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0. In [4] Serre defines an unramified revetement as an affine morphism
φ of varieties satisfying some particular conditions (see §1) and he shows that
every unramified revetement can be obtained as a quotient of a Galois revete-
ment by the action of a subgroup of the Galois group.

Trying to extend these results to arbitrary preschemas we can translate
everything to a pure algebraic setting.

In § 1 we prove that the conditions for unramified revetement are equivalent
to the separability of the associated rings for each affine open set. In § 2 we give
some complements to Galois theory (as developed in [2] and [6]) and in §3 we
prove that every separable algebra can be functorially embedded in a Galois
extension.

The results of §2 are either obvious consequences of [6] or they belong to a
forthcoming paper by the same authors.

The results of §3 generalize similar results by Auslander and Goldman ([1],
Th. A. 7).

1.

Let φ: Y-+X be a morphism of preschemas. If θγ> θx are the structure
sheaves of Y, X respectively, then φ*(θγ) is a sheaf 51 of 0x-algebras.

According to Serre [4] we will say that φ is an unramified revetement if

1) φ is an affine morphism.
2) SI is a projective finite 0x-module.
3) For each P e Z , rad ^P=^P. rad (ΘX)P.
4) 31^/rad 3tP is separable over (θx)Plrad (ΘX)P.

If U is an affine open set in X, φ'1^) is affine in Y by 1). We want to
prove that, if R is the ring of U (i.e., {U. θx\ U} is isomorphic to Spec R and
the associated canonical sheaf) and S is the ring of φ~λ{U), the previous con-
ditions are equivalent to S being a separable projective i?-algebra.

This gives the translation from the geometric to an algebraic problem. We
will not come back to Geometry, and we will leave as an exercise to the willing



162 O.E. VlLLAMAYOR

reader to retranslate the results back.

Notation. If v is a prime ideal in R we shall call 7?v the localizations of R
at v\ for every Λ-module M (resp. i?-algebra A) call M^M®RR^ (resp. A^=

Lemma 1. Let I be an ideal in a commutative ring R. Then IdradR if
for every fg. R-module N, IN=N=^N=0.

Proof. If / c rad R, let N be a f.g. module with IN=N, then N=0 by
Nakayama's lemma. If 7$rad R, there is a maximal ideal v^R with I-\-v=
i?, hence R/v^O and I-Rlv=Rjv.

Lemma 2. Let S be a finite commutative R-algebra. Then S rad i?cz
radS.

Proof. If N is f.g. 5-module, then it is a f.g. i?-module. Since

(S rad R) N - rad R JV, then

(S rad i?) N = Λ̂  =̂> rad # iV = iV =#> iV = 0 .

so by lemma 1:

5 radΛ c r a d S .

Corollary. If S is a finite R-algebra with R local, then S is semilocal.

Lemma 3. Let A be a ring (not necessarily commutative), R a subrίng con-
tained in the center of A (with the same unit) and M a finitely generated finitely
presented A-module, Then, if Mv is A^-projective for every v^R, then M is
A-projective.

Proof. Since M is assumed finitely presented, then M is projective if it is
flat.

From the canonical isomorphism

\Torf(M, N)]®R R, = Ύoφ(M, N)

and the fact that Mv is ^4v-flat, we get (Torf(M, N)®RR^=0 for every maximal
ideal v of R. Hence Tor^(M, N)=0 for all N and M is ,4-flat.

Corollary. Let A be an R-algebra of finite type (R a commutative ring).
If for every maximal ideal v of R, A^ is separable over R^, then A is separable
over R.

Proof. A separable over R means A is a projective ^4®i?^4°-module. R is
contained in the center of - 4 ® ^ ° and Ayξ$R A^=(A®RA)V. On the other
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hand, A of finte type implies A has finite A®^-presentation. Then lemma 3

applies.

L e m m a 4. Let S be a commutative finite R-algebra with R local. If for

every maximal ideal v of S, Sv is separable over R, then S is separable over R.

Proof. Consider the inclusion £x: S-+S®RS given by 61(x)=x®l. By

hypothesis 5V is Sv®Sv-projective. Since 5 V ®5 V is Sv®S-Άat, by a change

of rings argument we get Sv is Sv®S-ήa.t. Since S^S) is a subring with the

same unit in S®S, lemma 3 gives the desired result.

Theorem 1. Let S be a commutative finite R-algebra. Then S is separable

over R if and only if for every maximal ideal v ofR the following conditions hold:

a) radS^=S»-radRv

b) S^jrad 5 V is separable over R^jrad JRV.

The necessity of the conditions is an obvious consequence of the fact that

S separable over R implies

Sv/Sv rad i?v is separable over i?v/rad R^.

Let us prove the sufficiency:

i) Because of the corollary of lemma 3, it is enough to prove that S v is separable

over i?v for each v, hence we may assume R is local (so R=RV).

Then S is semilocal. If for every maximal ideal a of S, Sa is separable,

then S is separable over R (lemma 4).

So we may assume S is local, rad S=S rad R and *S/rad S is a separable

field extension of i?/rad R, hence there is an element CG 5/rad S such that

{1, cf •••, cn~x} is a basis of S/rad S (as a vector space) over i?/rad R.

If c^S maps onto c, then {1, c, •••, cn~x} is a set of generators of S as

an JR-module (by using Nakayama's lemma). Hence cn is a linear combination of

1, c, •••, cn~λ so

By reducing modulo the radical, we get

and, by counting dimensions, we see this is the minimal equation (hence ir-

reducible and separable) of c over 7?/rad R. We will call F the image of F e
77-1 A J? sITP

S [x] in (.S/rad S) [*]. Since jχ{c) = ^χ(c) then ^ ( c ) Φ θ implies that the

derivative 2 " - i Wi^"1 i s invertible in S.
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Let μ: S®S->S be the map defined by μ(x®y)=xy.
To prove that S is separable over R we will give an explicit form for the

idempotent e^S®S such that μ(e)=\ and (l®c—c®l)e=0 (this last condition
implies Ker μ e=0 since Ker μ is, in this case, the ideal generated by

We had Xn+an_ιX
n~1^ \-ao=F(X)(ΞR[X] with a root c in S: hence,

in S[X] we have F(X)=(X-c)G{X). If we call F\X) the formal derivative,
then F'(X)=(X-c)G'(X)+G(X), so F'(c)=G{c) is invertible in S.

Define the maps £0, £x: S->S®S by £0(tf)=l®tf, £1(a)=a®ί and call £0,
£x also the induced maps Sf[X]->(S®S)X Now, both £0(c) and ε^c) are roots
of F(X) (F had coefficients in R, hence SQF^S^), and applying £0 to

= (X-c)G(X) we get

and F(£lC)= (£ l C -£ o φ o G(£^) - 0

Since G(c) is invertible in S, so is £0(G(C)) = 80G(£0c) in S ® ^ . Take β=

u s ί n g t h e f a c t t h a t μ£g=i^9 μ(e)=l and

2. Galois extensions

Notation. If V is separable over R the unique idempotent e such that 1 —
e generates Ker μ: V®RV^V will be called e (VjR).

DEFINITION. Let T be a commutative ring with 1, i? a subring (with the
same unit). Then T is called a Galois extension of R with Galois group G if G
is a finite group of automorphismes of T such that R= TG (i.e. R is the set of
elements of Γ invariant under every σGG) and Γ is projective and separable
over R.

It follows that T is finite over R ([3], [6]).
Since we assume T is separable over R, then Ker μ\ T®RT—>T is

generated by an idempotent l—e. Call eσ=(l®σ) (e) and fσ=μ(eσ).

Lemma 5. Let T be Galois over R. Then fx—\ and fσ is an idempotent of
T such thatσ^\=^fσ^\

For every x^S, (l®x)e=(x® l)e and applying \®σ we obtain {\®σ(x))eσ

=(x®l)eσy hence (applying μ)

hence, / σ = l implies x=σ(x), Vx, so σ = l . Since e2 = e,
(l®σ)e=eσ and (μ is a ring homomorphism)/^/,..
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Corollary. If T is Galois over R and T has no idempotents, other than 0 and
1, then fσ=81 σ (Kronecker δ). In this case, T is Galois in the sense of [2],
which we will call C-H-R-Galois.

Corollary. If T is Galois over R with Galois group G and T has not. p.
other than 0 and \, then [G:Y\ = [T\K\.

Since ([1], Th. 1. 3) T®RT is T-isomorphic to a direct sum of as many
copies of T as the order of G, T being faithfully flat over R implies the corollary.

Lemma 6. Let T be Galois over R with Galois group G. Assume R has
no i.p. other than 0 and 1. Then [G:l]>[T:R].

Since T is finite over R, a simple rank argument shows that T has only a
finite number of idempotents. Let mly "'ymk be the minimal idempotents of
T. If we consider ΣwZy for ally such that there i s a σ G G with σ(Tm1)=Tmj,
then Xntj is an i.p. in R, hence ΈlfnJ=ί; so, all Tntj are mutually isomorphic
and G acts transitively in the set {miy •••, mk}. Call U=Tm1

Then r= [T: R] = k-[U: R]

Call n = [G: 1]

Since G is transitive over {mly •••, /wj, choose σ1=id, σ2, •••, σk such that
σf(m1)=wf

If we call Gλ= {σ-e G; σ (mί)=m1} then every element of G can be uniquely
written as τσ^τ^G^ for some / (in fact, if a(m1)=miJ then σJλa^G^). Then

Call G1=G1\U, hence there is an epimorphism Φ: G1-^G1 and [G1:
(=only if Φ is an isomorphism). Writing T=Tm1(B---($Tmk and identifying
Γ/ !̂ with Tm{ through σif any tczT can be written t=(aly •••, α^), β, e (7.

t^TG = R if Λ, = ^ and r ^ ) = α ^ r in Gx ,

hence UGl=R.
Since f/ has no i.p. then [G1:l] = [C/:/ϊ], [G1:l]=r/Λ hence r/k^njk and

Lemma 7. Lei Γ έ̂  Galois over R with Galois group G. Assume R has
no i.p. other than 0 and 1. // [GΛ]=[T:R] then /σ=^0 for every σ Φ l .

According to the proof of the previous lemma, n=r if and only if Φ: Gλ

->Gι is an isomorphism. If we call G{ the set of σGG such that σ(mi)=miy

then σ, (the one we chose in that proof) gives an isomorphism G1-^Gi. Φ
being an isomorphism implies (now for every i) that from σ(mί )=/wί, σ
follows σ I 7 H Φ id.
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Since U is separable over /?, let e{UjR) = ^Xj®yp then e(S/R) =
^i,j^i(xMi®σi(yj)mi a n d fσ=^jiσi{xJ)mi®σσi{yJ)σ{mi\ hence, if σ{mi)^Ffni

the m/s being minimal i.p., then miσ{mi)=Q^ so, the only remaining terms are
those in which mi = σ(mi). But σ Φ l implies σ|7#zt Φl because Φ is an
isomorphism, hence XjXjσ(y/)=0 and we are done.

Theorem 2. Let T be Galois over R with group G. If T has a rank over
R and [G:1]=[T:R\, thenfσ=0 Vσ in G.

If (/σ)v=0 for every TV=T®RR^, when v runs over all maximal ideals
in R, then/ σ =0. But i?v, being a local ring, has no i.p. other than 0 and 1.
Separability, projectivity and rank are preserved under localization, and G
induces Gv as i?v-autos of 7\ in the obvious way. We have to show that Tv

Gv
=i? v and [Gv:l] — [T^:R^] = [T:R] and then apply the previous lemma. Obvi-
ously i?v^Tv

Gv
Let #eΓ v

Gv, then x=yjr y^T, r^R, r^v, and <r-»(x)=σ(y)lr, hence
crv(x)=x implies the existence of k^R, k^v such that k(σ(y)—y)=0 (in Γ).
Since G is finite we may assume k independent of σ, so σ{ky)—ky=0 or z=
ky^TG=R> and y=z/k^Rv. Since the map G^GV is an epimorphism then
[G v : l]<[G:l] = [Γ:2q. But the lemma shows that [G,:1]>[TV:R,]=[T:R].
Hence [Gv:l]=[Γv:i?v] and lemma 7 applies, hence (fσ\=0 and we are done.

3. Embedding of a separable algebra into a Galois extension

Let S be a separable projective faithful i?-algebra with rank [S:R]=n.
We want to embed S in an algebra T, Galois over R with Galois group (iso-
morphic to) the symmetric group @M (the group of permutations of {aly •••, an})
with rank [T:R]—n\ such that T®n-i=S where we consider @M_X embedded into
©M as the subgroup leaving fixed the element ax.

The n different inclusions £y of ©„_! will also give isomorphic copies of S.
Call, for simplicity, Si=S®S® * ®»S / times, and consider the sequence

R >S=5S2=tS3 ..
Si *

where £, : Sk^Sk+1 (0</<A) is defined by

Define now maps μi5\ Sk-^Sk~1 by

place ί

V * = n K e r / t ί y c 5 *

The algebra Γ we want is N" and @M acts on T induced by the permutations
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of the factors in Sn.
Since μ12 is the only μ from S2->S, we have the splitting exact sequence

0 > N2 > S2 -?-> S > 0

and [5:i?]==[52:5]=:7z implies [N2:S]=n— 1 and N2 is a projective separable
iS-algebra.

Let us prove first that Nr is projective separable 2?-algebra with rank and
[Nr:R\=Urrl(n--i)=nll(n-r)l Induction. For r=2, [N2: S]=n-1 implies
[N2: R]=n(n— 1), the remaining condition being obvious consequences of the
previous remark.

Consider So: 5
r " 1 ->5 r , then N'^SftN"1 (since S®Nr~1= ΠKer μiJ

(iΦl)) and μ i y induce -μ5\ S®Nr~x^>Nr~1. It is immediately verified that
Nr= Π Ker fij and we get the exact sequence

0 > Nr • S®Nr~ι ^-> τθNr~ι

where μ = ΣL2 μh .

If we prove β is an epimorphism, since [S: R]=nf [Nr~lm. R]=ΊJo~2(n—i)
and the sequence splits, then

[Nr: R] = n[Nr-χ: K\-(r-\)[Nr-1: R] = WQ-\n-i)

Since each μ{j is a multiplication map

Sk = Sk~x®sk-2 Sk~x > Sk~λ,

Sk~x separable over Sk~2 implies Ker μ{j is an ideal in Sfc generated by an
idempotent 1—ê -.

If e == Σ xh®yh = e(SjR), then
i J

1

Hence Nk= Π Ker μi5 is the ideal generated by Ek=U(l~eiJ). Hence
Nk is a projective separable i?-algebra.

We have βj(elj)=l9 Ph(eij)=eh-ij-i ^ ^ Φ j . Since the map μ is an 5*"1

homomorphism, to see it is onto it is enough to check the Sr~^generators of
2JV"1 are in lm μ. Those generators are

iΛ = (0, . " , 0 , £ U , 0, ...,0).

Let kj = elj S(iEr_ι , then

";J*t(kj)) but
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μh(kj) = eh.XJ_^Er_x = 0 (if AΦO

hence β(k/) = Fj for every j.

We want to prove now that T contains a copy of S.

Lemma 8. The map S->N2(ZS2 defined by x->(x®l)(l —e) is a mono-

morphism.

Proof. Let (s®l) (1—e)=0. Since e is invariant under the permutation

y-*y®x> then (1®$)(1 —e)=0, hence (s®l — l®s)(l—e)=0 and (ί®l —

s)e—0 imply ί<g)l = l<g)s, hence s^R.

If k^R and k(l—e)=0, we have, for every

k = (\®x)ke = k{\®x)e

hence \®k x=k x®\ so kx^R and kS^R. Since S is a projective i?-algebra

of rank wφl then 5 = 7 ^ 0 0 (as ^-modules), C projective with rank and not

zero, then kS^R implies kC=O. Localizing, Cv is free hence k^Cv=O implies

β v =0 hence k=0.

Lemma 9. The maps Tit: N*-+Ni+t defined by

are monomorphisms.

We already proved the lemma in the particular case S=N1->N2. Since

(Ej®ί)Ej+1=Ej+ly it will be enough to prove the lemma for t=\.

Let V=N2=Kerμy μ:S
2^S, and call Vr=V®s ~ ®s V. We have

already seen that V is a projective faithful separable ^-algebra with rank and

[V:S]=n-l.

Repeating the process explained for S as an i?-algebra to V as an S-algebra,

call p>ij the corresponding multiplication maps

Vr > Vrl and Nr = Π Ker μgJ .

we have monomorphisms

θr: Vr->Sr+1 defined by the composition Vr-+S2®s ••• ®sS
2->Sr+1

where each *S2 is an iS-module by the action on the first factor, the second map

being the canonical isomorphism. Hence

θ' Vr >Sr~λ
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commutes. The μ, /s not appearing in this way are all zero on Vr, then

In fact, θr identifies Vr with [)Ker μiJf and, Θr~1ρ>ij = μi+x J+1θ
r shows

that θr induces the isomorphism iVr—>ΛΓ+1.
We complete the proof of the lemma by induction over [£:!?]. If [£:/?]=

1 then S=R and everything works.
Let [S:R]=n and assume the result is true for every case [U:W]<n. Hence

the lemma holds for V as an 5-algebra, i.e., N£-^Ni+1 is monic, and so is Ni+1

-»iV''+2. We need then to check 5=iV1-»Λ^2, which was already proved.
We have then obtained a chain of algebras,

where Ni is a projective faithful separable N*~^algebra with rank, [iVί:iVl'"1]=
n—i+ί (It also follows that NM=0 for M>n).

Let @M be the symmetric group acting as permutations of the factors of
Sn. Since Nn is invariant under @M and it is generated by a unique idempotent
En, then En is invariant under ©n. @M induces a group of automorphisms of Nn.

In the chain of algebras we considered before, R was identified with REn

iniV*.
Since Nn=Nn'x (corresponding to the construction for V=N2 as an S-

algebra) the group ©„_„ acting on Nn as an *S-algebra corresponds to the sub-
group of @M of those permutations which leave fixed the first factor. In the
same way, ©y acts leaving fixed the first n—j factors.

We want to prove (Nn)®n=R. Induction on [S:R].
If [5:7?]=1, R=S=N1 and we have nothing to prove.
Assume it is true for [S:R]<n. Then it is true for V over S, hence

(ft-ψn-i = S , or (Nψn-i = S .

Assume a^Nn is invariant under ©M.
In particular, it is invariant under ©„_„ and our induction hypothesis implies

We have two maps S-+V, say θ19 θ2 where θi(s)=Si(s)E2.

Call λ: V->Nn the inclusion defined above. Then

a = X θ^s) for some s^S

Let σ be the permutation interchanging the two first factors. Then,
easy computations show that σ(a)=X θo(s), λ being a monomorphism, a=
σ(a) implies Θ1(s)=θo(s)9 hence [£0(ή-^i(ή]E2=^ but E2=l-e, [ f 0 W ~ ^ ) ] ^ = 0
shows that £0(s)=S1(s) in 52. Hence s^R and we are done. The fact that
[Nn:R]=[&n: 1] shows that Nn is Galois in the sense of CHR.
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Throughout this section we have been assuming that S has a rank over
R. If not, R splits in a finite number of direct summands Rκ over which Sκ

has rank K&\ By embedding each Sκ into the corresponding iV£, then N=
ΣΛΓΘΛΓ^ will be Galois over R with group Π©^ (direct product in which only
the factors &κ for which i?#φθ intervene).

In this case, N is Galois in the sense defined in this paper but not in that of
C-H-R, any more.

4. Universality

Suppose now S has no proper idempotents. We have, as before RdSd
Ty T obtained by the previous construction.

Let h19 •••, hr be the minimal idempotents in T. Call W{=Thiy then all
W{ are S-isomorphic. Since the maps R-^Rh{ and S-*Sh{ are isomorphisms,
then W{ is a Galois extension of both R and S.

We want to prove:

Theorem 3. If S has no proper i.p.y and X is a Galois extension of R con-
taining S, there is an isomorphίc copy W of W{ in X such that RdSdWdX,
i.e., W{ is the Galois envelope of S over R.

So, let X be a Galois extension of R containing S. If X has proper idem-
potents, let h19 -"yhe the minimal ones, X = Σ Xh{ and all Yi=Xhi are mutually

isomorphic. By choosing isomorphisms Y1-^Yi we obtain a subalgebra Y of
X, isomorphic to each Yf , by taking the elements (y, λ2(y), •••, Xe(y)) in

We will prove that Y contains W, isomorphic to each W{.
Since Yf is a direct summand in X, then Y, (hence Y) is Galois over R

[6]. Since Y has no i.p., [G(Y/R):G(YIS)]=n (§2), hence G{YjR) induces
exactly /z different i?-isomorphisms of S into Y, say ̂ 1=id, #2, •••, θn.

Define a map α: Sn-> Y by

Let S be the subalgebra of Y generated by the copies of S. Hence a
induces an epimorphism cc: Sn->§. Now, we had

T=Sn E, E=U(ί-eiJ), and

(1®1® * ®Λf®l® •"®ί)ei. = (1®
i

so applying a we get, to every x

* This is an immediate consequence of [5] Prop. 4 and the fact that S is a finitely
generated protective R-module.
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but βij is an i.p. in S, contained in Y, and Y has no i.p., hence

a(eh) = 0.1 ,

but θ{ being different than θjy the previous equation shows α(e,7)Φl, then

a(E)=ί, and a(E)=l, α(l-£) = 0.

Hence a induces an epimorphism ax: Γ->S.
Since T=Έ,Thiy and ax is a ring homomorphism, α^A,.) is an idempotent

in S, hence 0 or 1, ̂  being an epimorphism implies a1(hi)=l for some /,
hence a1(l—ht)=a1(ΣJ φihj)=0 and aλ induces an epimorphism a2: Th£-^S9

which combined with the isomorphism W->Th{ gives W—>S.
But a2 being an epimorphism shows that S is inseparable. Since Y is

i?-ρrojective, then Y is S-projective and S is an S-direct summand in Y, hence
an indirect summand and S is i?-ρrojective.

But W being i?-separable and S i?-projective imply S is W-projective,
hence Ker a2 is generated by an i.p.; since W has no proper i.p. and α 2 φ0,
then Ker a2=0, and a2 is an isomorphism.

REMARK. The result extends easily to the case R has a finite number of
idempotents.
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