satisfied:
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The factor ring RjT is finite dimensional as a right i?-module for any non-
zero T^Lr2.

If R is finite dimensional, then R is residue-finite. If R is a prime ring,
then R is residue-finite, because Lr2= {0, R}. A P/-ring which is countably
dimensional will be called a CPI-ήng. Let M be a right i?-module. If M is
^-dimensional in the sense of Goldie, then we write n=dimR M. A ring S is
called a right quotient ring of a subring R if for each a, O φ i e S , there exist
r^ i? and « G Z such that ar-\-na^R and Oφόr+rar, where Z is the ring of
integers (in symbol: R<LS). A left quotient ring is defined similarly. If S is a
left and right quotient ring of i?, then we write Λ^/5. If R has zero right
singular ideal, then S is a right quotient ring of R if and only if S is a right
quotient ring of R in the sense of R. E. Johnson (see. [2]).

Concerning the terminologies we refer to [7] and [15].

2. Locally residue-finite P-rings

In this section it is shown that it suffices to find the structure of a residue-
finite P/-ring in order to determine the structure of an arbitrary locally
residue-finite P-ringυ which is a right locally uniform ring with zero right
singular ideal. We start with the proposition which is a generalization of
Goldie's result [7] on finite dimensional rings to infinite dimensional modules.

Proposition 2.1. Let M be a right locally uniform R-module with
ZR(M)=0 and let N be an R-submodule of M and let N* be a unique maximal
essential extension of N in M, Then N*={m^M\mECNfor some Ec'R}.

Proof. We put N'= {m^M\mEQN for some Ea'R}. Clearly, N' is an
i?-submodule which contains N. If m^N\ then OφmEζZN, where E is a
large right ideal and thus O^mE^mR Π N. Hence J V c W as right P-modules
and thus iV* 2 N\ Conversely, let x <E iV* and let E= {r e R \ xr e N}. Then
we have Ec'R and xEQN. Hence N*QN' and we obtain N* = N'y as
desired.

Let ί be a right locally uniform ring with Zr(R) = 0 and let R be the
maximal right quotient ring of R. Then R is a right self-injective (von Neumann)
regular ring and the mappings

A - ER(A), A^Lr(R); A -> A(\R, Ά(ΞLr(R)

are mutually inverse isomorphisms between Lr(R) and Lr(R), where ER(A) is
a right 72-injective hull of A in R (see [2]). Let A be a right ideal of R. Then
we write the i?-injective hull of A in R by A Clearly, A is a right ideal of R

1) The term "locally residue-finite rings" will be defined in this section.
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K and is right Λ-injective. Now the set of all uniform right ideals of R can be

classified by the similartity. {Aa} will denote the class containing the uniform

right ideal Aa. We set -Re=(21ie{A*} A)* and call Ra an irreducible component

of R. Then we obtain

Proposition 2. 2. Let R be a right locally uniform ring with Zr(R) = 0.

Then

(1) ΣL4euΛ} A is a two-sided ideal.

(2) Ra is a two-sided ideal.

(3) If B is a uniform right ideal of R and if BQRω, then B~AΛ.

(4) The sum X] Ra is a direct sum.

Proof. (1) Let A be a uniform right ideal and let A* be a unique maximal

essential extension of A in R. Then A* is an atom of Lr. Hence if x is an

element of R, then we obtain x'^A* or xr {\A*=ΰ. From these (1) follows

immediately.

(2) We put RJ=*Σ1A<Ξ{A(Λ\ A and let a be an element of RΛ and let r be an

element of R. Then, by Proposition 2. 1, aEζLRJ for some Ea'R and hence

(ra)E=r(aE)QRJ by (1). Again, by Proposition 2. 1, ra^Ra. Hence i?Λ is

an ideal.

(3) Let 5 be a uniform right ideal of R, and B^Ra for some α. Then

there exists an independent set {Bf } of uniform right ideals which satisfies

Aa^B{ and Σ t θ ^ c ' i ? / , because R is right locally uniform. Then

5ri(Σ ®β/) + ° a n d t h e mapping

θiib^bi, where b = ]ΓV;if G ΰ n (ΣL ®Bt),

is a monomorphism or zero by Lemma 5. 4 of [8]. Hence B^B{ for each

i such that <9t Φθ and thus B~Aa.

(4) We assume that RΛΓ\(Σlβ^ΛRβ)φ0. Then, applying the method of

proof of (3) for a uniform right ideal B contained in Ra Π (Σβφα> ̂ β)> we obtain

B^Aa and B~Aβ for some /?Φα. This is a contradiction and hence the

sum Σ Λ ̂ α> is a direct sum.

Proposition 2. 3. Let R be a right locally uniform ring with Zr(R)=0, let

{RΛ\a^A} be the irreducible components of R and let R be the maximal right

quotient ring of R. Then

(1) Rais a right self-ίnjective, regular and prime ring with a minimal right

ideal.

(2) Ra is the maximal right quotient ring of Ra.

(3) Lr(Ra)={I^Lr(R)\lQR«}.
(4) If R is a potent ring, then RΛ is a Pi-ring.

Proof. (1) If A and B are uniform right ideals such that A~B, then
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A^U and A is a minimal right ideal of R. Hence RΛ is an /?-injective hull of
the sum of all minimal right ideals which are isomorphic to AΛ and thus Ra is a
direct summand of R and is an two-sided ideal of R by the same argument as in
(2) of Proposition 2. 2. From these (1) follows immediately.

(2) Since RΛ is a regular ring and is a right self-injective ring by (1), it is
enough to prove that Ra

yZ)Ra as a right i?Λ-module. Let q be a non-zero element
of Ra. Then there exists TZΞR such that Oφqr^R Π fcΛ=RΛ. Since RaRβ=0
(αφ/3), 2 * ®R*d'R and Z r(i?)=0, we obtain qrRa^0. Hence there exists
r'<=Ra such that 0Φ5(ιτ/)=(5r)r/e/2Λ and r/^R^ as desired.

(3) Let 7 be a closed right ideal of R such that /£i? Λ . Then 7 is a direct
summand of J?Λ and hence ί^Lr{Ra). Since 7=/fΊ i?=(/n/?α>)ni?=
7|Ί (/?Λ Π R)=ίπ Rm we obtain I^Lr{RΛ). Conversely, let 7 be a closed right
ideal of RΛ and let I=ERcΰ(I). Then clearly 7 is a right ideal of R and is a
direct summand of #. Hence I^Lr(R). Since 7n#=(7n$α>)ni?=7n
(# Λ Πi2)=/nΛ Λ =7, we obtain I<=Lr(R) and 7 £ ^ Λ .

(4) follows from (1) and (3).
Let R be a right locally uniform potent ring with Zr(R)=0. Then R is

saidt to be locally residue-finite if and only if the irreducible components of R
are residue-finite as a ring. By Proposition 2. 3, if R is locally residue-finite,
then Ra is a residue-finite P7-ring for each a.

Now we set

(2. 4) Pa = (ΣβφΛO* and Roi=RjP(Λ for each α. Then the following lemma
holds.

Lemma 2. 5. (1) Pa is a two-sided ideal of R.

(2) n Λ = 0 ?»<* n β φ Λ P β Φ o.
(3) R^Ra as right R^-modules.

(4) 7/"7?Λ is a residue-finite PI-ring, then so is Rω.

Proof. (1) and (2) are trivial.

(3) The mapping

x -> x = x+Pa

is a ring monomorphism from Ra to Ray where x^Ra. Hence we may assume
that RaZDRβ. Let x be a non-zero element of Ra, where x<&Pm x^R. By
Proposition 2. 1, xEQRa®Pa for some £ c ' i ? . Clearly (E Π RΛ)®{E Π PΛ)C7i?.
If Λ ( £ Π 1 ? Λ ) = 0 . then 4 ( £ n P Λ ) θ ( ^ n Λ β ) ] = Λ < S n P Λ ) C P β , because P Λ is an
ideal and hence x^P$=Pa by Proposition 2. 1. This is a contradiction and
hence 0 φ « ( £ n Λ Λ ) C Λ β , i.e., xRΛΓ\RΛΏx(EnRΛ)φ0. Hence Ra

yZDRΛ as
right i?Λ-modules.

(4) By (3), we may assume that R^R^R*. By Theorem 4 of [2, p. 70],
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Lr{RΛ) is isomorphic to Lr{Ra) under the contraction. Hence if Ra is a residue-
finite Pi-ring, then Ra is a residue-finite P/-ring.

REMARK. If R is a right locally uniform ring with Zr{R)=0, then (1)^(3)
hold and Ra is an /-ring.

Let S be a subdirect sum of a family {SΛ} of rings (that is, S c Π Λ S Λ and
the projection 5 -> SΛ is onto for each α). The subdirect sum will be called
essentially irredundant if and only if ΠΛ S Λ

λ 3Σ!θ(*SΠ £*) as right S-modules
(see [2]).

Let Λ;=(Λ?Λ) be a non-zero element of Π^ Ra and let # Λ Φθ for some a.
We put 2?Λ={re.RjΛΛrel?Λ}. Then, since RΛ<z.'RΛ, we obtain Ra^Ea as
right i?Λ-modules. Since ZRΛ(RΛ)=Oy there exists an element r of 2?Λ such
that OφXΛr^Rω. Hence OφΛr=ΛΛr£ΛΛS Σ Θ(#Π RΛ).

Now, we can summarize the above-mentioned results as follows:

Theorem 2. 6. Let Rbea right locally uniform {potent) ring with Zr(R)=0
and let {Ra} be as in (2. 4). Then R is an essentially irredundant subdirect sum of
{RΛ} and RΛίs a {potent) I-ring for each a. Furthermor, if R is locally residue-

finite, then Rωis residue-finite.

We now give a converse of Theorem 2. 6.

Theorem 2. 7. Let {R^} be a family of Pi-rings and R be an essentially
irredundant subdirect sum of {Ra}. Then

(1) R is a right locally unifrom potent ring with Zr{R)=0.
(2) If RΛ is residue-finite for each a, then R is locally residue-finite.

Before proving this, we establish the following proposition, which is of
interest in itself.

Proposition 2. 8. Let S be a ring. Then S is a right locally uniform ring
with Zr{S)=0 if and only if S is an essentially irredundant subdirect sum of {SΛ},
where Sa is an I-ringfor each a. Furthermore {Sa} are the irreducible components
of S} where Sa=SaΓiS.

Proof. The "only if" part was proved by Theorem 2. 6. The "if" part:

we first prove that S is a right locally uniform ring with Zr{S) = 0. Let Sa be

the maximal right quotient ring of Sa for each a. Then §a is a full left linear

ring over a division ring. We set i£=Π Λ SΛ. Then, by Proposition of [16,

p. 72], K=JJΛ Sa is the maximal right quotient ring of S. By Theorem 3. 9 of
[2, p. 117], K is right self-injective, right locally uniform and regular as a ring.
Hence S is a right locally uniform ring with Zr{S)=0.

Before proving that {Sa} are the irreducible components of 5, where Sa—
Sa Π S, we need the following two lemmas.
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Lemma 2. 9. Sa is a right quotient ring of SΛ.

Proof. Let sa be a non-zero element of SΛ. Then 0φ$Λίe5]«» Θ 5 Λ for
some s<=S and hence y G 5 Λ . Since Zr(S) = 0, J*ΛφSΛc:'S and SΛSβ = 0
(αΦ]8), we obtain s^sS^O. Hence O + v / G ^ A n S , for some / e S Λ .
Since Z r (S Λ )=0, SΛ is a right quotient ring of SΛ.

Lemma 2.10. (1) Sa^Lr2(S) and SΛ is an I-ring as a ring for each a.
(2) If A is a uniform right ideal of S contained in Sa, then A is a uniform

right ideal of the ring Sa.
(3) If Aa is a fixed uniform right ideal of S contained in SΛ and if A is an

arbitrary uniform right ideal of S, then A~AΛ if and only if AQSa.

Proof. (1) Clearly S« is an ideal and SΛΓi (ΣβΦ* Sβ)=0. Let L be a
right ideal of S such that LlgSa and let a=(aa)^L, at£Sa. Then α β φ0 for
some /3φα. Since, by lemma 2. 9, SΛ is a right quotient ring of Saf there
exists an element xβ of Sβ such that 0 + aβxβ^Sβ and 04zcιβxβ — axβ^LΓϊSβ.

Hence LfΊ ( Σ βφΛ S β )φ0 and thus Sa^Lr2(S). Since S Λ = ^ Λ is the full ring
of linear transformations in a right vector space over a division ring, S# is an
/-ring as a ring.

(2) We may assume that A is closed. Assume that A is not a uniform
right ideal of SΛ. Then there exist right ideals A{ (i=l, 2) of Sa such that
A^AX®A2. Since S - Π Λ SΛ, we obtain Es(A)=Esa(A)SESa(A)®ESa(A2) in
S and Es<ύ(Aj) is a right ideal of S (/=1,2). Hence JEΛ(-4y)Π*Sφ0 and
,4=£ s(,4) Π S 3 ( ^ ( ^ 0 Π S)θ(£S α >(Λ) Π S). This is a contradiction and hence
A is a uniform right ideal of Sa.

(3) First suppose that Sa^A. By (1) and (2), AΛ and 4̂ contain non-
zero right ideals AJ and A/ of AŜ , respectively, such that AJ^A' as an Sa-

module. Then £s(i4) = £ S e ( i 4 ) = £ S e ( i 4 O ^ ^ ( i 4 e

/ ) = ^ e ( i 4 e ) = J B s ( ^ ) and
thus A~Aa. Conversely, suppose that A^AΛ and ^ffiS^. If A%Sβ for
each yS, then A Π 5^=0 and hence ArSSβ, because Sβ is an ideal of S. This
contadicts Z r (S)=0 and 5 V 3 Σ * Θ 5 Λ . Hence AS-Sβfor some /?Φα and thus
AS=Sβ. On the other hand, since A~Aa we obtain A^AΛ and hence
OΦi4i4Λ£^β^Λ=O, which is a contradiction. Hence if A~Aa, then i C ^ .
This completes the proof of Lemma 2. 10.

Clearly Sa=(ZA^AaA)* by Lemma 2. 10 and Σ θ ^ c ' S . Hence {Sa}
are the irreducible components of S. This completes the proof of Proposition
2.8.

The proof of Theorem 2.7: By Proposition 2. 8, R is a right locally uniform
ring with Zr(R)=0 and {Rω} are the irreducible components of R, where Ra=
RΛ Π R. For the sake of the completion of the proof of Theorem 2.7, we need
several lemmas.
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Lemma 2.11. Let I be a closed right ideal of R and let IΛ= {xa^RΛ \ a=
(xa)e/ for some a^I}. Then Ia is a closed right ideal of RΛ.

Proof. Let K be a relative complement of / in the sense of Goldie and let
KΛ={xΛ^RΛ\a={xΛ)^K for some a<=K}. We shall prove that IaC\Ka=0.
Suppose that IaC\Ka^0 and 0Φ xΛ <Ξ /*Π Ka. Then there exist a = (—xω9

•• ) e J and b=(- -,xay •••)<=£'. Since RΛ is a right quotient ring of Ra by-
Lemma 2 .9, OΦ #ΛrΛGl?Λ for some ra^RΛ. Then 0^ara=bra^If]K, which
is a contradiction. Hence Iai~]Ka=0. Suppose that Iy is not a closed right
ideal of Ry for some γ. Then there exists a right ideal L7 of Ry such that
Ly^Iy and L γ n i f y=0. Now we set L Λ = / Λ for α Φ γ and put L= {r=(ra)
\r^R and r(Λ^Lob for each α}. Then L is a right ideal of R which contains
/. If L = I, then Ly = Iyy which is a contradiction. Hence L^I and thus
L Π i£φθ. Let a=(aa) be a non-zero element of LΠ K. Then 0φα β eL β Γl Kβ

for some /β. This is a contradiction. Hence 7Λ is a closed right ideal for
each α.

Lemma 2.12. Let T be a non-zero element of Lr2(Ra). Then
(1) Γ_EL, 2 (Λ).

(2) TtΞLr2{RΛ)y where T= f Π £*.

Proof. (1) we put Γ * = Π {Ar\Ar^T and 4̂ is an atom of Lr(R)}.
Clearly Γ* GL r2(i?) and Γ* 2 Γ. Suppose that T* 5 ϊ1. Then since TGLr(i?),
by (3) of Proposition 2. 3, there exists an atom B of Lr(R) such that T*Ξ§ j? and

Γ = 0 . If fiai?,,, then B^Rβ for some ySφα and Br^RΛ^T. Hence
and thus £ 2 = 0. This is a contradiction. If B^Ray then since

Rn) and ΓΠ 5 = 0 , we obtain BrS T. Hence F g Γ * by the definition
of Γ* and thus B2=0. This is a contradiction and hence T=T*(ΞLr2(R).

(2) Let K be a relative complement of Γ in i? and let R=ίtf\R. Then
clearly T Π ^ = 0 . Suppose that T is not an ideal of R. Then %Λt^T for
3omeΛΛGΛΛ and ? e f . _Hence ( ^ ? Λ Λ

1 + f ) 2 ) n X ' φ 0 . Let fe be a non-zero
element ofRϊMxJRJ+T) and let k^.+Σ^^xJFj+nxJ, where ?xeT
and rj^RΛ. Since Zr(i?Λ) = 0 and i?^ is a right quotient ring of Ra, there
exists an element of r^RΛ such that 0 φ fere if and ?/, ?F/, tr^T. Since i?
is a subdirect sum of {i?Λ}, there exists s^R such that j = ( Λα, •••). Since
T(=Lr2(R) and ?f/, ?reΓ, we obtain xJr/=strjrLxJr=str<=T. Hence
OφfereΓΠif^O. This is a contradiction and hence T^Lr2(Ra). This com-
pletes the proof of Lemma 2. 12.

By Lemma 2. 11, R is a potent ring. Since Lr(jRα))^Lr(^Λ) under the
contraction, Ra is residue-finite by Lemma 2. 12 if J?Λ is residue-finite. Hence

2) The principal right ideal of a ring Ry generated by α, is denoted by aR1.
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if RΛ is residue-finite for each α, then R is locally residue-finite. This completes

the proof of Theorem 2. 7.

3. Residue-finite Pi-rings which are of type (A)

Theorem 3.1. Let R be a residue-finite CPI-ring. Then

(1) Lr2=Jr2={Ar\A^Lr:atom}[j{0,R}.

(2) Lr2 is a chain and there are the following two cases:

{A): Lr2 is an infinite chain R=T0^>T1nT2lD ~ such that Π *=<, 7^=0.

(B): Lr2 is a finite chain R= Γ p Γ p Γ p . o T pZD Tp+1=0.

(3) For each non-zero Tp^Lr2y there exists an independent set {Aιy « ,^4n}

of atoms ofLr such that Ax U *••• U *An U *Tfi= T p_x and{Aλ U *— U * ^ w ) Π Tp=0.

(4) // A is an atom of Lr> then AQTpandAm Tp+1 if and only if Ar= Tp+1.

Proof. (1) By Proposition 5 of [2, p. 71], L r 2 2 {Ar\A(=Lr: atom}.

Conversely, if Γ G L Γ 2 such that T+R, ΓφO, then the set S={Ar\ArST,

A^Lr: atom} is non-empty, becauce there exists an atom A^Lr such that

Af}T=0 and hence # 2 Γ . Since dim^ R/T<°°y there exists a minimal

element Ar in S by Lemma 3. 6 of [9]. If Ar^T, then there exists an atom

C(=Lr such that Ar^C and CpιT=0. Hence C r 2 Γ , i.e., C G 5 . By

Theorem 1.4 of [15], Ar^Cr or CrΏAr. If CrΏAr, then Cr^Ar^C and

C 2=0. This is a contradiction. If ^ Γ ϋ C r , then this contradicts the choice of

Ar. Hence we obtain T—Ar, as desired.

(2) It is clear that Lr2 is a chain by (1) and Theorem 1. 4 of [15]. We

shall show that the condition (B) holds if and only if there exists an atom A of

Lr such that Ar=0. At first, suppose that T^ΦO and Tp+1 = 0 for some p.

Then there exists an atom A of Lr such that TpΏA. By (1), Ar= Tk for some

k. If k^py then ̂ 4 r= Tk^Tp^A and thus ^42=0. This is a contradiction and

hence ^4 r =7^ + 1 =0. Conversely, suppose that Ar = 0 for some A of L r and

that Lr2 is an infinite chain, i.e.,

Lr2:R= T^T^.-^T^..- .

Let T—Γ\°°pr=0Tp. Then 7 = 0 , because R is residue-finite. Hence we may

assume that Tp_Λ^A and Tp^A for some^>. Then ^4(Ί Tp=0, because A is

an atom. Thus Ar^Tp and hence Tp=0, which is a contradiction. Hence

Lr2 is a finite chain. If Lr2 is an infinite chain, then it is clear that Π °l=Q Tp=0>

because R is residue-finite.

Since R is a right locally uniform residue-finite ring, (3) follows from the

definition of Goldie's dimension.

(4) First we suppose that AQTp and ASTp+1. By (1), Ar= Tk for some

k. If k^p, then Ar=Tk^Tp^A and thus A2=0. This is a contradiction.

Hence we obtain k^p and thus ^ ' C T1^!. Since A^Tp+ly it is clear that
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Ar^ Tp+1 and hence Ar= Tp+1. Conversely, suppose that Ar= Tp+ί. Then if
A £ Tp, then Ar^Tp, which is a contradiction. Hence A £ Tp. It is clear that
Tp+1lgA, because A is potent.

The lattices Jr and ]ι are dual isomorphic under the correspondence A—>Aι,
A<^Jr. Hence if Jr2 consists of {Tp}°°p=Q such that i ϊ = Γ 0 = ) Γ 1 3 . ,
Π ~=0Tp=0, then/ / 2 consists of {Tι

p}%0 such that

(3.2) 0 = Γ ί c Γ ί c . cTΪ . , u;-oΓί = 12.

If / r 2 consists of {Γt }?ίJ such that R=T0ZDT1^ — z>Tpz>Tp+ί=Oy then

jΓ/2 consists of {Γ}}?io such that

(3.3) 0 = Tl(zTl<z-<zT'p<zTι

p+1 = R .

Lemma 3. 4. Let R be a residue-finite CPI-ring and Jn= {T\, T{, •••} be
given by (3. 2) or by (3. 3). Then

(1) For «κ:λ T£φ#, there exists a potent atom B^Jι such that BQ Tι

p+1

andBC\Tι

p=0.
(2) // B is a potent atom of J'ly then BQTι

p+1 and B&Tι

p if and only if
Bι=Tι

p.

Proof. (1) By Theorem 3. 1, there exists an atom A of Lr such that
Ar=Tp+1 and Tp^A. Since A is potent, aAφO for some a^A and thus
arf)A = 0, because A is atomic. By Theorem 6.9 of [12], ar is maximally
closed and thus ar is a maximal annihilator. Hence B=arι is an atom of Jt.
Furthermore, since ar Π ^4=0 and αE^,we obtain that B is potent and BQ Tp+1.
If BΠ Γ£φO, then B^Tι

p and Br=arΏTp^A. This contradicts the choice
ofα. Hence J5nΓ^=0.

(2) First we assume that BS-Tι

p+1 B^Tι

p and B is potent. Then it is
clear that BpιTι

p=0 and hence Bl^Tl

p. If Bι^Tι

p, then Bι^Tι

p+1 and thus
JB2—0. This is a contradiction and hence Bι=Tι

p. Conversely, suppose that
Bι=Tι

p and B is potent. Then clearly Tι

p^B. If TP+1&B, then 5Π Tι

p+1=0
and thus B'ΏTP+1. This is a contradiction and hence Tι

p+1^B.

By Theorem 2. 3 of [14], the lattice Jι is upper semi-modular. Now let

ΰ G / ; . If there exists a finite chain in/ ; 0=B0<B1<"<Bd=:B such that 5,

is a cover of . B ^ ( l^ i^έ/) , then, by Theorem 14 of [1], we can define the

dimention of B as such an integer d and write d=dim B.

Following R. E. Johnson [13], R is said to be a right stable ring if R is a

right locally uniform ring with Zr(R)—0 and (Σ^4α»)r = 0, where ^4Λ runs all

over uniform right ideals. Clearly, if R is a P/-ring, then R is a right stable ring.
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Lemma 3. 5. LetRbea right stable ring and let B be an atom of/,. Then
Br is maximally closed.

Proof. Since R is a right stable ring, there exists an atom A of Lr such
that AB Φθ. Then ¥ is maximally closed for 0^b<=Bf)A. Hence bn is a
minimal annihilator and brι ΓiB^O. Thus B=brl and hence Br = br is maxi-
mally closed.

Lemma 3. 6. Let R be a residue-finite CPI-ring. Then
(1) dimR{RITp)=dp if and only if dim Tρ=dp

(2) For each non-zero T p, there exists an independent set {!?,•} "= 1 of potent
atoms ofjg such that T\=T\^ \]{BX U — \JBH), (B1 U — \JBn)Π T^^O, where
n=dimRTp_JTp.

Proof. Since dimR(RITp) is finite, (1) immediately follows from Lemma
2. 2 of [14].

(2) By Lemma 3. 4, there exists a potent atom Bλ of / ; such that Tι

p^B1

and Tp_! Π Bt=0. Assume that we have selected an independent set {Bly •••, Bk}
of potent atoms of Jι such that CC Tι

p and C Π Ϊ1^_1=O, where C=BX U — \jBk.
If C U Tι

p_x^Tι

py then C r (Ί Γ^-iSΓ^. Hence there exists an atom ^4<=Lr such
that C r Π Tp_^A and ^ Π Γ^=0. By (4) of Theorem 3. 1, Ar= Tp. By the
same way as in (1) of Lemma 3. 4, there exists an atom B oίjι such that J5C Tι

py

ί f l Γ ^ O and B=an with atΞA,arΓiA=0. Assume that 5(Ί (C U T ^ φ O .
Then 5 S ( C U ^ _ 0 and so Br=ar^Cr<r\Tp_^Ay which is a contradiction.
Hence we obtain that Bf](C[J Tι

p_^)=Q. Then, by the same way as in Corollary
2. 4 of [14], we obtain that (B U C) Π 7 ^ = 0 and thus, by (1), the assertion of
(2) now follows by induction.

Let dimR(RITp)=dp for each non-zero Tp€ΞLr2. Then evidently
dim^Tp.JT^df-dp^. If R satisfies (A) in Theorem 3. 1, then we shall
call t h e ring R of type (A) a n d (d17 d2—dly •••, dp^-dp_^ •••) the set of block

numbers of R.

If R satisfies (B) in Theorem 3.1, then we shall call the ring R of type (B)
and (d19 d2—dly •••, dp—dp_ly oo) the set of block numbers of R.

Let L be an atomic lattice with 1. A set {a{} of atoms of L is independent
if Λ, Π ( U yφ, Λy)=0 for each i. An independent set {α,} of atoms of L is called
a έίms of L if U , a{=l.

In order to make further progress we need the following definitions:
Let J? be a residue-finite CP/-ring which is of type (A), let

Lr2={T0, T19 T2) •••} and let dimRR/Tp=dp for each p. Then we say that R
has matrix representable conditions (for short: m.r. conditions), if there exists a
set {̂ 5,}̂ =! of potent atoms of Jι such that
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(a) 71i=ϊ1ί.1U(5 l ί #.1 + 1U U5ίr#), T^niB^^Ό-UB^O

for each p,

(b) Tp U *Tβ

p=R and TpΠ Γ<=0 for each />, where ϊ > = ( U j>dp Bj)r,

(c) U*Γ0 Γ«=i?.

Let R be a residue-finite CP/-ring which is of type (B) and let Lr2=

{Γo, T19 •••, Γ,, T^+J, where Tp+1 = 0 and let dimRRITk=dk for each Λ^>.

Then we say that R has wx.r. conditions if there exists a basis {.Bf }Γ=i of potent

atoms of/; such that

(d) r^ΓUUίfi^^U-UίJ, ΓUn^.^U U^HO for each

(e) U ?Γi -4ί=i2, where A~{ U yφ,J5y)r for each i.

Now, for the sake of giving examples of residue-finite CP/-rings with m.r.

conditions, we shall generalize the concept of T-rings which was defined on finite

dimensional rings in [15] to the case when the ring considered is infinite dimen-

sional. Let F b e a division ring and let ω be a countable ordinal number. We

denote by (F)ω the ring of all column-finite ω X ω matrices over F. Let F{j be

additive subgroups of F such that

(3.7) FuFJk£Fik (i,j,k= 1,2,

L e t

(3. 8) S =

Clearly S is the subring of (F)ω. The ring S will be called a T-ring

(triangular-block matrix ring) with type (A) in (F)ω if there exist integers dn such

and

(3.9) FiJΦθ^i>dp and

The ring S will be called a T-ring with type (B) in {F)ω if there exist

integers dn such that 0=dQ<d1<- <dp and

(3. 10) F f y Φ 0 ~ (0 Xj<dp and if

for some k (0<^k<p)> then i>dk, (ii) if j>dp, then i>dp.

In both cases, we let

(3. 11) M = {ae(F)m\a = (a{J), a^Fij} , where F'u

= F whenever F^ΦO and F'tJ=0 otherwise.
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Following R. E. Johnson, we shall call M the full cover of S. Let A and B
be subsets of a division ring F. The set {ab'11 α G i , OφόeB} will be denoted
by ilB-1.

Since (iΓ)ω is column-finite, we obtain the following two propositions by the
same arguments as in Theorems 3. 5 and 3. 7 of [15].

Proposition 3.12. Let S be a T-rίng in (F)ω given by (3. 9) or by (3. 10).
Then S^(F)ω if and only ifFlxF^=F.

Proposition 3.13. Let S be a T-ring in (F)ω given by (3. 9) or by (3. 10)
such that S^(F)ω. Then S is potent if and only if FjjFj}=F for j<k

Proposition 3.14. Let S be a T-ring with type (A) in (F)ω whose blocks are
defined by the numbers dQ) dly

 m ,dn, ••• with O=do<d1<" dn<. in (3. 9). If
S^(F)ω and if S is potent, then

(1) S is a residue- finite Pi-ring with m.r. conditions which is of type (A).
(2) Lr2={T0, Tly ..., Tn> -.}, where TQ=S and Γ Λ =

tf» y=0 if i^dn} for each n.

Proof. (2) follows from the same argument as in Theorem 3. 9 of [15].
(1) Let B~{a^S\a=(aiJ), aij^Fij and ak~0 if k^i} for each positive

integer i and let

0
0

Si

0

where 0 φ / ί e . F ί ί and other positions are all zero. Then it is clear that br

t

ι=B{

and that {i?t }Γ=i is a set of potent atoms of Jξ. Further, it is easily checked
that the set {5ί }Γ=i satisfies the conditions (a), (b) and (c). The other assertions
are evident.

Corollary 3.15. If M is the full cover of S which is a T-ring with type {A)
in (F)ω, then M is a residue-finite Pi-ring with m.r. conditions which is of type (A).

Proposition 3.16. Let S be a T-ring with type (B) in (F)ω whose blocks are
defined by the numbers d0, dly ">,dp with O=do<d1<>>-<dp as in (3. 10). If
S £ {F)ω and if S is potent, then

(1) S is a residue-finite Pi-ring with m.r. conditions of type (B).
(2) Lr2={T0, Tu - , Tpy Tp+1}, where T0=S, Tp+1=0 and Tk={a^S\

a=K), au=0 ifi^dk} for l^k^p.



POTENT RINGS AND MODULES 245

Proof. (2) follows from the same argument as in Theorem 3. 9 of [15].

(1) Let {Bz}Γ=i be as in the proof of Proposition 3. 14. Then it is easily

checked that {B{} is a basis of potent atoms of ]ι and that it satisfies the condi-

tions (d) and (e).

Corollary 3.17. If M is the full cover of S which is a T-rίng with type (B)

in (F)ω, then M is a residue-finite Pi-ring with m.r. conditions of type (B).

Let R be a residue-finite P/-ring of type (A) with m.r. conditions, and let

{Bj} be a set of potent atoms of Jι which satisfies the conditions (a), (b) and (c).

Now we set A~( U f& Bj)r. Then the following lemma holds:

Lemma 3.18. (1) {̂ 4,} and {£,} are bases of potent atoms of Lr and J t

respectively.

(2) For each py Γ ^ ^ Γ ^ U * ( i 4 r f > . 1 + 1 U* \J*Adp) and Tpf]{Adp_1+1

U* 11*4^=0.
(3) Bt=(U%

Proof. (1) We first prove that {B{} is an independent set of atoms of/7.

If BiΓiAl^O for some i(dp_λ<i^dp\ then B^C\JTP

1 and Bϊ^CrnTc

py

where C=B1Ό - U B M U B ί + 1 U - \JBdp and 7>=( ΌJ>dpBj)r. Since Tι

p=

B.Ό"' ΌBdp, we obtain that Tp=Br

tΓiCr. By the assumption, Tp[J*Tc

p=R.

H e n c e C ' = C r Π ( Γ , U *Γ<)=C'Π [ ( ^

by the modular law and we obtain C^B{. This is a contradiction, because

{Bly ..-, Bdp) is an independent set of atoms of//. Hence Bi[](B1 U ••• ΌBi_1 U

Bi+1\J ') = 0, i.e., {£,} is independent. Since U°°p=oTp = Ry U, ΰ z = i ? and

hence {£,.} is a basis of / , . Clearly B^ΓiA—O, B\ \]A~R and B\ is a

maximal closed right ideal by Lemma 3. 5. Hence Br

t U *-4i==i? and thus A{ is

an atom of Lr. If A4Γ\ ( Λ U * ••• U*Λ - iU*Λ +iU* )Φ°, t h e n R^All)

(A[Π ••• Π A\_xΠ-4ί+1 Π « ) 2 U, B{=R, which is contradiction. Hence {At) is

an idependent set of atoms of Lr. Since Tl'^A1®*»@Adp and dimRRITp=dpy

we obtain ΓJ= U * 4 Ά Since U* TP=R by the assumption, we obtain

R= u * ̂ 4., as desired.

(2) follows from the same way as in the proof of (1).

(3) Clearly B^Df^Aj)1 and {\}%Aj)1 is an atom of/,. Hence

B<=(V%iAjy.

Theorem 3.19. If R is a residue-finite Pi-ring with m.r. conditions of type

(A) and if (d1} 'r>dp, )is the set of block numbers of R, where d{ is a positive

integer, then there exist potent atomic bases {B{} for Jι and {A{} for Lr such that:

(1) A~( U yt>- Bj)r and B~{ U%t A,)1 (i= 1, 2, •••).

(2) Jr2=Lrΐ={A\\i=\, 2, •••}, Jl2={B\\i=l, 2, -..}.
(3) A^AϊΏ. ΏA ^ ", n ; = 1 ^ = 0 and 0 =
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(4) Aϊ=Arj and B\=B) if and only if dQ+dx-\ \-dp<i and j^do+

dχ\-' *+dp + 1 for somep, where do=O.
(5) i ί ,5 y Φθ if and only if i>do-{ \-dp and do-\ [-dp<j^d0-{ \-

dp+1for some p.

Proof. Let {#,} be potent atoms of / , which satisfies the conditions (a),
(b) and (c). And let A~( {JJ&BJY for each /. Then, by Theorem 3. 1,
Lemmas 3. 4 and 3. 18, (1)^(4) are evident.

(5) For any Bj, there exists an integer^) such that J 0 + + ^ < y ^ r f 0 + +
dp+1. Then B)=TZ

P by Lemma 3.4. Suppose that AiBJ = 0. Then the
following implications hold:

AiB.^O^T^B^A^T^Aϊ^T,, for some k^p^k^i^do-\ \-dp.
Hence ^4tJ?yΦθ if and only if i>dQ+ "*-\-dp.

Let R be a residue-finite P/-ring with m.r. conditions of type (A) and let
{A^ and {#,} be atomic bases given by Theorem 3. 19. Then {̂ 4,} is an
atomic basis of Lr{R) which corresponds to the atomic basis {̂ 4,} of Lr(R). By
Theorem 1. 11 of [2, p. 108], there exist matrix units {ef y K , i = l , 2, •••} in &
such that Ai=eii^ and R=(F)ω, where F is a division ring. Clearly A—e^fe Π R
and B~( U i Φ t A;)'=&„ Π #. Let

A^B^F,^ ( ί , y = 1,2, ....)•

Then Fij are additive subgroups of F satisfying (3. 7).
If we put

(3. 20) S = {αei? I a = (α,y), «,v

then S is a sub ring of R. By Theorem 3. 19,

h ^ and dQ+-+dp<j^d0-\ \-dp+1 for

Thus, S is a Γ-ring in (F)ω with the same block numbers as in R. Let M
be the full cover of S. Then we have

Lemma 3. 21. If R is a residue-finite Pi-ring with m.r. conditions of type
{A), if S is a T-ring given by (3. 20) and if M is the full cover of S in (F)ω> then

(1) S^R^M.
(2) S is a potent ring.

Proof. Since Bl=0, it is clear that B^R. Since {A{ Π i?i}Γ=i is an atomic
basis of the ring B1 and Z ^ J B ^ ^ O , we obtain ^ΣT=i(Aif]B1)^B1 Hence
ΣΓ-i(A ΓI50^/2 by Lemma 2 of [2, p. 88]. Since Σ Γ - i ^ n B J S ί , we
obtain 5^i?. Let b be a non-zero element of i?, then fte/? and b=(biJ) for
some b^^F. If ftrίfφ0, then c=(errf)b(e9Sg)^R for any non-zero f^Frr and
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g£ΞFss and thus c=fbrsgers<=ArPιBs. Hence firsg^Frsy i.e., Frs^0. Thus
b^M.

By the same argument as in Theorem 4. 3 of [15], (2) follows immediately.

By Lemma 3. 21, we have

Theorem 3. 22. Let R be a left faithful ring and let R be the maximal
right quotient ring of R. Then R is a residue-finite Pi-ring with m.r. conditions of
type (A) if and only if it satisfies the following two conditions:

(1) K=(F)ω, where F is a division ring,
(2) S^R^M, where S is a potent T-ring with type (A) in (F)ω and M is

the full cover of S in (F)ω.

4. Residue-finite Pi-rings which are of type (B)

Throughout this section, let R be a residue-finite CP/-ring. Let R be a
ring of type (B) with m.r. conditions, let Lr2={T, To, "^ Tp, Tp+1} and let
ά\mRRjTk=dk for each k^p. And let {£,} be a basis of ]ι which satisfies the
conditions (e) and (d). Now we put Af=( U ^ Bj)r for each i. Then, by the
same arguement as in Lemma 3. 18, the following lemma holds:

Lemma 4.1. (1) {At} and {B{} are bases of Lr and Jι respectively,

(2) 7 1

i . 1 = r 4 U * ( V 1 + i U * - U * ^ l ) , T * n ( V i + . U * - U * ^ , ) = 0 / o r
each kSp and Tp= U %dpAj.

(3) S,.=(U**^.)'.

By the validity of Lemma 4. 1, the proof of the following theorem proceeds
just like that of Theorem 3. 19 did.

Theorem 4. 2. Let R be a residue-finite PI-ring with m.r, conditions which
is of type (B) and let (dly d2, - , ^ 0 0 ) be the set of block numbers of R, where d{

is a positive integer. Then there exist potent atomic bases {B^ for Jι and \A^ for
Lr such that

(1) A~( U & Bj)r and B<=( U*mAtf, (i=h 2, •••)•
(2) / r a = i r , = {^5|f=l, 2, ...}9jiΛ={B\\i=l, 2, - .} .

(3) i4ϊ2i452 —2i4ίlΦ0, Arj=0 (j>n) and 0=B[QBι

2Q ~QBι

n^Bι

n+2

=Bι

n+2=-~, where n^d^ \-dp.
(4) For l^hj^n, Ar

t=Ar

5 and B\=B) if and only if do+dx-\ \-dk<i
andj^d^d^Λ \~dk+1for some 0^k<p, where n=d1-\ \-dp and do=O.

(5) ^ 5 y Φ θ <=>(!) Ifj£dQ+~'+dp and if do+-+dk<j^do+.~+dk+1

for some k (0<k<p), then i>dQ-\ Vdk) (iϊ) if j>d^ \-dpy then i>do-\ h
dp, where dQ=Q.
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Let R be a residue-finite P/-ring with m.r. conditions which is of type (B)

and let {^} and {£,} be given as in Theorem 4. 2. Then we obtain R=(F)ω

and At=euR, where F is a division ring and {e{J} are matrix units for (F)ω.

Clearly A~eHRΠ R and B~( U *m Aj)
ι=Reii Π #. Let

Then F£j are additive subgroups of F satisfying (3. 7).
If we put

(4. 3) S= y , ,

then S is a subring of R. By Theorem 4. 2, we obtain

k (l^k<p)y then ί>rf0H \-dk9 (ii) if/>rf0H h ^ then i>dx+-+dp.
Thus, S is a Γ-ring in (F)ω with the same blook numbers as in R. Let M

be the full cover of S. Then, by the same argument as in Lemma 3. 21, we
obtain S^R^M and S is a potent ring. Hence we obtain the following:

Theorem 4. 4. Let R be a left faithful ring and let R be the maximal right

quotient ring of R. Then R is a residue-finite Pi-ring with m.r. conditions of

type (B) if and only if it satisfies the following two conditions:

(1) R=(F)ω, were F is a division ring,

(2) S^R<*M, where S is a potent T-ring with type {B) in {F)ω and Mis the

full cover of S in (F)ω.

Proposition 4. 5. Let R be a residue-finite CPI-ring and let R be the

maximal right quotient ring of R. If R is a left quotient ring of R, then R is of type

(B).

Proof. Assume that R is of type (A) and let Lr2={T0, T19 •••}. By
Theorem 3. 1, there exists an independent set {̂ 4,} of atoms of Lr such that

^ - ! = ^ U * ( ^ _ 1 + 1 U * - U*Λ,) and TpΓί(Adk_1+ί\J*~. Ό*Adp)=0 for each
p. Now we put T%=AX U * U *Adβ. Then we obtain

(*) TpUTe

p = R a n d Tι

pf]Tc

p

ι = 0 for e a c h / > ,

because Lr=Jr by Theorem 2. 2 of [23]. If U, T ^R, then I=Γip Te

p

ι con-

tains an atom B of /,. Since Bι(Ξjl2, B1=T1

P^FR for some p. If B2=0, then

B^Bι=Tι

pQTρ+1 If 5 2 Φθ, then BQTι

p+1 by Lemma 3.4. In either case

we have BQ Tι

p+1 Π / £ T7

P+1Π 7 ^ = 0 by (*), a contradiction. Thus we obtain

R==[jpT
c

p={JiAi={JtAi. Hence there exists a set {efy|/, j=l, 2, •••} of

matrix units in R such that A~euR and &=(F)m, where F is a division ring.
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Hence A~(eiiR) Π R. We put B~((J % Aj)1. Then the following properties

hold:

(1) {5,-} is an independent set of atoms of// and ^i=ReiiSBi for each i.

(2) Tι

p=B1 \J-\jBdp for each p.

(1) Since Lr=Jr is a dual-isomorphism to // and B\ is a maximal right

annihilator, it is clear that B{ is an atom of//. Furthermore, we obtain

B{ = (u 5* ^.y = (u %, i y ) ' n R =

If £ , 0 ( 5 ! U - U J?ί-! Uδ i + i U - ) * 0 , then we have i?=( U%* ^

β« U *(5ϊΠ — Π ^ϊ-xΠ#ϊ+ 1Π — )SΛ, which is a contradiction. Hence {5,-} is

an independent set.

(2) By the construction of {^ }, it is clear that Tp= \J J>dfiAj. Hence

Tι

pSBt (ί^i^dp). Since dim Tι

p=dp, we obtain Tι

p=B1 U — \JBdp.

Now, let q be the element of R such that ?=(?ίy)> ?i/=l for each j and

?ί*=0 otherwise. Since i? is a left quotient ring of i?, there exists an element

r of R such that O φ ^ e i ? . Hence there exists an integer / such that

(**) rq =

Since q^enR, r(R, q)={a^R\qa=O} is maximally closed in i?. Hence

qr=r(R, q)Γ\R is maximally closed in R and hence (rqf=qr. By Theorem 6. 9

of [12], rqR1 is a uniform right ideal of R. Since IJ* A—i?, there exists an

integer^ such that r g e ^ U * - - U * ^ . Clearly ^ U * - - U ^ C Γ J c A θ - θ

2^, where f$~ReH for each /. This contradicts (**). Hence R is of type (B).

Theorem 4. 6. Let R be a left faithful ring and let R be the maximal

right quotient ring of R. Then R is a residue-finite CPI-ring and Ris a left quotient

ring of R if and only if the following two conditions are satisfied:

(1) R^tR and R={F)ω, where F is a division ring,

(2) S^t R^i M, where S is a potent T-ring with type (B) in (F)ω and M is

the full cover of S in (F)ω.

Proof. The "if" part is clear. "Only if" part: By Proposition 4. 5, R is

of type (B). Hence Lr2={T0, Tlf ~-,Tp, Tp+1} for some integer^), where

T0=R> Tp+1=0. We put dimRRjTk=dk for l£k^p. By Lemma 3. 6, there

exists an independent set {B/} (l^ii^dp), each of which is a potent atom of//

such that

f\ = B/Ufi/U ΌBdk (k = 1, 2, ..., j>).

Since Jr=Lr, there exists Tc

p(Ξjr such that Tp\l*Te

p=R and Tpf] T
C

P=Q.

For each i (l^t^dp)y we put
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. =

Then the following properties hold:
(1) {̂ 4,} (l<^itίdp) are independent atoms of Lr.
(2) Γ ^ ^ n u ^ ^ . ^ U ^ UM^and TkΓί(Adk_ι+1\J*-U*Adl)=0

(3) f p = ^ U * /

To prove (1), we put B=B/ U ••• \JB't_t UB'i+1 \jB'dp. Then TpS>Br and
hence Ai=BrΓ\Te

p±0. Suppose that fiVnA φO. Then 5 / U ^ φ i ? . On
the other hand, by the definition of Ao we have B/\JA\=R. This is a
contradiction and hence B'/ΓiA—O. Since B? is maximally closed, 4̂, is an
atom of Lr. It is clear that {-4, }f4 are independent by the definition of A{.

To prove (2), we suppose that TkΓ\(Adk_Λ+1\J*—\J*Adfi)±0. Then
Tι

h\J(Aι

dh_ί+1n-nAι

dk)φR. On the other hand Tι

k\J(Aι

dk_1+1n-ΠAι

dk)Ώ
Tlp U Tc

p

ι=R. This is a contradiction and thus Tkf)(Adk_1+1 U *— U * ^ ) = 0 .
If T^&Ai for some i {dk_x<i^dk\ then Γ ^ n i ^ O and R=Tι

M \jA\=B/
U — U5|_i U-B{+1 U — U-B^ U Γ£z, which is a contradiction. Hence T V i B Λ

for dk_x<Ci^Ldk. Since dimRTk_JT/i=dk—dk_1, the assertion of (2) is clear.
(3) Clearly Te

p^A1 U * ••• U * Λ , Since άίmRRITp=dpy we have Γ ^ Λ

Since Lr—Jr and T1^ is countably dimensional as an i?-module, by Zorn's
lemma, there exist independent atoms {̂ 4/}Γ=i of Lr such that Γ^= UΓ=i^/
For a convinience, we put A/—Adp+i for each z. Now we put

2?, = (U*Φ < .4y)' ( ί = l , 2,—).

Then we shall prove that {B4} is a potent atomic basis for // which satisfies the
conditions (d) and (e). It is clear that {J5, } is a basis of//. For 1 ̂ i^dp, B{=
( U %{ AJY^A, U *••• U * Λ - I U *Λ+ 1 U *••• U *Ady ΓΊ Γί3fi/. Thus B{=B/
and hence 5 t is potent for \^i^dp and the {£,} satisfies the condition (d).
For j>dp, since ^ = 0 , we obtain AjBj^O. It is clear that BJAJ^O. Hence
6yi4yΦθ for O^bj^AjΠBj and thus i;Πi4y=0. Hence Bj=br/ and so β y

is potent. It is clear that (\Jj±iBJ)
r=Ai and \J^1Ai=R. Hence {β j

satisfies the condition (e). Thus R is a residue-finite P/-ring with m.r. condi-
tions which is of type (B). Hence, by Theorem 4.4., S^R^M^$=(F)ωy

where F is a division ring, 5 is a potent T-ring with type (B) in (F)ω and M is
the full cover of S. To prove that 5 ^ / R> we shall prove that i? is a left stable
ring. Since R is a left quoient ring of R, R is a left /-ring. For each non-zero
tfe^n^i, Λ J / = ( ^ ) / n i 2 = ^ ( l - O n Λ is a maximal closed left ideal of R.
Hence i?1^ is a uniform left ideal of R by Theorem 6. 9 of [12], where i?1* is the
principal left ideal generated by x. Since ( Σ Γ = i θ ( A Πδi)) / = 0, R is a left
Stable ring. Hence {B{} is a basis of L((R), because Bi is an atom of L^R) by
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Corollary 2. 3 of [13] and ΠΓ-i-B5 = 0. On the other hand, since Ar

t=0 for
i>dpy R is a left quotient ring of the ring A{. Hence {A{ Π Bj}J=i is a basis of
Lι{At) and thus A£ is a left quotient ring of 2 / ©(̂ 4,. Π Bj), Z,(iίf.)=0. Hence
S^tR^iM^ fc by Lemma 2 of [2, p. 88]. This completes the proof of
Theorem 4. 6.

5. Left quotient rings of right locally uniform potent rings with
zero right singular ideal

In this section, let R be a right locally uniform potent ring with Zr(R)=0
and let R be the maximal right quotient ring of R. We study the conditions
under which R is a left quotient ring of R.

Proposition 5.1. Let R be a right locally uniform potent ring with Zr(R)=0
and let {RΛ} be the irreducible components of R. Then R is a left quotient ring of
R if and only if Rais a left quotient ring of RΛ for each a.

Proof. Suppose that R is a left quotient ring of R and let
Then Oφrgei? for some r(=R. Since Ra is an ideal of R, 0^rq(=
Since R is a right stable ring and RβRa=0 (/3Φα), it is clear that
Hence O+rΛ(rq)=(rΛr)q^RΛqΠRΛ. Since Z/(/2Λ)=0 by Lemma 2. 1 of [14],
RΛ is a left quotient ring of Ra. Conversely, suppose that RΛ is a left quotient
ring of Rω for each a and let Oφgei?. Then </i?αΦθ for some a. Since Ra

is an ideal of R and is direct summand, we have Ra=eωR for some central idem-
potent ea. And thus 0^e€ύq=qecύ^RΛ. There exists r^RΛ such that
0φr(#£Λ)(Ξi?Λ. Again, for Oφr^Giία,, rea^Rm there exists r'<=Ra such that
O φ r Ί ^ e l ^ , OφrVf^. Thus O + (rίreΛ)q = rί{rqeΛ)^RΛqΠRΛ. Since ityfΊ
RSR*q ΓΊ i?α» J? is a left quotient ring of R.

Theorem 5. 2. Let R be a residue-finite CPI-ring and let R be the maxi-
mal right quotient ring of R. Then R is a left quotient ring ofR if and only if the
following two conditions are satisfied:

(1) There exists an atom A of Lr such that Ar=Q.
(2) Let A be an atom satisfying Ar= 0. Put Γ = HomR(A, A) and

Δ=Hom ie(i4, A). Then Δ is a left quotient ring of Γ and AA=A.

Proof. First, assume that R is also a left quotient ring of R. Then, by
Proposition 4. 5, R is of type (B) with m.r. conditions and R is a left stable ring.
There exists an atom A of Lr such that Ar=0. Let θ and φ be non-zero
elements of Γ and let u be a non-zero element of A. Then 0(z/)φθ, φ(w)Φθ,
because every non-zero element of Γ is a non-singular mapping by Lemma 5. 4
of [8]. Since θ(u)r=ur, we obtain (θu)r=(φu)r and (θu)rι=(φu)n. Since (0κ)r

is a maximal closed right ideal, {θu)rι is a minimal annihilator left ideal and
hence (θu)rι={φu)rι is an atom of Lξ by Corollary 2. 3 of [13]. Hence there
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exist a,b<=R such that aθ(u)=bφ(u) + O. Since Ar=0, Aaθ(u)Φθ and hence
there exists υ^A such that vaθ (u)=vbφ(u) + Q. This means that (\vaθ)(u)=
(λ,υbφ)(u), where \va(x)=υax for x^A. From which we obtain Xvaθ=Xvbφ,
because the elements of Γ, other than zero, are non-singular mappings.
Evidently \υa, λ ^ G Γ and Γθf] ΓφφO; thus Γ is a left Ore domain. Let δ be
any non-zero element of Δ. Since A is i?-right injective, there exists e=e2^R
such that A = eR. For Oφδ(e), there exists r<=R such that 0^rS(e)<=R.
Since Ar = 0, there exists a<=A such that 0φarS(e)<=A and 0φar<=A.
Clearly λ j G Γ , λ ώ r G Γ and λ Λ r δφ0, because Oφλβrδ(e). This means that
Δ is a left quotient ring of Γ. Evidently AA £ A. Assume that q is a non-zero
element of A. Then there exists r<=R such that O^rq^R. Since Ar = 0,
Arq^O and there exists z/e^ί such that Oφurq. Since # r is a maximal closed
right ideal, (urq)r=(rq)r=qr. Now define φ: urqR -* A by φ{urqy)=qy for each
y^K. Then since 4̂ is right i?-injective, φ can be extended to φGΔ and
φ(urq)=φ(urq)=qy urq^A. This means that AA Ώ A. Hence we have AA=A,
as desired.

Conversely, assume that (1) and (2) hold. If 0φq(=R, then Ar = 0
implies Aq^O. There exists a^A such that w=aq^0. Since w^A=AAy

there exist 8ly •••, 8 Λ G Δ and aly •••, αnG^4 such that w=^%ι8iai. Now Δ is a
left quotient ring of Γ. Hence there exists OφγGΓ such that
i = l , - ,Λ. Since TAQA, we obtain that 0Φγw = (γα)#=][] ^ g
Thus we have RqΠ i?φθ. This means that /? is a left quotient ring of R.

6. On closed right ideals and annihilator right ideals of right
locally uniform rings with zero right singular ideal

In this section, we generalize Goldie's results on closed right ideals and
annihilator right ideals of (semi-) prime right Goldie rings to right stable rings
or to infinite dimensional semi-prime rings with zero right singular ideal.

Proposition 6.1. Let M be a faithful locally uniform right R-module and let

K be a closed submodule of M. Then K is an intersection of maximal closed sub-

modules of M.

Proof. Let K be a relative complement of a submodule L (see. [7]). Then
there exists an independent set {A{} of uniform submodules such that
£ V = ) Σ , Θ Λ . We set Ni = K@Σm@Aj for each ί, then iVf.ΠΛ = 0
Choose a maximal closed submodule Nf such that Nf^N£ and iVfΠA—0
for each i. If (Π * Nf) Π ( Σ , ®Λ0 Φ 0, then there exist {AK=i such that
(Λί*n n i V * ) n ( A θ θ Λ ) Φ θ . On the other hand (NfΠ - ΠiV*)n
(-41φ φ^4n)=0, as may be seen by repeated application of the modular law.
Hence (Π , Nf) Π ( Σ , ®Af)=0 and K= Π , Nf, as desired.
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Following Goldie [7], an element u of R is said to be right uniform if uR1 is
a uniform right ideal.

Proposition 6. 2. If R is a right stable ring, then a right ideal M is a maxi-
mal right annίhilator ideal if and only if M=ur for some right uniform element u of
R. In particular, ur is maximally closed.

Proof. The "if" part is immediately by Theorem 6. 9 of [12]. Suppose
that M is a maximal annihilator. Then there exists a uniform right ideal A such
that AM1 Φθy because R is a right stable ring. For 0+u^Af]Ml we have

Hence ur=M, as desired.

Corollary 6. 3. If R is a right locally uniform potent ring with Zr(R)=0,
then a right ideal M is a maximal right annihilator ideal if and only if M=ur for
some right uniform element u of R. In particular, ur is maximally closed.

Theorem 6. 4. Let R be a right stable ring and let R be the maximal right
quotient ring of R. If R is a left quotient ring of R, then every closed right ideal of
R is of the form Π Λ (ua)

r', where {ua} are right uniform elements of R.

Proof. By Theorem 2. 2 of [23], Lr=Jr. Hence the assertion follows
immediately from Propositions 6. 1 and 6. 2.

Theorem 6. 5. Let R be a finite dimensional right stable ring. Then every
proper right annihilator of R is of the form u\ Π -" Γ\ur

ky where {%} are right uniform
elements of R.

Proof. Let / be a non-zero right annihilator ideal of R and let K be a rela-
tive complement of /. Choose a uniform right ideal A^K. If IίA1=0, then
IΏA^ This is a contradiction. Hence I'A^O. There exists a uniform
right ideal Cx such that C J ^ Φ O , because R is a right stable ring. Hence
there exists an element ux oϊP[\C1 such that z/^ΦO and therefore u\^\A1=0,
Ui^l. If UiΠ K =0, then clearly I=u\. Otherwise we choose a uniform right
ideal A2 in u{f]K. By the same argument as above, there exists a uniform
element u2 of R such that u\Π A2=0 and w£=>/. Since u\^A2 and ur

2 Π A2=0,
we have u\^u\Π u\. If u\ Π u\ Π K=0, then we obtain I=u\ Π u\. Otherwise
we choose a uniform right ideal A3 in u\ Π u\ Π K and a uniform element u3 of R
such that ul^I and ul[\A^^=Q. Clearly u\Γ\ur

2^u{Πur

2Γ\u\. The process is
continued until it terminates, which must occur after not more than dimRR
terms, because the chain ul^ulΠul^ulΓϊulΓϊUs^ " can not have more than
dim^i? terms. Hence there is an integer &Φθ such that (u{Γi -'Γ\ur

k)Γ\K=0
and (u\ Π Π ur

k) 2 /. Hence we obtain 1= u\ Π u\ Π Π u\.

Corollary 6. 7. Let R be a finite dimensional potent ring with Zr(R)=0.
Then every proper right annihilator of R is of the form u\ Π Π ur

k, where {u£} are
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right uniform elements of R.

In the remaining of this section, let R be a right locally uniform semi-prime

ring with Zr(R) = 0 and let {RΛ\a^A} be the irreducible components of i?,

where Λ is an index set. Then we have

Lemma 6. 8. (1) If A and B are uniform right ideals, then A~B if and

onlyifAr=Br.

(2) Ra is a prime ring.

Proof. (1) Suppose that A~B. Then A and B contain mutually iso-

morphic non-zero right ideals A' and Bf respectively. Clearly A'r=B'r and

£ / 2φO. Hence OφΆB and O^aB^B for some flGl Therefore we obtain

Ar<^(aB)r=Br. Similarly, Ar^Br and hence Ar=Br. Conversely, suppose

that Ar=Br. Then O^AB and O^aB^B for some a^A. Hence A~B.

(2) Let / be a non-zero ideal of Ra. Then clearly Oφ/i?α and IRΛ is a

right ideal of R. Since R is semi-prime, we have O Φ ( / J R Λ ) Λ £ / Λ for each n.

Hence Ra is a semi-prime ring. Since Ra is a prime ring, Ra is a prime ring by

Theorem 3. 2 of [2, p. 114].

Following Goldie [7], an ideal / of R is an annihilator ideal if I=Kr for

some right ideal K of R. Since Krιr—Kr

y we may assume that K is an ideal..

Theorem 6.9. Lei R be a right locally uniform semi-prime ring with

Zr(R)=0 and let {RΛ\a^A} be the irreducible components of R. Then

(1) Ra= Π βφα> Ar

βy where Aβ is a uniform right ideal contained in Rβ.

(2) {Ra I a Ei Λ} is the set of minimal annihilator ideals of R.

(3) Ra is a prime I-ring.

Proof. (1) Since RβRa=0(aΦβ)y we have RΛ^Γ[&ΛA
r

β. If RaQ nβ±ΛA
r

β,

then there exists a uniform right ideal A such that A^Ra and AQ P[βάpΛA
r

β.

Hence A~AΊ for some γ e Λ with γ φ α , and AyA=0. But by Lemma 6. 8,

0Φ^4γ^4, which is a contradiction. Hence we have Ra= Π βφΛ ̂ 4jg.

(2) If i ? Λ 2 ^ φ 0 , where ^ is an ideal, then Kr contains a uniform right

ideal B such that B~Aa, where Aa is a fixed uniform right ideal contained in

RΛ. Since R is semi-prime, i £ £ = 0 implies that £ ^ = 0 , i.e., Br^K. Let C

be any uniform right ideal such that C^AΛ. Then, since Br=Cr by Lemma

6. 8, Cr^K. Again, since R is semi-prime, Kr^C and thus Kr^Ra. Hence

Kr=RΛ and thus RΛ is a minimal annihilator ideal of R. Conversely, let / be a

minimal annihilator ideal of R. Then /i?ΛΦθ for someαeΛ and thus IRΛ£=

IP(Ra. Hence/— Ra.

(3) follows from the remark of Lemma 2. 5 and Lemma 6. 8.

Following Goldie, right ideals / and / are said to be related {I^XJ) provided
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that If]X=0 holds if and only if Jf] X=0, where X is a right ideal of R.

Lemma 6.10. Let R be a right locally uniform semi-prime ring with
Zr(R)=0. Then

(1) If lisa right ideal of R and ifJis an ideal such that I~ xJy then /* =Jιr.
(2) If I is a closed ideal of Ry then If]Ris an annihilator ideal of R.
(3) If I is a right ideal of R, then there exists an ideal J^^XI if and only if I

is an ideal of K.

Proof. (1) It is clear that Jιf]Jιr=O, Jι is a relative complement of /
in the sense of Goldie and/^Ξi/. Hence we obtain / * = / * = / / r .

(2) Clearly If\R is a closed ideal of R. Hence ϊf]R=(ϊf]R)ιr is an
annihilator ideal by (1).

(3) The '-'if" part follows from (2). The "only if" part: suppose that
J~ J, where / is an ideal of R. Then JιrΏRa orJιrf]Ra=0 for each α<=Λ
by Theorem 6. 9. Now we put Λo= {a e Λ | Jιr^RΛ}. If ]ιr is not an essential
extension of Σα><ΞΛ0 © ^ ^ then there exists a uniform right ideal A such that
Jιr 2 A and RΛ Π A = 0 for each a e Λo. Thus A £ Rβ Π Jιr for some β $ Λo and
hence RβQjιr. This is a contradiction and hence / / r χ 3ΣβeΛ 0 Φ^« Since
/ / r v Z)/, we have ΣaeΛo ®^i»c^ Jιr==J a s right ^-modules. Hence, by Lemma
1. 2 of [24], / = / is an ideal of R.

Theorem 6.11. Let R be a right locally uniform semi-prime ring with
Zr(R) = 0, let {RΛI a e Λ} έ^ ίÂ  irreducible components of R and let R be the
maximal right quotient ring of R. Then every closed ideal of R is of the form ΪAQ,
where /Λo—ΣΛ€ΞΛ0 ® α̂> and Λo is a subset of Λ.

Proof. It is clear that ϊκQ^Lr2(K) by Lemma 6. 10. Conversely, suppose
that / G i r 2 ( ^ ) . Then, by Lemma 6. 10, If] R is an annihilator ideal of JR. Now
we put A1={a^A\ϊf]R^Rai} and assume that ϊf]R is not an essential exten-
sion of Ky where K=ΣOKΞA1®R<*- Then there exists an atom A of Lr(R) such
that AQΪΠR and Af]K=0. Hence A^Rβ for some /5φΛx and thus
(If]R)f] i?βφθ. Hence we obtain ϊf]R^Rβy because Rβ is a minimal annihi-
lator ideal. This is a contradiction. Hence ϊf]Rκ^>K and thus Ϊ=K.

Corollary 6.12. {Ra | a e Λ} w ίλe ί̂ ί o/ minimal closed ideals of R.

7. Semi-prime modules

In this section, let R be a right locally uniform semi-prime ring with

Zr(R)=0, let{RaI Q G A } be the irreducible components of i?, let Aa be a fixed

uniform right ideal contained in Ra and let PΛ=(Σβ4=Λ,βeΔ^)* a s m (2. 4).

Applying the methods developed in section 2 to modules, we shall give, in



256 H. MARUBAYASHI

this section, more detailed results on semi-prime modules, which investigated

in [4]. Let M be a right i?-module such that ZR(M)=0. Then it is clear that

M is locally uniform. Let U be a uniform i?-submodule of M. If Aa and [/

contain mutually isomorphic non-zero i?-submodules AJ and Uf respectively,

then AΛ and U are said to be similar (Aa~ U). If M is faithful, then MAa + 0

and thus OφmA* for some m<=M. By Theorem 2. 4 of [3], i!L4Λs*-i4Λ and thus

mAΛ~*ΆΛ. Conversely, let U be a uniform i?-submodule. Then there exists a

uniform right ideal 4̂ such that O^UA, because ZR(M) = 0. Hence uA^A

for some we Uand thus U~Aa for some αGΛ. NowweputMΛ=(Σr/~i4Λ£0*>

where [/ runs over uniform i?-submodules of M which are similar to Aa. We

call Ma an irreducible component of M. By the same methods as in Proposition

2. 2 we can easily prove that the sum 2 Λ e A M Λ is a direct sum and that if U is

a uniform R-submodule of M, then U^Aa if and only if UQMΛ. We assemble

these results below.

Proposition 7.1. Let M be a faithful R-module such that ZR(M)=0. Then

(1) There is one-to-one correspondence between the irreducible components

{RΛ\aeΛ} of R and the irreducible components {Λf Λ |αeΛ} of Ms in the sense

of similarity. -

(2) Let {MΛI a e Λ} be the irreducible components of M. Then the sum

Σ * < Ξ Λ ^ » is direct.

(3) Let U be a uniform R-submodule. Then U~AΛ if and only if UQMa.

In the remainder of this section, MΛ will denote an irreducible component

of M which corresponds to Rm in the sense of similarity and we put

Q<*=(Σlβ*c6,β(ΞΛMβ)*. If N is a submodule of M and if / is a right ideal of

R, then we denote (N: / ) = {m^M\ ml^N}. Similarly, for submodules K and

L, we denote (K: L)={r<=R\Lr^K}.

Following [4], a submodule N of an Λ-module M is said to be closed-prime if

(i) LIζZN=ΦLQN or IQ(N: M), where L is a submodule of M and / is

a right ideal of R.

(ii) N is a closed submodule of M.

Proposition 7. 2. Let M be a faithful R-module such that ZR(M)=0. Then

(1) Qa=(0:Ra).

(2) QΛ is closed-prime and (QΛ: M)=Pa.

(3) nΛeAQΛ=

Proof. (1) Suppose that mRa^0 for some m^Qa. Then

for some r^Ra. Then there exists a right ideal EC/i? such

Hence O^mrE^M^Π Qa = 0, which is a contradiction and thus QΛRoύ = 0.

Hence we obtain £) e £(0: i?Λ). Suppose that (0: i? α )5 £)*. Then there
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exists a uniform /?-submodule U of M such that U^Qa and URcύ=0. Since
U^Qa, we have UQMa and hence U~AΛ. Then clearly t Γ S ^ , where
j y r = {x^R\ Ux = 0} and thus C/JR^ΦO. This is a contradiction and thus
Qa=z(0; Ra)y as desired.

(2) First we shall prove that Pcύ=(Qoύ: M). Let m be a non-zero element
of M and let r be a non-zero element of Rβ. Then r £ £ 2 ^ A j 3 A for some
ΐ ' c ' i ? . Hence mrEQMβQQa. Hence mr(ΞQ* = Qa, i.e.,/2β£(ρβ: M). Now
let A? be a non-zero element of Pa. Then xLQ^^^ Rβ for some Lcz'R and
M # L c ρ Λ . Hence M K C ^ * ^ * and thus x^(QΛ: M). Hence P Λ C ( ρ Λ : M).
If (£?*: M)^Pay then there exists a uniform right ideal B such that B^Pa and
J5C(ρΛ : M). Hence 5 £ i ? Λ and MBQQa. By Proposition 2. 2, B~Aa and
OφmB^B for some m^M. Thus O φ m ΰ c ρ ^ Π M Λ = 0 , which is a contra-
diction. Hence (Qa: M)=Pω. To prove that g^ is a closed-prime R-submodule,
we assume that NlQQa, l£(Qa: M) and N^Qay where N is an 72-submodule
and / is a right ideal of R. Then there exists a uniform right ideal B such that
BQI and £ « ( £ * : Λf). Since (QΛ: M)=PΛy we have B—A a and thus 5 r = ^ ς
by Lemma 6. 8. Since N=£Qay there exists a uniform i?-submodule U such
that USiN and C/^ρ^, i.e., U~Aa. Hence t / r C ^ and thus we have
OΦ UBQNIζiQa. On the other hand, since U~AΛf UBQMa by Proposition
7. 1. This is a contradiction. Hence Qa is a closed-prime i?-submodule of M.

(3) is obvious.

Following [4], we shall denote the intersection of all closed-prime Jf?-
submodules by P(M) and called P(M) the prime radical of M. In [4], Feller
and Swokowski showed that P(M)^ZR(M). By Proposition 7. 2, in our case,
we have

Corollary 7.3. Let R be a right locally uniform semi-prime ring with
Zr(R) = 0 and let M be a faithful R-module. Then ZR{M) = 0 if and only if
P(M)=0.

Let an i?-module Λf be a subdirect sum of i?-modules {MΛ \ a €Ξ Λ} and let
ηa be a canonical epimorphism from M to M Λ : vΛ(

m)='m<»9 where m=(ma)^iM£Z
UaMa. The subdirect sum M is irredundant if for each α e Λ , the kernel of the
map: m->{vβ(m) \/?Φα, /3eΛ} of M into Uβ^Λ Mβ is non-zero.

Let a ring R be an irredundant subdirect sum of rings {Ra\α^Λ} and let
θa be a canonical epimorphism from R to i?Λ. We say that an i?-module M is a
canonical Ra-module if M(ker 0Λ)=O. This condition satisfies if and only if M
becomes an iί^-module when multiplication is defined by mrΛ=mrJ where

Following Feller and Swokowski ([3], [4]), an i?-module M is called
annihϊlator-prime if (0) is a closed-prime submodule of M. M is called a prime
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R-module if the following two conditions are satisfied:
(i) Nr=0 for every non-zero submodule iV of M.
(ii) ZR(M)=0.
An i?-module M is said to be semi-prime if P(M)=0. Now we have

Theorem 7.4. Let R be a right locally uniform semi-prime ring with
Zr(R)=Oλ let {Ra\a^A} be the irreducible components of R and let RΛ=RIPa,
where PΛ=(Σβ4=Λ ^β)* Let M be a faithful semi-prime R-module and let

} be the irreducible components of M and let Mω=MjQΛi where
Mβ)*. Then M is an irredundant subdirect sum of {Ma\a^A},

where MΛ is an annίhilator-prime R-module as well as MΛ is a canonical prime

Proof. By Proposition 7. 2, it is clear that M is an irredundant subdirect
sum of {ikfJαeΛ}. Since OΛ is closed-prime by Proposition 7. 2, we have
M06=M/Qcύ is an annihilator-prime i?-module by Proposition 2. 3 of [4]. Since
MP^SiQa by Proposition 7. 2, MΛ is an canonical i?Λ-module. To prove that
MΛ is a prime i?Λ-module, we assume that Z^Q>(Mα))φ0. Then Z^Λ(M^) con-
tains a non-zero i?Λ-submodule N, where N is an i?-submodule of M. Hence
there exists a uniform7?-submodule U of M such that UQN and U^QΛ. Thus
U~Aay i.e., USiMΛ. Let u be a non-zero element of U. Then uE=Q for
some ΐ c ' ^ , because UQZ^^M^). Let E be the inverse image of E in R.
Then clearly Ea'R and we have MfCilί^n^Λ^O, which is a contradiction
and thus ZRa(Ma)=0. Since l?α is a prime ring, Ma is a prime ί^-module by
Proposition 1. 3 of [3]. This completes the proof of Theorem 7. 4.

We now prove the converse of Theorem 7. 4.

Theorem 7. 5. Let Ry {RΛ \ a<=A) and {Ra} be as in Theorem 7. 4. Let
M be an irredundant subdirect sum of {MΛ\a^JS)y where MΛ is an annihilator-
prime R-module and is a canonical prime RΛ-module. Then M is a faithful semi-
prime R-module.

Proof. First we shall prove that M is faithful. If Mr=0, where r={fa)^
(naRaf)R), then M«fa=0 and thus ra=0 for all Q G Λ . Hence r=0. To
prove that M is semi-prime, we let m=(fncΰ)<=ZR(M) and fna^MΛ. Then
mE=0 for some E<^'R. It follows that E[\Rac:'Ra as right i^-modules and
that m{Ef]Ra)=ma(EnRa) = O. Since Ra is a right quotient ring of
RΛ9 ZΈa(MΛ)=ZRΛ(MΛ). Hence mΛ = 0 and thus m = 0. Hence ZR(M) = 0
and thus M is a semi-prime i?-module by Corollary 7. 3.
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