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1. Preliminary

We take a concentric annulus with center at zero in the complex plane C which

contains the unit circle C. We cut it along C to get two annuli

A - {z; a < \z\ < 1} and B = {z; 1< \z\ < b}.

Take a continuous function φ on R such that

φ(θι) < φ(θ2) if 0ι < 02, φ(θ + 2π) = <p(0) + 2π,

and weld ^4 and JB so that the point expiθ G 5-A corresponds to the point expίφ(θ) G
dB. The resulting doubly connected region can not always be given a conformal struc-

ture whose restrictions to A and B are the same as original ones. We call φ a con-
formal welding function if there exists a conformal mapping / from A U B onto an

annulus A(φ, f) except for a Jordan curve 7 such that

lim f ( z ) = lim /(z) G 7,
Λ9z->e** J352_>et¥>(β)

where A(φ,f) = {w; 1 < H < eM^tf)}. The number M(φ,f) is called the modulus
of A(φ,f). We call / a (^-mapping. For a conformal welding function φ, the weld-

ed doubly connected region has the conformal structure induced by A(φ,f), which is

consistent with the original conformal structure A and B.

Set

V(ψ) = { M ( φ , f ) ] f is a (^-mapping),

that is, V(y?) denotes the set of all moduli of annuli made from the welding by a fixed

conformal welding function φ.

If φ is real analytic, V(φ) is a point. For a (^-mapping /, if 7 = f(C) has a pos-

itive area, we can induce a conformal structure given by the metric ds — \dw + tμdw\,
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580 F. MAITANI

where tμ(dw/dw) is a Beltrami differential whose support is contained in 7. For the
modulus πι(t) of the associated Riemann surface, we know the following variational
formula(cf. [2]);

ra'(O) = — / / —z-dudv, (w = u + iυ).
2π J JΊ w2

Since we can choose μ which satisfies ra'(O) φ 0, V(φ) is not a point.
K. Oikawa asked the following question. Is there a conformal welding function ψ

such that V(φ) is a point but the welded doubly connected region has different con-
formal structures? If the welded doubly connected region has different conformal struc-
tures, there are ^-mappings /i, /2 such that F — fa o f~l is regarded as a mapping
from A(φ,fι) to A ( φ , f z ) which is not conformal on 7 = fι(C). There is a homeo-
morphism F on the extended complex plane C such that F = F on A(ψ, f) and F
is quasiconformal on C — 7. Further there is a quasiconformal mapping h on C such
that F = h o F is conformal on C — 7. The mapping F is continuous on C and is
conformal on C — 7. This 7 contains a point on which F is not conformal. We are
concerned with a Jordan curve 7 which allows mappings like this F.

It is said that a compact set E is of class NSB if there exists no bounded uni-
valent analytic function on C — E and is of class N& if there exists no non-constant
analytic function with a finite Dirichlet integral on C — E. Each univalent meromorphic
function on C — E is continuously extendable to C if E £ NSB and it is a Mόbius
Transformation if E £ Np(cf. [7]). Let fa and fv be the extremal horizontal and ver-
tical slit mappings for C — E respectively, which are normalized as follows

00

r , V""^ —n

n=l

oo

fv - Z + Σ knZ~n

n=l

For E £ NSB — ND, fv + /^ is a mapping which is continuous on C and conformal
on C - E, and (fυ + fa)(E) has positive area. Hence if 7 contains a set in the class
NSB-No, there is a mapping such that it is continuous on C, is conformal on € — 7,
but is not conformal on a point of 7.

Under such a background, in the first half we investigate, for the concerned map-
ping F, the behavior of a mapping F(z) + tz with a complex parameter t, and in the
second half we check the set of parameter t for which /„ + tfh is univalent. This arti-
cle is a stepping stone to get answer for Oikawa's question. If the set of parameters t
for which F(z) + tz is univalent has interior points, 7 is transformed to a Jordan curve
of positive area. Hence, if it is shown that the refered set has always interior points,
V(φ) can't be a point in the case the doubly connected region welded by φ has dif-
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ferent conformal structures. As an example we remark that the set of parameters t for

which fv + tfh is univalent becomes a half plane.

2. Behavior of F on the Jordan curve 7

Consider the situation in section 1, namely, the mapping F is continuous on C

and is conformal on C — 7 and 7 contains a point on which F is not conformal. Let

φ\ be a conformal mapping from the exterior of the unit disk to the exterior of Jordan

curve 7, whose Laurent development is

oo

ψι(z) = ]P anz~n

n=-l

and φ^ be a conformal mapping from the interior of the unit disk to the interior of 7,

whose Taylor development is

For R > 1, let GR denote the bounded region enclosed by φ\(\z\ — R). Then the area

of GR is

\Gκ\ = \ ίί dζdζ = - I ζdζ = - I φι(z)^(z)dz
* J JGR

 z JdGR

 z J\Z\=R
Λ Γ2π ( oo \ / oo \

= \\ Σ I Σ -™«nCT— ̂ ~n^βi

ZJ° Vn=-l/ \m=-l/

= π Σ -n|αn|
2β-2n.

n=-l

That is

V n=l

The area \GR\ is decreasing as R decreases and

n=l

We denote this by \G\\. Similarly, for r < 1, let G> denote the bounded region en-

closed by ^?2(kl = r)- Then the area of Gr is

/• -i

r| = \ / φ2(z)φ'2(z)dz = i
2 J\z\=τ 2
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We write

n=l

If the area of 7 vanishes, then |Gι| = \G_ι\. Therefore we have

n=l

We assume that there exists a homeomorphism F of the extended complex plane

which is analytic off 7, has a non-differentiable point on 7, and fix the infinity. Further

assume that the area of F(Ί) vanishes. Then τ/>ι = Foφl is a conformal mapping from

the exterior of the unit disk to the exterior of ^(7), whose Laurent development is

n=-l

and ψz — F o φ2 is a conformal mapping from the interior of the unit disk to the

interior of ^(7), whose Taylor development is

n=0

For R > 1, let Ω# denote the bounded region enclosed by ψι(\z\ = R) and for r < 1,

let ΩΓ denote the bounded region enclosed by ^(\z\ — r). Then we have

= Jim |ΩΛ| = π < |^4_ι| -
I n=l

|Ωr| = π Σ ^I^n|2r2n,
n=-l

Since the area of ^(7) vanishes, we have also

n=l
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Let a parameter t £ C be fixed. Consider the following function

9(0 = F(ζ) + tζ,

and for R > 1, consider its Dirichlet integral over GR — 7 which is now represented
as the Dirichlet inner product

(dg,dg)GR-Ί =

As for the last term, we have

(dζ,dζ)GR-Ί = ι\i

= 2{Λlim+(|<7Λ| - |GΛ,|) + rlim_ |GP|} = 2{|Gfi| - |G\| + \0.ι\}

= 2π ||o_ι|2(Λ2 - 1) - f; n|αn|
2(Λ-2" - 1) + £ n|6n|

2}
I n=l n=l J

n=l

Next

Γ
- 2π ^ μ_ι

I

R'2) - Σ n\An\
2(R~2n - R'~2n) \ ,

n=l J

and

(dF,dF)Gr =

n=l

Therefore

f
oo oo

/_-/ -̂̂
n=l n=l

n=l

Similarly

(dF,dζ)GR-GR, =
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= i I
(J\z\=R

_ _ f _Ί
l\z\=K l φ )

= Γ(Σ)(Σ) —
•Ό \n=_ι/ \m=-l'

= 2π \ Λ_ιαΓΓ(β2 - R12) -

θίdθ

k n-\

and

(dF,dζ)Gr = (dFoφ2,dφ2){z:\z\<r} = (dψ2,dφ2){Z:\z\<r} = i I
J\z\=r

/ oo v x oo v

( Σ ) ( Σ ) mBnb^rn+me("-^θίdθ
\=' ^ = /

n=l

so that

i oo oo ^

A-iαΓΓίΛ2 - 1) - Σ ^^nδ^(β-2n - 1) + Σ nB^ \
n=l ra=l J

By combining the results we obtain

d , d β - = 2 π
71=1

n=l

n=l n=l

i oo x oo oo

-

n=-l V=-l n=l

Set

n=-l n=l

Then we can write

n\An + tan\
2R

n=-l

2 - 2 n
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We remark the following.

Lemma 1.

00 00

n=-l n=l

Proof. Since ty\ and φ\ are conformal at infinity, A-\ and α_ι don't vanish.
Let to = —(A-i/a-i) and set

Then

= 2π -
I n=-l )

Hence

4π$t£0ζ? = lim (dg0,dg0)GR-Ί > 0,
β—>oo

and Q ± 0. D

For £ / £0 and sufficiently large R, g°φ\({z : \z\ — R}) becomes a Jordan curve
and the interior region is denoted by Ωg,R. We have

|Ω^#| — - I I dωdω = - I go φ\(z}dg o φ\(z)
*•< I /O ^ / ΛO

«/ «/ & b g f ι j { «/ Ollg^Pl

^ 1 / 2π / oo^ \ / oo^ \ ^^ Γ^-n-m -(n-m)θi^

~~ 2 /n I -̂̂  / I ^—^ / n m m

n=-l

Therefore we have the following.

Lemma 2.

1
\Ωg,R\ — ~^(
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Let

S(F} = |F(C*>"^(C2) : (d,C2) G C x C -

Then we have the following assertion.

Theorem 1. The set S(F) contains a half plane',

{t:

Proof. Note that (l/2)(dg,dg)oR-Ί is the image area of GR — ̂  by g, counting
multiplicity. Hence if 2ττίR tQ > 0, by Lemma 2, there is an image point mapped from

at least two points Cι>C2 When t — £0> by Wermer's lemma #(7) = g(C) (cf. [1]), we
can also find two points (i, £2 with the same property. Then

or

If -t does not belong to S(F), F(Cι) + *Cι 7^ ^((2) +^2 for every pair (Cι,C2),
Ci Φ (2- Then p(C) = F(C)H-ίC is univalent. When -t G C-S(F) and JίfQ < 0, g is
univalent and the image area of 7 by g is positive. Then #(7) contains a compact set

whose complement belongs to the class NSB - ND (cf. [7]). If the closure of S(F)

doesn't contain — t, then fttQ < 0. Hence g is univalent and the image area #(7) is

positive. Π

Theorem 2. // (C - S(F)) Π{*; $ttQ > 0} φ 0, f/zere ^jcwί5 α homeomorphism
g on C .swc/z that g is conformal on C — 7 αnc/ αr^α 0/ ^(7) w positive.

3. Linear combination of the extremal horizontal and vertical slit mappings

Let G be a region in the extended complex plane which allows non-constant ana-

lytic function with a finite Dirichlet integral. Assume that infinity is contained in G.

Theorem 3. Let /^, fv be the extremal horizontal slit mapping and the extremal

vertical slit mapping on G. Assume that fh,fv are normalized such that

n=l

oo

Λ = C +
n=l
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at a neighborhood of infinity. Then fυ — tfh is univalent on G if ϊϊ t < 0.

Proof. Assume that G is a multiply connected regular region. Then w = f ( z ) =

fv°fh
l(z) is a conformal mapping from a multiply connected horizontal slit region H

to a vertical slit region V. The function f ( z ) has the following Laurent developement,

n=l

on a neighborhood of oo. The function f ( z ) has an analytic extension to every com-
ponent of the boundary except for 4 points and $tf(z)= 0 on dH—{a finite number
of points}. The function f(z) can be regarded as a meromorphic function on the dou-
bled surface. The doubled surface is compact and the total order of /' is twice of the
number of slits. Hence the inverse image of the imaginary axis by /' consists of the
boundary slits of H. Therefore the real part of /' doesn't vanish on any interior points

of H. Further by the normalization of /;/'(oo) — 1, it follows that the real part of /'
is positive on H. Let A be the left end point of a boundary horizontal slit of H, C
its right end point, B the point which is mapped on the top end point of a bound-
ary vertical slit of V, and D the point which is mapped on the bottom end point of a
boundary vertical slit of V. Then note that

f ' ( B ) = /'(£>) = 0, f ( A ) = f ( C ) = oo.

It follows that B lies on the upper side of the horizontal slit and D lies on the under

side of the horizontal slit. Further, we have

3/'(*)>0, on (A,β)U(£>,C7),

9 f(z) < 0, on (B, C) U (A, D).

By the monotonous change of 3?/'(z),

3/"(*)<0, on (A,J3)U(B,i7),

S/"(2)>0, on (D,C)\J(A,D),

where (A,J5), (B,C) lie on the upper side of the horizontal slit and (D,C), (A,D)
lie on the under side of the horizontal slit. Let g ( z ) = f ( z ) + z — u+iυ. The curvature
of the boundary curve g(dH) is

uv — vil 9" Q1 f'f ~t~ /"

(«2 + i>2)f = IsT =^ l/' + i|3

_<, /"
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f <0 on (A,B)\J(B,C)

|>0 on (A,D)\J(D,C).

Hence g(dH) surrounds a convex region, if it is univalent. Similarly for h(z) —
f ( z ) — z the curvature of the boundary curve h(dH)

|Λ'|3 |/'-l|3'

For zι, (7^)22 G H, let p = |z2 — 2ι|, el<? = (z2 — zι)/(\Z2 — z\\). Assume that
0 < θ < π. Then

f(z*) ~ f ( z ι ) = ί f'(zι + reiθ)eiθdr -

^o

where z* denotes the point on the upper side of a boundary horizontal slit of H
which meets the line segment [zι, 22] and z^ denotes the point on its under side. We
have

Since /(^^") and f(z^~) lie on a vertical slit,

f(4) - f ( * Γ ) = <

Suppose that {9/(^) - 9/(^Γ)} < ° The function {ξ>/(z^) - 3 /CO) is con-
tinuous on the horizontal slit and it is positive near the end point. There is a point ZQ
such that

Then /(z+) = /(z0-) and

If we use the fact that g(z) is univalent and the complement of the image domain
consists of convex sets, this gives a contradiction. It follows that

Now we have
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Therefore

22 — Z\

It is clear in the case θ = 0 or the second term vanishes. For t G C (SRί < 0),

£t i.e. f ( z 2 ) -tz2 ^ f(zι) -tzi.

We have F(z) = f ( z ) — tz is an univalent function on H if ϊϊί < 0. It follows the

result holds on a multiply connected regular region.

Let G be an arbitrary region in the complex plane and {Gn} be a regular ex-

haustion. Let fh and fv be the extremal horizontal and vertical slit mappings for G

respectively, which are normalized as follows

oo

= Z +

71=1

OO

n=l

Let fnh and fnv be those normalized extremal slit mappings for Gn. Then {fnh} con-

verges to fh and {fnv} converges to fv. Hence fnυ - tfnh converges to fh - tfv.
Therefore, by Hurwitz's theorem fv —tfh is univalent if $tt < 0. The theorem is valid
for an arbitrary plane region. Π

REMARK. C. FitzGerald commented me that this was not published. But he knew

the fact and remarked that it may be valid for the rectilinear slit mapping with arbi-
trary directions.

Corollary 1. If G is a multiply connected regular region, then

{£; fυ ~ tfh is not univalent} is dense in the right half complex plane {£; Si t > 0}.

Proof. Let / = /„ o f~l. The closure of S(f) contains f(z) and the right half

complex plane. D

REMARK. (1) N. Suita kindly teaches me the following. For a multiply connect-

ed (not simply connected) regular region G,

{t'ifv — tfh ^ univalent} is precisely the left half complex plane {£; SR£ < 0}.

It is shown in the proof of Theorem 3 that 5ϊ /' covers the right half complex plane

{ί SRί > 0}. Therefore gt(z) — f ( z ) — tz has a vanishing derivative if 5ί£ > 0 and is
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not univalent. Further the curvature of the boundary curve gt(dH) is — 3ϊf

£|3. If SR£ < 0, it is in the same situation as the proof of Theorem 3

J <0 on (A,B)\J(B,C)

\ > 0 on (A,D)\J(D,C).

Hence the complement of the image of gt consists of a finite number of convex re-

gions. If Sΐί = 0, the curvature vanishes. Hence the complement of the image of gt

consists of a finite number of line segments. If ίft t > 0, it is

J > 0 on (A,B)\J(B,C)

\<0 on (A,D)\J(D,C).

Hence the every component of boundary curve gt(dH) surrounds a part of the image

9t(H) convexly, which contains a branch point.

(2) M. Shiba also remarks me the following. By the extremal property of the co-

efficients αi and 61, the linear combination /„ - tfh is not univalent for any t •£ 1 in

the right half plane, if a\ φ\>\.

(3) M. Sakai[6] showed that fv — fh is univalent iff G is conformally equivalen-

t to [z : \z\ > l}|J{oo} - £7, where E is a set satisfying Ef\K £ ND for every

compact subset K of {z : \z\ > 1} U{°°}

By the proof of Theorem 1, we have the following.

Theorem 4. If C-G is of class NSB — ND, then {£; /„ — tfh is univalent} =

EXAMPLE. The set E — C — fh(G) has a vanishing area. There is a Jordan curve

7 which contains E and has a vanishing area. Under the assumption of Theorem 4,

the function fv°fh
l is a homeomorphism on C and is conformal on C — 7. The set

S(fυ o f~l) is the right half plane.
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