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Abstract
In this paper, we shall investigate some potential theony time change of
Markov processes. Under weak duality, it is proved that thepjng measure and
Feller measure are actually independent of time changetre@nfumping measure of
a time changed process induced by a PCAF supported anincides with the sum
of the Feller measure oW and the trace of the original jumping measure \6n

1. Introduction

In this paper we shall mainly discuss some properties conugro time change
of Markov processes under weak duality setting. Roughlyg2nwe first give a for-
mula which describes how energy functionals of the procesistime changed process
are related to each other. We then prove that jumping measunelependent of time
change induced by (strictly increasing) CAF’s. 48 Feller measure on a set is intro-
duced and it is proved that Feller measure is also indep¢érafeime change induced
by (strictly increasing) CAF’s. Finally irt4 using the invariance of jumping measure
and Feller measure, we give an expression of the jumping uneas a time changed
process. This generalizes a result in [10].

To explain the motivation behind this work, let us first prasthe classical Douglas
integral ([5]):

1 2 4y o L B 2
Ay g [ivHteordx= 5 [ (10 -t ds dn

where Hf denotes the harmonic function on the planar unit didkwith boundary

value f and N(&,n) = 1/(4n (1 — cos€ — n))). In 1962, J.L. Doob [4] extended for-
mula (1.1) to the case whei® is a general Green space apD is its Martin boundary
by adopting adJ the Naim kernel, which was identified with the Feller kernebis

after by Fukushima in [8]. The Feller kernel had been intcatliby W. Feller [6] for

the minimal Markov process on a countable state space for uhgope of describing
all possible boundary conditions on some ideal boundarlaesthe recent work [10],

the Douglas integral has been generalized to the case of stnondiffusions using

the Feller measure introduced there.
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It should be mentioned that in symmetric case, the identificahas been done
in [1]. A recent work of Chen-Fukushima-Ying [2] proved théentification in fairly
general setting. However our approach is very differeninfitheirs.

2. Invariance of jumping measure under time change

Let X and X be two Borel right Markov processes on the state sp&ce’] with
transition semigroupR;) and (P;), in weak duality, namely, for any non-negative mea-
surable functionf, g on E, it holds that

(Pt fag)m = (fv ﬁtg)m,

where (-, -)m denotes the inner product ih?(E, m). Without loss of generality, we
assume that they are both realized on the same probabilitges@and only differ by
their probability laws{P*} and (P*). A consequence of this duality is that> X; has
left limits on (0,00) for P™-almost all sample paths (see, e.g., [17]). We shall always
use -~ or prefix ‘co-’ to denote the dual objects. Since their roles symmetric, the
conclusion holds forX should also hold accordingly for the duX. The measure
m is usually called the duality measure. For the terminol®ged notations such as
excessive measures, excessive functions, additive madfi Revuz measures, energy
functionals, appeared in the sequel, we refer readers tp [E8r general theory of
Markov processes and time change, please refer to [16]56Bdn it.

Let A be a positive continuous additive functional (PCAF in shoft X with fine
supportV, which is finely perfect, and the right continuous inverse oi. LetY the
time change ofX by r or A, namely

Y = (Q,ﬂ,ﬂ}t, XT;!GTU]P)X)!

which is a right process ol. Let u:= &) be the Revuz measure & with respect
to m, which is supported o’vV. This PCAF A has a natural unique dualith (refer
to [12]), a PCAF ofX, which hasu as its Revuz measure with respectrto Hence
the proces® has a natural dualityr, which is the time change ok by A, with x as
the duality measure.

Assume thatA is strictly increasing or finely supported db. In this case the in-
verse ofA is also continuous and time change is invertible, nam€lis a time change
of Y. HenceX andY are actually time change of each other. By the Blumenthal-
Getoor-McKean theorem (Theorem 5.1 in [3]), if bothand Z are time change of
X by strictly increasing PCAF’s, thel¥ is a time change oZ. Hence time change
by strictly increasing PCAF is an equivalence relation ie #pace of all Borel right
processes or.

It is easy to verify by the identity; o 6, + 75 that if H is a PCAF of X, then
H:: t — H; is an additive functional ofY, but not necessarily continuous. If both
A and B are PCAF’s with fine supporV/, respective inverse and o and respective
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time changeY and Z, then B, is an AF of Y. HoweverB; is actually continuous and

strictly increasing, sincd3 has the same fine support &sand is constant on interval

(ti—, w) for anyt > 0. HenceZ is a time change o¥ by a strictly increasing PCAF.
The energy functional of a right process is important in plulistic potential the-

ory. For the definition and properties, refer to [13]. Let and LY denote the energy

functional of X and Y, respectively. It is easy to check thatis excessive fory and

if A is strictly increasingm is the Revuz measure of a PCAF ofY, relative tou. If

nmU 1 m, thenn,Ua 1 1 (refer to [13]), whereU, is the potential operator oA and

is nothing but the potential operator ¥f since a change of variable gives an identity

o0 o0
IEX/ f(Xn)dt:IEX/ f(X¢) dA.
0 0
We shall now state a lemma. Note that part (2) was actuallygaran [7].
Lemma 2.1. Assume that A is a strictly increasing PCAF
(1) If X and Y are transientthen X and Y have the same class of excessive func-

tions and the same class of excessive measuresthermore their energy functionals
satisfy that for any excessive function h

LX(m, h) = LY(u, h).

(2) If H is an AF of X then the Revuz measugé'm of H computed against X and

its excessive measure m coincides the Revuz meaﬁrl{freof H, computed against Y
and its excessive measure

Proof. (1) Denote byJ" the potential operator of. It is known thatUY = Ua.
Hence any potential of is excessive forX, and it follows that an excessive function
of Y is excessive forX due to the transience. The converse is true siKcis also a
time change ofY. By the transience again, there exists a sequégngg of measures
such thatp,U + m. Thenn,UY 4 u and

LX(m, h) = lim () = lim LY(aUY, h) = LY(u, h).

(2) We first assume tha&X is transient. For any non-negative measurable function
f on E, (refer to [13]),

EXM(F) = L(m, Uy f).

However a change of variable proves
Uy f(X) :EX/ f(X¢) dH
0

= EX /0 f(Xg) dH, =UY f(X).
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It then follows from (1) that
ENT(F) = LM, Uk F) = LY (1, U, F) =807 (F).

In general, letX! be 1-subprocess oK. Then the potential ofX® is U, which is
proper, i.e., X! is transient. The Revuz measure Hf computed againskX® and m

is the same ag,"™. Let {P) be the 1-subprocess measure &n.¢). Since (P}

is equivalent to{}}, A is a PCAF for 1-subprocess. Let us compute the potential of
time changeY’ of subprocess byA. For f € & andx € E, we have

E§/ e‘q‘f(X,l)dt:IE?{/ e I (X)) d A
0 0

=IEX/ e 9% f(X) d A
0
X
:IEX/ e e f(Y,) dt.
0

It follows that Y’ is a subprocess of killed by a continuous decreasing multiplicative
functional € ™) of Y. Then the Revuz measure éf, computed againsY’ and i is
the same as one againétand . That completes the proof. L]

We may simply Writeg‘ﬁf’m asé&ll, and f;‘,i“ as sﬁr. We now turn to Lévy system.

It is known as in§73 of [16], there exists a Lévy system &f which characterizes
how X jumps. A kerneln on E and a PCAFH of X, (n,H), is called a Lévy system
of X if for any (% )-predictable procesZ = (Z;), it holds that for any functiorF on
E x E vanishing on the diagonal, ande E

(2.1) EX Y ZiF(Xi, Xi) = EX fooo ZnF(X) d H;,

t<oo

wherenF(x) := [¢ F(x,y) n(x,dy). The jumping measure ak, a measure ofE x E
not charging on the diagonal, is defined as

—|; 1 m
J(F) = |t|?3 -E D F(Xsmy X9

O<s<t

From (2.1), it follows thatJ(dx,dy) = n(x,dy) §(dx), whereg[] is the Revuz measure
of H relative tom. It is easy to see than(H,) is a Lévy system off. The next result
shows that the jumping measure is independent of time change

Theorem 2.1. Assume that A and B are two PCAF with the same fine support
V and Y, Z are their respective time changed processes onlken the jumping mea-
sures JY and J, of Y and Z with respect to their duality measure respectizaty
identical
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Proof. SinceY andZ are time change of each other by strictly increasing PCAF'’s,
we may assume thah is strictly increasing and prove that has the same jumping
measure aX. By the theorem above,

JY(dx, dy) = n(x, dx) sﬁr(dx) =n(x, dy) £f/(dx) = J(dx, dy).
That completes the proof. Ul

The easy consequence is that jumping measure (relativettwmah@&xcessive mea-
sure) is invariant under time change induced by strictlyeasing CAF.

3. Invariance of Feller measure under time change

Fix a finely open seD and denoteV = D¢ and T := Ty the hitting time ofV.
Assume thatP*(T < +oo) =1 for anyx € E andV s finely perfect, i.e., any point of
V is regular forV. Let

Qux, A):=P*(X, e A t<T), xeD, ACD

the transition semigroup oKP (the restriction ofX on D). Clearly XP and XP are
also in weak duality with respect to the measurg := 1p - m. Let u be an excessive
measure ofXP. Then for anyf e & (V),

Lo TEAT 1, £(X0))

is decreasing and there exists a unique measure, denotég,byn V such that for
any f € &4(C),

1
er(f) = It%l fIED“(T <t, f(X7)).

The measuré&f may be called the Revuz measure Tofwith respect tou.
Let P\() denote theg-balayage operator of, i.e.,

PO(x, A) :=P*(e 9T 1a(X7)), X €D, Ac &.

Then P\‘}(x, -) is carried byV, sinceV is finely closed. It is easy to verify theFP\‘}f

is a g-excessive function foiXP. It follows then thatP, f - mp is an excessive mea-
sure for XP (or co-excessive measure fXP) and similarly Py f -mp is an excessive
measure forXP. Hence there exists a unique measieon V x V such that, for

f,ge & (V),

N(g® f)=lim %Eﬁvg'm“’(f(XT), T <t).
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The right hand side is actually the co-Revuz measurd ofiith respect to thexP-
excessive measurévg -mp. The measurédN may be called the Feller measure ¥n
with respect tom, since its definition is similar to the well-known Feller ket.

Let LP be the energy functional oKP which is a function on excessive mea-
sures and functions oXP. For any excessive functio of XP, -mis an excessive
measure ofX® and hence we define, for any excessive functionsf XP

LP(, u) := LP(@ - mp, v),
which is a function on co-excessive and excessive functafnxP. It follows that
N(g® f)=LP(Pyg Py f)=LP(Py f, Pyg)

the second equality follows from duality. The argument iis thart about Feller mea-

sure is similar to that ir§2 of [10], though the process considered there is symmetric.
We shall now prove that Feller measure is also independetita change. Let

A be a strictly increasing CAF and a time change oKX as in§2. It is known thatA

has a dualA, which is also a strictly increasing CAF correspondingutoi.e., ég‘ = [

ThenY, the time change oK by the inverser "of A, andY are in weak duality with

respect tou.

Theorem 3.1. The Feller measure is independent of time char@ecisely if N’
is the Feller measure of Y on,\then N = N.

Proof. First of all, since the process and its time changee hidentical hitting
distributions, PY = Py and Py = Py. It is known from [14] thate}™ = h . &7 if h is
an excessive function foX. It is known from [7] or [18] thats/';vg'm" =Pyg-pup. We
then need to check that time change and killing upon leabngommute. LetT’ be

the hitting time ofY to V. Then

T =infit > 0: Y; € V} =inf{t > 0: X(%) € V)
=inf{Ac: X € V) = Ar.
Let Z be time change of the killed proce¥® by A. But XP = (Q,.7,.%, X, 6, Q)

and Q*H =P*(H o kt) where H € .# and () are the killing operators (refer t§61
of [16]). Let us compute the potential &. For any f € & andqg > 0, we have

@X/O e—‘“f(xn)olt:@X/0 e IAF(X) dA

At

.
:]PX/ e’qA‘f(Xt)dAt:]P’X/ e 9 f(X,)dt.
0 0
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Therefore the potential operator & is the same as the one of killed at Ar = T/,
i.e., time change and kiling commute.
Denote now by I(Y)P the energy functional oY killed upon leavingD, and (P)Y
the other way. By Theorem 2.1 (1), we have
N"(g® )= (L)°(Ryg - o, PY )
=(L")°(Pvg- uo, Py f)
= (L®)Y(Pvg: up, Py f)
— LD(EEVg'mD, PV f)
= LP(Pyg-mp, P, f) = N(g ® f).

That completes the proof. Ul

4. Jumping measure of time changed process

We now assume that bot and its dualX are conservative. In this case is
actually invariant for both. For any AR, P™ fg f(Xs)dAs is linear int. Hence the

Revuz measure can written g§(f) =E™ fol f(Xs) dAs. For anyw € ©, we define

M(w) = {t € [0, 00): X{(w) € V}.

Clearly the relatively open sé¥l(w)® in [0, co) consists of all of excursion intervals
away from F of the sample patlw. We denote byl the set of left endpoints of ex-
cursion intervals inM®. M is homogeneous, i.eM oc0s+s=M if M C[s,00). | is
also homogeneous.

Fort > T, we define

L(t) :=sup[0Ot]N' M
and
R(t) :=inf(t, c0) " M =inf{s > t: Xs € V}

with the convention that inf = co. Whent > T, we call (L(t), R(t)) the excursion
straddling ont. Clearlyt — R(t) is right continuous and increasing and it is easy to
verify that R(t) = T o 6; +t, and that for anys,t > 0, R(t) o 65 +s = R(t +s). Due
to the right continuity, Xgy) € V on {R(t) < oo}. We can also see that, far> T,
R(t—) < R(t) if and only if t € | and in this case¢ = R(t—) = L(t). We shall further
verify that Py-a.s. Xgr¢—)— € V for everyt > T with R(t) < oo for m-a.e.x € E.

Define the inverse operator &t

n(s) = o((t —s)-),
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or Xsop = X—s)—, S€[0,t). ThenL(t)opy =t —T and
XL)— o %t = Xi—Lt)oy = X7-

Since X and X are dual with respect te, the image ofP™ on .% under the inverse
operatory; is preciselyP™. We state it as a lemma, which is well-known and may be
proved by an argument similar to the proof of Lemma 4.1.2 if].[1

Lemma 4.1. For any t > 0 and any non-negative#;-measurable random vari-
able Y,

E™(Y o 1) =E™Y, E™Y =EMY =E™(Y o p).
Lemma 4.2. Lett=t; <t <---<t,, and Sc (0,t1), U C (t,,1), A,B € B(V),
Ci,...,Ch e #(D). Then

P™(L(t) €S Xip- €A Xy €Cq,..., Xq, € Cn, Xgy € B, R(t) V)

:/ PXt—TeS XreA)
XECl,Xze(:z XnECn

PP (X, dXg) - PP (Xn—1,dX) P(X1 € B, T € U —t)m(dX).

n—Tth-1

Proof. Clearly{L(t) € S, X )— € A} € %#. By the Markov property and Lem-
ma 4.1, we have

P™(L(t) € S, Xity— € A, Xy, € Cq, .00y Xy, € G, Xgy € B, R(t) e U)
=E™L(t) €S Xip- € A PX(Xg e Cy,..., Xi,—t € Ch, X7 € B, T+t eU))

= EM(LiLes x_cad(X0) o 1l
=EM¢(Xo); Xt €S, Tet—9

where

d(xX) =P*(Xo€Cy,..., X;—t €Cn, X7 € B, T+t € U)
=16, (P2 (X, dXp) - - - PP 1 (Xn—1, Xn) P"'(X7 € B, T € U —1).

Combining these together, the conclusion follows. U

Corollary 4.1. We have the following two identities
P™(L(t) € S, X py- € A, Xt € D, Xg) € B, R(t) € U)

:/ PXT et—S Xt e APYT eU —t, X1 € B)m(dx).
D
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PT(L(t) <t, XL € A, Xrq) € B)

:f YT <t, Xr € A) Pv(x, B) m(dx).
D

We consider

A= Z f(XLg)—r Xre):

sel : O<s<t

where f is a non-negative continuous function & x V vanishing on the diagonal:
f(a,a) =0 for anya € V. Clearly R(s) is a right continuous additive functional o,
ands e | if and only if R(s—) < R(s) and R(s—) = L(s). Thus

A = Z f(XRr-)—1 XRe)-
O<s<t: R(s—)<R(s)

Thus A is a raw additive functional oX. A raw AF means an increasing right con-
tinuous real process which is additive. An adapted raw AFnisA&. Refer to (35.5)
in [16]. Hence there exists a measuvkon V x V \ d such that

1
M(f) = lim —E" > f(XL(9)-» XRe))-
- O<s=<t: R(s—)<R(s)

Intuitively M may be called a measure induced by excursions away ¥onfrrom the
argument of Theorem 2.1, it is seen that the part (2) is alse whenH is only a
raw AF. Hence it follows that the measuM is also independent of time change.

Theorem 4.1. If X is conservativethen M= N.

Proof. Forn >=1, let D, := {thx = k/2": k> 0} and lnx = [thx—1,thk). If L(t) <
t < R(t) for somet € Dy, then we haveL(t) = L(tnk) € Inx for one and only one
k. On the other hand, for any > 0, the excursion intervallL((t), R(t)) will have a
binary point in D, for n large enough. Thus any excursion interval will be counted
finally and at most once in this way. Then by Corollary 4.1, vewehfor continuous
functions f, g on V with non-intersected supports,

1
M(g > ) =lim fEm > 9(XL(9)-) F (Xree)
O<s<t: R(s—)<R(s)

A
= lim =+ lim E™ Y 9K 0-) F R Lt anetn

t—0
K: thx<t

1
= lim —lim HX: tEm[Q(XL(tn.k)) F(XRew) Lt taoetn]
k=
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= lim 2 lim 3 /I‘EX(T € (0,27, g(X1))Py f (X) mp(dx)
D

t=0tf n K st
= lim £ Im2"RR o (g(Xr); T < 27)
=N(g® f),
where [2't] is the biggest integer dominated byt2 L]

We shall compute the jumping measure of time changed prodesdsX be a con-
servative Borel right process da and A be a PCAF ofX with V as its fine support,
and u its Revuz measure with respect to Let 7 = (r;) be the right continuous in-
verse of A. SetY; := X, the time change oX. ThenY has its weak duality with
respect to measurg. Hence

Yt_ = XTF_

exists inV a.e.PP*. The jumping measure of relative to the duality measure is
defined as

1
JV(f):= Iti[rg TE > f(Xs_,XS):qILmooq]E” > e, ),

O<s=t O<t<oo

where f is any non-negative measurable function @¥nx V which vanishes on its
diagonal. The main result of this section gives an expressifoJ.

Theorem 4.2. If X is conservativethen it holds that J = N + Jy.v, Jvxv
should be understood as the jumping measure of X restrictelf & V.

Proof. Firstly it is known fromg59 and§64 of [16] thatty = inf{t: A > 0} =T.
By continuity of A, A, =t providedt; < co. Then it follows that

Ta = iNf{S: As > A =inf{s: As 106 >t} =T o6 +t = R(t).

Thus for anyt > 0, p, = R(t) > t a.s. Let f be a non-negative measurable function on
V x V which vanishes on the diagonal. WhemE) < oo, it has been shown in the
proof of Theorem 5.1 of [10] that

1
JY(f)zm; E > f(Xruo)-r Xrw)-
O<uc<t

Obviously R is continuous au if and only if u = R(u) and X, € V. Hence by Theo-
rem 4.1, we have

1
JY(f):m CE > fF(Xrw)- Xrw)

O<u<t
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— i 1 m
= t“—rn) ?]E Z fF(XLw-+ Xrw)
O<u<t, R(u—)<R(u)

1
+lim ?E E f(Xu—s Xu)
O<u<t, R(u—)=R(u)

= N(f)+ Jvxv(f).

The conclusion follows.

If mis only o-finite, take a bounded, strictly positive and integrablection ¢ on
E, and letB; := fé ¢(Xs)ds and denote its inverse by. Then B is strictly increasing,
and consider the time chang€ of X by B. The duality measuren’ := ¢ - m of X’
is finite. It is easily seen that is identical to the time change o’ by its PCAF
A" := A,, which has the same fine supp&tas A does, sincer is strictly increasing
and continuous. Sinca'(E) = m(¢) < oo, it follows from the result above thal” =
N+, whereN" and J" are the Feller measure o and jumping measure oX’
(relative tom'). Then the invariance plays a role. By Theorem 2J1= J, and by
Theorem 3.1,N’ = N. Hence we havelY = N + Jyyv. O
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