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Abstract
The Chebyshev map is a typical chaotic map. We consider gkrestt Chebyshev

mapsTy of C2. The support of the maximal entropy measureTpis connected. We
perturbTy in a certain direction. Then we can show the support of theimmabentropy
measure of this map is a Cantor set.

1. Introduction

The Chebyshev map is a typical chaotic map. Compared withdtmamics of
the Chebyshev map in one variable very few things are knovautathe dynamics of
generalized Chebyshev maps in higher dimensions. GernedaChebyshev maps were
studied by several researchers, Koornwinder [9], Lidl [I@&selov [15], Hoffman and
Withers [8]. Their constructions are based on the theoryoshmex Lie algebras.

Veselov [15] defined generalized Chebyshev maps as follows.

Let G be a simple complex Lie algebra of ramk H be its Cartan subalgebra,
H* be its dual spacef be a lattice of weights irH* generated by the fundamental
weightsw;, ..., wy, and L be the dual lattice irH (see [3]). One defines the mapping
¢c: H/L = C", ¢ = (@1, ¢n)y @k = D ew EXP[271I w(wk)], whereW is the Weyl
group, acting on the spadd*. Chevalley asserts that, ..., ¢, generate the algebra
of exponential invariants freely.

With each simple complex Lie algebf@ of rank n is associated an infinite series
of integrable polynomial mappingBGk from C" to C", k=2, 3,..., determined by the
condition:

¢a(kx) = P&(¢a(x)).

For n =1 there is a unique simple algebfa. Here¢,, = 2 cos(2rx) and theP,'§1
are, within a linear substitution, Chebyshev polynomidiere A, is the Lie algebra
of Sl(n+1, C).

In this paper we will study the mappingﬁé in the caseG = A,. WhenG =
B, ~ C,, from [11] we know that the extended polynomial maB§ from P? to P?
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996 K. UCHIMURA

are represented as symmetric products of two mapRofSo we studyP'g in the case
G = Az. We denoteP by T.

The generalized Chebyshev mafsfrom C? to C? (k € Z), are given byT(X, y) =
(9®(x, y), g®(y, x)). Hereg®(x, y) is a generalized Chebyshev polynomial defined by
Lidl [10]. Let X =t; +tp + 13, y = tytp + t1t3 + tot3, 1 =tytots. Then we seg®(x, y) :=
th+t5+t5. Sog(y, x) = (1/t)k + (1/t2)k + (1/ta)* = gCR(x, y). For instanceT(x, y) =
(x? = 2y, y? — 2x), Ta(x, y) = (x3 = 3xy + 3, y% — 3xy + 3), Ta(x, y) = (x* — 4x?y +
2y? +4x, y* — 4xy? + 2x% + 4y). Recurrence relations for these polynomials are given by
(see [10])

(1.1) g®(x, y) = xg“D(x, y) — yg“2(x, y) + g« (x, y).

In this paper we consider the dynamics of generalized CliyysapsT, of C2.
We show they have similar properties to those of ChebyshgysnafC. The support
of the invariant probability measune of maximal entropy ofTy is connected. We will
study external rays for the support af and foliations of the Julia sef;. We also
show the external rays have relations with the affine Weylgrof A,.

Next we consider perturbations of the generalized Chebyshaps. We perturb
the generalized Chebyshev maps@f in a certain direction. Then we will show that
the support ofu of the perturbed map is a Cantor set. In one variable cass,ighi
parallel to the following fact. For typical quadratic mafgz) = z> + ¢, whenc = —2,
f_2(2) is a Chebyshev map. Our result corresponds to the well kniaehthat when
c < —2, the Julia set off. is a Cantor set.

The generalized Chebyshev maps have relations with the classical Lie algebra
A, and so the maps are very symmetric by nature. In this paperwileshow that
these symmetric objects collapse under certain pertuanimti

In Section 2, we will study the properties of generalized I§ishev map ofC?
and their dynamics. In Lemma 2.1, we show an exact formulater critical set of
Tk(X, y). The setK(T(x, y)) of points with bounded orbits is a closed domain on the
real plane{x =y}.

In Proposition 2.3, we show an exact form of the invariant sneax of maxi-
mal entropy forTy(X, y) and its support is equal t&(Tk(x, y)). We apply the def-
initions of external rays of polynomial endomorphism givey Bedford and Jonsson
[1] to Tk(x, y) and we give exact forms of external rays ©f(x, y) and show they
have similar properties to those of one-dimensional ChaedbysnapsTy(x) (see Propo-
sition 2.4, Fig. 2.4 and Fig. 2.5). We also show the affine Wgglup of A, acts on a
set of rays.

In Section 3, we will consider perturbations ©f(x, y) in a certain direction and
find Cantor sets. We define-Chebyshev mapd(x, y) as follows: LetTi(X,y) =
(u(x, y), u(y, x)), whereu(x, y) is a polynomial of degreé in variablesx andy.
We introduce a new parameterand make a homogeneous polynomigk, y, c) of
degreek with u(x, y, 1) =u(x, y). Then we definec-Chebyshev maps by.(x, y) :=
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(u(x, y,c),u(y, x,c)) (see Definition 3.1). The main result of this paper is tiiat + 1,
then the support of the maximal entropy measuref a c-Chebyshev magf.(X, y) is

a Cantor set which lies on the plarie = y} (see Theorem 3.1 and Proposition 3.6).
The key observation of the proof of this result is the follogi if ¢ > 1, then the orbit
{f(C)} of the critical setC of fc(x, y) approaches the line at infinity uniformly (see
Proposition 3.1). To prove this observation we use a topcébgargument principle,
dynamics on the invariant plane = y} and the external rays dfi(x, y). Whenc =1,
the support of the maximal entropy measweof f.(x,y) is connected. But when
¢ > 1, the support ofu is not connected. Then a bifurcation occurscat 1. The
symmetric objects of generalized Chebyshev mapsollapse under the perturbations.

2. Generalized Chebyshev maps of €

In this section we study some properties of the generalizesb@shev map$i (X, y)
and their dynamics. From the definition of the generalizeélyshev maps we can find
a branched covering map. The following diagram is commueati

(C — {0})2 —2=(C - {0})2

A,

C2 —k)cz
where gu(ty, tp) = (t, t¥), and
1 1 1
(2.1) X y) =W, )= (ti+to+ —, — +—- +itz ).
it t1 t2

The covering map
v:C?\ v }{D)— C2\D
is a 6-sheeted covering map. The branch locus Drofk written as

x2y? — 4x3 — 4y® + 18xy — 27 = 0.
Tk(x, y) admits an invariant plangéx = y}. Tk(X, y) restricted to the real plane
{x =y} may be regarded as a Chebyshev polynomial defined by Koodewij®]

Pk_,é-/z(z, 2) — eik(r +e—ikr +ei(kr—ka), 0,7 €R.

Setz(o,7) ;=€ +e'" + &9 = u +iv. Based on [9], we review some known
facts. LetR be a closed domain bounded by the triangle with verti€es (0, 0),

A= (7/v2, —1/+/6) and B = (/+/2, 7/+/6) in the 6, t) plane. Here we use the co-
ordinate §, t) which is related to the coordinate (t) by a coordinate transformation:
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Fig. 2.1. The domairs.

B

A

Fig. 2.2. The domairR.

s= (o +1)/(2v2), t = V/3(c — 1)/(2v/2). Let J;, J, and J; denote the reflections in
the edgesOA, OB and AB in the (s, t) plane, respectively. TheR is a fundamental
domain for the group generated Wy, J, and Js.

In other words, R is similar to the closure of an alcove of the Lie algebka.
The set of simple root vectors is written &8, = (v/2, 0), a2 = (—1/+/2, +/3/+/2)} and
the highest root vector ia = a; +ay. (See [3].)

We denote the images & under the inverse of the coordinate transformation by
R;. Let S be a closed domain bounded by Steiner’'s hypocycloid

(u? +v? +9)? + 8(—u® + 3uv?) — 108 = 0

in the @, v) plane. Then the mapping: (o, t) — (u, v) is a diffeomorphism from
the interior R} of R; to S and the boundary R; is mapped one to one and onto the
boundarydS. ThenS={€? +e " +&(=9): 0 <0, v < 27).

Combining the inverse of the maafo, r) with the coordinate transformation, we
get a continuous map from S to R such thaty is a diffeomorphism fromS> onto
R°> and 9S is mapped ontdR. See Figs. 2.1 and 2.2.

In [13], we show that for any segmehtin R parallel to one of the three root
vectorsay, ap andd, ¢~X(1) is also a segment i$. Then such a segmepgt (1) may
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be viewed as a “geodesic”. (See Fig. 2.4.)
In the first place we consider the critical set Tf(x, y) defined by

C(Ty) = {(x, y) € C?: det(DTy) = 0}.
Lemma 2.1. Let ke Z. Assume that
X=lp+t+13, y=1tit) +t1t3+1tt3, titotz = 1.

Then

M-8 h-t G-

det(DTy) = k? .
h—-th -tz tb—13

Proof. We note that

det@(Tx o ¥))

det®TI = — et w)

By direct computations we have
k2
det@Tico W) = (i — &)t ~ &) — ),

and

mmwzéfrhmfwm—w. 0

Dinh [4] shows that generalized Chebyshev maps are ciitifialite. From Lemma 2.1
we see thaC(Ty) can be parameterized as

1 1 1 .
(22) X:t+8t+?, y:?+_t+8t2 (SzeZJnJ?l/k, ]GN)
& &

We will prove in Proposition 2.3 below the® is equal to the support of the maximal

entropy measure foi.
Let f be a map from a complex manifolX to X. We defineK(f) := {x €
X: the orbit { f"(x)} is boundedl. Then K(Ty) is described in the following form.

Proposition 2.1 ([15]).

K(Ti) = w({lt] = Itz] = 1}) = SC {x = y}.
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Proof. From the following commutative diagram we can pravis proposition.

(tr, 1) —— (tX, t£)

Pl

X, y) —— (g%, g9). O
Next we study the properties of periodic points Tf

Lemma 2.2. Assume that k= 2. All the periodic points of I lie in S on the
plane {x =y} and any periodic point in the interior °Sis repelling

Proof. Clearly, any periodic point ofy lies in the setK(Ty). By the semi-
conjugacy (2.1), we see that any periodic pointShis repelling. 0

We consider the functiofM restricted to{x =y}, which is denoted by&..
S = =y - R? = R?,

e.g.
S(2) = 22— 27: (u, v) — (u2 —2u— 3 2uv + 2v).

We use the bijectiop from Sin the (@, v) space toR in the @,t) space (see Figs. 2.1
and 2.2). We divide the closed triangular regiBrinto k2" congruent closed triangular
regionsA.

Proposition 2.2. Each regionA has a periodic point of o S o ¢~* of period n

Proof. We setk := ¢ o S o ¢ L. Thenk(s,t) = (ks, kt). We prove this lemma
whenk = 2. The proof in the general case is similar.

R is the closed domain bounded by an equilateral triamg@AB. See Fig. 2.3.
We divide the triangleAOAB into four congruent equilateral triangles. Let the closed
domain bounded byzADEF, AOEF, AADF, ABED denote A(0), A(1), A(2), A(3),
respectively. Then the image @f(2) under the map is the closed domain bounded
by AAA'D*. This closed domain is equivalent to the fundamental donkiby re-
flections. Then we can define a homeomorphignfrom A(2) onto R. Let h, be the
inverse ofk,. Henceh, is a continuous map fronR to R. Then, by the fixed point
theorem of a closed disk, we have a fixed papg? of h,. Hencep}” is a fixed point
of ky in A(2). By the same arguments, we have a fixed pointcobn eachA(j),
(j =0,1, 2, 3). Further, we divide each(j) into four smaller congruent equilateral
triangular domainsA(jl). In the same way, we can prove that there is a periodic point
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B
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¢} D D"
F
A
A"

Fig. 2.3. Divisions of a regular triangle and their extensio

of period 2 ofx on eachA(jl). Repeating this procedure, we have a periodic point of
periodn on eachA(jy, jo. ..., jn) . We can show these are distinct® periodic point
of periodn. Indeed. Note that(dR) C dR and«"(d A (j1, j2,.--, jn)) = dR. The point
O is a fixed point and the point& and B are periodic points of period 2. ]

Corollary 2.1. The mapxk|;r from R ontodR is a k-sheeted covering map

Proof. Seta=OB, b=AB andc=0A Then«(dR) is represented asabdX in
a counterclockwise orientation. O

Now we consider the invariant measyteof maximal entropy forT.

Proposition 2.3. (1) suppu =S.
2
3 de_dXz
72 J/XZXZ + AX3 + 4X3 — 18XX + 27

u= X = X1 +iXo.

Proof. A theorem of [2] reads as follows. Lgt be the measurg, := (1/k?") x
2 n(y)=y, yrepelingdy- Then the sequencgun} converges weakly to the invariant mea-
sure .

By Lemma 2.2, we see that all the periodic pointsSn are repelling. We use
the notations in the proof of Proposition 2.2. A small tring\(j1, j2,..., jm) IN
R° has exactly one repelling periodic point ofof period m. Set i, := ¢.un. Then,
fm(AG j2, -y jm)) = 1/k2™. Dividing A(j1, j2, ..., jm) into smaller equilateral tri-
angles, we see that if > m, fin(A(j1, jo. ..., jm)) = 1/k®™. Thus, we deduce that the
sequencd/i,} converges weakly ta/3/72 i, where i is the Lebesgue measure in the
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(s, 1) plane. Thenu = ¢*(2v/3/72 j1). Theorem 3.5 in [9] states that

\/édX]_ dX2

ds dt= — .
2V —X2X2 + 4x3 + 4x3 — 18xXx + 27

Hence this proposition follows. ]

Next we study external rays ofc(Xx, y). We use the definitions of external rays
given by Bedford and Jonsson [1] in our situation. We extdr@mapTy(x, y): C? —
C? to a holomorphic map fron®? to P?. Let WS(J, T) be the stable set of the Julia
set Jg on the line at infinity. Bedford and Jonsson [1] show that éhexists a homeo-
morphismW¥ (an inverse Bottcher coordinate) such that

W WS(Jn, fi) = WS(Jn, Ty)

conjugating fx to T, where f(t, tp) = (tf, t'z‘). They define a local stable manifold
Wg. (@), (a € Jn) and then a stable disW; > WS (a) and external raysR(a, ).
Nakane [11] observed the following results @g(X, Y):
Nakane defined

- 1 t 1 t
(2.3) Uty to) = (ty+ =+ 2, =+t +— ).
b by 2

Two maps¥ in (2.1) and¥ in (2.3) are essentially the same a#ids an inverse Béttcher
coordinate conjugatindy to Ty. The stable diskA; is the image of{(t, at): |t| > 1}
under the mapl. Then the stable diskV, can be written as the set of poirr, o, 1)
in the form

X = re—erir + l'eZTri(t—a) + lerio, y= reZTri(U—‘[) + }eZJTiT + e_ZNiU,
(2.4) r r
a=e’ r>1.

Any external ray is written aRk(o, t) := {R(r, 0, 7): r > 1}. Each pointz in Sis a
landing point of exactly 1, 3, or 6 external raysafis a cusp point oS, z is a
non-cusp point ordS or z € S°, respectively.

We can show that Nakane’s results are also true for &y, y), k # 0. Further,
we give a structure of foliation®V, of W3(Jy, Tx) and show their relations to a Lie
algebra.

Proposition 2.4. For any point ze S, there exist three stable disks,\WWuch that
boundaries of these three disks lie on S and intersect &t zhat point two external
rays on each W land from opposite directions



GENERALIZED CHEBYSHEV MAPS OF C2 1003

Fig. 2.4. Geodesics and external rays.

Metaphorically speaking, it is like three mouths (stableks)isbiting a sandwich
(suppu = S). Whenr =1, the pointR(1, o, ) lies on S C {x = y}. The boundary
of W, is written as{R(1,0, 7): 0 <7 < 27} and covers a segment ddtwice. The
segment is a geodesic and is inscribed in the hypocyd@d See Fig. 2.4. We can
extend the segment across the hypocycloid in both dirextidine two half-lines are
external rays ofTy in {x =y}. We consider the affine Weyl groyy of the Lie algebra
A,. The affine Weyl groupN of A, is expressed by the following six transformations
(see [9], p-360):

o, 1)=(-0+1,1), K(o,1)=(0,0 —1), Ko, 1)=(-1, —0),

(o, 1) =(-1,0 — 1), (0o, 7)=(t —0, —0), (o, 1)=(0, 7).

Whenr =1 in (2.4), then a pointx, y) = R(1, o, ) lies in SC {x =y} and the point
(x, y) is fixed under any transformatiod .

Whenr > 1, any element); of affine Weyl groupW at z in S° acts on a set
of external rays. Two external rayR(o, ) and R(os, o — t) corresponding tal, and
J, lie on a stable diskW, (a = €#"?) and land at the same poiat Any two points
R(r, o, t) and R(r, o, 0 — 1) are symmetrical abouix = y} in the following sense.
(1) The midpoint of the segmemR(r, o, T)R(r, o, 0 — 1) lies on the plangx = y}.
(2) The segment is perpendicular to the pldre= y}.

The same properties hold for external rag6-t, —o) and R(—t, o — ) corresponding
to J; and J; on a stable diskV, (a=e"%"7) and also for external rayR(t —o, ) and
R(r — o, —o) corresponding ta); and Js on a stable diskV, (a = €'(=2)). These
six external rays land on the same pomt 0

We compare the external rays ©f(x, y) with those of a Chebyshev mab,‘gl(z) =
Tk(2) on C. Any external ray ofT(2) is written as

1
R(r, ¢) =re* + r—eZ”'<‘¢), r> 1.
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Fig. 2.5. External rays ofix(2).

Clearly, R(r, —¢) = re?(=®) + (1/r)e?"'¢. Then R(r, ¢) = R(r, —¢). HenceR(r, ¢)
and R(r, —¢) are symmetrical about the real axis. See Fig. 2.5.

Note that the affine Weyl group of; acts on a set of external rays 0k(2).
On the other hand, the affine Weyl grofy of A, acts on a set of external rays
of Tk(x, y).

3. Perturbations of generalized Chebyshev maps of and Cantor sets

In this section we perturb generalized Chebyshev mis, y) in a certain direc-
tion. Recall thatTe(x, y) = (@®(x, y), g¥(y, x)), whereg®(x, y) is a polynomial of
degreelk|. We introduce a new parameterin T(X, y) as follows. We make a homo-
geneous polynomiag®(x, y, ¢) of degreelk| by adding a new variable such that
g®(x, y, 1) =g®(x, y). Then we define map$®(x, y) from C? to C? by

19, y) = @9, v, ), g9y, x, ).
DErINITION 3.1, f{(x, y) is called ac-Chebyshev mapf degreelk|.

Whenc =1, f¥(x, y) = Tu(X, y). From (1.1) we see that i > 1, g®(x, y) = xk +
mk-1(X, y), wherem,_1(X, y) denotes a polynomial ix andy of degree< k—1. Then
the map f& extends holomorphically t®2. We state the main result in this section.

Theorem 3.1. Assume that ¢ 1. Then the support of the maximal entropy mea-
sure u of the c-Chebyshev map®¥(x, y) is a Cantor set for any k Z \ {0, 1,—1}.

The map fP(x, y) restricted to the linglx =y} is the mapg@(x) = x? — 2cx
which is conjugate to the map,(x) = x> + A. The interval 1< ¢ < oo corresponds
to the interval—oco < A < —2 which is a half-line beginning at the top of antenna in
the Mandelbrot set. By Proposition 2.3, we know that witen1, the support of the
maximal entropy measure di(x, y) (= Te(x, y)) is the connected s& on the plane
{x =y}. However ifc > 1, the support of the maximal entropy measuref8?(x, y) is
not connected. This shows that a bifurcation occurs atl. This theorem is parallel
to a well-known result that ii. < —2, then the Julia set op, is a Cantor set.

Whenk = 2, the theorem is proved in [14]. This is a generalizatiorttaf result
in [14].
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We fix the valuek and use an abbreviatiofic(x, y) for f®(x, y). One of the
reasons why we define @Chebyshev map in such a form is shown in the next lemma.

Lemma 3.1. Let x=c(ty +ty +13), y =c(1/t; + 1/t, + 1/t3) and ftot3 = 1. Then

1.1 1
fe(x, y) = (ck'(tlk ), C'”(- Y —>>

A
Proof. Setx’ =t +t, +t3 andy’ = 1/t; + 1/t, + 1/t3. By definition, f.(X, y) =
(@@(x, y, ©), g¥(y, x, ©)).
Clearly, g®(cx, cy, c) = cKigl(x’, y). Then
fe(x, y) = cM(@®(x', y), g9y, X)) = (X', )
1 1 1
:c'k(tf+t§+t§,—+ + ) O

tog g

Lemma 3.2. The critical set ¢ f.) and the critical value set .fC) are written
as follows

C(fo): x:c<(1+s)t+i>, y:c(} 1 +st2),
T et

st?
1 2
f.(C): x = c <2tk + ﬁ) y =cl (t_k + t2k>,
wheree = 27V=1k and te C\ {0}.

Proof. It can be easily observed that

detDfo(x, y)) = XD def<DTk<§' %))

Then by (2.2) we have the parameterizationQiff;). The parameterization of.(C)
is obtained from Lemma 3.1. O

The key observation in the proof of Theorem 3.1 is the follgvproperty.
Proposition 3.1. If ¢ > 1, K(f,) N C(f.) =4.

This is equivalent to the statementif- 1, then for any X, y) € C(f¢), || f&(fe(X, V) —

oo asn — oo with respect to the Euclidean norm. By Lemma 3.2, we know that

critical value setf.(C) is parameterized by in C\ {0}. We will shrink the domain of
definition C \ {0}.
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In the first place we assume thiat> 2. Set
(Un(t), vn(1)) := I (Uo(t), Uo(1/t)), where uo(t) = c(2t" + 1/t%).
Since ug(t) is the first component of the critical value sé&(C) (see Lemma 3.2),
(Un(t), vn(t)) represents an element df'(f.(C)). We consider the maps{™(x, y)
with k > 2. In Section 1, we show thag(¥(x, y) = g®(y, x). Then f{(x, y) =
f®(y, x). Hence we have f(9)2(x, y) = (f®)?(x, y). By Lemma 3.2, we know that

the critical value off{~9(x, y) is parameterized as = c¥(2/tk+t%), y = ck(2t*+1/t%).
Note thatck(2tk + 1/t%) is the first component of the critical value 6£9(x, y). Then

(FERPCE) = (FEOAC(L).
Hence
it K(F)Ync(t®) =g, then C(fIR)nK(f{W)=0.
Thus it suffices to prove Proposition 3.1 whkrn= 2.
Lemma 3.3. (1) We assume that ¥ 2. Then
it K(f)nc(t®) =g, then Q) NK(f)=0.
(2) For any ne N, wp(t) = un(1/t).
Proof. We can prove (2) by induction an ]
By Lemma 3.3 (2) we see that proving Proposition 3.1 requingly proving the fol-

lowing proposition. Indeed. Fare C\ {0}, we consider two cases (1) <1 and (2)
[t] > 1. In case (1), Proposition 3.2 implies Proposition 3.1. &sec (2), we note that

Un(t) = vn(1/1).

Proposition 3.2. For any te [_)\{O}, |un(t)] = oo as n— oo where D denotes
the unit disk

To prove this proposition we need two steps.

_Proposition 3.3. If ¢ > 1, then |vs(t)| has its minimum value on a bounda$p
of D\ {0} for any ne N.

Proposition 3.4. If ¢ > 1, then|v,(€¥)] — 0o as h— oo for any 6 in [0, 27).
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//6

Fig. 3.1.cSandc*S.

To prove these two propositions, we need to study the dyrsawfid. on an invariant
plane. Whenc is real, f.(x, y) admits an invariant plan¢x = y}. Then we consider
the mapg.(z) on the plane{x = y}. That is, g.(2) := f.(z, Z). The mapg.(z) may be
viewed as a map fronR? to R2.

Lemma 3.4. Assume that ¢ 1. The critical set of g is equal to the set

; ; 1
0 [ .
{C(eI +8e| +8e2—0|>059<27f}
The critical value set of gis equal to the set

(K2 +e72Y): 0 < 6 < 27).

Proof. Letz=2z +iz, (zj € R) and this be an element on the plape=y}. By
Proposition A.1 in Appendix A, we haviDf.(z, Z)| = |Dgc(z1, z2)|. Hence the critical
set of g. is equal toC(f;)N{x =y}. The critical setC(f.) is described in Lemma 3.2.
Clearly, ((1 +e)t +1/(st?), 1/t + 1/(t) + £t?) belongs to the planéx =y} if and only
if |t] = 1. O

We consider the map.(2) restricted to the closed domao5= {cz: z € S}, whereS
is the closed domain defined in Section 2. For any pomin cSwith z=¢€ +e 7 +
€= ¢ S, we have

Tk(Z, 2) — (eiko + efikr + eik(rfa), efiko + eik'r + eik(orfr))
and so
fc(CZ, CZ) - Ck(eiko + efikr + eik(rftr), efik(f + eikr + eik((rfr)).

Then the mapy.(z) from ¢S onto ¢S is similar to the mapT(x, y).
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Lemma 3.5. (1) For any point z in the interior £S°, g-%(2) c ¢S and ¢(2)
consists of k distinct points
(2) delces: C\cS— C\ S is a k-sheeted unbranched covering map and it is sense
preserving
(3) Gclscs: dcS— AckS is a k-to-one map

Proof. (1) From the above remarks, we can consiggr) in place of g¢(2).
Clearly, 91(2) = S(2). (Note thatS. = Tylix=5.) Then by similar arguments used in the
proof of Proposition 2.2, we can prove this assertion. The mag;(z) oo enlarges
the fundamental domaiR by k times. Thenk? small subdivisions ofR are mapped
onto R underg o g1(2) o ¢ 2.

(2) By Lemma 3.4, we know that the critical set gf is contained in the set
cSsinceS=1{d” +e ' +€9): 0 <o, T <2r}. Then the mapgc|c\cs does not
have any critical points. Hencge|c\cs iS an unbranched covering map. From the re-
currence equation (1.1) of generalized Chebyshev polyalsmive know thatg.(z) =
Z + m_1(z, ), wherew, denotes a polynomial iz and z of degree< n. We will
show detDg(2)) > 0, for anyz € C\ cS Indeed. detDg.(2)) = [99./92|°> — |d9:/3Z]>.
When |z| is large, detDgc(2)) > 0. Therefore from the fact the critical set ¢f is
contained incS we deduce that dei(gc(z)) > 0, for anyz € C\ ¢S Thengclc\cs IS
sense preserving.

Consider a circley of center at the origin and with radiuRy > 1. Then the
image ofy underg. lies outsidey and the winding number of.(y) aroundy is k.
We use a topological argument principle (see [12], p.35@%t h(z) be a continuous
mapping such that only a finite number of jspoints lie inside a simple loop. Then
the total number ofp-points insideI" (counted with their topological multiplicities) is
equal to the winding number dfi(I") around p. We apply this to our mapping.
Instead of the annulu€ \ ¢S we consider a topological dis@\cS and use the usual
substitutionz = ¢(¢) = 1/¢ whereC = CU {o0}. Let G = ¢ 1og.o¢ be the function
from C\ ¢ 1(c9 to C\ ¢~ 1(ckS). Since detDg(¢)) > 0 for anyz € €\ ¢S we have
det(DG.(¢)) > 0.

We will select a pointp inside G¢(¢—%(y)) and near =0 in the following manner.
Let go(2) = Z*+m-1(2, 2) = Ta; 2 2. We sethe(2) == 1aj||zI'*). Then|ge(2)| < he(2).
Let he(2) = |z[*(1 + Q(|z])). There exists a large positive numbBj satisfying 1 +
Q(Ry) < 2. Then we sety(p) = 2RX. Thus we see that ifz| < Ry then|gc(2)| < #(p).
Hence ifu is any element ofy;(¢(p)) then |u| > R;. We setRy = R;. Then all the
points of g; (¢(p)) lie outsidey and ¢(p) lies outsidege(y).

SinceG; is sense preserving, the topological multiplicity of apypoint is 1. Since
the winding number ofG¢(¢1(y)) aroundp is k, the total number ofp-points inside
¢ 1(y) is k. Hence the number of points &_*(p) is k. Therefore that ofy,; 1(p) is k.
SinceC \ ckS'is connected, all fibers of the coverimg|c\cs have the same cardinality.
Hencegc|c\cs is ak-sheeted covering.



GENERALIZED CHEBYSHEV MAPS OF C2 1009

(3) To prove this, it suffices to consider the case wieenl. In this case, the
proof is the same as that used in Corollary 2.1. ]

To prove Proposition 3.3, we will use the topological argamprinciple again.
Let W(y, p) be the winding number of a closed curyearound a pointp. Let St de-
note the unit circle{e?: 0 < 6 < 27} with a counterclockwise orientation. We assume
that a hypocycloidc*dS has a counterclockwise orientation.

Calculating the winding numbén/(u,(S?), 0) is not easy because the relation from
Un(t) to un+a(t) is not given by a simple mapping. But wherr €7, (Un(t), va(t)) lies
on the plane{x = y}. Then we can use the map when |t| = 1.

Lemma 3.6. Let n be any positive integer and>€1.
(1) un(€?) = gh(ck(2e +e2)).
(2) W(un(S", 0) =k x W(gg(c*3$), 0).

Proof. (1) Induction om. _ '
(2) A closed pathy: [0, 27] — C given by y(8) = c(2¢9! + e=2¢1) follows the
hypocycloidckdS k times. Then the assertion follows. O

In the proof of Lemma 3.5 (2), by analyzing a winding numbeamso we see
that the number of fibers adc|c\cs is k. Conversely from the number of fibers we can
calculate the winding numben/(g?(ck3S), 0).

Lemma 3.7. If ¢ > 1, then W(g?(ck3S), 0) =Kk".

Proof. LetI" be any simple loop in the topological digk\ ¢~1(cS not passing
through ¢ = 0 oriented in a counterclockwise orientation. By Lemma @p we can
select a pointp very near¢ = 0 such thatG;"(p) consists ofk” distinct points and
all such p-points lie in the interior of the loof". The total number ofp-points of G
inside I' counted with topological multiplicities is equal W(GJ(T"), p). SinceG; is
sense preserving, the topological multiplicity of apypoint is equal to 1. Hence it
follows that W(GZ(I"), p) = k". Then we can easily see the{(GZ(I"), 0) =k". From
this we can easily obtain that/(gf(¢(I")), 0) =k". ]

From this lemma and Lemma 3.3, we can deduce the following.
Corollary 3.1. If ¢ > 1, then —W(vn(St), 0) = W(un(St), 0) =k,

From the paragraph below Proposition 3.1, we see thé) is a rational function in
the variablet that has only a pole at= 0.

Lemma 3.8. The multiplicity of the pole at £ 0 of v,(t) is at most R,
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Proof. Sincevp(t) = uy(1/t), it suffices to show that

n+1 KL

Un(t) = a(k™H)t" +. .. +a(0) +a(—1)t L + - - - + a(—2k"Ht ="
wherea(j) € R[c], —2k"™! < j < k"1,

We may viewc as a variable. Then we will prove the following:

(1) the maximum degree df of u,(t) is at mostk™?,
(2) the minimum degree of of u,(t) is equal to—2k"*2,

Sinceg®(x, y) = xK+m_1(x, y), we can easily prove (2) by induction an Next
we will calculate the maximum degree bfn u,.1(t). We consider the weighted degree
of g®(x, y, ). We define the weighted degree of a mononpét)x*y? to be « + 28.
From the recurrence relation (1.1) feg(™(x, y)}, we see that the maximum weighted
degree ofgM(x, y) is k and so that ofg®(x, y, c) is k. Hence, wherk = « + 28, the
maximum degree of of u,(t)*v,(t)? is at most ¢ + 28)k™! = k"2, O

Proof of Proposition 3.3. We apply the argument principlethe rational func-
tion vn(t). Thus W(v,(SY), 0) =N — M where N is the number of zeros in the unit
disk D and M is the number of poles iD. From the proof of Lemma 3.7, we see
that u,(SY) and sov,(St) does not pass through the origin. Combining Corollary 3.1
and Lemma 3.8, we see that(t) does not have any zeros i and it is holomorphic
in D\ {0}. If |[t] < 1, |vn(t)| is large. Thenuy(t) has its minimum-modulus on the
boundaryaD. ]

We begin with the proof of Proposition 3.4. Sineg(€?) = un(e™?), to prove
Proposition 3.4, it suffices to prove thatdf> 1, then|u,(€?)] - oo (n — oo) for
any 6. To prove this we will define a functiofiz| with ||z|| > 1, for anyze C\ cS
and we will show that ifc > 1, ||gc(2)|| > |Iz||* and [90(2)] = oo (N — o0). If this is
true, then from Lemma 3.6, Proposition 3.4 follows.

We restrict the mapV in (2.3) to the sef{t; = t, t, = t}. We denote the map by
¥. SinceW(t, ) = (t + 1/t +1/t, Yt +T+t/t), ¥(t) =t + 1/t +1/t and ¥(t, 1) lies on
the plane{x = y}. Sincey (re'?) = (r +1/r)eé? +e 27, (r > 1), the mapy from C\ D
to C\ Sis a homeomorphism.

The image of a radial lin¢re'?: r > 1} under the mapy is also a half-line. Leh,
be a function fromC\ S to C\ AS defined byh; (z) = Az with A > 1. The composition
h, oy is a map fromC\ D onto C\AS. Then the image of a radial line under the map
h, o ¥ is a half-line which is called a-external ray. We defindz|| := |(hc o ¥)~1(2)]
forze C\cS

Proposition 3.5. We assume thats 1. For any point z inC\cS [g:(2)|l > |1z||
and |gf(2)] — oo (N — o0).

Set ||z|| =rg and ||g.(2)|| = r1. To prove Proposition 3.5, we considerexternal
rays andck-external rays. We first note the symmetry ®external rays. Lew be a
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Fig. 3.2. Radial lines.

-

e

Fig. 3.3. External rays.

cubic root of unity. Themy(wt) = wy(t) and ¥ (w?t) = w?y¥(t). Then it suffices to
consider onlyc-external rays{cy/(re'?): 0 < 6 < 27/3, 1 <r}. Further fora with
0 <« < 7/3, two c-external rays{cy (re@/3-®i): r > 1} and {cy (re/3)): r > 1}
are symmetric with respect to@external ray{cy (re™/3): r > 1}. See Fig. 3.4. Hence
we consider onlyc-external rays{cy/(re'?): 0<0 < /3, 1<r}.

For a pointz € C\ cS we denote its image.(z) by P. Let the landing point of
the c-external ray through® be Q;. Let Q, be the point of intersection of the segment
PQ, and the curvedckS. Let Q3 be the landing point of thek-external ray througtP.
See Fig. 3.5. LetAB| denote the Euclidian length of a segmekB. We will evaluate
the length|PQ,| = |PQ,| +1Q;Q,|. Then, to prove Proposition 3.5, it suffices to prove
the third assertion of the following lemma.

Lemma 3.9. (1) The slope of PQis greater than that of PQ

(2) IPQ| = |PQ;].
(3) IPQ=c(r1+1/r1 —2) > |PQy| = c(r§ + 1/r& — 2) > c(rf + 1/rk — 2).
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Fig. 3.4. c- and ct-external rays.

2.5 P
2
1.5
1
Q2
o5 Q3
Q1
2 3 4 5

Fig. 3.5. Two external rays througR.

Proof. (1) LetQ, be the point of intersection of the segme@{O and dcS
where O denotes the origin. Lefc((r + 1/r)€? +e 2): r > 1} be thec-external ray
through Q.. Let | denote thisc-external ray. Theck-external ray throughQs is paral-
lel to this half linel. The slope ofl is tano. Since Q4 = c(2€? +e~%"), the slope of
the segmenDQ, is (2 sino — sin 2r)/(2 coso + cos ). We can easily verify that if
0<o < /3, then taw > (2sinc —sin2r)/(2 coso + cos 2) by identities of trigono-
metric functions. Then the slope @Q,, which is equal to that 0DQ;, is less than
or equal to the slope df. Hencel lies above thec-external ray throughQs. If the
c-external rayl moves along the curvécS downward, then it will touch the poinP.
Then we get the assertion (1).

(2) Letly be the line throughQs that is perpendicular t¢®Q;. To prove the
above inequality, we see from (1) that it suffices to prove tha pointQ, lies below
the linely. The hypocycloiddckS is written as{ck(2€/* + e 2): 0 < 7 < 2r}. When
0 <t <m/3, itis convex. Hence it suffices to prove the above fact indhse when
Q, is equal to the poinQs := ck(2¢7/3+e-27/3). Hence, we will prove that the slope
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of Q;Qs is greater than that of the ling. This requires only showing that

V3/2—2sint +sin2r
—cott < ,
1/2 — 2 cost —cos &

when 0<7t <m/3.

We denote the right hand side of the above inequalitynify). Then

dm _ —32sing/6 — t/2) cosfr/6 + ) sin(3r/2)
dr (=1 +4 cost + 2 cos 2)? '

Thenm(r) is monotone decreasing in the range(3) andm(z) approaches-1//3
ast — m/3. On the other hand;-cott is monotone increasing anecot(r/3) =
—1/4/3.

(3) Sincellge(@)ll =r1, ge(2) = c((r1 + 1/r1)€? + & 2?) and Q; = c(2€? + & 27).
Then |PQ,| = c(ry + 1/r1 — 2). Since||z|| =ro, z=c((ro + 1/ro)€? + e72%). Then from
Lemma 3.1, we know thaP = ge(2) = ck((r&+ 1/r)ek +e2"). Since Qs = cX(2e +
e 20, |PQ;| = ck(rk + 1/rk — 2). O

From Lemma 3.4 we know that the critical value setgefis a compact sefctS
included inC\cS From Proposition 3.5, we see that the sequeigféC(f.)N{x =Vy})}
converges uniformly tao. This completes the proof of Proposition 3.4. Thus we have
proved that{ fl'(C(f¢))} converges uniformly to the line at infinity. This completée t
proof of Proposition 3.1. ]

Next we will prove that ifc > 1, thenK(f;) is a Cantor set. To prove this we
need some preparations. In the first place we assumektha?.

Lemma 3.10. If ¢ > 1, the number of periodic points of.@) of period n is K".
Proof. The proof of this lemma is almost the same as that ofd&ition 2.2. []

From Corollary 3.2 in [5], we know that the number of periogicints of period
n of fo(x,y) is k¥". Then we have the following.

Corollary 3.2. If ¢ > 1, any periodic point of §(x, y) lies on the plangx = y}
and belongs to the set (§.) in the plane{x = y}.

Now we return to the proof of Theorem 3.1.

Note that the mapf® is a regular endomorphism @?2. We use Theorem 3.8 in
[6]. Then combining Theorem 3.8 in [6] and Proposition 3.&lys K (f®) = suppy,
foranyk € Z\ {0, 1,—1}.

Before starting a proof of Theorem 3.1, we will state a preaisrsion of Theo-
rem 3.1 and prove it whek > 2.
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Proposition 3.6. Assume that ¢ 1 and k> 2. Then

(1) K(fc)=suppu = K(gc) C {x =y}
(2) K(gc) is a Cantor set

Proof. (1) From Theorem 3.8 in [6] and Corollary 3.2, we seat th

K(fc) c {repelling periodic points off.} c {periodic points of f;}
C K(ge) € K(fo). O

The proof of (2) is essentially the same as that used in The&d in [13]. Recall
that g¢(2) = 2+ mx_1(z, ), wherem_; denotes a polynomial of degreek — 1. Then
there is a constan® >> 1 such that if|z| > R thengi(z) - oo (n — o0). Then we set

Dr:={ze C: |zl < R}.

Lemma 3.11. Assume that ¢ 1. Then there exists a nonnegative integer n such
that ¢"(DRr) C c*S°.

Proof. This follows from Proposition 3.5. O

Lemma 3.12. Let ¢ > 1. Assume that y(BR) is not contained in '£S° and
g;"(Dr) is arcwise connectedThen g"~1(Dg) is arcwise connected

Proof. LetP be any point ofgg“(ISR)\ckSO. Then there is a pathr in gg”(ISR)
connectingP and a fixed pointQ of g.. Let a point of intersection of and ackS be
M. Let P_; be any point ofg; 1(P). We will construct a path irgg”*l(ISR) connecting
P_; and Q. Recall that the mae(2) is the map f®(x, y) of degreek restricted to
the plane{x = y}.

From the recurrence relation (1.1) for Chebyshev polyntsniae have the fol-
lowing claim.

Claim 3.1. Let w be a cubic root of unity
(1) If k =0 mod 3, gc(2) = ge(wz) = ge(w?2).
(2) If k =1 mod3, gc(wz) = wge(2), 9e(@?2) = W?de(2).
(3) If k =2 mod 3, ge(w2) = 0?ge(2), 9c(w?2) = wyc(2).

Since M € 9cSN g;"(Dr), it follows that w! M € 3cXSN g;"(Dgr). Then there is a
path connectingsi M and Q. Next we consider the sef;1(g;"(Dg)). We may regard
the closed domaire S bounded by a hypocycloid as the triangular regienWe prove
this lemma wherk = 2. (In other cases, the similar proofs hold.) We consider th
closed domain bounded by OAB in Fig. 2.3. The components af;1(c*S) may be
regarded as small triangular region®EF, AADF, ABDE, ADEF. Any elementM;
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of g-1(w! M) lies on an edge of a small triangle. Ler*(Q) = {Q = Qo, Q1, Q2, Q3}.
Each Q; lies in an interior of a small triangle. Two pointy; and Qy are connected
by a path ingg”‘l([_)R) through some pointdv;. From Lemma 3.5, we know that
there is a path irgc‘“‘l([—)R) connectingP_; and some pointM;. Then we have a
path in gc—”‘l(ISR) connectingP_; and Q.

In the same way we can prove this lemma for dhye gg“(ISR) Ncks. ]

Proof of Proposition 3.6 (2). Whek= 2, this lemma has already been proved in
Theorem 5.1 in [13]. In the same way we can prove this lemmanwhe 3. So we
show only an outline of the proof. From Lemma 3.11 and Lemni®,3we see that
there is a nonnegative integ®r such thatggN([_)R) is contained in the interior of<S
and gC‘N([_)R) is connected. Sog. does not have any critical values gg“([_)R). We
use inverse branches, j =1,...,k? of g.. Set

K1, in) =i, 0 - - 0 ¢i,(95 N (DR)).

Then in the same way used in the proof of Theorem 5.1 in [13],ceve prove that
for any given sequencej), diameterK(ji,..., jn)] = 0 asn — oco. Then

00 k?
K(ge) = ﬂ( U K-, jn)>
j1

n=0 \ji,..., jn=1
is a Cantor set. O
This completes the proof of Proposition 3.6. O

Proof of Theorem 3.1. Whek> 2, Theorem 3.1 follows from Proposition 3.6. We
will prove Theorem 3.1 for the map&—¥(x, y) with k > 2. In the proof of Lemma 3.3
(1) we prove that {{™)2 = (f0)2. ThenK (f{) = K((f{)?) = K((f®)?) = K(f{).
Combining Proposition 3.1 and Theorem 3.8 in [6] yieki$f (™) = suppu. Then by
Proposition 3.6, we conclude that suypps a Cantor set. ]

Appendix A.

We show a relation between complex Jacobian matrices ahdaeabian matrices
on {x =y} for symmetric polynomial endomorphisms.
Let h(z1, 22) € R[z1, z,]. We define a mapf from C? to C? by

f(z1, 22) = (N(z1, 22), h(z2, 21)).

Then the holomorphic mag admits an invariant plan¢z; = z,}. Let g(2) := h(z, 2).
Theng may be viewed as a map froR? to R2.
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Proposition A.1. Let Df(z, Z) and Dgz) be the complex Jacobian matrix of f
at (z, Z) and the real Jacobian matrix of g at, zespectively Then

U~Df(z 2)U = Dg(2),

where U is a unitary matrix given by

11+ =1+
U_§<1+i 1—i )

Proof. Letz =x¢ +iyx (k=1,2). Let

(A.1) f(z1, 22) = (P +1iq1, P2 +iQ2),

where py(X1, X2, Y1, Y2) and gk(x1, X2, Y1, ¥2) are real valued functions. It is well known
(e.g. [7]) that if we define X 2 matricesA and B by

A= (m) = (%) and B= (%) = _(%>
(A.2) Xk Yk Xk dyk )’
then Df = A+iB.

By (A.1), we know that any term iy (resp.q) is represented a(x1,X2)y;"yy' Where
m+n is nonnegative and even (resp. odd). On the plame 22}, X3 = x; andy; = —ys.
Then we have the followings:

(1) 9p1/9xy =3 p2/9%e, and dpy/0Xe = 3 P2/dXa,

(2) 9q1/0%1 = —002/9x%2 and 9q;/dxa = —902/9X1,

at any point ¢, Z) in the plane{z; = z,}. Hence by (A.2) we see that

0P opy oq  oay
0X1 0% . X1 X2
Df(z 2) = +i
@2=1 apy opy o
X  0Xg @2 0Xo 0X1 @2

Therefore

o, o a0
0X1 X2 0X1  0Xo
du 0w b o

00Xy dXo 0Xq 0Xo @2

U-iDf(z, U 1=

Setz:=u+iv, p(u, v):= pi(u, u, v, —v) andq(u, v) := qi(u, U, v, —v). Then
Op _0p1 0pr 9P _0py_Op1_ 0% 0%

U IXy  IX' dv  dyr Ve Xy X'
99 _9qu 9 99 _ 9 9d _dp 9P

du Xy Ixa' dv QY1 OdYa IXy X
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Sinceg(u, v) = (p(u, v), q(u, v)), it follows that
U IDf(u+iv,u—iv)U = Dg(u, v). O
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