|

) <

The University of Osaka
Institutional Knowledge Archive

Classifying spaces of degenerating mixed Hodge
Title structures, V: Extended period domains and
algebraic groups

Author(s) |Kato, Kazuya; Nakayama, Chikara; Usui, Sampei

Citation

Version Type|AO

URL https://hdl.handle.net/11094/84808

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



arXiv:2107.03561v1l [math.AG] 8 Jul 2021

Classifying spaces of degenerating mixed Hodge

structures, V: Extended period domains and algebraic

groups

Kazuya Kato, Chikara Nakayama, Sampei Usui
July 9, 2021

Abstract

For a linear algebraic group G over Q, we consider the period domains D classi-
fying G-mixed Hodge structures, and construct the extended period domains Dgg,
Dgp,2), and T'\ Dy. 1In particular, we give toroidal partial compactifications of
mixed Mumford—Tate domains.
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0 Introduction

In this paper, we generalize the theories of Mumford—Tate domains (see Green—Griffiths—
Kerr’s book [16]) and their toroidal partial compactifications by Kerr—Pearlstein ([25])
to mixed Hodge theory. We also construct the corresponding Borel-Serre spaces and the
spaces of SL(2)-orbits. In [22], we described this generalization briefly with an application
to construct the toroidal partial compactifications of higher Albanese manifolds. In this
paper, we give the details.

In Section [l for a linear algebraic group GG, we define the period domain D as a space
of G-mixed Hodge structures. Here a G-mixed Hodge structure means an exact ®-functor
from the category of linear representations of G endowed with weight filtrations to the
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category of mixed Hodge structures. In the case where G is reductive, our period domain
D is essentially the Mumford-Tate domain studied in [16].

In Sections 2, B, and H we construct the extended period domains Dgg, Dgr, ), and
['\ Dy, the space of Borel-Serre orbits, the space of SL(2)-orbits, and the space of nilpo-
tent orbits, respectively. In the case where G is reductive, I' \ Dy, is essentially the space
of Kerr—Pearlstein ([25]).

Our method to construct Dgs, Dsy,(2), and I' \ Dy, is similar to that for the usual period
domain developed in [24] and in the preceding parts of this series of papers [2I]. Actually,
the present paper is regarded as a generalization of our pervious works in Parts [-IV of
[21]. We prove similar results (the Hausdorffness etc.) for these spaces to what we have
proved so far for the corresponding spaces in the case of usual period domain. We obtain
a fundamental diagram

n*

D12 val — Dgs val
v 4 N \
Y *,+ *, W
Dgi,[val] - DéL(2),Val - Déi@),val Dgia) Dgioy = Dss
\: 4 { v N
), *
'\ Dsval ¢ Duz,val - Duz,[;] - DéL(Q) - Déi(z) D510
!
I'\ Dy — DL

of the same style as the fundamental diagram in Part IV of [2I], which is commutative
and in which the maps respect the structures of the spaces. The good properties of these
spaces are proved starting from the spaces on the right-hand-side and then moving to the
left-hand-side, similarly as in [24] and [21].

The authors thank Teruhisa Koshikawa for helpful discussions. The authors thank
Katsutoshi Shinohara for a help to complete Example 2 in Remark K. Kato
was partially supported by NFS grants DMS 1001729, DMS 1303421, DMS 1601861, and
DMS 2001182. C. Nakayama was partially supported by JSPS Grants-in-Aid for Scientific
Research (C) 22540011, (B) 23340008, (C) 16K05093, and (C) 21K03199. S. Usui was
partially supported by JSPS Grants-in-Aid for Scientific Research (B) 23340008 and (C)
17K05200.

1 The period domain D

Let G be a linear algebraic group over Q. Let G, be the unipotent radical of G, and
let Greqa = G/G, be the reductive quotient of GG. Let Rep(G) be the category of finite-
dimensional linear representations of G over Q.

1.1 Definition of the period domain D

1.1.1. In this Section [T we give the definition of our period domain D considered in
this paper. As we will see in Section 1.2, this is the period domain D in our previous
work [22]. In this Section 1.1, we introduce D from the following point of view: We want
to have a period domain endowed with an action of G. More precisely, we want to have a
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complex analytic period domain D for Q-mixed Hodge structures which is endowed with
a real analytic action of the subgroup G(R)G,(C) of G(C). Then we naturally come to
the definition of our D.

1.1.2. For a subfield E of R, let (EMHS) be the category of E-mixed Hodge structures.

By a G-mized Hodge structure (G-MHS for short), we mean an exact ®@-functor ([14]
2.7) H : Rep(G) — (QMHS); V — (H(V)q, W, F'). (This definition of G-MHS is slightly
different from the definition in our previous work [22].)

1.1.3. Let D,;(G) be the set of all isomorphism classes of G-MHS H : Rep(G) — (QMHS)
which preserves the underlying Q-vector spaces (that is, for any V' € Rep(G), H(V)q =V
as a Q-vector space) and which satisfy the following conditions (i) and (ii).

(i) For every V' € Rep(G), the weight filtration W of H (V') is stabilized by the action
of GonV.

(ii) For every V € Rep(G), G, acts trivially on gr'V'V.

Then the subgroup G(R)G,(C) of G(C) acts on Day(G): For H € Dy(G) and g €
G(R)GL(C), gH € D.y(G) is defined as follows. For V' € Rep(G), (¢H(V))q =V, the
weight filtration W of gH (V) is that of H(V'), and the Hodge filtration F' of gH (V) is
given by FP(gH(V)) := gFPH(V) C Vi := C®qV, where FPH(V') is the Hodge filtration
of H(V).

1.1.4. By a period domain of G-MHS, we mean a G(R)G,(C)-orbit in D,y(G).
This is the definition of the period domain of this paper, which we denote by D.

1.1.5. As will be shown in [L2ZT5 for a reasonable topology on D,;(G), each period
domain is open and closed in D,;(G) and hence as a topological space, D.(G) is a
disjoint union of all period domains in D,(G).

Remark 1.1.6. We think this definition of D is a natural way to have a period domain
for Q-MHS with an action of G(R)G,(C).

To consider a G-MHS is a natural way to have an action of G on the period domain
because each V' € Rep(G) has an action of G.

The group G(R) acts on D,y (G) by the condition (i) in [LT.3l We remark how this
condition (i) is important. Note that if (V,W, F) is a Q-MHS with V' € Rep(G), W
the weight filtration, and F' the Hodge filtration, then for ¢ € G(R), we have an R-MHS
(Vr, gWr, gF'). But if gWg is rational for all g € G(R) (we need this to have the action of
G(R) on the set of Q-MHS), W must be stabilized by the connected component of G(R)
containing 1. (That is, rational weight filtrations can not move continuously.) Hence it is
natural to put the condition that G stabilizes W.

We have the action of G,(C) on D,y (G) by the condition (ii) in [CT3l

Remark 1.1.7. The condition G stabilizes W may be natural also for the following
reason. In the definition of a period domain of mixed Hodge structures, it is natural to
fix the weight filtration and move the Hodge filtration. This is because in a variation of
mixed Hodge structure, the weight filtration is put on the local system and the Hodge
filtration is put on the vector bundle, and hence the weight filtration is constant locally
and Hodge filtration varies continuously.
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1.1.8. For a subfield £ of R, by an E-HS, we will mean an E-MHS which is a direct
sum of pure F-Hodge structures. (They are also called split E-mixed Hodge structure.)
Let (EHS) be the category of E-HS. By G-HS, we mean a G-MHS which has values in
(QHS)C (QMHS).

Proposition 1.1.9. Assume that G is reductive and let H € Dy (G). Then H is a G-HS.
ForV € Rep(G) and for w € Z, if Vi, denotes the underlying Q-vector space of the part
of H(V) of weight w, V,, is G-stable in V.

Proof. Since any representation of a reductive group is semisimple, the weight filtration on
V has a splitting which is compatible with the action of G. Hence there is a decomposition
V =&, Vi such that V,, is G-stable and W,,V,, = V,,, W,,_1V,, = 0. We have H(V) =
@D, H(V,) and H(V,) is a pure Hodge structure of weight w. O

1.2 Relation to [11] Section 5 and [12] 1.5-1.8 of Deligne

1.2.1. Let Sc/r be the Weil restriction of G,, from C to R. It represents the functor
A — (C®gr A)* for commutative rings A over R. We have Sc¢/r(R) = C*, which is
understood as C* regarded as an algebraic group over R.

Let w : G,,r — Sc/r be the homomorphism induced from the natural maps A* —
(C®gr A)* for commutative rings A over R.

In [I1] and [12], Deligne related Sc/r to the theory of Hodge structures as follows.

1.2.2. The following (1) and (2) are identified.

(1) An R-HS.

(2) A (finite-dimensional) linear representation of S¢/r over R.

In fact, a linear representation of Sc/r over R is equivalent to a finite-dimensional
R-vector space V endowed with a decomposition

Ve:=CorV =@ V&

D,q€EZ

such that for any p,q, V" coincides with the complex conjugate of V&? (that is, the
image of V&Y under CQrV - C®rV ; 2®v — Z®wv). For a linear representation V'
of Sg/r, the corresponding decomposition is defined by

VET={v e V| [z]v=zPZ% for z € C*}.

Here [2] denotes z regarded as an element of Sq/r(R). By taking V&7 as the (p, ¢)-Hodge
component of Vg, this is understood as an R-HS with underlying R-vector space V.

The weight m-part of this R-HS is the part on which z € R* = G,, r(R) acts as
multiplication by 2™ via w : G, r — Sc/r-

1.2.3. (1) The following (1.1) and (1.2) are identified.

(1.1) An exact ®-functor H : Rep(G) — (RHS) with the underlying R-vector space
HV)r =R ®qV (V€ Rep(G)).

(1.2) A homomorphism h : Sc/r = Gr.
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(2) The following (2.1) and (2.2) are identified.
(2.1) A G-HS H : Rep(G) — (QHS) (LL.8]) preserving the underlying Q-vector spaces.
(2.2) A homomorphism h : S¢/r — Gr such that how : G, g — Gr is defined over

Q.

We explain (1). If we are given a homomorphism Sc/r — Gr in (1.2), for any
V € Rep(G), H(V)r = R ®q V has an action of Sc/r and is regarded as an R-HS.
Conversely, if we have a functor H : Rep(G) — (RHS) having the property in (1.1),
then by and by the theory of Tannakian categories, we have a homomorphism
Sc/r — Gr. This shows (1).

Taking account of Q-structures, we get (2) from (1).

1.2.4. Let D,y (G) be the set of all isomorphism classes of exact ®-functors H : Rep(G) —
(RMHS) with the underlying R-vector space H(V)r = R ®q V (V € Rep(G)) such
that for every V' € Rep(G), the action of G on V stabilizes the weight filtration W on
Ve = R®q V and the action of G, on gr'V'Vy is trivial. (Note that D,;(G) in is
identified with the set of those functors whose weight filtrations are Q-rational.)

Let D' (G) be the set of all pairs (h, §), where h is a homomorphism Sc /r — Gr and
J is an element of Lie (G)gr satisfying the following condition (i). Consider the adjoint
action of G on Lie (G) and the induced action of Sc/r on Lie (G)g via h. By this, Lie (G)r
becomes an R-HS. For m,n € Z, let H™" be the Hodge (m, n)-component of the weight
(m + n)-part of Lie (G)c.

(i) 6 € D,copeo H™"

Proposition 1.2.5. We have a bijection
Diy(G) = Dan(@) 5 (h,8) — ¢ H,
where H is the functor Rep(G) — (RHS) corresponding to h in[L23 (1).
Proof. This follows from [10] Proposition (2.20). O

Lemma 1.2.6. Let H € Doy (G) (LZ4). Consider the adjoint action of G on Lie (G)
and consider the weight filtration of Lie (G)r and the Hodge filtration of Lie (G)c defined
by H.
(1) Let ¢ € Lie (G)r and w € Z. Then { € Wy Lie (G)r if and only if, for any V €
Rep(G) and any k € Z, the Lie action Lie (G)r x Vr — VR satisfies (W, Vr C Wi VR.
(2) Let ¢ € Lie(G)c and p € Z. Then ¢ € FPLie(G)c if and only if, for any V €
Rep(G) and any r € Z, the Lie action Lie (G)c x Vo — Vo satisfies (LF™Ve C FTPV.

Proof. The only if parts are clear.

Take a V' € Rep(G) such that the map Lie (G) — End(V) induced by the Lie action
is injective. Then since this is a homomorphism of R-MHS, we have W, Lie(G)r =
Lie (G)r N W,End(Vr) = {h € Lie(G)r | hWiVr C Wit VR for any k € Z}, and a
similar relation of Hodge filtrations. This proves the if parts. O

1.2.7. (1) Let ¥y (G) be the set of all homomorphisms k : G, — Gieq satisfying the
following conditions (i) and (ii).
(i) The image of k is contained in the center of Geq.
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(ii) For some homomorphism (and hence for any homomorphism) k:G,, — G which
lifts &, the adjoint action of G, on Lie (G,,) via k is of weight < —1.

Note that in the case where G is reductive, the condition (ii) is automatically satisfied.

(2) Let Uy (G) be the set of all homomorphisms h : Sc/r — Grea,r satisfying the
following condition: There exists £ € Wy (G) such that how : G, R — Grear CcOmes
from k (see L2l for w).

We have a canonical map Vg (G) = Uy (G) ; h— k.

1.2.8. Let k € Yy (G).

Then, for any V' € Rep(G), the action of G,, on V via a lifting k of k defines a
rational increasing filtration W on V' called the weight filtration, which is independent of
the lifting. For any V' € Rep(G), W,V is G-stable for any w € Z and the action of GG, in
gr"'V is trivial.

Proposition 1.2.9. (1) Let H € Doy (G) (LZA). Then the following conditions (i) and
(ii) are equivalent.

(i) # € Da(G) (TL3).

(ii) The restriction of H to Rep(Grea) s a G-HS ([LI1.8]), and the corresponding ho-
momorphism h : Scm — Grear (L23(2)) belongs to Yy (G) (L2T (2)).

(2) Let H € Doy (G) (LZA). If the equivalent conditions in (1) are satisfied, the weight
filtrations of H are given by the image k of h in Wy (G) as in[L2.8

(3) If G is reductive, the map Dy (G) — Vg (G) ; H — h is bijective.

Proof. In the case where G is reductive, (1) follows from Proposition

(3) follows from the case of (1) where G is reductive.

We prove (1) and (2).

Assume (i). Then, by Proposition[[LT.9] the restriction is a G-HS. Further, the induced
homomorphism ho w : G,, r — Grear is defined over Q and its image is in the center
of Grear. We prove that Lie (G,) is of weight < —1, which implies (ii). Since G, acts
on gr'V'V trivially for any V € Rep(G), the Lie action of Lie (G,) on V induces the zero
action on gr'V'V. By Lemma [[L2.6] this proves that Lie (G,,) has weights < —1.

Assume (ii). Since H comes from D!, (G) (Proposition [L27), the weight filtration W
of H is given by the image k of h in Uy (G) as in [L2.8 Hence the weight filtration of H
is rational, that is, H € D,;(G). Thus we have proved (1) and (2). O

By Proposition (1), we have a map
Dan(G) = ¥u(G); H = h.

Corollary 1.2.10. If D.y(G) is not empty, G, is contained in the commutator subgroup
of G.

Proof. If Day(G) is not empty, via the maps Da(G) — ¥y (G) — Yy (G), we see that
Uy (G) is not empty. For a lifting & : G,,, — G of an element & : G,;, = Gireq of Uy (G),
since Lie (G,,) is of weight < —1 for k, we have G, = [k(G,), G.]. O

7
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Proposition 1.2.11. Consider the maps Doy (G) = Vi (G) — Uy (G).

(1) Let H € Dy (G) and let h be the image of H in Yy (G). Then for g1 € G(R)
and gy € G,(C), the image of g1g:H € Dan(G) in ¥y (G) is gl,redhgirlod 1 Se/r — Gred,R-
Here gy yeq is the image of g1 in Grea(R).

(2) Let h € UV (G) and let k be the image of h in Yy (G). Then for g € Grea(R), the
image of ghg™' in Wy (G) is k.

(3) The map Dy (G) — Vg (G) is surjective. The action of G,,(C) on each fiber of
this map is transitive.

Proof. (1) and (2) are straightforwards.

We prove (3). Let h € Wy (G). By Proposition [L2.5] the fiber of h in D,;(G) consists
of the images ¢ H of (h,d) € f);H(G) in ﬁall(G), where h : Sc/r — G are liftings of h
and H denotes the functor Rep(G) — (RHS) corresponding to k. The fiber is not empty
because a lifting A of h exists. Let (h,0), (i',8") € D,(G), where h, i are liftings of h and
let H and H' be the functors corresponding to h and 7/, respectively. For V € Rep(G),
the weight filtration W on V given by ¢ H and that given by e H’ coincide because
they are given by the image of h in Uy (G) as in L2Z8 Let sy : gr'Vg — Vg and
st : gt VR — VR be the splittings of W over R defined by how and I/ ow, respectively.
Then (s}, 053" : V — V)y comes from an element u of G,,(R) and 7’ = uhu~". We have
H' = uH and hence ¢ H' = ge H, where g = ¢'ue=" € G,(C). O

We will prove a more precise result on the fibers in Theorem [[.4.6] below.

1.2.12. Fix k € Uy (G). Then the inverse image of k in D, (G) under Doy (G) — Yy (G)
is identified with the set of all G-MHS which preserve the underlying Q-vector spaces and
whose weight filtrations are given by k as in [[L2.8

1.2.13. Fix a homomorphism
ho : Sc/r — Gred,r

which belongs to ¥y (G) (LZT). Then, by Proposition[[.2.11] there is a unique G(R)G,(C)-
orbit D(G, hy) in Day(G) whose image in Wy (G) is the set of all G(R)-conjugates of hy.
We call this period domain of G-MHS ([LI.4)) the period domain associated to hg. By
[L2T12, D(G, hg) coincides with the period domain associated to hy defined in our previ-
ous paper [22].

In the case where G is reductive, D(G, hy) is identified with the set of all G(R)-
conjugates of hy (Proposition (3)). In this case, the definition of the period domain
D(G, hy) as the set of G(R)-conjugates of hg appears in Section 5 of [11] and 1.5 of [12]
of Deligne. We borrow the notation hg from [12].

1.2.14. If G is reductive and hg in satisfies the Shimura data in 1.5 of [12], then
as in 1.8 of ibid.,

(1) GQ)\(D(G, ho) x G(AF))/K, where A is the adele ring of Q without oo-
component and K is an open compact subgroup of G (A?j),

is a Shimura variety over C associated to hy.
We expect that the set (1) in general (it is a complex analytic space as in Section [[.4]
below) is also important in number theory. [19] is a trial of the study in this direction.
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We show that each period domain is isolated in D, (G).

Proposition 1.2.15. (1) If G is reductive, each G(R)-orbit is open in D (G), where we
endow D,y (G) with the topology induced by the compact-open topology of Hom ¢on (C*, G(R))
via the injection D (G) =~ ¥y (G) — Hom ¢on (C*, G(R)).

(2) For a general G, for any topology of Da(G) such that the map Dan(G) — Dan(Grea)
is continuous for the above topology of Da(Grea), each G(R)G,(C)-orbit is open in
D.n(G). That is, as a topological space, D (G) is the disjoint union of period domains.

Proof. (1) The set of homomorphisms from G, r to the center of Gg is discrete for the
topology induced by the compact-open topology of Hom .o (R*, G(R)). Hence we are
reduced to proving that for SS}R := Ker(norm : S¢/r = G r), every G(R)-conjugacy
class in Hom (SS}R, GRr) is open for the topology induced by the compact-open topology

of Homcont(SS/)R(R),G(R)). But this follows from the case K = SS/)R(R) = {z €
C* | |z| =1} and L = G(R) of the result of Lee and Wu [26] that for a compact group
K and for a locally compact group L, each L-conjugacy class in Hom con (K, L) is open
for the compact-open topology.

(2) follows from (1) because D is the inverse image of its image Dieq in Day(Greq) and

Dieq is open in D,y (Greq) by (1). O

1.2.16. We compare the above period domain with the Griffiths period domain [I7] and
its generalization [35] to MHS. (A more precise comparison is given in Section [[.6)

The period domain in [35] classifies MHS with a fixed weight filtration and fixed Hodge
numbers of each gr’ and there the Hodge filtrations move.

In the definition of the period domain of G-MHS in the present paper, fixing W in
ibid. corresponds to fixing ko € Wy (G) as in[LZ8, and fixing Hodge numbers of each gr!”
in ibid. corresponds to the fact that we fix the G..q(C)-conjugacy class of the composition
Gn.c = Gpc X Gyc = Sc/r,c g Ghea,c, where the first arrow is z — (z,1). Moving
the Hodge filtration in ibid. corresponds to moving H € D by G(R)G,(C).

1.3 The real analytic structure of D

Let ho : Sc/r —+ Ghrear be as in and let D = D(G, hg) be the associated period
domain (L2I3). We consider the real analytic structure of D.

1.3.1. D is regarded as (G(R)G,(C))/1, for the isotropy subgroup I, of G(R)G,(C) at
x € D. Furthermore, I, is a real algebraic subgroup of G(R)G,(C). This gives a real
analytic structure on D, and it is independent of the choice of x € D.

1.3.2. The image of the composite map D — ¥y (G) — Yy (G) is a one point ky €
Uy (G). Hence the weight filtration W on V' € Rep(G) given by x € D is independent of
x and it is defined by kg as in

Let spl(W) be the set of all isomorphisms of ®-functors from Rep(G) to the category
of R-vector spaces

(V= gt Vr) = (V = Vr) preserving the weight filtrations.

9
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(The notation spl(WWgr) may be better because we are considering splittings over R, but
we use the notation spl(WW) for simplicity and for the compatibility with our notation in
[21] Parts I-IV.) Then spl(W) is a G,(R)-torsor. Hence it is regarded as a real analytic
manifold.

1.3.3. Let Dyoq = D(Gheq, ho). This set is identified with the set of all G(R)-conjugates
of hy in Hom (Sc/r, Grea,r). We have a canonical surjective projection D — Dieq. For
xr € D, let x,,q be the image of x in D eq.

1.3.4. Let L=, _,gry Lie (G)r.

Consider the adjoint action of G on Lie (G). Since the weight filtration is stable under
the action of G and since G, acts trivially on gr'VLie (G) (LZ), Gyeq acts on gr' Lie (G).
For p € Dy, define £L(p) = gr'VLie (G)r N (Dcomeo H™") C L, where H™" denotes
the Hodge (m,n)-component of gr}’, Lie (G)c with respect to p.

By Proposition [L2.5] any element x of D is written uniquely as
z = s(e”p) : Ve s(ep(er (V))),

where p € Diea, s € spl(W), 6 € L(p). In fact, this is the understanding of = as the
image of (h,sds™') € D/ (G) in Dai(G), where h : Sg/r — Gr is the lifting of the
homomorphism h : Sc/r — Grear, corresponding to p, defined as h(z) = sh(z)s™!

(Z S SC/R)-
We denote this 6 € L(p) by d(z).

1.3.5. We have a canonical real analytic map
splyy : D — spl(W) ; © — sply(x)

which is a modification sply, () = soexp(() of the real analytic map D — spl(W) ; x +— s
in [L34] by an element ¢ € L(p) explained below. This splitting sply, (z) is called the
canonical splitting of W at x.

We explain ¢ € L(p). For each V' € Rep(G), (v € Ly is defined as a universal Lie
polynomial of the Hodge (j, k)-components 0y of dy ([I0] (3.28), (6.60); see also [20]
1.4, Appendix, [21] Part 1T 1.2). We can show (y gy = (v ®idys +idy ® (yr, and we have

¢ € L(p).

Proposition 1.3.6. We have a canonical isomorphism of real analytic manifolds
D = {(p,5,9) € Drea X spl(W) x L] 6 € L(p)}

given by x = (xreda SplW(x>7 5(5(7))

We have an isomorphism of the same form even if we replace the map sply, : D —
spl(W) by the map D — spl(W) ; z — s of [[34] but the isomorphism in Proposition
1.3.6] behaves better in degeneration (see Remark [[L3.10 below).

1.3.7. If p,p' € Dyea, p' = gp for some g € Gea(R), and we have L(p') = Ad(g)L(p).
Hence all L(p) (p € Dieq) are isomorphic as graded R-vector spaces.

Let L = L(p) for some p € Dieq.

By Proposition [[L3.6] we have

10



CLASSIFYING SPACES OF DEGENERATING MIXED HODGE STRUCTURES, V

Corollary 1.3.8. D is an L-bundle over D,oq X spl(W).

1.3.9. Let Dy, be the part of D consisting of exact ®-functors Rep(G) — (QMHS) such
that the image of the composition Rep(G) — (QMHS) — (RMHS) is contained in (RHS)
(that is, such that the images are R-split mixed Hodge structures). Then

Doyt = {5(p) | 5 € $pL(W), p € Dyea} = {& € D | 3(x) = 0}

and Dgp) is a closed real analytic submanifold of D. Here s(p) : Rep(G) — (QMHS) sends
a V € Rep(G) to the Q-MHS on the underlying Q-vector space of V' which is induced by
p(gr V) and s(V): gtV Vr =~ Vg. Let Dyt = D\ Dy

In the rest of this Section [[3] we explain how sply, : D — spl(WW) is important and
why we prefer this map to the map D — spl(W) ; z — s in[[.34]

Remark 1.3.10. When we consider degeneration along a nilpotent orbit, the canonical
splitting sply, : D — spl(IW') behaves better than the splitting D — spl(W) in [[L.3.4] We
explain this. Assume that (Ny,..., N,, F') generates a nilpotent orbit as in below.
For y = (yj)i<j<n € R" with y; are sufficiently large for all j, let sply, (y) and s(y)
be the above splittings associated to the mixed Hodge structure (W,exp(>7_, iy;N;) F).
Then, sply, (y) converges in spl(W) when y;/y;+1 — 00 (1 < j < n, y,41 denotes 1) ([20]
Theorem 0.5 (1), [21] Part IT 2.4.2 (i)), whereas s(y) can diverge. For this convergence,
the term ¢ in the canonical splitting sply, (y) plays a crucial role ([20] Example 13.3).

The canonical splitting of W of MHS has a special importance and a characterization
related to the theory of SL(2)-orbits as in Remark [[L3.11] and Remark below ([20]
8.7).

Remark 1.3.11. Assume that we are given a nilpotent orbit (Hg, (-, "), N, F') of weight
w as in [24] 5.4.1. Let W’ be the —w twist of the monodromy filtration M of N. (That is,
W' is the twist of M such that the central graded quotient of W' is of weight w whereas
the central graded quotient of M is of weight 0.) Then (W', F) is a MHS. The canonical
splitting of W’ of this MHS is explained as follows.

For y > 0, (Hr, (-, -),exp(iyN)F) is a polarized Hodge structure. Let sps(y) be
the unique splitting of W' such that sps(y)(gr!’’) and sps(y)(gr!’’) with w # w' are
orthogonal with respect to the Hodge metric of (Hg, (-, ), exp(iyN)F'). (This splitting of
W' is treated in the theory of Borel-Serre lifting. See below.) As is proved in [20],
when y — 00, sps(y) converges to the canonical splitting sply,,(F) of W’ associated to
the MHS (W', F).

In the theory of SL(2)-orbits, we have a homomorphism of algebraic groups p :
SL(2)r — Autr(Hgr) over R associated to (N, F'). It is the unique homomorphism such

that p (%t (2) acts on the part of Hgr of weight j for sply, (F) as /=% and such that

the Lie algebra homomorphism Lie (p) : s[(2)g — Endr(Hgr) sends the matrix (8 (1])

to N. That is, the action of the diagonal part of SL(2) in the theory of SL(2)-orbits gives
the canonical splitting sply (F). This sply(F) is denoted as sply (F) in

11
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Remark 1.3.12. The canonical splitting of the weight filtration is functorial for MHS.

Any MHS F’ is embedded in a MHS F' which appears in Remark [[.L3.11] ([20]). Hence
Remark [[3T7] characterizes the canonical splitting.

1.4 The complex analytic structure of D

We consider the complex analytic structure of D.
Fix a homomorphism hg : Sc/r — Greq,r as in [L2.1]

1.4.1. Let Y be the set of all isomorphism classes of exact ®-functors from Rep(G) to the
following category C preserving the underlying vector spaces and the weight filtrations.

C is the category of triples (V, W, F'), where V is a finite-dimensional Q-vector space,
W is an increasing filtration on V (called the weight filtration), and F' is a decreasing
filtration on Vi (called the Hodge filtration).

Then G(C) acts on Y by changing the Hodge filtration F. We have D C Y and D is
stable in Y under the action of G(R)G,(C).

Let

D:=G(C)DcCY.

Since the action of G(C) on D is transitive and the isotropy group of each point of D is
an algebraic subgroup of G(C), D has a natural structure of a complex analytic manifold
as a G(C)-homogeneous space.

Proposition 1.4.2. For z € D, the tangent space of D at x is canonically isomorphic to
Lie (@)c/F(x)’Lie (G)c, where F(z) denotes the Hodge filtration of x on Lie (G)c defined
by the adjoint action of G on Lie (QG).

The tangent bundle of D is canonically isomorphic to Lie (G)o/F°Lie (G)o, where

Lie (G)o := O ® Lie (G) with O = Op the sheaf of holomorphic functions on D.

Proof. By definition of F(z), F(x)"Lie (G)c is the Lie algebra of the isotropy subgroup
of G(C) at « under the action of G(C) on D in[[.41l The assertions of this proposition
follow. O

Proposition 1.4.3. D is open in D.

Proof. Let x € D. Since the Hodge filtration F'(z)®Lie (Gyeq)c is pure of weight 0, the
map Lie (Greq)r — Lie (Greqd)c/F () Lie (Greq)c is surjective. Hence the map Lie (G)r +
Lie (Gy)c — Lie (G)o/F(r)Lie (G)c is surjective. Since Lie (G)c/F(2)Lie (G)c is the

tangent space of D at x (Proposition [[L4.2)), the last surjectivity shows that G(R)G,(C)x
is a neighborhood of z in D. O

Corollary 1.4.4. D is a complex analytic manifold.

Remark 1.4.5. This Proposition [[4.3is Proposition 3.2.7 of [22]. The proof of it given
there is wrong.

The real analytic structure of D given in [L.3.1] coincides with the one induced by this
complex analytic structure.

12
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Theorem 1.4.6. The map D — D,oq is smooth and surjective. For x € D, the fiber over
Tred € Drea (L33) in D is isomorphic to G, (C)/F(x)°G,(C). Here F(x)°G,(C) is the
C-valued points of the algebraic subgroup of G, c whose Lie algebra is F(x)"Lie (G,)c).

Proof. The smoothness follows from the smoothness of D and D,.q and the surjectivity
of the map T, D — T, _,(Dea) of tangent spaces which follows, by Proposition [[.4.2]
from the surjectivity of Lie (G)) — Lie (Greq). Consider the action of G, (C) on the fiber.
The action is transitive by Proposition [L2.11] (3). We prove that the isotropy subgroup
of G,(C) at x is F(2)°G,(C). Let g € G,(C). Then g € F(x)°G,(C) if and only if
log(g) € F(x)°Lie (G,)c), that is, if and only if log(g) € F(z)°Lie (G)c. By Lemma [[L20]
(2), the last condition is equivalent to the condition that log(g)F(z)"Ve C F(z)?V¢ for
any V' € Rep(G) for the Lie action. This condition is equivalent to the condition that
gF (z)?Ve = F(x)PV for any V' € Rep(G), that is, g fixes x. O

1.4.7. In this paper, we will often use the following fact (see [27] Theorem 4.14): If G is a
linear algebraic group over a field £ and if V; is a finite-dimensional faithful representation
of G, V] generates the ®-category Rep,(G) of all finite-dimensional representations of G
over E. That is, all V' € Rep,(G) can be constructed from V; by taking ®, @, the dual,
and subquotients.

Lemma 1.4.8. ForV € Rep(G), define D(V) (resp. D(V)) as the set {FH(V) | H € D}
(resp. {FH (V)| H € DY) of decreasing filtrations on V.

Assume that V € Rep(G) is faithful. Then the map D — D(V) (resp. D — D(V)); H —
FH(V) is a bijection. If H € D (resp. D), D(V) (resp. D(V)) coincides with the
G(R)G.(C)-orbit (resp. G(C)-orbit) in the set of decreasing filtrations on Ve contain-
ing FH(V).

Proof. Since V is faithful, the map D — D(V) (resp. D — D(I{));H — FH(V) is
injective by [LAT] and hence bijective by definition of D(V) (resp. D(V')). The action of
G(R)G,(C) (resp. G(C)) on D (resp. D) is transitive. The second assertion follows. [

1.5 Polarizability

For a linear algebraic group G, let G’ := [G, G] be the commutator algebraic subgroup.
Note that G, C G’ if Doy(G) is non-empty (L210).

1.5.1. There are two formulations of polarization of a Hodge structure: the “classical
formulation” ([I7] T 2) and the formulation by Deligne ([12]). We adopted the former in
Part I-Part IV of this series of papers [21].

Let H be a Q-Hodge structure of weight w. Then a polarization in the “classical
sense” is a Q-bilinear form (-,-) : Hq x Hgq — Q which is symmetric if w is even and
anti-symmetric if w is odd, satisfying (F?, F*T1=P) = ( for any p, where F is the Hodge
filtration, and the condition that the Hermitian form (-,-) : Hg X Hc — C defined
by (z,y) = (x,i?9y) for v € Hc and y € HG? is positive definite. (This positive
definite Hermitian form (-, -) is called the Hodge metric of the polarization. Note that the
restriction of the Hodge metric (-, -) of the polarization to Hg X Hg is a positive definite
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symmetric bilinear form Hg x Hgr — R and it is written as (x,y) — (z, h(i)y) for the
action h of S¢/r on Hg (L23).)

On the other hand, a polarization in the sense of Deligne is a homomorphism p :
Hq ® Hqg — Q(—w) = Q - (2mi)™™ of Hodge structures of weight 2w such that the
induced Q-bilinear form Hq X Hq — Q ; (z,y) — (27i)“p(z ® y) is a polarization in the
above classical sense.

To keep the consistency with Parts [-IV of this series of papers, we adopt in this Part
V the formulation of polarization in the classical sense. When we use the formulation of
Deligne, we will say that it is a polarization in the sense of Deligne.

We formulate polarizations of R-Hodge structures in the same way.

1.5.2. Let hg : Sc/r — Grear be as in [L2T3l Let C' := ho(i) (Weil operator) be the
image of i € C* = Sc/r(R) by ho in Grea(R).

We say that hg is R-polarizable if {a € (Gyea)'(R) | Ca = aC} is a maximal compact
subgroup of (Greq)' (R).

That is, hg is R-polarizable if and only if Ad(C') on Lie (G..,)r) is a Cartan involution.

In the following lemma, which is a variant of [13] Section 2, we compare several
polarizabilities (the above R-polarizability is put as the condition (4.0)).

Lemma 1.5.3. Let hy : Sc/p — Grear be as in [L2I3l Then, for a = 1,2,3, the
following conditions (a.1) and (a.2) are equivalent. Furthermore, the conditions (4.0),
(4.1), and (4.2) are equivalent. For the conditions (a) := (a.1) < (a.2) (a =1,2,3), and
the condition (4) := (4.0) & (4.1) < (4.2), we have the implications (1) = (2) = (4) and
(1) = (3) = (4).

(1.1) (resp. (1.2)). There is a homomorphism t : Gyea — G, such that t(ho(w(x))) =
72 (x € Gy, ). Furthermore, if we consider the action of G on Q - (2mi)" (r € Z) via
t" 1 Grea — G, and identify H(Q-(2mi)") for H € D = D(G, hy) with the Hodge structure
Q(r), then, for every H € D and every V € Rep(G) (resp. for some H € D and some
faithful representation V- € Rep(G)) and for each w € Z, there exists a homomorphism
gt (VY@grW (V) — Q- (2mi) ™" in Rep(G) which polarizes the Hodge structure gr!V H(V)
of weight w in the sense of Deligne.

(2.1) (resp. (2.2)). Thereis a homomorphismt : Grear — Gur such that t(ho(w(z))) =
72 (v € G,,r) and such that, for every H € D and every V € Rep(G) (resp. for some
H € D and some faithful representation V- € Rep(G)) and for each w € Z, there exists
an R-bilinear form (-,-) : gtW (Vg x gt (V)r — R satisfying (gz, gy) = t(g) " (z,y)
(9 € Grear) which polarizes the R-Hodge structure gr!¥ H(V)r of weight w.

(3.1) (resp. (3.2)). For every H € D and every V € Rep(G) (resp. For some H € D
and some faithful representation V € Rep(G)) and for each w € Z, there ezists a Q-
bilinear form (-,-) : grW (V) x gt (V) — Q satisfying (g, gy) = (x,y) for g € G4 which
polarizes the Hodge structure gr!¥ H(V') of weight w.

(4.0) The homomorphism hg : Sc/r — Grea,r @5 R-polarizable in the sense of [L5.2

(4.1) (resp. (4.2)). For every H € D and every V € Rep(G) (resp. For some H € D
and some faithful representation V€ Rep(G)) and for each w € Z, there exists an R-
bilinear form (-,-) : gtV (Vg x gt (V)r — R satisfying {gz, gy) = (z,y) for g € Glear
which polarizes the R-Hodge structure gr!¥ H(V)r of weight w.
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Proof. For a = 1,2,3,4, the implication (a.1) = (a.2) is clear and the implication (a.2)
= (a.1) follows from [[47 For b = 1,2, the implications (1.b) = (2.b) = (4.b) and the
implications (1.0) = (3.b) = (4.b) are clear.

We prove the equivalence of (4.0) and (4.2).

To see the equivalence, by taking gr'', we may assume that G is reductive. Then the
equivalence is an analogue of [I3] lemme 2.8, and proved as follows. We assume that G is
reductive.

Assume (4.0). We prove that (4.2) is satisfied.

Let K :={a € G'(R)|Ca = aC}. Let SS}R be the kernel of the norm map Sc¢/r —

G,r and let K7 C G(R) be the image of SS}R(R) = {2z € C* | |z| = 1} under hy. We
first show that there is a compact subgroup K5 of G(R) which contains both K and K.
Let J ={a € Ggr | Ca = aC} and let Ky be a maximal compact subgroup of J(R) which
contains K. Then, since K5 contains some conjugate of K in J(R) and since K is normal
in J(R), we have K C K.

By [28], there is a finite-dimensional faithful representation V' of Gr and a positive
definite symmetric R-bilinear form (-,-) : V' x V' — R which is fixed by K, such that Ggr
is stable in Autgr (V') under the transpose g — ‘g with respect to (-, -). Note that the last
condition implies that G is also stable under the transpose.

Claim 1. The Cartan involution 0k : Gx — Gg associated to K is g — ‘g

Note that this claim is also used in [7].

Proof of Claim 1. This is an algebraic homomorphism and its set of fixed points is compact
and contains K. Since K is a maximal compact subgroup of G'(R) by the assumption,
K coincides with the set of fixed points of . This proves Claim 1.

-1

On the other hand, we know that g — C'~'gC is the Cartan involution of G associated
to K. Hence, by Claim 1, we have C~1gC = g1

Put (z,y) := (z,C'y). We show that it is Gx-invariant. Let g be in Gx. Then we
have (gz, gy) = (9z,C~'gy) = (gz,'9'C7'y) = (97 gz, C7'y) = (z,C7'y) = (z,y).

Let V,, for w € Z be the part of V' of weight w with respect to hg. Let ¢ € R* C
C* = Sc/r(R). We prove that *ho(c)v = ¢“v for v € V. Since *ho(c) belongs to
G(R) in Autr(V), we have ‘ho(c)V,, = V. For every v' € V,,, we have (‘ho(c)v,v) =
(v, ho(c)v") = (v,¢™") = (¢*v,v'). Since (-,-) @ Vi, x V,,, = R is non-degenerate, we
have *hyo(c)v = ¢“v. We prove (V,,,V,y) = 0 unless w = w’. For v € V,, and v € V,y,
c(v,0") = (ho(c)v,v") = (v,tho(c)v') = (v, V') = ¢ (v,0"). Hence if w # w', then
(Viw, Vi) = 0 and hence (V,,, V,») = 0.

Let (-,)w : Vwr X Viwr — R be the pairing induced by (-,-). We prove that (-, ),
is a polarization on V,,. Let (-, )y : Vi.c X Vi.c — C be the positive definite Hermitian
form induced by (-,-). Let HPY (p + ¢ = w) be the (p,q)-Hodge component of V,, ¢
with respect to hg. It is sufficient to show that (HZ9 HP) = 0 unless p = p/. Let
u e K| = SS}R(R). Then, since (-,-), is Kj-invariant, we have, for v € HPY and
v € HP O (v,0) = ([ulv, [ulv!) = uP~u? 7P (v,0") = u?PP)(v,0'). Hence p = p'. This
proves that the condition (4.2) is satisfied.

Assume (4.2). We prove that (4.0) is satisfied. Take a faithful representation V €
Rep(G). By our assumption, there is a Gi-invariant bilinear form (-, -) on Vg such that
(x,y) := (x,Cy) is positive definite and symmetric.
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Claim 2. For g € G, we have C~1gC = 'g~! where the transpose is with respect to
('> )
Proof. This follows from the fact that (-, -) is Gg-stable.

The following Claim 3 is well-known.

Claim 3. Let U be a finite-dimensional R-vector space endowed with a positive definite
symmetric bilinear form (-,-). Let G be an algebraic subgroup of GLy which is stable
under g — ‘g, where the transpose is with respect to (+,-). Then {g € G(R) | tg = g7 '}
is a maximal compact subgroup of G(R).

By Claim 2 and Claim 3, {g € G'(R)|C~'gC = ¢} is a maximal compact subgroup
of G'(R). Thus (4.2) implies (4.0). O

1.5.4. The conditions (1)—(4) in Lemma[[.5.3 are different from each other as the following
examples show.

Example 1. Let E be a cubic extension field of Q having one real place and one complex
place and let G = E* regarded as a torus over Q of dimension 3. Let hg : Sc/r — Gr be
the homomorphism such that the induced map Sc/r(R) = C* = G(R) = (E®qR)* =
R* x C* sends z € C* to (2%, 2%). This example satisfies the conditions (2) and (4),
but does not satisfy the conditions (1), (3). In fact, (2) is satisfied because we have t :
Gr — G, r which sends (r,2) € G(R) = R* x C* to r(zz)~!, and for V = E € Rep(G),
we have an R-bilinear form on Fg = R x C with values in R - (2mi)~? = R given by
((z1,11), (x2,42)) = z122 — Y102 — 1y2 (z; € R, y; € C) which polarizes the Hodge
structure of £ of weight 2 associated to hy. But the condition (3) is not satisfied because
there is no bilinear form on the Q-vector space E which polarizes the Hodge structure
associated to hyg.

Example 2. Let E be an imaginary quadratic field over Q and let G = E* regarded as
a torus over Q of dimension 2. Let hg : So/r — Gr be the homomorphism such that the
induced map Sc/r(R) = C* = G(R) = (F ®q R)* = C* sends z € C* to z/z. This
example satisfies the conditions (3) and (4), but does not satisfy the conditions (1), (2).
In fact, there is no homomorphism ¢ : Gg — G, r such that t(ho(w(z))) = 272, The
condition (3) is satisfied because £ X E — Q ; (z1,22) — —21%2 — T122 (x; € E) is the
polarization of the Hodge structure of E of weight 0 associated to hy.

We thank Teruhisa Koshikawa for his advice on R-polarizability and for showing the
above Example 1 to us.

1.5.5. Let G be a semisimple algebraic group over R.

Let X be the set of all maximal compact subgroups of G(R). Then X is not empty.
The group G(R) acts on X by conjugation, and this action is transitive. See [28] Theorem
3.1, [ Proposition 1.12. For K € X, we have a bijection G(R)/K — X ; g — gKg™'.
Via this bijection, we regard X as a real analytic manifold. This real analytic structure
is independent of the choice of K. This X is called the symmetric space associated to G.

1.5.6. Consider the commutator subgroup G ; = [Gred, Grea) 0f Grea = G/G,. This is a
semisimple algebraic group. Let X be the symmetric space associated to G 4 g-

Let hg : Sc/m — Grear be R-polarizable as in [L5.2l From D;cq = D(Gred, ho) (L3.3),
we have a canonical map

Dmd — X
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which sends i € Dyeq C Hom (Sc/r, Grea,r) t0 @ maximal compact subgroup K = {g €
Gl 4(R) | gh(i) = h(i)g} of G 4(R) associated to the Weil operator h(7).

1.5.7. Let T be a subgroup of G(Q). We call I' an arithmetic subgroup (resp. semi-
arithmetic subgroup) of G(Q) if the following condition (A) (resp. (SA)) is satisfied.

(A) There are n > 1 and an injective homomorphism p : G — GL(n) such that I' is a
subgroup of {g € G(Q) | p(g9) € GL(n,Z)} of finite index.

(SA) There are n > 1 and an injective homomorphism p : G — GL(n) such that
p(I') € GL(n,Z). That is, there is a faithful representation V' € Rep(G) and a Z-lattice
L in V such that L is stable under the action of I'.

The terminology arithmetic subgroup is used by many people. We hope the terminol-
ogy semi-arithmetic group is acceptable.

The next two lemmas are straightforward.

Lemma 1.5.8. (1) The condition (A) is equivalent to the following condition ('A).

("A) For every n > 1 and every homomorphism p : G — GL(n), p(I') N GL(n, Z) is of
finite index in p(I') and in p(G(Q)) N GL(n, Z).

(2) The condition (SA) is equivalent to the following condition ('S A).

('SA) For every n > 1 and every homomorphism p : G — GL(n), p(I') N GL(n, Z) is
of finite index in p(T").

Lemma 1.5.9. Let f : Gy — G5 be a homomorphism of linear algebraic groups over Q,
let T'y be a subgroup of G1(Q) and let T's be the image of I'1 in G5(Q).

(1) If 'y is a semi-arithmetic subgroup of G1(Q), I'y is a semi-arithmetic subgroup of
G2(Q).
(2) If 'y is an arithmetic subgroup of G1(Q) and if f is surjective, I'y is an arithmetic
subgroup of G(Q).

Remark 1.5.10. If I" is a semi-arithmetic subgroup of G(Q), I' is discrete in G(R).
(The converse is not valid: A subgroup of G(Q) which is discrete in G(R) need not
be semi-arithmetic. For example, let G = SL(2), and let I" be the subgroup of G(Q)
consisting of diagonal matrices with diagonal entries (2",27") (n € Z). Then I is discrete
in G(R) = SL(2,R) but I' is not semi-arithmetic. Another example is G = G, and
I'={2"|neZ})

Proposition 1.5.11. Let hy : Sc/r —+ Grear be as in [L2I3 Assume that hg is R-
polarizable (L52]). Let T be a semi-arithmetic subgroup of G'(Q) (LET). Then the
following holds.

(1) The action of ' on D is proper and the quotient space I'\ D is Hausdorff.

(2) If T is torsion-free, the action of I' on D 1is free (that is, if v € T and if yp = p
for some p € D, then v = 1), and the projection D — I'\ D is a local homeomorphism.

This Proposition [L5.TT] follows from its stronger version Theorem [Z.6.1]1 (We will not
use this [L5.11] before we prove 2.6.11)

Remark 1.5.12. Proposition [[5.T1] for a semi-arithmetic subgroup of G(Q) need not be
true as is shown in the following examples.
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Ezample 1. Let E be a number field (a finite extension of Q), and let G be the
algebraic group E* over Q (that is, G(R) = (E ®q R)* for any commutative ring R
over Q). Then the unit group Oj of O is an arithmetic subgroup of G(Q). Take any
homomorphism hg : Sc/r — Gr (for example, the trivial homomorphism). Then hy is
R-polarizable and D consists of one point. The action of I' := O}, on the one-point set
D is proper if and only if I' is finite. But Oj; need not be finite, e.g., for a real quadratic
extension field E over Q.

Ezxample 2. Let E be a real quadratic field, and let GG be the algebraic group

G )

01
ring R over Q). Then the group I' := {(g

aEEX,bEE}

over Q (that is, G(R) = { < )'a € (E®qR)*,be E®q R} for any commutative

Zl)) ‘ a€Of, be OE} is an arithmetic
subgroup of G(Q). Let hy : Sc/r — Grea,r be the composite Sc/r = Gnr — EFi =
Gred r, Where the first homomorphism is the norm inverse and the second is the natural
inclusion, that is, the one such that the induced map S¢/r(R) = C* — (F® R)* =
Grea(R) sends z € C* to |2|72 Then hy is R-polarizable (simply because (Gieq)' is

trivial). Let H € D be the element corresponding to the composition Sc /R i} E} C Gr.
By Theorem [[LZ0, or by [LZ8 applied to V = E?, we have D = G,(C) = E ®q C, where
g € G,(C) is identified with gH € D. Via this identification, the action of I' on D comes
from the adjoint action of G on G, and described as

(g ?)-(m@w):(aasjtb)@w (a €Ok, beOp,z € E,weC).
The subspace I' \(E ®q R) of the quotient I' \ D is not Hausdorff because it is homeo-
morphic to the quotient of the real torus Og \(E ®q R) by the action of O, and the last
action has a dense orbit ([29]). Hence, I'\ D is also not Hausdorff.

Proposition 1.5.13. Assume that the condition (1) of Lemma [L53 is satisfied. Then
for a semi-arithmetic subgroup ' of G(Q), I' N G'(Q) is of finite index in T'.

~

Proof. By G, C G’ (LZI0), we have G/G" — Gyea/Gloy- Hence by replacing I' by the
image of I' in G,eq(Q), we are reduced to the case G is reductive.

Assume that G is reductive. Let 'y = I' N Z(G)(Q) and I'1 = I'N G'(Q). Since
Z(G) x G" — @ is an isogeny, the image of I'y x I'y — I is of finite index. Hence it is
sufficient to prove that I'y is finite. We prove this.

The image of I under ¢ : G(Q) — G,,(Q) = Q* is contained in {+1}. Hence in the
faithful representation V' of G' in (1.2) in Lemma [[L5.3] for H € D(G, hy), the action of
some subgroup of I'g of finite index preserves the Hodge filtration and the polarization
of H(gr!¥V) and hence preserves the Hodge metric for every w. The elements of G(R)
which preserve these Hodge metrics for all w form a compact subgroup and I'y is discrete,
and hence 'y is finite. O

18
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1.6 Relations with usual period domains and Mumford—Tate
domains

In this section, in [L6.IHI.6.5, we explain that the classical Griffiths domains [17] and their
mixed Hodge generalization in [35] are essentially regarded as special cases of the period
domains in this paper. In this case, our partial compactifications essentially coincide
with those in [21] Part III. Next in [[6.0] we explain that the Mumford-Tate domains
studied in [I6] are regarded as important cases of our period domains for reductive G.
For Mumford-Tate domains, our toroidal partial compactifications essentially coincide

with those in [25].

1.6.1. Let A = (Hoq, W, ((-, )w)w, (h??), ) be as in [21] Part III 2.1.1. That is, Hy q is
a finite-dimensional Q-vector space, W is a finite increasing filtration on Hy q, (-, ), for
each w € Z is a non-degenerate Q-bilinear form gr’’ x gr’V — Q which is symmetric if
w is even and anti-symmetric if w is odd, hP? are non-negative integers given for each
(p,q) € Z? such that y° hP7 = dimq Hoq, > hP? = dimq gr!/ for every w € Z,
and hP9 = h?P for all (p,q).

Let G be the subgroup of Aut(Hyq, W) x G, consisting of all elements (g, ) such
that (g, gy)w, = t“{x, 1), for all w and for all z,y € grl¥ H q.

Let D(A) be the period domain of [35]. As a set, it is the set of all decreasing filtrations
F on Hyc = C®q Hyq such that dimg(grh(grly Hoc)) = hPY~P for all w,p € Z and
such that (gr'V, F(gr’V), (-,-),) is a polarized Hodge structure for any w € Z.

Let DE(A) be the set of all decreasing filtrations on Hy ¢ such that dime(grh.(grl?)) =
hP=P for all w,p € Z and such that either (gr’, F'(gr)V), (-,-)s) is a polarized Hodge
structure for any w € Z or (gr!V, F(gr!V), (=1)*(-,-),,) is a polarized Hodge structure for
any w € Z. Then D*(A) = D(A) if and only if gr'¥ Hy = 0 for all odd w. If gr’¥ £ 0 for
some odd w, there is a (g,t) € G(Q) such that ¢t < 0 and that D=(A) = D(A) [JgD(A).

Ptq=w

1.6.2. Assume that D(A) is not empty and fix an r € D(A). Then the Hodge decomposi-
tion of r(gr'’) induces a homomorphism hg : Sc/r = Grea,r- We have (ho(2)z, ho(2)y)w =
2|2 (z,y)y for z € C* = Sg/r(R) and z,y € gr,) . The condition (1) of Lemma [[[5.3 is
satisfied.

Proposition 1.6.3. We have an isomorphism
D 5 D*(A); H— H(Hyq),
where D = D(G, hg) is the period domain of the present paper.
Proof. This is seen by Lemma O

1.6.4. In the above situation, the extended period domains Dgg, Dgi ), and I'\ Dy in
this paper generalize those in [2I] Part I-Part IV.

1.6.5. (Classical) Ezample. Take A in [[L61] as follows. Hpq = Q* = Qe + Qeo,
Wi = Hyq, Wo =0, (, )1 is the anti-symmetric form characterized by (e2,e1); = 1,
ht0 = RO = 1, and other kP are 0. Identify GL(2) with the subgroup G in [LE1] by
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g — (g,detg). Let hy : Sc/r — Gr be the homomorphism whose homomorphism of
R-valued points is C* — GL(2,R) ; z — (z), where

(z) = (Z _ab) for z =a+bi (a,b € R, (a,b) # (0,0)).

Then we have unique isomorphisms

$* ~ D := D(G, hy), PYC)~D,

which send i € $ C $HF to hg such that the former is GL(2, R)-equivariant and the latter
is GL(2, C)-equivariant. Here $§* denotes the disjoint union of the upper half plain and

the lower half plain, which are interchanged by <(1) (1) :
In fact, consider the natural action of G = GL(2) on V = Q* The eigenvalues of
i

1

ho(z) are z, z, and the eigenspace decomposition is Vg = C ) o C (EZ), which yields

the Hodge decomposition corresponding to 7 € ).

1.6.6. Let H be a polarized Q-Hodge structure.

Let C be the Tannakian category of Q-Hodge structures generated by H and Q(1).
Let M be the Tannakian group of C. This means that C is identified with the Tannakian
category Rep(M). This M is reductive. Let hy : Sc/r — Mg be the associated homo-
morphism. Then our period domain D (M, hg) coincides with the Mumford—Tate domain
in [I6] associated to H.

Take A = (Hoq, W, ({, )w)w, (h"9),,) in[L6 T as follows. Hy q is the Q-structure Hq
of H. W is the weight filtration on Hq (that is, if wy denotes the weight of Hq, W,, = Hq
if w > wy and W, = 0 if w < wy). (-, ), is the polarization of H (times (27i)*°). hP?
is the dimension of the (p, ¢)-Hodge component of H. Let L be the algebraic group G in
[L6.I Then M is identified with the smallest algebraic closed subgroup M of L defined
over Q such that Mg contains the image of the homomorphism S¢/r — Lgr associated
to H. The Mumford-Tate domain D(M, hg) is identified with the M (R)-orbit in D(A)
containing the class of H.

This hg satisfies the condition (1) in Lemma

The period domain D(M/Z, hy), where Z is the center of M and hy denotes the

composition Sc/r ™ My — (M/Z)R, for the semisimple algebraic group M/Z is also
considered as a Mumford-Tate domain, for example, as in [25]. The period domain
D(M, hy) is identified with an open and closed subspace of the period domain D(M/Z, hy)

(Proposition L10.12).
2 The space of Borel-Serre orbits

We define and study the space Dgs D D of Borel-Serre orbits. This is the G-MHS
version of the space D(A)gs D D(A) for the classical period domain D(A) (L6) defined
and studied in [23] (in the pure case) [2I] Part I (in the mixed case).
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For an algebraic group G, G° denotes the connected component of G as an algebraic
group which contains 1 € G. A parabolic subgroup P of GG is a closed algebraic subgroup
P C G° such that G/P is a projective variety (see e.g. [3] IV (11.2)).

The organization of this Section 2 is as follows. After preliminaries in Sections 2.1]
and and a review of Borel-Serre space Xpg in Section 2.3 we define our space Dgg as
a set in Section [Z4] which we endow with a real analytic structure (precisely speaking,
a structure of a real analytic manifold with corners) in Section In Section 2.6, we

prove the nice properties of Dgg (e.g. Hausdorffness of the quotient by a semi-arithmetic
subgroup of G'(Q)).

2.1 Real analytic manifolds with corners

As will be explained in Section 2.5 our space Dgg is a real analytic manifold with corners.

In this Section 21 we review this notion real analytic manifold with corners ([7]
Appendix by A. Douady and L. Herault) and consider spherical compactifications as
examples of real analytic manifolds with corners.

2.1.1. Let m,n > 0 and consider the topological space S = R™ x RZ, which is endowed
with the inverse image Og of the sheaf of (R-valued) real analytic functions on R™*".
That is, Og is the sheaf of functions which are locally extendable to real analytic functions
on an open subset of R™ x R".

A real analytic manifold with corners is a locally ringed space over R which has an
open covering whose each member is isomorphic to an open set of the above S = R™ xRY,
with the restriction of Og for some m,n > 0. -

2.1.2. Consider a finite-dimensional graded real vector space V = @w<_1 V. In the
rest of this Section 21 we review the compactification V of V defined as a real analytic
manifold with corners in [21] Part I Section 7. We call it the spherical compactification of
V' because as a topological space, it coincides with the spherical compactification of V' in
[1] Definition 2.1. We will use this V in Section 2.4l

As in [24] and [21], the property compact includes Hausdorff in our terminology.

2.1.3. Consider the action of the multiplicative group R~ on V given by to () v,) =
Yoty (t € Rag, vy € V).
Let
V=V x®2R5o~ {(0,0)},

which we endow with the natural topology.

Recall that for a group H, for a set X on which H acts from the right, and for a set Y
on which H acts from the left, X x'Y denotes the quotient of X x Y by the equivalence
relation (zh,y) ~ (z,hy) (x € X, y € Y, h € H). When we use the notation X x? Y
in this paper, H is a commutative group (as above) and hence right or left in the action
doesn’t matter.

Embed V into V by v + class(v,1) (v € V). We have V . V = {class(v,0) | v €
V'~ {0}}, and for v € V ~ {0}, when ¢t € R. converges to 0, t o v = class(tv,1) =
class(v, ) converges to class(v,0). This space V is covered by the two open sets, V and
the complement V ~ {0} of 0 € V C V.
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2.1.4. We regard V as a real analytic manifold with corners as follows.

There is a real analytic map f: V ~ {0} — R+ such that

(1) f(towv) =tf(v) for any t € Rop and v € V . {0}.

For example, taking a base (e, ;); of V,, for each w and taking an integer m < 0
satisfying m/w € 2Z for any w such that Vi, # 0, let f(3_, Twjew;) == O, zﬁé-w)l/m.
Then, this f satisfies the condition (1).

Let f: V ~ {0} — Rsg be a real analytic map satisfying (1). Let V) = f=1(1).
Then V) x Rog = V {0} ; (v,t) = towv. The inverse map is v — (f(v)"'ov, f(v)).
We have a canonical homeomorphism V1 x Rso — V ~ {0}. We endow V ~ {0} with
the structure of a real analytic manifold with corners via this homeomorphism. This
structure is independent of the choice of f. This is because if f': V {0} — R+ is also a
real analytic map satisfying (1) and if V' := (f/)7'(1), the isomorphism V® x R =
V' X Rsg ; (v,t) = (f/(v)"' ov,tf'(v)) of real analytic manifolds with corners is
compatible with the homeomorphisms to V ~ {0}.

Furthermore, the restriction of this structure to V' ~ {0} coincides with the natural
structure of it as a real analytic manifold. Hence there is a unique structure on V of a
real analytic manifold with corners whose restriction to V' ~. {0} is the structure which
we just defined and whose restriction to V' is the natural structure of V' as a real analytic
manifold.

2.1.5. The map V1) x R>o — V ~ {0} in 214 extends to a surjective continuous map
V1 x [0, 00] — V which sends all points (v,00) (v € VM) to 0 € V. Via this map, V is
homeomorphic to the quotient of the compact space V) x [0, 0o] obtained by identifying
all (v,00) (v € VW). Hence V is compact.

2.2 Borel-Serre liftings

2.2.1. Borel-Serre lifting. Let G be a semisimple algebraic group over R. Let P be a
parabolic subgroup of G, and let Sp be the largest R-split torus in P,eqg = P/P,, where
P, is the unipotent radical of P. Let K be a maximal compact subgroup of G(R).

Then we have a unique homomorphism Sp — P ; a — ax which lifts the inclusion
map Sp < Preq and which satisfies 0k (ax) = ax' for any a € Sp(R), where 0 is the
Cartan involution of G(R) associated to K ([7] Proposition 1.6).

We call this ax the Borel-Serre lifting of a € Sp at K.

Remark 2.2.2. We remark that the Borel-Serre lifting is understood as the splitting of
a filtration by taking the orthogonal complements.

By 28] (see also [4] Section 1), there is a finite-dimensional faithful representation V'
of G and a positive definite symmetric R-bilinear form (-,-) : V" x V' — R which is fixed
by K such that G is stable under the transpose g — ‘g for (-,-). Furthermore, there are
R-subspaces of V such that 0 =V, Cc V; C --- C V,, = V which are stable under P
satisfying (¢ — 1)V; C V,_; for all g € P, and 1 < j < m. For example, we can take
Vi={veV]|(gpg—1)---(gj—1)v=0forall g,...,9; € P, } (then V; are P-stable and
Vi =V for some m).
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We have a commutative diagram

Sp(R) C Prea — H;nzl Autgr (V;/Vj-1)
\J 1
P(R) e Autr(V),
where the left vertical arrow is the Borel-Serre lifting at K and the right vertical arrow is
given by the orthogonal decomposition of the filtration (V});. That is, we have a unique
decomposition V' = @72, V}; such that V; = P, ., Vi for all j and such that V}; and Vi
are orthogonal for (-, -) if j # k. The right vertical arrow is given by V;/V;_1 ~ V};.

We prove that the above diagram is commutative, that is, ax for a € Sp(R) preserves
Vjj. Note that the Cartan involution of G(R) associated to K is given by 0x(g) = (‘g)~*
for g € G(R). Hence '(ax) = Ox(ax)™" = ax. Since Vi) = (B, Vi) NV and ax
preserves V;, it is sufficient to prove that ax preserves B, ; V- Note that D> i Vi is
the annihilator of V;_; for (-,-). For z € -, Vi and y € Vj_1, we have (axz,y) =
(z,"(ax)y) = (z,axy) = 0. Hence arxx € Py, Vi)

2.3 Review of Borel-Serre theory

Let G be a semisimple algebraic group over Q. Let X be the associated symmetric space
as in

In this Section 2.3 we review how the Borel-Serre space Xggs D X is constructed in
the paper of Borel-Serre [7].

2.3.1. Let P be a parabolic subgroup of GG. Let Sp be the largest Q-split torus in the
center of P,q := P/P,. Let X(Sp) be the character group of Sp. Let X(Sp)™ be the
submonoid of X (Sp) generated by roots. Here a root means an element x € X (Sp) such
that for some (equivalently, for any) lifting s : Sp — P of the embedding Sp < Pq,
there is a non-zero element v of Lie (P,) such that Ad(s(t))v = x(t) v for t € Sp. Then
X(Sp)* is a free monoid, that is, X (Sp)™ ~ N™ for some n > 0. The basis A(P) of the
monoid X (Sp)T is called the set of fundamental roots (or, of simple roots).
Let

Ap = Hom (X (Sp)t, R2M) = R2" € Ap == Hom (X (Sp)", REgM) = RS

Since X (Sp)" generates a subgroup of X (Sp) of finite index, the identification Sp(R) =
Hom (X (Sp), R*) induces an isomorphism Sp(R)°> = Ap, where Sp(R)° denotes the
connected component of the topological group Sp(R) containing 1.

2.3.2. Borel-Serre action (geodesic action, in the terminology of [7] 3.3). Let P be as in
2.3.11 We have the action o of the group Ap on X, which we call the Borel-Serre action,
defined as follows. For K € X and a € Ap, let ax € P(R) be the Borel-Serre lifting of a
at K obtained by applying 22T to G = Gr, P = Pr and Sp D Spgr. Define

ao K = aKKaf_(l.

2.3.3. As a set, the Borel-Serre space Xpg is defined by Xpg := {(P, Z)}, where P runs
over parabolic subgroups of G and Z is an Ap-orbit for the Borel-Serre action.
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2.3.4. For a parabolic subgroup P of G, let

Xps(P) :={(Q,Z) € Xgs|Q D P}.

Then we have a bijection
XBS(P)Z‘%XAP AP? (QaZ)H(Kaa')>

defined as follows.

Let @ be a parabolic subgroup of G such that @) D P. Then, A(Q) is regarded as a
subset of A(P), Ag is regarded as a subgroup of Ap, and Q — A(Q) is a bijection from
the set of all parabolic subgroups of G such that ) D P to the set of all subsets of A(P).

For (Q,Z) € Xpg(P), K is any element of Z and a € Ap is defined by a(x) = 0 if
x € A(Q) and a(x) = 1if ¥ ¢ A(Q). For (K,a) € X x Ap, Q is the parabolic subgroup
of G containing P such that A(Q) = {x € A(P)|a(x) = 0} and Z := {d’ o K|d €
Ap,x(d') = a(x) for any y € A(P) — A(Q)}. Note that, when Q D P, at a common
K, the Borel-Serre action of Ag for ) coincides with its action for P regarding A as a
subgroup of Ap.

2.3.5. The set Xgg has a structure of a real analytic manifold with corners defined as
follows.

For a parabolic subgroup P of G, there exists a real analytic map f : X — Ap
satisfying

(1) flaoK) =af(K) for all a € Ap and all K € X.

We sketch the proof of this assertion. Let °P := ), Ker (x*: P — G,,), where Y runs
over all homomorphisms P — R* of algebraic groups over Q. Then, P,C°P and the
composition Ap — P(R)/P,(R) — P(R)/°P(R) is an isomorphism by [7] 1.2, which we
use by taking P4 as G there. Let 7 : P(R) - P(R)/°P(R) ~ Ap. Fix K € X. Since
G(R) = P(R)K (see [2] §11) and since 7 kills the compact subgroup P(R) N K, there
exists a unique map G(R) — Ap sending pk to w(p) (p € P(R),k € K), which factors
through f: X ~ G(R)/K — Ap. Since the action of a € Ap on G(R) is a o pk = pakk,
f satisfies the property f(ao K) = af(K).

The set Xps(P) is regarded as a real analytic manifold with corners as follows.
Let XM := f~(1). Then we have

(2) X x Ap = X; (K,a) — ao K, an isomorphism of real analytic manifolds,
(3) XM x Ap — X x4* Ap = Xpg(P), a bijection of sets.

We regard Xpg(P) as a real analytic manifold with corners via the bijection (3). This
structure of Xps(P) does not depend on the choice of f because if f': X — Ap satisfies
the same condition as f and if Y := X = f=1(1) and Y’ := (f')~*(1), the map (3)
and the map Y’ x Ap — Xpg(P) are compatible with the isomorphism Y x Ap =
Y'x Ap; (K,a)— (f(K)™'o K, f'(K)a) whose inverse is (K,a) — (f(K)'K, f(K)a).

Xgs has a unique structure of a real analytic manifold with corners such that for any
parabolic subgroup P of G, Xps(P) is open in Xpg and the structure of Xpg(P) as a real
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analytic manifold with corners defined above coincides with the restriction of that of Xpg.
This follows from the following (4) and (5).

(4) Let @ be a parabolic subgroup of G such that () D P. Then Xps(Q) is an open
subset of Xpg(P) and the structure of Xpg(@)) as a real analytic manifold with corners
coincide with the restriction of that of Xpg(P).

(4) is shown as follows. Let f: X — Ap be a real analytic map satisfying (1) and let
Y = f7'(1). Let p be the projection Ap — Ag. Then f':= ho f: X — Ag satisfies
the condition on f with @ replacing P. Let Y’ = (f’)7!(1). Let T be the kernel of
p. Then the map (3) and the map Y’ x Ag — Xps(Q) are compatible with the open

immersion Y’ x Ag ~Y x T x Ag =Y x Ap, where the first isomorphism is induced by
YT 5 Y"; (K,a) — aoK and the second map is induced by T'x Ag — Ap ; (t,a) — ta.

(5) For parabolic subgroups P and @ of G, Xps(P) N Xps(Q) = Xps(P * Q). Here
P (@) is the algebraic subgroup of GG generated by P and (), which is a parabolic subgroup
of G.

2.3.6. We will often use the following basic things about proper actions. Let H be a
Hausdorff topological group.

(1) If H acts properly on a topological space X, the quotient space H \ X is Hausdorff.

(2) If H is discrete and if H acts properly on a Hausdorff space X, and if this action
is free (that is, ha = z with h € H and = € X implies h = 1), the projection X — H\ X
is a local homeomorphism.

(3) Assume that H acts on topological spaces X and Y, and let f : X — Y be an
equivariant continuous map.

(3.1) If H acts properly on Y and if X is Hausdorff, then H acts properly on X.

(3.2) If H acts on X properly and if the map f is proper and surjective, then H acts
properly on Y.

Here in (3.2) and throughout this paper, as in [24] and [21], for a continuous map
f: X =Y of topological spaces, f is proper means that it satisfies the following (a) and
(b). (a) For any topological space Z, the induced map X xy Z — Z is a closed map. (b)
The map X — X Xy X is a closed map.

(4) Let H; be a closed normal subgroup of H and let Hy := H/H;. Assume that
H (resp. H) acts on a topological space X; (resp. X3) continuously. Assume that for
J = 1,2, the action of H; on X is proper and free. Assume that there are a neighborhood
U of 1 in Hy and a continuous map U — H which lifts the inclusion map U — Hs. Then
the diagonal action of H on X; x X, is proper and free.

(5) Let H; be a closed subgroup of H of finite index. Assume that H acts on a
topological space X continuously. If the action of H; on X is proper, then the action of
H on X is proper.

For proofs of (1), (2), (3), see [9] Ch.3 §4 no.2 Proposition 3, ibid. Ch.3 §4 no.4
Corollary, ibid. Ch.3 §4 no.2 Proposition 5, respectively. The proof of (4) is given in [21]
Part III Definition 4.2.4. (5) is proved in an elementary manner.

2.3.7. Let ' be a semi-arithmetic subgroup of G(Q)(L51). Then:
(1) The action of I on Xpg is proper, and the quotient space I' \ Xpg is Hausdorff.
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(2) If T is torsion-free, the action of I' on Xpg is free, and the map Xpg — '\ Xps is
a local homeomorphism.
(3) If I" is an arithmetic subgroup of G(Q), I' \ Xps is compact.

These are given in [7] 9.3 Theorem and 9.5 for arithmetic subgroups I' of G(Q). Since
a semi-arithmetic subgroup of G(Q) is a subgroup of an arithmetic subgroup of G(Q),
the properness in (1) is reduced to the case of an arithmetic subgroup. The Hausdorffness
in (1) follows from the properness in (1) 3. (1)). We prove (2). We may assume
that I' has a subgroup I'; of finite index which is a subgroup of a torsion-free arithmetic
subgroup. Assume that v € I fixes some point of Xgg. Take n > 1 such that 4" € I';.
By the result for an arithmetic subgroup, we have 4™ = 1. Since I' is torsion-free, we
have v = 1. The rest of (2) follows from the properness in (1) and from this free property

2.3.4 (2)).

2.4 The set Dgg

Let G be a linear algebraic group over Q and let hg : Sc/r — Greq,r be a homomorphism
as in [L.2.13] which is R-polarizable.

2.4.1. Let Gl 4 = [Gred, Grea] be the commutator subgroup of G..q = G/G,. This is a
semisimple algebraic group.
We have bijections between the sets

(parabolic subgroups of G) <+ (parabolic subgroups of G,eq) <+ (parabolic subgroups of G.4)

given as follows. The bijection from the second set to the first set is to take the inverse
image in GG. The bijection from the second set to the third set is to take the intersection
with G-

2.4.2. Let P be a parabolic subgroup of G,q.

Let P':= PN (... Then P’ is a parabolic subgroup of (4. We will denote Ap: by
Ap. This Ap is also described as follows.

Let Sp be the largest Q-split torus in the center of Poq. Let X (Sp)* be the submonoid
of the character group X (Sp) generated by the inverses of characters which appear in
the adjoint action on Lie (P,) of a lifting of Sp in P (see 233)). Then the canonical
map X (Sp) — X(Sp/) induces an isomorphism X (Sp)™ = X(Sp/)T and a bijection
A(P) — A(P') between the bases. Hence we can write

Ap = Hom (X (Sp)t, R2M) = R2” ¢ Ap = Hom (X (Sp)*, RIS = RO,

2.4.3. We define the Borel-Serre action of Ap on D as follows. Let a € Ap and x € D.
Let (p,s,0) € Dieq x spl(W) x L, with § € L(p), be the element corresponding to =
(Proposition [[L3:6). Let K(p) € X be the image of p under D,oq — X (L5.6). We have
the Borel-Serre lifting Ap — P'(R) ; a — agy) associated to K (p). Then aox is defined
to be the element of D whose image in Dyeq X spl(W) x L is (agp)p, s, Ad(ag@p))d).

2.4.4. Let Bp = Ro¢ x Ap. Then we define the action of Bp on Dy (see [3.9) as
follows. Let b = (t,a) € Rog x Ap. Then, for v € Dy, box :=ao(tox), where tox € D
corresponds to the element (p, s,t 0 d) of Dyeq X spl(W) x L (see Z1.3]). Here (p, s,t) is
the element corresponding to x by Proposition [[L.3.6l
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2.4.5. Let Dgg be the set of all pairs (P, Z), where P is a parabolic subgroup of G4 and
Z is either an Ap-orbit in D or a Bp-orbit in D,y for the Borel-Serre action.

We denote by Dgléld the part of Dgg consisting of Ap-orbits and by D1 s the subset
of Dgg consisting of all elements of the form (P, Z) such that Z C Dygy. (D34 and

D,sp1 Bs correspond to DY BS ) and D& s in the notation of [2I] Part I 8.1, respectively.)

2.5 The real analytic structure of Dgg

We are in the same setting as in 2.4l We endow Dgg with a structure of a real analytic
manifold with corners.

Lemma 2.5.1. Let P be a parabolic subgroup of G. Then there is a real analytic map
f:D — Ap such that f(aox) =af(x) for any a € Ap and x € D.

Proof. Take a real analytic map fx : X — Ap such that fx(a o K) = afx(K) for any

a € Ap and K € X (235), and define f to be the composite map D — Dyoq — X EEY Ap,
where the second arrow is as in [1.5.6] O

Lemma 2.5.2. Let P be a parabolic subgroup of G. Then there is a real analytic map
[+ Duspt = Bp such that f(box) =bf(z) for any b € Bp and x € Dy

Proof. By Lemma[.51] there is a real analytic map fp : Dyeq — Ap such that fp(aop) =
afp(p) for any a € Ap and any p € Dieq.

Let £ = W_gr"Lie (G)r be as in [L34l It is a graded R-vector space with weights
< —2. ByR17] thereis areal analytic map f, : £x{0} — R-¢such that f(tod) =t f.(0)
for any t € Rog and 6 € £\ {0}. Define f : Dygp1 C Dyea X spl(W) x (L~ {0}) = Bp =

AP X R>0 by f(pasa(s) = (fD(p)>fC(Ad(fD(p)p)_lé)) (p € Dredas € Spl(W)>5 € ‘C(p))a
where fp(p), is the Borel-Serre lifting of fp(p) € Ap at p. This f satisfies f(bo x) =

bf(x). O

2.5.3. Let P be a parabolic subgroup of G. Let Dps(P) := {(Q, ) € Dps| @ D P}.
Let Dmlld(P) := Dgs(P) N Dmlld and Dy ps(P) := Dps(P) N Dypspips. Then, in the
same way as in the case of %BS(P) we have

Dgléld(P) =D XAP APa Dnspl,BS(P) =D XBP BP.

We endow Dpg(P) with the structure of a real analytic manifold in the following way.
First, the set U; := DEI4(P) is regarded as a real analytic manifold with corners as
follows. By Lemma 2.5.7] there is a real analytic map f4 : D — Ap satisfying

(1) fa(aox) =afa(x) for all a € Ap and all x € D.
Let DS) = f1'(1). Then

2) DV x Ap 3 D; (2,a) s aox.
This map (2) induces a bijection

(3) DV x Ap — D xA? Ap = Dm(P).
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We regard U; = DEI4(P) as a real analytic manifold with corners via the bijection (3).
This structure of DEI(P) does not depend on the choice of f4.

Next, the set Uy := Dppips(P) is regarded as a real analytic manifold with corners as
follows. By Lemma [2.5.2] there is a real analytic map fp : Dy — Bp satisfying

(4) fe(box) =bfp(x) for all b € Bp and all x € D,1.
Let Dg) = f5'(1). Then

(5) DY) x Bp 5 Dyt 5 (2,b) = bo .
This map (5) induces a bijection

(6) D) x Bp — D xP? Bp = Dy ps(P).

We regard Us := Dy ps(P) as a real analytic manifold with corners via the bijection (6).
This structure of D1 s(F) does not depend on the choice of fp.

It is easy to prove that for j = 1,2 and for the structure of a real analytic manifold
with corners on Uj, the intersection U; N Us is an open set of U; and that the restriction
of the structure of the real analytic manifold with corners of U; to U; N U, coincides with
that of U;. Hence there is a unique structure of a real analytic manifold with corners on
Uy UUy = Dgg(P) for which U; and U, are open sets and whose restriction to U; coincides
with that of U for j =1, 2.

Proposition 2.5.4. The set Dgs has a unique structure of a real analytic manifold with
corners for which Dgs(P) is an open set and whose restriction to Dgs(P) coincides with
that of Dgs(P) defined in 253 for any parabolic subgroup P of G.

Proof. 1t is easy to see that for parabolic subgroups P and () of G such that () D P,
Dgs(Q) is an open set of Dpg(P) and the restriction of the structure of Dpg(P) as a real
analytic manifold with corners to Dpg(Q) coincides with that of Dgg(Q)). Furthermore,
Dgs(P) N Dps(Q) = Dps(P * Q). This proves Proposition 2541 O

Remark 2.5.5. When G is semisimple, the Borel-Serre partial compactification G(R )4
in [6] Proposition 6.3 coincides with our D(G, hg)ps in Proposition [25.4] as real analytic
manifolds with corners.

2.5.6. We have a morphism
Dgs — Xps

of real analytic manifolds with corners induced by Dieaps — Xps ; (P, Z) — (P, Z'),
where Z’ is the image of Z C Dieq under D,oq — X (LE.0).

Proposition 2.5.7. If G is reductive, the map Dgs — Xgg is proper.

Proof. Since G is reductive, we have Dps(P) = DEil(P). Hence it is sufficient to prove
that Dps(P) — Xps(P) is proper. Since Dgs(P) = D' x Ap @53 (3)) and Xps(P) =
XM x Ap (ZZH (3)), the properness of Dps(P) — Xps(P) is reduced to that of Dy’ —
XMW, The latter is reduced to the properness of D — X by (2) and (2). Take
a point p € D, let K’ be the isotropic subgroup of G(R) at p, and let K be the isotropic
subgroup of G(R) at the image of p in X. Then K is a maximal compact subgroup of
G(R) and K'CK is a compact subgroup. Hence D = G(R)/K' — X = G(R)/K is
proper. [
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2.5.8. Let P be a parabolic subgroup of G. Fix f : D,.q — Ap, which is induced_from
Lemma250] let Y = f~!(1) C D,eq and let by be the composition Dyeqps(P) =Y X Ap —
Y C Dyeq (see 224T]). Consider the isomorphism of real analytic manifolds

D = {(p;5,0) € Drea x spl(W) x L [ 6 € L(bs(p)} 5 = (p,sply (), Ad(f (p)y) 0 (),
where p = x,.q and f(p), is the Borel-Serre lifting of f(p) to P at p.

Proposition 2.5.9. This isomorphism extends uniquely to an isomorphism of real ana-
lytic manifolds with corners

DBS(P) = {(pv 575) S Dred,BS(P) X Spl(W) X Z ‘ o€ Z(bf(p>>}

This map sends = = (@, Z) to (p, s,0) defined as follows. p = (Q, Zrea). s = sply (y)
for any y € Z, which is independent of the choice of y. § = Ad(f(2).)"'(d(y)), where
y € Z and z = yyeq, Which is independent of the choice of y.

By this map, the image of # € Dpg(P) in £ belongs to £ if and only if x is an Ap-orbit.

Proposition 2.5.10. The map Dgs — Dyeaps % spl(W) is proper. It is an L-bundle.
Note that L here is L(p) for any p.

We hope that our notation D,eqps is not confusing with the reductive Borel-Serre
space in [37].

2.6 Global properties of Dgg
We are still in the setting in Section 2.41

Theorem 2.6.1. Let T’ be a semi-arithmetic subgroup of G'(Q) (LE.1).
(1) The action of I on Dgs is proper and the quotient space I'\ Dggs is Hausdorff.
(2) If T is torsion-free, the action of I' on Dgg is free and the map Dgs — I'\ Dgsg is
a local homeomorphism.
(3) If ' is an arithmetic subgroup of G'(Q), I'\ Dgg is compact.

2.6.2. We first prove that Dpg is Hausdorff, that is, the case I' = {1} of 2.6.1] (1).

The map Dgs — X x spl(WW) is proper by Propositions 2.5.7] and Since X is
Hausdorff (2.3.7) as well as spl(W) which is isomorphic to G,(R), we have that Dgg is
Hausdorft.

2.6.3. We say that a subgroup I' of G(Q) is neat if it satisfies the following condition (1).
(1) There is a faithful representation V' € Rep(G) such that for every element v € I',
the subgroup of C* generated by all the eigenvalues of the action of 7y on V(¢ is torsion-free.
By [L47 the condition (1) is equivalent to the following condition (1’).
(1) For every v € I', every n > 1, and every homomorphism p : G — GL(n), the
subgroup of C* generated by all the eigenvalues of p(7) is torsion-free.
A neat subgroup of G(Q) is torsion-free.
Every semi-arithmetic subgroup I' (LE7) has a neat subgroup of finite index ([2] 17.4).
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2.6.4. We prove Theorem 261l Let I' be a semi-arithmetic subgroup of G'(Q) (LE.T).

The proof is similar to that of [2I] Part I Theorem 9.1.

By (5), the properness in (1) is reduced to the case where I' is neat. We prove
the properness in (1) and the free property in (2) assuming I" is neat. We apply (4)
toH =TI H =1, =I'NG,(Q), X1 =spl(W), Xo = X. The action of I'/I";, on X is
proper and free by (1) and (2) of 2.3.7, and the action of I, on spl(W) is proper and free
because spl(W) ~ G,(R) on which I', acts through the inclusion I', — G,(R). Hence
the action of I" on spl(W) x X is proper and free. By using the canonical continuous
equivariant map Dps — spl(W) x X, we have that the action of I" on Dgg is proper and
free by and (3.1).

The Hausdorffness in (1) follows from the properness in (1) (2:3.6] (1)) and the local
homeomorphism property in (2) follows from it and from the properness in (1) (230 (2)).

(3) follows from the compactness of (I'/T,) \ Xps, where I', = I' N G,(Q), the com-
pactness of I', \ G,(R), and Proposition

In Theorem 2.6.1] we can use an arithmetic subgroup and a semi-arithmetic subgroup
of G(Q) (not of G'(Q)) in the following situations in Remark 2.6.5] and Proposition [2.6.6

Remark 2.6.5. If either G is semisimple or the condition (1) in Lemma[[.5.3is satisfied,
2.6 T holds for a semi-arithmetic subgroup I' of G(Q). In fact, 'NG'(Q) is of finite index
(cf. Proposition for the latter case). Hence by (5), we can replace I' by the
semi-arithmetic subgroup I' N G'(Q) of G'(Q).

Proposition 2.6.6. Assume that G is reductive. Let T be a subgroup of G(Q). Then:
(1) If T is a semi-arithmetic subgroup of G(Q), I'\ Dgs is Hausdorff.
(2) Let Z be the center of G. If T is a semi-arithmetic subgroup of G(Q) and the image
of I'in (G/Z)(Q) is torsion-free, then the map Dgs — I'\ Dgs is a local homeomorphism.
(3) If T is an arithmetic subgroup of G(Q), I'\ Dgs is compact.

See [L.T0.I8 for the proof.

3 The space of SL(2)-orbits

Let G be a linear algebraic group defined over Q. We define and study the extended
period domains Dgp,2) and D§L(2) of SL(2)-orbits which contain D. This Dgy,) (resp.
Dgy2)) is the G-MHS version of the space D(A)syez) (vesp. D(A)gy,)) for the classical
period domain D(A) ([L6) defined and studied in [23] (in the pure case) and [21] Part II
(in the mixed case) (resp. in [2I] Part IV).

Assume that we are given an element hg : Sc/r — Grea,r of ¥ (G) (L2ZT). We assume
the R-polarizability (IL5.2). We denote by kg € Uy (G) the homomorphism G, — Gieq
(defined over Q) which induces hgow : G r — Gred R-

3.1 The set Dgp o) when G is reductive

In this Section B we assume that G is reductive.
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3.1.1. Let n > 0. By an SL(2)-orbit in n variables, we mean a pair (p, )
p:SL(2)% — Gr, ¢:PY{(C)"— D,

where p is a homomorphism of algebraic groups over R and ¢ is a holomorphic map
satisfying the following conditions (i)—(iii).

() 0(92) = p(9)p(z) (g € SLo(C)", = € PHC)).

(i) p(5")CD.

(iii) For z € ", the homomorphism Lie (p) : sl(2, R)” — Lie (Gr) = Lie (G)r of Lie
algebras induced by p is a homomorphism of R-Hodge structures if we endow sl((2, Q)"
with the Q-Hodge structure of weight 0 associated to z (see below) and endow Lie (G)
with the Q-Hodge structure of weight 0 associated to ¢(z) € D and the adjoint action of
G on Lie (G).

Here the Q-Hodge structure of sl(2, Q)™ associated to z = (zj)1<j<n is the direct
sum of the Q-Hodge structure of the j-th s[(2, Q) induced by the Q-Hodge structure of
Vo = C? corresponding to z; (e.g. [24] 1.2.3) and the adjoint action of GL(2)q on sl(2, Q).

3.1.2. (Classical) Ezample. Assume G = GL(2) and let hg be the homomorphism z — (z)
in[LG6.H Let p : SL(2)r — GRr be the inclusion map and let ¢ : P*(C) — D be the identity
map in [L6.5l Then (p, ¢) is an SL(2)-orbit in one variable.

Lemma 3.1.3. Let n > 0. Then the following sets (i), (ii), (iii), (iii)’, and (iv) can be
identified.

(i) The set of all SL(2)-orbits (p, p) in n variables.

(ii) The set of all pairs (p, ), where p is a homomorphism SL(2)g — Gr of algebraic
groups over R and ¢ is a holomorphic map H™ — D satisfying the condition (i) in Bl
for g € SLa(R)™ and z € " and satisfying the condition (iii) in BTl

(iii) The set of all pairs (p,r), where p is a homomorphism SL(2)g — Gr of algebraic
groups over R and r € D satisfying the following condition.

The homomorphism Lie (p) : sl(2,R)" — Lie (GRr) is a homomorphism of R-Hodge
structures with respect to the Hodge structure of sI(2,R)"™ associated to i and the Hodge
structure of Lie (Gr) associated to r.

(iii)" The set of all pairs (p,r), where p is a homomorphism SL(2)k — Gr of algebraic
groups over R and r € D satisfying the following condition.

Let SS}R be the kernel of norm Scr — Gpr;z — 22. Let & : 58/)11 — GR be the
homomorphism defined by

§1(u) = r(u)p((u), ..., (u) ™,

where we regard r as a homomorphism Scr — Gr and (u) € SO(2)r is as in [L6.5
Then & (u)p(g) = p(9)&1(u) for any u € S&)g and g € SL(2)g.

(iv) The set of all homomorphisms SL(2)k X SS)R — Gr satisfying the following
conditions (iv.1) and (iv.2). Let p (resp. &) be the restriction of this homomorphism to
SL(2)g, (resp. S&)r)-

(iv.1) ko(—1) =& (—1)p(—1,...,—1). Here —1 inside p(—) denotes the scaler matriz
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(iv.2) Define the homomorphismr : Sc/m — Gr by r(tu) = ko ()& (u)p((u), . . ., (u)),
where t € G, r C Sc/r and u € 58/)11- Thenr € D.

Proof. We will prove that the first three sets are identified. In fact, the bijectivities of
the evident maps (i) — (ii) — (iii) are well-known (for their 1-variable cases, see [32], [36]
Remark (2.2), and [31]), but we give a proof here. To prove that (i)— (ii) — (iii) are
bijective, since they are injective, it is sufficient to prove that (i) — (iii) is surjective. Let
(p,r) be an element of the set (iii). We prove that if g € H := {g € SL(2,C)" | gi = i},
then p(¢g)r = r. This will imply that we have a map ¢ : P*(C)" — D ; gi — p(g)r
having the desired properties. Since H is connected, it is sufficient to prove that for
X € Lie(H) = F?sl(2,C)™, Lie (p)(X) respects the Hodge filtration of r. But this follows
from Lie (p)(X) € FLie (G)c.

We prove (iii) = (iii)’. Since the Hodge structures on the Lie algebras in the condition
in the definition of (iii) are of weight 0, the condition in (iii) is equivalent to the condition
that for u € Sg;R(R), the action Ad((u),...,(u)) on sl(2,R)" and the adjoint action of
r(u) on Lie (Ggr) are compatible via Lie (p). This is equivalent to the condition that the
action Ad(&;(u)) on Lie (p)(sl(2,R)™) is trivial for every u and hence to the condition
that & (u) and p(g) commute for every u and g € SL(2)%.

The evident map (iii)’ — (iv) is bijective because the inverse map is given as in (iv.2).
Thus we can identify the sets (i), (ii), (iii), (iii)’, and (iv). O

Proposition 3.1.4. Let (p, ) be an SL(2)-orbit in n variables and let r = ¢(i) : Sc/m —

Gr and & : SS}R — Gr be as in LemmaB.13l Define a homomorphism £ : Sc/m — Gr
of algebraic groups over R by

£(t) := ko(t)p(diag(1/t,t), ... diag(1/t,t)) fort € Gpr C Sc/r,

E(u) =& (u) forue SS}R,
where & is as in Lemma (iv). Then the Hodge filtration of & is ¢(0), where 0 =
(0,...,0) € PY(C)".

Proof. To relate ¢ and r, we use the Cayley element

c:= % C i) € SL(2,C).

We use the following properties (i) and (ii) of c.
(i) By the action of SLy(C) on P'(C), c sends 0 € P}(C) to i € P(C).
(ii) (u) = cdiag(u™t,u)c™! for u € SS}R.
Let V € Rep(G), let Ve (resp. Vior) be Ve endowed with the action of S¢/r via £
(resp. r), and let V& (resp. VET) be the Hodge (p, ¢)-component of Vi ¢ (resp. Ve ).
Claim. p(c,...,c)(@,VED) =D, VEr in Ve.
We prove Claim. For (a, b, c) € Z3, let Véa’b’c) be the part of Vo on which ko(t) for ¢ €
C* acts as t%, &1 (u) for u € SS}R acts as u®, and p(diag(1/t,t), ..., diag(1/t,t)) for t € C*

acts as t°. Then V¢ is the direct sum of these Véa’b’c). On Véa’b’c), {(tu) (t € Gpr C Sc/r,
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u € SS}R) acts as t*teu? and hence V" has the Hodge type ((a+b+c)/2, (a—b+c)/2).
On the other hand, by the above property (ii) of ¢, r(tu) acts on p(c, . . ., C)Véa’b’c) as tubte
and hence p(c, . .. ,C)Véa’b’c) has the Hodge type ((a+b+c¢)/2,(a —b—c)/2). This proves
Claim.

Since p(0) = p(c,...,c) tp(i) by the property (i) of ¢, Claim shows that & gives
(0). O

The fact that the Cayley element relates ¢(0) and ¢(i) was used also in [36].

3.1.5. Let (p,¢) be an SL(2)-orbit in n variables. Then the rank of (p, ) is defined to
be the number of j (1 < j < n) such that the j-th component p; : SL(2)g — Gr of p is
a non-trivial homomorphism.

Let r be the rank of (p, ¢) and let (p', ¢') be the SL(2)-orbit in r variables defined as
follows. Let {s(1),...,s(r)} (s(1) < --- < s(r)) be the set of all j (1 < j < n) such that
p; is non-trivial. Define p’ : SL(2)g — Gr to be the unique homomorphism satisfying
p(91, - Gn) = P'(gsq1), - - - gsry) and let ¢’ be the unique map PY(C)" — D such that
gO(Zl, ce Zn) = gp’(zs(l), e ZS(T)).

We call (¢, ¢") the SL(2)-orbit in r variables of rank r associated to (p, ¢).

3.1.6. Let (p,¢) be an SL(2)-orbit in n variables of rank n. For 1 < j < n, define
homomorphisms T T G, r — Gr as follows.

T]*(t) :p(gbagn) (tERX)a where

7i(t) == 7 (t)ko(t) (t € RX),
where ko € ¥y (G) is as in the beginning of Section

3.1.7. We define the equivalence relation between SL(2)-orbits.

An SL(2)-orbit in n variables and an SL(2)-orbits in n’-variables are equivalent if and
only if they have the same rank r and their associated SL(2)-orbits of rank r are equivalent
in the following sense.

For SL(2)-orbits in n variables of rank n, the equivalence relation is given as follows:
(p,p) ~ (¢, ¢) if and only if there is a t = (¢;)1<j<n € RZ, such that

for any g € SL(2)k and z € $”, where 7(¢) denotes [[}_, 7;(¢;) associated to (p, ¢).
In terms of Lemma BT3 (iv), (p,&1) ~ (¢, &) if and only if there is a t = (¢j)1<j<n €
R™, such that p'(g) = 7(t)p(g)7(t)"" for every g € SL(2)} and & = &.

Remark 3.1.8. We have the same equivalence relation ~ even if we replace 7; by 7.
This is because 7(t)p(g)7(t)™* = 7(t)p(g)7*(t)~! and the actions of 7(¢) and 7*(¢) on D
are the same. Here 7%(t) = [[; 77(¢;) which is associated to (p, ¢).
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3.1.9. Let (p, ) be an SL(2)-orbit in n variables.
Let 1 < j <n. For V € Rep(G), let W.(j )VR be the increasing filtration on Vg defined

by the action of G,, g via 7;. That is, for w € Z, Wg)VR is the part of Vg on which the
action of G,, g via 7; is of weights < w.
For 1 < j < n, define N; € Lie (Gr) by

: : 0 1 .
N; = Lie (p)(g1,.-.,9,) with g; = (0 0),gk:()fork7éj,

where Lie (p) is the homomorphism s[(2, R)" — Lie (Ggr) induced by p. Let W©) = W,
Then for 0 < j < k < n and for any ¢; € Ryo (j < < k) and any V € Rep(G), the
filtration W.(k)VR is the relative weight filtration of the nilpotent operator > i<k @dVy
Vr — VR with respect to W.(j )VR.

For 1 < j <n, the following conditions (i)-(iv) are equivalent. (i) p; is trivial. (ii) 7;
is trivial. (iii) W = WU-Y_ (iv) N; = 0.

We say that the weight filtrations of (p,¢) are rational if the weight filtrations W)
(1 < j < n) of the associated SL(2)-orbit in n variables of rank n has the following
property: For any V' € Rep(G), the filtrations WVe (1 <j<n)on Vg are Q-rational.
This rationality depends only on the equivalence class of (p, ¢).

3.1.10. We define the set Dgy,2) as the set of all equivalence classes of SL(2)-orbits whose
weight filtrations are rational.

Remark 3.1.11. The rationality condition on the weight filtrations will become impor-
tant to have the good properties (Hausdorff property etc.) of the quotient space I' \ Dgp,2)
for a semi-arithmetic subgroup I' of G'(Q) (cf. Section [L.14]).

3.1.12. Let p € Dgr2). Let (p, ¢) be the SL(2)-orbit in n variables of rank n whose class
is p.
Let
Tpy T G"mR — GRr

be the homomorphisms 7 and 7 associated to (p, ¢) as in BT respectively. Let 7, ; and
7, (1 < j < n) be the j-th component G, r — Gr of 7, (resp. 7).
We will call

{e(iyr, . iyn) € D | y; € Rop (1 <5 < n)} = 7(RE (i) = 77 (R (i)

the torus orbit associated to p.

3.2 The sets Dgy,2) and D§L(2)

When we do not assume that G is reductive, unlike the case where G is reductive, there
are several sets of SL(2)-orbits. Here we define the most important two sets Dgp,2) and

Dy (5)- Other sets of SL(2)-orbits Dgfb), Dg’LV(Vz) will be defined later.
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3.2.1. Let Dred = D(Gmd, ho) be as in [I.3 Let Dred SL(2) = D(Gred, hO)SL be DSL
for (Gred, ho) in B.II0 This Dieqsi(e) is a G MHS version of the space DSL(Q) (gr')~
[21] Part I 3.5.1.

For p € Dieasie) and let 7,77 @ G, g — Grear be the homomorphism in
associated to p, Where n is the rank of p.

Let Dgy,2) (resp. D§L(2)) be the set of pairs (p, Z), where p is an element of Diyeqg1,(2)
and Z is a subset of D whose image in D,eq coincides with the torus orbit (B.I1.12) of
p, satisfying one of the following conditions (A) and (B) for every (equivalently, for all)
z € Z. Let s = sply,(2).

(A) Let h: GJ, g — GRr be the homomorphism defined by

h(t) := s7y(t)s™"  (resp. s7(t)s™ ).

Then Z is a h(RYZ)-orbit.
(B) Let h: Gy, X Gt g — G be the homomorphism defined by

h(to, (tj)1<j<n) == s(ko(to) H b (resp. s(ko(to) H

Then Z is an h(R~¢ x RZ)-orbit contained in Diygp.

3.2.2. Let « = (p, Z) € Dgiz) (vesp. Dg; ). We call z an A-orbit in the case (A), and
a B-orbit in the case (B).
We define the mild part of Dg; o) as the part consisting of all A-orbits and denote it

*,mild
by Dy SL(2) -
We denote by Dsr2)sp1 the subset of Dgp,9) consisting of (p, Z) whose Z is contained

in Dy, and by Dgp,2) nspt its complement.

3.2.3. For v = (p, Z) € Dgy,2) (resp. DgL(z)), the homomorphism A in[B.22.Tlis independent
of the choice of z € Z. In the case z € Dgy2) (resp. Dgy,)), we denote this homomorphism
h by 7, (resp. 7).

3.3 Weight filtrations associated to SL(2)-orbits
In this Section 3.3 we give preliminary definitions which are used in Section [3.4

3.3.1. Let E be a field of characteristic 0 and let G be a linear algebraic group over F.
Let Repg(G) be the category of finite-dimensional representations of G over E. Let W’
be an increasing filtration on the functor V — V from Repy(G) to the category of finite-
dimensional E-vector spaces. Then, by [30] Chap. IV 2.4, the following two conditions (i)
and (ii) are equivalent.

(i) There is a homomorphism a : G, g — G which defines W’. That is, for V €
Repp(G), W,V is the part of V on which the action of G, g via a is of weights < w.

(ii) W’ is an exact ®-filtration in the sense of [30] Chapter IV 2.1. That is, gr’¥" is
an exact functor for every w € Z, and Wi (V1 @ Vo) = Y. WiVi @ Wi Vs for every
V, Vs € Repp(G) and w € Z.
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We denote by 20(G) the set of all W’ satisfying the above equivalent conditions (i)
and (ii).

If E C £, via the injection 20(G) — 20(Gp) induced by the homomorphism Hom (G, g, G) —
Hom (G, g, G ), we often regard 20(G) as a subset of 2(Gp).

Actually only the cases E' = Q and F = R are important to us.

3.3.2. Let x = (p,Z) € Dgr2) and let n be the rank of p = 4. In the case where z is
an A (resp. B)-orbit, we defined in B.2.3] a homomorphism
7o Gl g =GUR™ = Gr (resp. Gur x G2 g = G — GR).
For 1 < j < n (resp. 0 < j < n), let ij be the increasing filtration on the functor
V= Ve =R®qV given by 7,; : Gpur — G. For 1 < j < n, we have WY = s(W\).
That is, for V' € Rep(G), WL Ve = Dicz S(Wp wer)’ Vr). In the case where z is a
B-orbit, W” = W. These W (1 <35 <mn)(resp. (0 < j < n)) are called the weight
filtrations associated to x.
For x € Dgr,(2), let
d(z) C W(Gr)

be the set of weight filtrations associated to x.
We have W € ®(x) if and only if « is a B-orbit. If G is reductive, W ¢ ®(z) and we
have ®(x) C 2(G).

Proposition 3.3.3. (p, Z) € Dsv() (resp. Dgy ) is determined by (®(p), Z).

Proof. When G is reductive, the proof of [23] Lemma 3.10 for Q-polarization works for
R-polarization. The general non-reductive case follows easily from this. O

This will be used in the proof of the injectivity in Propositions B44] (2), B4 (2),
3.2.9 (2) in Section B4
Proposition 3.3.4. Let x € Dgy) and let n be the rank of Treqa € Dieasnz). Let V €
Rep(G), V #0. Let 0 < j <n. Let W := W also in the case where x is an A-orbit.
Define the mean value pi; € Q and the variance o5 € Q of W;ﬁj) by

ZdlmR W(J)VR)’UJ/ dlmR VR ZdlmR gl" VR)(’UJ ,uj) /dlmR(VR)
weZ weZ
Then i is independent of j and 0]2- < o if j < k. Furthermore, if V is a faithful
representation of G, then o3 < o} for 0 < j <k <n.

Proof. This follows from [21] Part II Proposition 2.1.12. O

3.3.5. We denote by W(G) the set of all subsets ® of 2J(GRr) such that & = &(x) for
some x € Dgy,(2).

For ® € W(G), let ®eq € W(Greq) be {gtV (W) | W € @, W £ W} Itz = (p, Z) €
Dgy,(2), then ®(z),ea = ().

Let ® € W(G) and let n be the order of ®.q. In the case W & & (resp. W € @),
we often identify ® with the set {1,...,n} (resp. {0,1,...,n}) in the unique way that if
W' W" € & correspond to i,j € {1,...,n} (resp. {0,1,...,n}), respectively, then ¢ < j
if and only if the variance of W’ < the variance of W” (3:34)).
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3.3.6. For ® € W(Grea), let Dspo)(®) (resp. Dg; ) (P)) be the set of all points (p, Z) of
Dsr2) (resp. Dgp ) such that ®(p) C @.

For ® € W(G), let Dgp2)(®) = {z € Dg2) | ®(x) C @}

Then, in the next Section B.4],

D§L(2) = U D§L(2) ((I))
(I)EW(Grcd)

will be an important open covering of D 2

Dgy,2) = U Dgy,2)(®)
<I>€VV(C;red)

will be an important open covering of Déi(z), and

Dsuy = |J DSL@)(‘D):( U DSL@)(‘P))U( U DSL(2>,nsp1(<I>)>
PEW(G) PEW(G),W¢d PEW(G),Wed

(here Dgr,(2)nspl (P) := Dsr,(2) mspl N Ds(2)(®)) will be an important open covering of DéL@).

3.3.7. Let the notation be as in B3Il Assume that G is reductive and let W’ € 20(G).
Then, by [30] Chap. IV 2.2.5, the stabilizer P = G}, C G° of W’ in G° is a parabolic
subgroup of G.

We thus have a map

Hom (G, g, G) — {parabolic subgroup of G}.

This map is surjective (cf. [27] Theorem 25.1, [34] 15.1.2 (ii)).

Let W' € 20(G) and let P be the associated parabolic subgroup of G.

If a homomorphism a : G, g — G defines W', then the image of a in G is contained
in P. The composition G, g 4 P — P.q is independent of the choice of a and has the
image in the center of Peq. The adjoint action of G,, g on Lie (P,) via a is of weights
< —1.

Let spl(W’) be the set of all isomorphisms of ®-functors from Repy(G) to the category
of E-vector spaces

(V= g"'V) S (V= V) preserving the increasing filtrations defined by W'

Then spl(W’) is a P,(E)-torsor. We have a natural bijection from the set of all homo-
morphisms G, r — G which define W’ to spl(W").

3.3.8. Assume that G is reductive.

Let 2y(Gr) be the set of all W’ € 20(Gr) satistying the following condition.

(%) For some (equivalently, for every) homomorphism a : G,, g — Gr which defines
W', the image of the homomorphism a* : G,,r — Gr ; t — a(t)ko(t)~" belongs to the
commutator subgroup G’ of GG, where ky is as in the beginning of this Section 3]

For a point p € Dgy,2), we have ®(p) C 20(G) NWy(Gr). In fact, the condition (*)
is satisfied by W’ € ®(p) because SL(2)" coincides with its commutator subgroup and
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hence for any linear algebraic group H, the image of any homomorphism SL(2)" — H is
contained in the commutator subgroup H'.
Let W' € 20y(Gr). We have a canonical real analytic map

splpy @ D — spl(W') := splg (W)

defined as follows. Let ¢ : G,, = Gy q be the canonical homomorphism in B.3.7 Let
x € D. We have a Borel-Serre lifting a* : G;,r — (G'))r g of G = (G')jyr10q 5 T H
L(t)ko(t)~" associated to the image of x under D — X. We define spli(z) to be the
R-splitting of W' associated to GmR — Gyt a*(t)ko(t).

Note that this splitting spli(z) is also defined as follows. Let V' € Rep(G). Then
for H =12,V = H(V) =@, V., where V,, is the part of V' of weight w, and we have a
polarization ( , ), on V,, g = H(V,,)r in the condition (4.1) in Lemma . Then the
splitting splyp () of W/Vg is the direct sum for w € Z of the orthogonal decomposfcmn
of W[V, r with respect to the Hodge metric associated to (, ),. See

An important fact is that, for p € DSL(2 of rank n, if r is an element of the torus

orbit of p and 1 < 5 < n, the splitting of W given by 7, : G, r — Gr coincides with
splW(J)( r). See [23] Lemma 3.9. This fact is in the basis of the relation of SL(2)-orbits

and Borel-Serre orbits considered in this paper and in our former papers [24], [21].

3.3.9. Let ® € Wg(G). Let Gro = (yyree Grwr, Where Gr v denotes the stabilizer
subgroup of W’ in Gr. By a splitting of ®, we mean a homomorphism

a Gi,R — G<1>,R

such that for each W’ € @, the W'-component G,, r — Gr of « is a splitting of W’.
A splitting of ® exists. In fact, if & = ®(z) for € Dgy o), 7, B:32) is a splitting of
O,
In the case W ¢ & (resp. W € @), by a distance to ®-boundary, we mean a real
analytic map
B:D—R2, (resp. Dy — RZ))

such that B(a(t)z) = t8(z) for all splittings a of @, all ¢ € R®, and all z € D (resp.
X € Dnspl)-

Proposition 3.3.10. A distance to ®-boundary exists.

This is a G-MHS version of [21I] Part II 3.2.5. The proof given below is similar to that
of loc. cit.

Proof. We first prove the case where G is reductive of Take a submonoid V' of
X(G?®) such that VUV~ = X(G?), V D X(G?), and such that V*NX(G?), = {1}.
Let P = Py be the parabolic subgroup of G’ associated to V. Then (G’)g C P and, for
every splitting a of ®, the map G2 mR — Prear 18 injective and independent of the choice
of a, and the image of this homomorphlsm is contained in Sp. Let R?; — Ap be the
induced injective map. Take a homomorphism of Lie groups h : Ap — Rio which splits
the last injection. Let m : P(R) — Ap be the canonical map defined in 2235 and let
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f X — Ap be the map there induced by 7 by fixing K € X. Then the composition

D—xt Ap R?, is a distance to ®-boundary.
Now we consider the general case. Let n be the order of ®,oq. Let Breq 1 Drea — RY
be a distance to the ®,.4-boundary.

In the case W ¢ ®, the composition D — Dieq 64 RY, is a distance to ®-boundary.

Next we prove the case W € & of B3 10 Fix py € Dieq. Let Z be the center of
Grea(R). By the R-polarizability, K = {g € G..a(R)/Z | gpo = po} is compact. For each
integer w < —2, take a K-invariant positive symmetric R-bilinear form (-, -),, on the part
Ly, of L := L(py). Define a map f: L~ {0} — Rsg by f(0) := (3 ey (0w, 0u) ") 72
where §,, denotes the component of § of weight w. For p € D,.q, if ¢ is an element of
Gred(R) such that p = gpg, then we have an isomorphism Ad(g) : L = L(py) = L(p). The
map f, : L(p) ~ {0} = Rso,0 — f(Ad(g)~'9) is independent of the choice of g. This is
because (¢')"tg € K if g, ¢’ € Grea(R) and gpo = ¢'po. Define v : Dy — R by sending
an element corresponding to (p, s,9) (p € Dyea, s € spl(W), d € L(p) ~ {0}) to f,(9). For
x € Dygp1, define vy(z) = fy’(a:)H;:lﬁmd,j (#rea) ™' Then (7, Brea) : Duspt = Rso X R s a
distance to ®-boundary. O

3.4 The real analytic structures of Dgy 3 and D§L(2)

In this Section B.4, we endow Dg;,(2) and D§L(2) with the sheaves of real analytic functions
and with the log structures with sign. In fact, like in Part II of [21], Dgy,) is endowed
with two kinds of such structures, DéL(2) and D§£(2).

A basic property of these structures is that in the case where G is reductive, if (p, )
is an SL(2)-orbit in n variables with class p in Dgy,2), @(iy1, . . ., yn) converges to p when
Yj/yj+1 — oo for 1 < j <n (y,41 denotes 1).

We first review the category By (log) in The above spaces with the above
structures become objects of By (log)

3.4.1. The categories By and By (log) (see [21I] Part IV 1.3).

Let By be the category of locally ringed spaces S over R satisfying the following
condition (i) locally on S. Endow R™ with the sheaf Ogrn of real analytic functions.

(i) There are n > 0 and a morphism ¢ : S — R” of locally ringed spaces over R such
that ¢ is injective, the topology of S coincides with the topology induced from that of R",
and the map 71 (Orn) — Og is surjective.

For an object S of By , we often call the structural sheaf Og the sheaf of real analytic
functions on S (though S need not be a real analytic space).

For an object S of By, a log structure with sign on S means a log structure M on S
endowed with a submonoid sheaf M., of M satisfying the following (i) and (ii).

(i) Moo D Og . - Here Og _ denotes the subgroup sheaf of Og consisting of all local
sections whose values are > 0.

(ii) The map Mso x {£1} = M ; (f,€) — €f is an isomorphism of sheaves. Here we
regard {£1} C OF C M.

Let By (log) be the category of objects of By endowed with an fs log structure with
sign.
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Real analytic manifolds with corners are regarded as objects of By (log) ([21] Part IV
1.3.8 (2)).
The category By (log) has fiber products (ibid. Proposition 1.3.11 (1)).

3.4.2. For an object X of Bg(log), for an object Y of Bg and for a morphism ¥ — X
in By, we have an fs log structure with sign (My, My ~o) on Y, called the inverse image
of the log structure with sign (Mx, Mx ~¢) of X, defined as follows. The log structure
My is the inverse image of the log structure My, that is, My is the push-out of Oy <«
7HO%) = f~(Mx) in the category of sheaves of commutative monoids on Y, and
My~ is the push-out of OF ;= f~1(O%.,) — f~'(Mx o) in the category of sheaves
of commutative monoids on Y.

3.4.3. ([2I] Part IV 1.3.16.) Let X be an object of By(log) satisfying the following
condition (C).
(C) The canonical map from Oy to the sheaf of R-valued functions on X is injective.

Let Y be a subset of X. Then Y has a structure of an object of Bg(log) satisfying
(C) such that for any object S of Bg(log) satisfying (C), Morsy (10g)(S,Y) is identified
with {f € Morg; (10g)(S, X) | f(S) C Y}. This structure on Y is defined as follows. The
topology is the one as a subspace of X. Oy is the image of the canonical map from the
pullback of Ox on Y to the sheaf of R-valued functions on Y. The log structure with
sign of Y is the inverse image of that of X (B4.2]).

We will say this is the structure of Y as an object of By (log) induced by the injection
Y — X (or by the embedding of Y in X).

In the rest of this Section B.4], we state definitions and properties of the structures
DéL(2) and Dé}i(z) of Dsi2) and the structure of Dg; ) as objects of By (log). The almost
all proofs will be given in Section

We first consider the case where G is reductive. In this case, DéL(2) = D§£(2) = D10

Proposition 3.4.4. Assume that G is reductive. Let ® € W(G) B3.1). Take a splitting
a of ® and a distance 8 to ®-boundary [3.3.9]).
(1) There is a unique map

Vo : Dsy)(®) = RE x D x [ spl(W)

W’ed

satisfying the following conditions (i) and (ii).

(i) Forp € D, vas(p) = (8(p), aB(p)~'p, (sl (0))wres) € REg X DX [[ypeq sPUW).

(ii) Forp € Dgio)(®P), va,s(p) is the limit of va,g(7,(t)r) for a fized point r of the torus
orbit @II2) of p and for t € RZY which tends to (0,...,0) € RZY.

(2) This map va.p is injective.

(3) The structure of Dgr2)(®) as an object of By (log) induced via the injection v, g
(53-4-3) is independent of the choice of (o, 5).

We will denote this map v, s as p — (5(p), bas(p), (sply (p))w)-
Next we consider Déi(z) and D§L(2) for a general linear algebraic group G over Q.
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Proposition 3.4.5. Let & € W(Grea). Let Dsp2)(®) (resp. Dgp)(P)) be the inverse
image of Dyeasi2)(P) in Dsia) (resp. DgL(2))'

Let « be a splitting of ® and let § be a distance to ®-boundary (3.3.9).

(1) There is a unique map

Va,3 1 Dsp2)(®) = Dreasuiz) (@) x spl(W) x L

(resp. V% 5+ Dipoy(®) = Dyeasiiz)(®) x spl(W) x L)

satisfying the following conditions (i) and (ii).
(i) For x € D, set p = xeq. Then,

Va,5(x) = (p,sply (z), Ad(afB(p))~'0(x))

(resp. vy 5(x) = (p,sply (), Ad(a*B(p))~'0(x)) )

(ii) Let x = (p, Z) € Dsi2)(®) (resp. Dy 5)(P)) B2I). Then Ilvas(x) (resp. v, 5(z))
is the limit of v s(7.(t)r) (resp. v} 5(1x(t)7)) for a fized point v of Z, where t € R;I)E)m)
and t — (0,...,0) € R2.

(2) This map vap (resp. v} 3) induces the bijection
Dsp2)(®) = {(p, 5,0) € Dreasriz)(®) x spl(W) x L | § € L(bap(p))}

(resp. Do) (®) = {(p,5,0) € Dreasriz)(®) x spl(W) x L]0 € L(bas(p)})-

Here by, 5(p) is as after Proposition3.4.4. The ones for vz and for v}, 5 coincide.
(3) The structure of Dsy2)(®) (resp. Dgp o) (®)) as an object of Bg(log) induced via
the bijection v g (resp. v}, 5) is independent of the choice of (a, 3).

In the bijection in the above (2), the image of x € Dgy2)(®) (resp. € D ) (P))
belongs to L if and only if x is an A-orbit.

For Dgr ) (resp. DgL(z)), this Proposition is a G-MHS version of [2I] Part II
Proposition 3.2.6 (ii), Proposition 3.2.7 (ii), and the situation (c) of [21] Part IV Propo-
sition 2.3.9 (resp. of the situation (a) of [2I] Part IV Proposition 2.3.9) which treated
the extended period domain Dsp2) D D(A) (resp. Dg; o) O D(A)) for a classical period
domain D(A) (LG).

Remark 3.4.6. This is a remark on the description of a related part of [2I]. There are
fourteen “resp.,”s in [2I] Part IV 2.3.8, which are divided into two groups, and correspond
only to the ones belonging to the same group. Precisely, the fourth, the fifth, the seventh,
and the last “resp.,”s correspond, and the other ten “resp.,”s correspond. But four and
ten do not correspond.

Proposition 3.4.7. Dgj,) (resp. D§L(2)) has a unique structure of an object of By (log)
such that for every ® € W(Grea), Dsr2)(®) (resp. DgL(Q)((ID)) is open in Dgy2) and the
induced structure on it coincides with the structure in Proposition 341 (3).
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The Dgp2) as an object B (log) with the above structure is denoted by Déi(z)-

For Dgi2) (resp. Dgj ), this is the G-MHS version of the situation (c) (resp. (a))
of [2I] Part IV Proposition 2.3.10 for Dgp,) (resp. D§L(2)) extending the classical period
domain. For Dgp, of ibid., [21] Part IT Theorem 3.2.10 also gives the same structure of

Dgi(3)-

Proposition 3.4.8. (1) The map Déi(z) — Dyeasrz) X spl(W) is proper. It is an L-
bundle. B
(2) The map D31 2) = Dreasiiz) X spl(W) is proper. It is an L-bundle.

For D¢ o) (vesp. Dg, () this is a G-MHS version of [21] Part IT Theorem 3.5.15 (resp.
the situation (a) of [21] Part IV Proposition 2.3.16).

We give a proof of Proposition B.4.8 assuming Proposition B. 47 Let p € Dyeq sr(2)(P),
7 = bop(p) € Drea. Take an open neighborhood V' of r in D,eq and a real analytic
map g : V — Greq(R) such that g(r) = 1 and such that v = g(v)r for all v € V. Let
U C Dreagsrz)(®) be the inverse of V under by 3 1 Diea,sne) (®) — Drea and let U be the
inverse image of U under the projection Dsp,2)(®) — Dreasiiz)(®) (vesp. Dgp o) (P) —
Dieasi2)(®)). Then we have an isomorphism

USU x spl(W) x L(r) ; &+ (Tred, sPlyy (), Ad(g(ba.5(Tred))) ™ 6 (ba.s(Trea)))-
We next consider the structure DéL(2) of Dgy,2).

Proposition 3.4.9. Let ® € W(G).
(1) Let v be a splitting of ® and let 5 be a distance to ®-boundary.
IfW & & (resp. W € @), there is a unique map

ta,s © Dsp)(®) — D (resp. Dsp)mspi(P) — D)

satisfying the following conditions (i) and (ii).
(i) If x € D (resp. x € Dygp1),

pas(z) = a(B(x)) e,

(ii) Assume W & ® (resp. W € @) and let v = (p, Z) be an element of Dgy,2)(P)

(resp. Dsp2)nspt(P)). Let z € Z. Then piq () is the limit of pa g(7.(t)z) where t € R;I)E)m)
and t — (0,...,0) € RE,.

(2) If W ¢ ® (resp. W € ®), the structure of Dsp)(®) (resp. Dsp)nsp(P)) as an
object of Bg (log) induced by the injection

DSL(2)((I)> (resp. DSL(2)7HSpl((I)>> - Dé£(2) x Dz (2, fap(z))
B43) is independent of the choice of (o, 3).
This is a G-MHS version of [21] Part II Proposition 3.2.6 (i), Proposition 3.2.7 (i).

Proposition 3.4.10. Dgy,2) has a unique structure of an object of By (log) such that for
every ® € W(G) such that W & ® (resp. W € @), Dgp,2)(®) (resp. Dsp2)nspi(P)) is open
in Dgi2) and the induced structure on this coincides with that in Proposition 349 (2).
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This generalizes [21] Part II Theorem 3.2.10 (i).

The structure of Dgy,2) in Proposition as an object of By (log) is denoted by
D éL(2)'

The identity map of Dgp,2) is a morphism DéL@) — Déi(z) of Bg(log). The log

structure with sign of DéL(2) is the inverse image of that of D§£(2).

To prove the existence of the global structures Propositions [3.4.7] and B.4.10, we need
the following Proposition B4 T2l and the local descriptions in Theorems B.4.T5, B.4.16], and
which are proved by using Proposition

3.4.11. Assume that G is reductive. Let p € Dgp). We define the subset U(p) of
Dgr2) in the same way as in [24] Section 10.2, as follows. Let (p, ) be an SL(2)-orbit
belonging to p. For each J C ®(p) = {1,...,n}, we define p; € Dgy (o) as the class of the
SL(2)-orbit (py, @) in m-variables, where m is the cardinality of .J, defined as follows.
p(G1, s gm) = p(ha, ... b)), @i(21, o, Zm) = @(w1, ..., wy), where h; and w; (1 < j <n)
are as follows. Write J = {s1,...,8,} C{1,...,n}, 51 < -+ < 8. If j < 55 for some £,
define h; := g, and w; := z; for the smallest integer k& with j < s;. Otherwise, h; =1
and w; :=i. We have ®(p;) = J.
Let
Up) == |J GH(R)-ps C Dsrizy(®(p)),

JC®(p)

where G} is the stabilizer of the weight filtrations W) (j € J) in .
The following proposition is a generalization of [24] Theorem 10.2.2.
Proposition 3.4.12. The set U(p) is open in Dgyg).

In the case p € D, Proposition follows from the case where G is reductive of (1)
of the following Lemma [3.4.13]

Lemma 3.4.13. (1) D is a finite disjoint union of G'(R)G,(C)-orbits which are open
and closed.
(2) D is a finite disjoint union of G'(C)-orbits which are open and closed.

Proof. These are reduced to the case where G is reductive. Assuming that G is reductive,
let Z be the center of G. Then these are reduced to the facts that G'(R)Z(R) is an
open (and hence closed) subgroup of G(R) of finite index and G'(C)Z(C) is an open (and
hence closed) subgroup of G(C) of finite index. O

3.4.14. Assume that G is reductive. Let p € Dgy ), let n be the rank of p, and take a
representative (p, ) of p. Let r = ¢(i) € D. We have Lie (GR) = ,,cz» Lie (GR)m,
where

Lie (Gg)m = {z € Lie (Gg) | Ad(7,(t))z = [[ 7"z for all t € RZ,}.
j=1

For = € Lie (GR), let x,, € Lie (Gg)m be the m-component of .
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Let K, be the maximal compact subgroup of G’(R) associated to r. Let 'K, be the
stabilizer of r in K. Take R-subspaces R C Lie (Gg) and S C Lie (K,) such that

Lie (GRr) = Lie (RZ,) @ Lie (K;) ® R, Lie(K,) = Lie('K;)® S,

where RZ, is embedded in G'(R) via 7,, and such that

R= )" RN (Lie(Gg)m ®Lie(Gg)-m)-
meZ®
Such R and S exist.

Let Y be the subset of R%, x Lie (GR) x Lie (Gg) x Lie (Gg) x S consisting of all
elements (¢, f, g, h, k) satisfying the following conditions (i)-(iv). Let J = {j | t; = 0} C
{1,...,n}.

(i) Let m € Z*®. Then: g,, = 0 unless m(j) =0 for all j € J. f,, = 0 unless m(j) <0
for all j € J. hy, = 0 unless m(j) > 0 for all j € J.

(ii) Let ¢" be any element of RZ, such that t; = ¢; for all j € {1,...,n}\J. lf m € Z"
and m(j) =0 for all j € J, then f,, = (H?Zl(tg-)m(j))gm and h,, = (H;;l(t;-)m(j))_lgm.

(iii) We have g € R and we have f,, + h_,, € R for all m € Z".

(iv) exp(k)r € G'}(R) - r.

Let Yo = {(t, f,9.h, k) € Y | t € RZ}. Then
Yo =5 RL x Rx S5 (t, f.9.h k) = (t, g, k).
Hence by Lemma B.4.T3], the map

Yo—= D (t,f,g9,h, k) — 7,(t) exp(g) exp(k)r = exp(f)7,(t) exp(k)r
is an open map.

The following Theorems B.4.T5] and B.4.16 are variants of [2I] Part II Theorem 3.4.4
and [2I] Part IV Theorem 2.3.14.

Theorem 3.4.15. Assume that G is reductive. Let the notation be as in B.4AT4. Then
there exists an open neighborhood U of (0,...,0) inY and an open immersion U — Dgy,2)
which sends (0, ...,0) to p such that if Uy denotes the subset of U consisting of (t, f, g, h, k)
such that t € R, then it sends (t, f,g,h, k) € Uy to 7,(t) exp(g) exp(k)r.

We return to the general G not necessarily reductive, that is, in the next theorem, G
is a (general) algebraic linear group over Q.

Theorem 3.4.16. Let x € Dgy,2) (Tesp. D§L(2)) and let p be the image of x in Dicasi(2)-
Take the spaces Y, U, Uy in Theorem B.4173 for G.eq and p, and denote them by Yieq,
Urea, and Ueq,0, respectively. Let Vieq be the image of the open immersion Ureq — Dred sL(2)
in Theorem BATH. Let L = L(r). Let V be the inverse image of Viea in D§f oy (resp.
Dg12))- Then there is an open immersion U := Uyea X spl(W) x L — V which sends
(t,f.9,h,k,5,0) € Useaoxspl(W)x L to the element of D whose image in Dyeq xspl(W)x L

15

(7p(t) exp(g) exp(k)r, s, Ad(7,(t)exp(g)exp(k))J)
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(resp. (1, (t) exp(g) exp(k)r, s, Ad(7)(t)exp(g)exp(k))d))

such that the diagram
v — V
1 \J

Ured — V;cd

18 cartesian.

3.4.17. We next consider the local property of DéL(2)' Let © = (p,Z) € Dgp9). Take
z € Z and let sy = sply,(z) € spl(W). Then sq is independent of the choice of z.. Let
I = Zieq € Dyeq. Let 69 = dw(z) € L := L(r). Let n be the rank of p.

Let E = L in the case where z is an A-orbit, and let £ = L ~. {0} in the case where
x is a B-orbit.

Take the space Y in Theorem B4 for G,.q and p, and denote it by Y;eq here. In
the case where = is a B-orbit, take a real analytic map 5y : L ~ {0} — R.( such
that Bp(c 0 d) = ¢fy(d) for all ¢ € Ryg and 0 € L ~ {0}. We define a subset X of
Yiea X Lie (Gry) x Lie (Gr.u) X E as the set of (¢, f,g,h, k,u,v,9) ((t, f,g,h, k) € Yieq,
u,v € Lie (Gru), 0 € E) satisfying the following conditions (i)-(iv). Let n be the rank of
pandlet J:={j|1<j<n,t; =0}, meZ"

(i) up = 0 unless m(j) <0 for all j € J.

(ii) vmm = 0 unless m(j) = 0 for all j € J.

(iii) If § € L ~. L (this happens only in the case where z is a B-orbit), then v = 0.

(iv) Assume m(j) = 0 for all j € J. Let ¢’ be an element of RZ, such that ¢} = t;
if j € {1,...,n}~ J. Then if z is an A-orbit, we have v, = Z?zl(t;-)‘m(j)um. If x is a
B-orbit and 6 € L\ {0}, we have vy, = Ad(7,0(50(6))) ™ Ty (¢) 7" iy

The following Theorem is a variant of [2I] Part II Theorem 3.4.6.

Theorem 3.4.18. There are an open neighborhood V' of (0,...,0) in Y x Lie (Gry) X
Lie (Gru) and an open immersion U — DéL(z): where U is the inverse image of V in
X, which sends (0,...,00) (resp. (0,...,0,000)) to x such that if Uy denotes the sub-
set of U consisting of all (t, f,g,h,k,u,v,58) such that t € R2, and 6 € L, it sends
(t, f,9,h, k,u,v,9) € Uy to the element of D whose image in Dyeq X spl(W) x L is

(7(t) exp(g) exp(k)r, exp(u)so, Ad(7y(t) exp(g) exp(k))d).

Remark 3.4.19. In [21] Part IT 3.4.5, in the definition of the space Y!(p,r, R, S), the last
sentence “If ty = 0, ...” in the condition (6") should be deleted. After this modification,
Part II Theorem 3.4.6 becomes correct. In our series of papers [21], Part IT Theorem 3.4.6
is used in Part IV 2.7.16, but Part IV 2.7.16 is correct with the modified Part IT Theorem
3.4.6.

Another remark concerning Part II 3.4.5 is that the presentation of (5') can be sim-
plified: The condition “exp(v)s, = s,” there is equivalent to a simpler one “v = 0”.

3.4.20. We can show that our SL(2)-spaces belong to the category Bg(log)™ of nice
objects in Bg(log) as in [21] Part IV Section 2.7, though the details are omitted.
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3.5 Proofs for Section [3.4]
We give proofs of the statements in Section [3.4] that have not yet proved.

3.5.1. The proofs of Proposition B.Z4 for ® € W(G), Proposition B.AH for ® € W(G'eq),
and Proposition for ® € W(G) are similar to the corresponding parts in [21] Part
IT and Part IV, which are indicated after each proposition.

3.5.2. The proofs for the remaining results in Section B.4] are also parallel to the corre-
sponding parts in [2I] Part II and Part IV.

That is, by Propositions 3.4.4] B.4.5] and for respective ® already proved, we
first endow the ®-parts of each sets Dsr,2) and D§L(2) with the space structures. Then we
consider the following version of Proposition for ®-part:

(1) U(p) in B4 is open in Dgp2)(®) if ®(p) C ®.
We prove this (1) in B5.0 after preparations and Lemma 354

3.5.3. Let ® € W(G). Fix a splitting a : Gy g = Ger of ® and a distance to ®-
boundary 3 : D — R%,. Let J be a subset of ®. Let n be the order of ® and let m
be the order of J. Let a : G#MR — G yr be the splitting of J defined as follows. If we
write the inclusion map J — & between totally ordered sets as an injective increasing
map 6 : {1,...,m} — {1,...,n}, then a,(t1,...,tm) = a(t},...,t,), where: If 7 < 0(k)
for some k, define t := tyq) for the smallest integer k such that j < 6(k). Otherwise,
to=1.

! Let P be the subset of Dgps) consisting of all elements p such that ®(p) = J and
7, = ay. Let @ be the set of SL(2)-orbits in m variables whose classes belong to P. We
define a map

Haﬁ P — Q

as follows. (There is an evident projection ) — P, but the composition P @) Q — P
need not be the identity map.)

Let p € P. Take an SL(2)-orbit (p,¢) with class p. Then 6, 3(p) is the SL(2)-orbit
(0, ¢") whose class p' satisfies 7, = 7, = a; such that the N; of p’ (denote it by N7)
for 1 < j < m is defined by using N; := (N; of p) as Nj := Ad(a(B(r)))~"(N;), where
r = (i), and such that ¢’ is defined as ¢'(z) = a(B(r))"t¢(z). Then (¢',¢’) depends
only on p and is independent of the choice of (p, ).

Lemma 3.5.4. Let E be a field of characteristic 0 and let V' be a finite-dimensional vector
space over E on which the Lie algebra s\(2, E)™ acts. Denote the action of X € sl(2, E)™
onV by [X,:]. For1 <j<m, let N; € sl(2,E)™ be the element whose j-th component

1S (8 é) and whose k-th components are 0 for all k # j, and let Y; € sl(2,E)™ be

1
0 1
k # j. Let B; be the set of all elements v of V' such that [Y;,v] = —2v, [Y,v] = 0 for

all k # 7, and [Ng,v] =0 for all k # j. Let S; € B; for 1 < j < m. Then there is an
element v € V' such that [Y;,v] =0 for all j and such that [N;,v] = S; for all j.

the element whose j-th component is <_ O) and whose k-th components are O for all
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Proof. Let A; be the set of all elements v of V such that [Y}, v] = 0 for all £ and [Ny, v] =0
for all k # j. For a finite-dimensional FE-vector space V' on which the Lie algebra
sl(2, E) acts, if we define N,Y € sl(2, F) in the similar way to the above and we define
VI={v e V'|[Y,v] = av} for a € Z, the map Vj — V', ; v — [N,v] is surjective as
is well known. By applying this to V' = {v € V| [Y},v] = [Ng,v] = 0 for all k& # j},
we have that the map A; — B; ; v — [N;,v] is surjective. Take v; € A; such that
[Nj,vj] = Sj. Let v =3 v;. Then [Nj,v] = Sj for all j. O

3.5.5. Assume that G is reductive. We prove (1). To do so, it is enough to show
the following (1).

(1) If p' € U(p) and if p\ € Dgp(2)(P) converges to p', then p), € U(p) for all sufficiently
large . (Here (p)a denotes a directed family.)

Since U(p') C U(p), by replacing p’ by p, we can reduce (1) to the following:

(2) If px € Dgr2)(®) converges to p, then py € U(p) for all sufficiently large A.

Dividing the sequence (py), into subsequences, we may assume that, for a fixed J C
® = {1,...,n}, the family of weight filtrations associated to py is J for every A. Since
Dgr,2)(®(p)) is open in Dgr,2)(®) (in fact, the former is the inverse image of the open set
of R2, consisting of elements whose ® \. ®(p)-components are non-zero), we may assume
J C ®(p). Assume J C ®(p). Let m be the order of .J.

Fix a splitting « of ®. Let agp) : G (R — Gor (resp g G;’mR — Gyr) be the
splitting of ®(p) (resp. J) induced by « defined as in

We prove the following.

(3) We may assume 7, = ag(p) B53) and 7, = 7,, = ay for all A.

We prove (3). There exists a unique u € (Ga))u(R) = (G, )u(R) such that 7,(t) =

uagp) (t)ut (t € ch(p ) and there exists a unique uy € (G,),(R) = (G')).(R) such that
oy (8) = upnary (H)uy (t € RZ;) . Then 7,,(t) = uay(t)u™' (t € RZ,). For j € J, we have
the convergence spl?s(pk) — spl?s(p) = spl}BS(pJ). Since 7,, gives (Spl?s(p)\))jej and 7,
gives (SplBS(pJ))jej, uy, converges to u. Let p’ = u~!p and p) := uy'py. Then 7, = Qa(p)
and 74 = 7y = ay and p} — p'. If we can prove that p) € G;(R)p/; for A sufficiently
large, we can obtain px € G'(R)py for A sufficiently large. This proves (3).

We now assume 7, = ag(p) and 7,, = 7,, = ay for all A.

Fix a distance  to ®-boundary. Let (p},¢;) = 0,5(ps) and (o), ¢)) = 0a5(pr)
B53). Let (o), & ;) and (p), &) ,) be the elements of the set (iv) in Lemma BT3] corre-
sponding to (o'}, ¢;) and (p), ¢)), respectively.

We prove the following.

(4) (P, €1.,) converges to (p, &) ;) for the compact-open topology of the space of

continuous homomorphisms SL(2, R) SC /R(R) — G(R).

We prove (4). For j € J, let DY) be the subset of D consisting of all ' such that
for every V' € Rep(G), (W(J),F (V)) is an R-mixed Hodge structure. Then we have a
continuous map dy;) : DY) — Lie (GR) (the § in [L34 for the weight filtration W1).
Let (ps,¢s) and (py, ps) be SL(2)-orbits in m variables whose classes in Dgr,2) are py
and py, respectively. Then v,s(p) = vas(ps) = aB(r) 'r, where r = ¢;(i). Since
r =exp(iNy + - +iN;)p ({0} x {i}™7), where N; is the N; of p;, we have v, 5(pys) €
Njes DY and Sy ) (Vas(ps)) = N{ + -+ Nj for 1 < j < m, where N/ is the N; of p/.
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Similarly, va,s(ps) € N;es DY and 8yy6) (Va,s(pa)) = Nj s+ 4N}, for 1 < j < m, where
N;, is the N of p)\. Since py converges to p, vas(pa) converges to vas(p) = Vaps(ps)-
Hence N}, converges to N} for 1 < j < m. Furthermore, ¢}(i) = v45(ps) converges to
(1) = vo5(ps). This proves (4).

We prove the following.

(5) If X is sufficiently large, there is gy € G'(R) which commutes with o ;(t) for all
t € (R*)™ such that N;, = Ad(gx)NVj for all j € J and such that gy — 1.

We apply Lemma B57] to the case F = R, V = R ®q Lie (G’), and the action of
s[(2,R)™ on V is induced by the adjoint action of SL(2)§F on V via p;. Let H C Gy
be the centralizer of the image of ay : Gl g — Ggr. Let B; (1 < j < m) be as in
Lemma 354, let B = [[;L, Bj, and let b = (N})i<j<m € B. Then Lie(H) = {v €
V| Y0 =0forl <j <m} Themap H — B ; g — Ad(g)b induces the map
Lie (H) — Ty,(B) = B, where T,(B) denotes the tangent space of B at b, and this last
map is written as v > ([v, N}])1<j<m. By Lemma[3.5.4] this last map is surjective. Hence
the map H — B is smooth at 1 € H(R) as a morphism of algebraic varieties. Hence
there is g € H(R), gx — 1 such that Ad(gx)N; = N, . Thus (5) is proved.

Now we complete the proof of (1). By (5), we may assume that p\, = p/,. Consider
ISR E Sg;R — Ce(p) (Lemma B.1.3). Here Ce(p) denotes the centralizer. We use a
result in [26] concerning homomorphisms from compact groups to locally compact groups,
applied to homomorphisms from the compact group Sg}R(R) to the locally compact group
Ca(p)(R) given by £} 4, &) ;. By the above-mentioned result, if A is sufficiently large, there
is an A € Cg, (p)(R) such that & , = Ag] ;A™". Hence (p),&],) = A(p)), &1 ,)A™" and
hence, by Lemma B.1.3] (p), ¢)) is the twist of (o'}, ¢’;) by A. Hence p, is the twist of p;
by an element of G’,(R). Thus (1) is proved.

3.5.6. As in [2I] Part II Section 3.4, we can reformulate Theorems B.ATH B.4T6, and
in terms of ®-parts, which will be equivalent to the original statements as soon as
the global space structures will be well-defined (Propositions [3.4.7 and B.4.10]), and whose
proofs are similar to those of [2I] Part II Section 3.4 and Part IV Theorem 2.3.14. Here,
the openness of U(p) in Dgp2)(®) in (1) is used in connection with the condition
(iv) in B4T14

The well-definedness of the global structures as objects of By (log) on the SL(2)-spaces
(Proposition B-A1 Proposition B.A10) follows from the versions of Theorems B.4.15]
and [B.4.18in terms of ®-parts explained above similarly as in the corresponding results in
[21] Part IT and Part IV indicated after each proposition. That is, first we directly prove
that the structure on each ®-part is independent on the choices of (a, 3). Next, since
the intersection of ®-part and ®’-part coincides with & N ®’-part, it is enough to show
that the localization map from ®’-part to ®-part is an open immersion whenever ® C ®.
The last statement is proved by using the version of Theorems [3.4.17 [3.4.16] and [3.4.18
in terms of ®-parts.

3.6 The fan of parabolic subgroups

3.6.1. For a split torus 7" over a field, let X (7") = Hom (T, G,,) be the group of characters
of T and let X,(T) = Hom (G,,,, T') be the group of cocharacters of T
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In this Section 3.6 we give a variant of the classical theory of Weyl fan (B.6.10).
Let E be a field of characteristic 0, let G be a reductive algebraic group over E, let T" be
a split torus over F, and let a : T'— G be a homomorphism. Then in [3.6.9] we will have
a bijection between a certain set of parabolic subgroups of G and the set of all cones of
a certain cone decomposition of R ® X,(T'). In the case where E is algebraically closed
and T is a maximal torus in G with the inclusion map a : 7" — G, this is the well-known
bijection ([B.6.10) between the set of all parabolic subgroups of G which contain 7" and
the set of all cones of a cone decomposition called Weyl fan. This variant should be
also well-known, and is treated in our previous work [21] Part IV Section 2.6 in a certain
situation.

In the next Section [3.7] we will use the results in to connect the space of SL(2)-
orbits and the space of Borel-Serre orbits

3.6.2. Let X* and X, be finitely generated free abelian groups which are the Z-duals of
each other. We will denote the paring X, x X* — Z by (-, ).

Assume that we are given a finite subset R of X™* such that R = —R.

In B.63H3.6.5] we will show that we have a fan ¥(R) whose support is R ® X,.
(Actually, the cones in this fan need not be sharp, and so 3(R) should be called a quasi-
fan. But we call it a fan for simplicity.)

For a finite subset S of X*, let (S) be the cone in R ® X* generated by S and let

cS)={ye R X, | (y,z) > 0for all z € S}.
We have (S) ={z € X* | (y,z) > 0for ally € o(9)}.

Lemma 3.6.3. For a subset R' of R, the following two conditions (1) and (ii) are equiv-
alent.

(i) There isy € X, such that R' = {x € R | (y,z) > 0}.

(ii) The following (ii-1) and (ii-2) are satisfied.

(ii-l) R = R'U (-R").

(ii-2) (RY)NR=R'.
Proof. The implication (i) = (ii) is clear.

We prove (ii) = (i). Let y be an interior point of o(R’). We prove that R’ satisfies
(i) with this element y. Let © € R and assume (y,z) > 0. We prove x € R'. Assume
x ¢ R'. Then since R = R'U (—R'), we have —z € R'. Hence (y,—z) > 0 and hence
(y,—z) = 0. Since y is in the interior of o(R’') and —x € R/, this shows that —zx = 0.
Hence x = —x € R'. O

3.6.4. Let X*(R) be the set of all subsets R’ of R satisfying the equivalent conditions in
5.0.5]
Note that R’ € ¥*(R) is recovered from o(R') as R = {z € R | (y,x) > 0for all y €
o(R)}.
Let
N(R) ={o(R) | R e Z"(R)}.

We have a bijection ¥*(R) — X(R) ; R — o(R').
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Proposition 3.6.5. X(R) is a rational finite fan whose support is R @ X,.

Proof. We need to prove the following (i), (ii) and (iii).

(i) If 0 € X(R) and if 7 is a face of o, then 7 € 3(R).

(ii) If o, 7 € 3(R), then o N7 € X(R).

(iii) If o, 7 € 3¥(R) and T C o, 7 is a face of 0.

Proof of (i). Let 0 = o(R') (R € ¥*(R)). Let 7 be a face of o and let A = {x €
(R') | (y,x) =0 forall y € 7}. Then A is a face of (R') and 7 = {y € o | (y,x) =
0 for all x € A}. Let S = R' N A. Since the cone (R') is generated by R’, the cone A is
generated by S. Hence 1 ={y € o | (y,x) =0for allz € S} = o(R' U (-9)) € ¥(R).

Proof of (ii). For R}, R, € ¥*(R), we have o(R}) No(R)) = o(R}), where R} =
(RYUR,) NR e ¥*(R).

Proof of (iii). If R, R” € ¥*(R) and if " C R”, then R” = R'U (—25) for some subset
S of R', and hence o(R") is a face of o(R').

We prove that the support of 3(R) is R ® X,. It is sufficient to prove that for each
y € X,, there is R’ € ¥*(R) such that y € o(R’). In fact ' = {x € R | (y,z) > 0} has
this property. O

3.6.6. Now let G be a reductive algebraic group over a field E of characteristic 0, let T’
be an E-split torus, and let a : T" — G be a homomorphism. Let

X*"=X(T)=Hom (7T, G,,), X.=X.T)=Hom(G,,,T)=Hom (X(T),Z).

Let
R ={x € X" | Lie (G), # 0},

where Lie (G), denotes the part of Lie (G) on which the adjoint action of 7" via a is given
by x.

3.6.7. Let the notation be as in Then we have R = —R. This can be seen as
follows.

In the case where E is algebraically closed and T is a maximal torus in G with a :
T — G the inclusion map, R = —R is well-known in the theory of root systems.

The general case is reduced to this case by taking an algebraic closure £ of F and a
maximal torus in G ®x F which contains the image of a : T @ E — G @5 E.

Lemma 3.6.8. Let the notation be as in [3.6.6l. Then for a connected closed algebraic
subgroup P of G, the following two conditions (i) and (ii) are equivalent.

(i) There is y € X. such that P is the parabolic subgroup of G associated to the
homomorphism aovy : G,, — G in the sense of B.3.1.

(i) There is R' € X*(R) such that Lie (P) = @, cr Lie(G)-1. Here we denote the
group law of X* multiplicatively, and so x~' denotes the inverse of x.

Proof. Assume that (i) is satisfied. Let R’ € ¥*(R) be the set associated to y as in
(). Then (ii) is satisfied by this R'.

Conversely assume that (ii) is satisfied. Take y € X, which gives R’ as in (1),
and let P, be the parabolic subgroup of G associated to a o y. Then Lie (P) = Lie (/).
Since both P and P; are connected, we have P = P;. OJ
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3.6.9. Let the notation be as in B.6.6

Let P be the set of all parabolic subgroups P of G satisfying the equivalent conditions
in Lemma [3.6.8

For P € P, let R(P) := {x € X* | Lie (P),-1 # 0}.

By Lemma B.6.8 we have a bijection

P <L vH(R)

which sends P € P to R(P) and conversely sends R’ € ¥*(R) to the unique parabolic
subgroup P of G such that Lie (P) = @, . Lie (G)y-1.
Hence we have the composite bijection

1:1

P S(R).

For P € P, we denote the corresponding element of ¥(R) by o(P).

3.6.10. Let the notation be as in B.6.6l Assume that £ is algebraically closed, T is a
maximal torus in G, and a : T" — G is the inclusion map.

In this case, ¥(R) is called the Weyl fan and P coincides with the set of all parabolic
subgroups of G which contain T'.

If P € P is a minimal parabolic subgroup, i.e., a Borel subgroup, the open cone of
interior points of o(P) is called the dominant Weyl chamber for P ([27] Definition 21.35)
and X(R) = |J,, (faces of wo(P)), where w ranges over all elements of the Weyl group
(while P is fixed).

See [34] Theorem 8.4.3.

3.6.11. Let the notation be as in B.6.6l Now fix an isomorphism 7"~ G, p.

Then X(7) is identified with Z". Let X(7)y = N* C Z" = X(T). Let R, =
RN X(T)y. Let ¥*(R), be the subset of ¥*(R) consisting of all R’ such that R, C R'.
Let P be the corresponding subset of P and let ¥(R); C X(R) be the corresponding
subset. Then X (R), is a subfan of ¥(R). Its support is X.(R)r+ = R, = 0(R;) C
R"” = R® X,. (In fact, if y € X, and y € o(R,), then for R := {x € X* | (y,2) > 0},
we have R’ € ¥*(R), and y € o(R').)

For 1 < j < n, let WU be the increasing filtration on the functor V — V from
Repg(G) to the category of E-vector spaces associated to G, g It G r — G B31),
where j-th means the j-th component. Let G C G be the stabilizer of ® := (W(j)>1gjgn,
and let Gg be its connected component containing 1. Then Gg is the unique connected
algebraic subgroup of G such that Lie (G3) = @, cp, Lie (G),-1.

For P € P, P € P, if and only if Gg C P.

3.6.12. This is a complement to B.6. 1Tl Let G be a reductive group and assume that we
are given increasing filtrations W) (1 < j < n) on the functor V + V from Repy(G) to
the category of E-vector spaces such that there is a homomorphism Gy, 5 — G whose j-th
Gmpr — G gives WU for 1 < j < n. Let ® = (WW),.;-, and let Gg be the stabilizer
of ®. Then we have a canonical homomorphism T := G’,}% 5 — Uared Whose every lifting
T — Gg gives ®. The sets R,, ¥*(R);, and Py, and the fan ¥(R), associated to
G}, p — G are independent of the choice of such lifting, for such liftings are conjugates
in Gg of each other.
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Lemma 3.6.13. Let the situation and the notation be as in B.GIIl. Then the following
three conditions are equivalent.

(i) Gg is a parabolic subgroup of G.

(ii) Ry € ¥*(R), that is, R= Ry U (—Ry).

(i) X(R)y coincides with the set of all faces of o(Ry).

Proof. This is clear. 0

3.7 Relation of DgL(Z) and Dgg

We relate D§L(2) and Dgs. To do this, the problem is that D§L(2) does not involve parabolic
subgroups though Dgg does. We define a modification

DSSN@ which is something like “Dg; ,) plus parabolic subgroups,”

of D§L and connect DSL(2 and Dgg via DSL(2 More precisely, we define a log modifi-
cation DSL(2) — DSL@) associated to cone decompositions related to parabolic subgroups,

and define a morphism Dg’LW(Q) — Dgg.

3.7.1. Assume that G is reductive.

For ® € W(G) and for a splitting « : GS’;L,R — Gr of ®, we apply to the case
E=R,G=Gr, T=Gj g, and a=o.

Note that for ® € W(G), we have X (G)+ = N® — M.(/OZ, on Dgy,2)(®). The cone
decomposition of X,(G®)gr , in defines a log modification Dg’VL@)((I)) of Dgp,2)(®P).
It is independent of the choice of the splitting a. When ® moves, these are glued to a log
modification Dg}i@) — Dgp,(2). (Here the superscript W respects the Weyl fan. For a log
modification in the category Bg(log), see [21] Part IV 1.4.6.)

In general, for a linear algebraic group G over Q, we define DSL(2 to be the fiber

product of Dg; ) — Dreasn(2) <= Dred,SL(2)'

3.7.2. As a set, DSL@) is identified with the set of triples (z, P, Z), where p € Dieqsi(2)
x:=(p, 2" € D1, (2)» P 1s a parabolic subgroup of Geq satisfying the conditions in B.6.17]
and the condition Gyeq,0 ., C P, with ® being the set of weight filtrations associated to p,
and Z is a subset of Z’ satisfying the following (i). Let A, p be the inverse image of Ap
under 7, : R%; — Pea(R).

(i) If x is an A-orbit, Z is a 77 (A, p)-orbit. If z is a B-orbit, Z is a 77 (R~ % A, p)-orbit.

The map Dggv(z) — Dy is understood as (z, P, Z) — x.
3.7.3. We have a map

DYy = Dps 5 (¢, P, Z) — (P, Apo Z).

The fact that this is a morphism is proved by using the local structure theorem (The-
orem B.Z.T6). The proof is similar to the proof of [21] Part IV Theorem 2.6.22 (1).
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Remark 3.7.4. In [21] Part IV Sections 2.5 and 2.6, we considered
*,BS
DSL(2) — D319 = D¢ sn2) < Dsp) = Des.

In that situation, Dred SL(2 mB:'_Z[I coincides with Dgp,2) (gr")BS in [21] Part IV 2.6.3,

DSL(2) is the fiber product of DSL — DSL(2 +— Dgﬁg and the map Dg’LVé) — Dgg in

3.7.3 coincides with the composition DSL( 2 D;&S) — Dgg. The fiber product property

can be seen as

X *BS _ - W\BS
Dgy (9 X Do Dgiay = Dsrz) X Do (DSL(2 X Dyr o (ar) Dsui) (817) ™)

* W
= D§L(2) XDSL(z)(ng) DSL(2)(g1"W)BS - DSL(2) XDSL(z)(ng) ng,SL(z) = DQL@),
where the first equality is [21] Part IV Proposition 2.6.14.

Remark 3.7.5. (1) In the second line of [21] Part IV 2.6.3, D3, (gr ) should be
Dgy,2)(gr'). In the last line of loc. cit. s Dgpa) (gr"V)BS should be DSL(2 (gr'V)Bs

(2) In the proof of [21] Part TV Proposition 2.6.9, line 11 from the end of the proof,
L =8(0) US(o)~! must be corrected as R(Q) C S(o) US(0)™?

3.8 Case of Shimura varieties

3.8.1. Assume that G is reductive and that hg : Sc/r — GRr satisfies the condition that
the Hodge type of Lie (Gr) via hg is in {(1,—1),(0,0),(—=1,1)} (as in Shimura data).
Then hg is R-polarizable by [12] (Lemma [L53)).

We prove
Theorem 3.8.2. Let the assumption be as inB.81l Then we have an isomorphism
D§VL(2) = Dsi2)
in Bg(log). In particular, the identity map of D extends uniquely to a morphism
Dsr2) — Dss
of locally ringed spaces with log structures with sign.

3.8.3. Note that for a field F of characteristic 0 and for n > 0, a finite-dimensional repre-
sentatlon of SL(2)% over E is semisimple and each irreducible representation is isomorphic
to p) == Sym™™ (p;) @- - -®Sym" ™ (p,) for some r € N”, where p; : SL(2)% — GL(2)p is
the comp081tlon of the j-th projection SL(2)% — SL(2)g and the inclusion homomorphism
SL(2)p — GL(2)g. Consider the homomorphism GJ,, ; — SL(2)% whose restriction to
the k-th G, g (1 <k <n)is

-1
t= (g1, s Gn), gj:(to (2) for1<j <k, gj=1 for k<j<n.
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Write the standard base of £ by (e, e3). Then the action of G}, ;, on ®?:1(e‘f(j)e£(j)_“(j))
(a € N", a <r) via p is given by the character

k
(Z r(j) =2 ) a(j))ick<n € Z" = X(G}, p).

i=1 =
We will use the following lemma later.

Lemma 3.8.4. Let r € N" and let ¢ € Z" = X(G7, ;) be a character which appears in
the representation of Gy, i in p") wia the above homomorphism G, g — SL(2). Assume
that either one of the following conditions (i)—(iii) is satisfied. Then we have either ¢ € N™
or —c € N".

(i) r(k) =0 for all k.

(i) There is k such that 1 <k <n, r(k) >0, and r(j) =0 for all j # k.

(i1i) There are k,l such that 1 < k <1 <mn, r(k) >0, r(l) = 1, and r(j) = 0 for
Jj# kL

Proof. We consider the character ¢ of the action of G}, g on ®?:1(e‘f(j Jer =iy (0 <
a(j) < r(j) for 1< j < n).

In the case (i), ¢ = 0.

In the case (ii), ¢(j) = 0if 7 < k and ¢(j) = r(k) — 2a(k) if j > k.

In the case (iii), ¢(j) = 0if j < k, ¢(j) = c(k) = r(k) — 2a(k) if £ < 7 < [, and
c(j)=c(l) =r(k)+r()—2(a(k)+a(l)) if j > 1. Since r(I) =1 and a(l) € {0, 1}, we have
le(k) — ¢(l)] = 1. Hence we have either {c(k),c()} € N or {—c(k),—c(l)} € N. Since
c(j) € {0,c(k),c(l)} for all j, we have either ¢ € N or —c € N™. O

3.8.5. Assume that G is reductive. Let (p,¢) be an SL(2)-orbit in n variables of rank
n for (G, ho), and let V € Rep(G). Let » € N™ and assume that p(™ appears in the
action of SL(2)k on Vg induced by p. Then, by Claim in the proof of B.1.4] for the Hodge
structure of V' given by any element of D, there is p € Z such that the (p+b, p—b)-Hodge
component of V' is non-zero for 0 <b <377 | r(j).

3.8.6. We prove Theorem B82l Let & € W(G). Let (p,¢) be an SL(2)-orbit in n
variables of rank n whose associated family of weight filtrations is ®. Then by and
by the fact that only the Hodge type (1,—1),(0,0),(—1,1) appears in Lie (G), we have
that if p(™) appears in the representation Lie (Gr) of SL(2)%, then we have > () <2
Hence if p) appears in Lie (Gr), the assumption of B84 for r is satisfied. Hence by
[B.84] each character of G}, g which appears in Lie (Gr) is either in R, or —R,, that is,
R = R, U(—R,). Hence the condition (ii) of is satisfied for . Hence the condition
(iii) of is satisfied. This proves that Dgﬁ@)(@) — Dgp,(2)(®) is an isomorphism and
hence proves Theorem [3.8.2]

3.8.7. In the classical case of hy : Sc/r — GSp(g)r which gives the Siegel upper half
space $), of degree g, Dsy2) — Dgs is a homeomorphism ([23] Theorem 6.7).

But even in the case g = 1, the real analytic structures of Dpg and Dgy,z) are slightly
different as is seen in [L.9.1l For the case of some Shimura variety as in [4.9.3] the map
Dgy,2) — Dgg is not bijective.
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@) and Déi @)

We define a log modification DSL(2 — D§L(2) associated to a cone decomposition, and

3.9 Relation of DgL

define a morphism D’ Siz) — — DY SL(2)-

3.9.1. Let ® be a finite set of weight filtrations which has a common splitting.

Note that we have X (G, x Gp)+ = N x N® = M./O%; on Dg; ) (P). Let 55 €
M/O* be the image of (1,0, ...,0) and let Sior € M/O* be the image of (0,1, ...,1). These
B§ and By are glued to global sections of M-,/OZ, on DSL which we still denote by
B and Py, respectively.

Let D;Ltz (®) be the log modification of Dg; , (P) associated to the cone decomposi-
tion of X,(G,, x G®), = N x N? consisting of cones

o1 = {(0, 71, ..., ) | 1o < 370 75} and 09 := {(20, 71, ..+, ) | 19 > DT 75}

and their faces.
When ® moves, these are glued to a log modification Dgﬂz) — D§L(2)'

For j = 1,2, let Dg&z (0;) be the open set of DSL(2 whose intersection with Dgfb)(@)

coincides with its o;-part. Then DsL(z)(Ul) (resp. DSL(2)(02)) coincides with the set of all
points s of D*‘Jr such that Syt (resp. fg) is divided by g (resp. fiot) at s.

3.9.2. We define a map D§" ) = Dy (o) as follows (cf. [2I] Part IV 2.5.4).
Let ™ be a point of DSL(2 lying over z € Dg ). We define the image 2! of 7 in

D{j () There are four cases.

Case 1. Both 3} and Sy are trivial at 2. That is, 2* =z € D.

Case 2. [} is strictly divided by By at ™.

Case 3. [yt is strictly divided by g at ™.

Case 4. 3% and [y coincide at ™ but are nontrivial.

In Case 1, 2! =2t =2 € D.

In Cases 24, write z = (p, Z).

In Case 2, 2'! is © = (p, Z) regarded as an element (a B-orbit) of Dgy,o).

In Case 3, 2! is (p, Zsp), where Zgy := {splyy(2)(2rea) | 2 € Z}. (See for the
notation.)

In Case 4, Z in z = (p, Z) is a 73 (R X R2P) = 7,(Rog x R2P)-orbit, and z* is
identified with a triple (p, Z, Z") where Z' is a 7,({1} x Riép))-orbit contained in Z. We
define 2! = (p, Z").

The proof of the fact that the map just defined is a proper and surjective morphism
is similar to that of [2I] Part IV Theorem 2.5.5 (1).

*,mild

Proposition 3.9.3. There is a unique morphism D¢ siz) Déi of Bgr(log) which
extends the identity map of D.

This is a G-MHS version of a part of [2I] Part IV Theorem 2.5.5 (1), and proved

similarly as follows. The map Dg’LJEQ) — Dg} (5 is an isomorphism over the open set Dgﬁ?;l)d

of Dg;, o) as is easily seen. Hence the morphism Dg’LJEQ) — D§£(2) induces a morphism

*,mild
Dgioy — Déﬂ(z)-
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Remark 3.9.4. Let Bg (log)™ be the full subcategory of By (log) defined in Part IV 2.7.5
of [2I]. Then by the method in Section 2.7 of ibid. basing on the local structure theorems
(Theorems B.4.T6] and B.4TE]), we can prove the following G-MHS version of Theorem
2.7.14 of ibid. The spaces D{ o), D& ), D§ o) Diiyny» Déila) elong to Bg (log) ™. We
do not give the details of the proof.

3.10 Valuative spaces, I

Recall that, for an abelian group L, a submonoid V of L is said to be valuative if VUV ~! =
L.

3.10.1. We review the associated valuative space.

For an object S of Bg(log), we have a locally ringed space Sy, endowed with a log
structure with sign defined as in [2I] Part IV 3.1.13. As a set, Sy, is the set of triples
(s,V,h), where s € S, V is a valuative submonoid of (Mg/OZ )% such that V' O (Mg/OZ)s
and such that V>N (Ms/O%), = {1}, and, V., being the inverse image of V in Mg, h
is a homomorphism (Vg)* — R™! extending the evaluation homomorphism f +— f(s)
on Og g, at s.

m Part IV Proposition 3.1.9 explicitly describes the projection S, — S as a pro-
jective limit of log modifications of S ([21] Part IV Proposition 1.4.6). It follows that the
projection Sy, — S is proper and surjective (Corollary 3.1.10).

3.10.2. By B.I0.J], we have the following locally ringed spaces with a log structure with
sign
DBS,Véﬂv D§L(2 val’ DéL(2 ),val> Déi@),val
associated to the objects Dps, Dy ), DéL(Z Déi(z of Bg (log), respectively.
The underlying sets of DéL(Z),Val and DSL(2 val AT€ identified because the log structure

with sign of DéL(2) is the inverse image of that of D§£(2). We will denote their common
underlying set by Dsr2),val-

Theorem 3.10.3. (1) There is a unique morphism D§L(2),val — Dgg val which extends the
identity map of D. This map is injective.

(2) There is a unique morphism Dgp ) el = DI . | which extends the identity map
of D. It is proper and surjective.

Proof. (1) The morphism DSL(2) — Dgg in Section 3.7 induces the morphism D§L(2),va1 —

Dgg a1 which extends the identity map of D because DSL(z) is a log modification of D§L(2)
B72). The uniqueness is by the density of D in D1 @) var- The proof of the injectivity is
similar to the proof of [2I] Part IV Theorem 3.4.4 (1).

(2) The morphism D;ﬂz) — D{{ 5y in Section B9 induces the morphism Dg ) ., —
Dé{l(Z),val which extends the identity map of D because DQLJE?) is a log modification of
Dgy () (cf.B9.2). The uniqueness is by the same reason as in (1).

This morphism is proper, because both terms are proper over D,eqsi2) X spl(W) by
Proposition B.4.8 The surjectivity of this map follows from its properness and the fact
that the image of this map contains D and hence is dense in Déi@),val' O

o6



CLASSIFYING SPACES OF DEGENERATING MIXED HODGE STRUCTURES, V

* mlld
(2),val”

3.10.4. The inverse image of Dgg{‘ial under DgL )val Dgs va 1s Dgj.

Remark 3.10.5. Let Cr(val)™ be the category defined in Part IV 3.2.5 of [2I]. Then
by the method in Section 3.2 of ibid., we can prove the following G-MHS version of a
statement in 3.3.1 of ibid. The spaces Dgg val, DéL@) Déi@),val’ D* belong to
Cr(val)™. We do not give the details of the proof.

,val? ),val

3.11 Global properties of DéL@), D§£(2), SL(2) ete

Theorem 3.11.1. Let X be one of DSL(2 Déi(z D1 DéL(2),val7 DSL(2 vatr DAL(2) va
Dgs yal, DSLJF2 ) DgLW(z . Let T be a semi-arithmetic subgroup of G'(Q) (L51).

(1) The action of T' on X is proper and the quotient space I'\ X is Hausdorff. In
particular, X is Hausdorff.

(2) If T is torsion-free, the action of I' on X is free and the map X — '\ X is a local
homeomorphism.

The proof, given in BI1.21 and B.IT3] below, is similar to that of [21I] Part II Theorem
3.5.17 and that of [2I] Part IV Theorem 6.1.1. Starting from Dgg, we transport various
properties along the fundamental diagram in Introduction.

3.11.2. We first prove that the case I' = {1} of (1), that is, the space X is Hausdorff.
We have an injective continuous map Dg; o) .1 — Dpsval (Theorem (1)). Since

Dgg is Hausdorft (Proposition 2.6.2)), Dgs va is Hausdorff. Hence, D§L(2),va1 is Hausdorff.

Since DgL( 2)val D*V(V) DSL(z) val — DSL( and D§L(2)7val — D§L(2) are proper and sur-

jective, Dy Vg) DZF - and DSL (2) are Hausdorff. Since the maps D§L(2) val Dé£(2),val —

SL(2)
D§£(2) are proper and surjective (Theorem B.10.3] (2)), D§£(2 L and DSL are Hausdorff.
Since we have a bijective continuous map DéL@) DH SL(2)’ DéL@) is Hausdorff. Hence

DéL@)’Val is also Hausdorff.

3.11.3. We prove Theorem B.11.11
(1) We prove the former part, that is, that the action is proper. Since it is valid
for X = Dgg (Theorem 261 (1)), we see that it is valid for Dpgva and D ) . by

(2),val

using continuous maps D§L(2) val = DBsval = Dgs, B.I1.2) and the fact (3.1). Then
we see that it is valid also for D*W D*Jr y» Dira)s Déi(%m and Déi by using the
proper and surjective maps DSL(2) val DSL( 2 Dg; SL@)val D SL(2) D§L(2) val DSL(2)
D§L(2) vl — Dsi@)val = Dsi2) and the fact 2.3.6 (3.2). Then we see it also for DéL( 2
and DSL(2 | by using the contlnuous maps D} SLz) — DSL@) and DéL@)’Val — Déi(z)

The latter part of (1) follows from the former part by (1).

(2) We prove the former part, that is, the action is free, by using a similar argument as
in2:6.4 We apply 2361 (4) to H =T, H; =T, X1 = spl(W), X2 = Dieqsr(2)- The action
of I'/T'y on Dieqgsi(2) is free, by a similar argument in the proof of [23] Lemma 5.7, and
the action of I';, on spl(W) ~ G, (R) is free. Hence the action of I' on spl(W) x Dieq si(2)
is free. By using the canonical maps from DI DSL(2 §L(2) to spl(W) X Dieqsi(2)

,val®
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together with the related maps in the fundamental diagram, we see that the action of I"
on X is free.

The latter part of (2) follows from the former by (2), the properness of the action
proved in (1), and

3.11.4. In Theorem BIT.T], we can use a semi-arithmetic subgroup of G(Q) (not of G'(Q))
in the following two situations.

First, if either G is semisimple or the condition (1) in Lemma is satisfied, B 111
holds for a semi-arithmetic subgroup I' of G(Q). In fact, I' N G'(Q) is of finite index
(cf. Proposition for the latter case). Hence by (5), we can replace I' by the
semi-arithmetic subgroup I' N G'(Q) of G'(Q).

Next

Proposition 3.11.5. Assume that G is reductive. Let X be one of Dsy2), Dsi2)val:
Dgs var- Let I' be a semi-arithmetic subgroup of G(Q).

(1) The quotient space I'\ X is Hausdorff.

(2) Let Z be the center of G. If the image of I in (G/Z)(Q) is torsion-free, the map
X — '\ X is a local homeomorphism.

See L.10.1§ for the proof.

4 The space of nilpotent orbits

Let D = D(G, hy) be as in We assume that hg is R-polarizable (L5.2)).

In this section, we define and study the toroidal partial compactification I"\ Dy of
['\ D, an extended period domain consisting of nilpotent orbits. We consider I'\ Dy,
as the moduli of G-log mixed Hodge structures. It is the G-MHS version of the toroidal
partial compactification I'\ D(A)x, of I'\ D(A) for the classical period domain D(A) (6.
This '\ D(A)y is defined and studied in [24] (in the pure case) and in [21] Part III and
Part IV (in the mixed case) and is the moduli space of LMH.

4.1 The sets Dy and Dﬂ2

4.1.1. A nilpotent cone is a subset o of Lie (GR) satisfying the following (i)—(iii).

(i) 0 = RNy + - - + R5o N, for some Ny, ..., N, € Lie (Gg).

(ii) For every V' € Rep(G), the image of o under the induced map Lie (Gr) —
Endg (VR) consists of nilpotent operators.

(iii) We have [N, N'] =0 for N, N’ € 0.

4.1.2. Recall that for a vector space V over a field E, for an increasing filtration W

on V, and for a nilpotent linear map N : V — V such that NW,, ¢ W, for all w, an

increasing filtration M on V is called the relative monodromy filtration of N relative to

W if NM,, C M, for all w and N™ : grl, orlV 5 grl or? for all w and all m > 0.
The relative monodromy filtration M need not exist, but it is unique if it exists.
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4.1.3. Let F € D and let ¢ be a nilpotent cone. We say that the pair (o, F) generates a
nilpotent orbit if the following conditions (i)—(iii) are satisfied.

(i) Let Ny,..., N, be as in (i) in EIIl Then exp(d_7_, z;N;)FF € D if z; € C and
Im(zj) > 0.

(ii) NFP C Fr~tfor all N € 0 and p € Z.

(iii) For every N € o and every V € Rep(G), the relative monodromy filtration of
N : Vg — Vg with respect to W(V)g exists.

In this case, we also say that (Ny,..., N,, F) generates a nilpotent orbit.

Note that the above condition (i) is independent of the choice of (Ny,...,N,) as in
(i) in LITl Note also that it is equivalent to the condition that exp(D_7_, iy; N;)F € D
if y; € R and y; > 0.

Proposition 4.1.4. Let F € D and let o be a nilpotent cone. Then the following condi-
tions (i), (ii), and (iii) are equivalent.

(i) (o, F') generates a nilpotent orbit in the sense of L3

(ii) For every V € Rep(G), we have the following (ii-1), (ii-2), (ii-3).

(ii-1) For each w € Z, there is a Gg-invariant R-bilinear form (-, -}, : gri¥ Vg x
gry Ve — R such that if z; € C and Im(z;) > 0 (1 < j <n), (gry) Vr,exp(3_7_, 2 N;) F(gry V)
is a Hodge structure of weight w polarized by (-, ).

(ii-2) NFP(V) C FP~Y(V) for all N € 0 and p € Z.

(ii-3) For every N € o, the relative monodromy filtration of N : Vg — Vg with
respect to W exists.

(iii) For some faithful V' € Rep(G), the above conditions (ii-1)—(ii-3) are satisfied.

Proof. Assume (i). We prove (ii). Consider the continuous map C" — D ; z
exp(D_j_, z;N;)F. For some ¢ € R, the image of S := {z € C" | Im(z;) > ¢} C C"
under this map is contained in D. Hence it induces a continuous map S — D. Since
D is a disjoint union of G'(R)G,(C)-orbits which are open and closed and since S is
connected, the image of S in D is contained in one G'(R)G,(C)-orbit D'. Take F' € D'.
Let V' € Rep(G). By the R-polarizability and Lemma [[L53] for each w € Z, there is a
G-invariant R-bilinear form (-, -),, : gV Vg x gr¥ Vg — R which polarizes F’(gr!V). If
z€ 8, exp(d 7, 2 N;)F' = gF" for some g € G'(R). Since (-, -),, is fixed by g, it polarizes
exp(zg;l Zij)F.

The implication (ii) = (iii) is clear.

By [L41 and by [21] Part I1I 1.2.2.1, 1.2.2.2, we have the implication (iii) = (i). O

Proposition 4.1.5. Assume that (o, Z) generates a nilpotent orbit. Then we have a
filtration M (1) € W(Gr) B3T]) for each face T of o satisfying the following conditions
(i)-(iii). If o is rational, then all M(T) belong to W(G).

(i) NM(7)yw C M(7)y for all N € 0 and w € Z.

(ii) M(0) = W.

(iii) If T and 7" are faces of o and if N € o, and if 7" is the smallest face of o containing
T and N, then M(7') is the relative monodromy filtration of N with respect to M ().

Proof. This follows from Kashiwara [I8] 4.4.1 and 5.2.5. O
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4.1.6. A nilpotent orbit (resp. nilpotent i-orbit) is a pair (o, Z) of a nilpotent cone o and
an exp(o¢) (resp. exp(i-or))-orbit in D satisfying that, for some F' € Z, (o, F) generates
a nilpotent orbit in the sense of .13l Here o¢ (resp. or) denotes the C (resp. R)-linear
subspace spanned by o in Lie (G) (resp. Lie (GR)).

4.1.7. A weak fan ¥ in Lie (G') is a nonempty set of sharp rational nilpotent cones in
Lie (GR) satisfying the following conditions (i) and (ii).

(i) If o € ¥ and if ¢’ is a face of o, then ¢’ € ¥.

(ii) Let 0,0" € X, and assume that ¢ and ¢’ have a common interior point and that
there is an F € D such that both (o, F) and (o', F) generate nilpotent orbits. Then
o=o.

4.1.8. Let Dy be the set of all nilpotent orbits (o, 7) such that ¢ € ¥. Then D is
naturally embedded in Dy, via F'— ({0}, {F}).

Let D% be the set of all nilpotent i-orbits (o, Z) such that o € X. Then D is also
naturally embedded in D% via F — ({0}, {F}).

We have a canonical map D% — Dy ; (0, Z) — (0, exp(oc)Z).

For a rational nilpotent cone o, we define D, := Digace of o} Dg = D’%face of 5}

4.1.9. Let I" be a subgroup of G(Q) satisfying (SA) (L5.7).

We say that > and I' are compatible if X is stable under the adjoint action of I'. If
this is the case, I naturally acts on Ds.

We say that Y and I' are strongly compatible if they are compatible and if every o € %
is generated by elements whose exp in G(R) belong to I'.

4.2 FE, and the spaces of nilpotent orbits

For ¥ and I" which are strongly compatible, we endow I'\ Dy, with a structure of a locally
ringed space over C and with a log structure. We endow DﬁE with a topology.

4.2.1. Let ¥ and I" be as in . 1.7 and in [£.1.91 Assume that they are strongly compatible

[EI9). Let o € X
Let I'(0) := 'Nexp(o) in G(R). Then I'(0) is an fs monoid and I'(0)8? = I'Nexp(or)
is a finitely generated free abelian group. Let

torus, = torus,r = C* @ I'(0)*P.
Let P(0) = Hom (I'(0),N). Let
toric, = toric,r = Hom (P(c), C™") = Spec(C[P(c)])™.

Here C™!* = C regarded as a multiplicative monoid. The standard log structure of the
toric variety Spec(C[P(c0)]) induces the log structure of the analytic toric space toric,.
We regard torus, as an open set of toric, via the embedding

torus, = Hom (P(0)®?, C*) C toric,.
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We have a natural action of torus, on toric,. We have an exact sequence

1
0—I'(0)® = oc — torus, — 0,

where '
e(z®log(y)) =™ @y for z€ C,y (o).

For a face 7 of 7, let 0, € toric, be the homomorphism P(c) = Hom (I'(¢), N) — Cmult
which sends h € Hom (I'(¢), N) to 1 if h(I'(7)) = 0 and to 0 otherwise.

Each element ¢ of toric, is written in the form ¢ = e(a) -0, for a € o and for a face 7
of 0. The face 7 of ¢ is determined by ¢ and called the face associated to q, and a modulo
Tc + log(I'(0)#P) is determined by ¢. The stalk of M/O* of toric, at ¢ is identified with
Hom (I'(7), N).

4.2.2. Let the notation be as in [4.2.1] Define
|toric|, := Hom (P(c), R%}") D [torus|, := Hom (P(0)®, R~o) = Roo ® I'(0)%".

Here RZY denotes the multiplicative monoid Rsg. Thus we have |toric|, C toric, and
|torus|, C torus,.

We have projections ¢ +— |q| ; toric, — |toric|, and torus, — |torus|, induced by
taking the absolute value | - | : C™ult — Rmult,

4.2.3. We give additive presentations of |torus|, and |toric|,.
We have an isomorphism of topological groups

oRr =~ [torus|, ; b+ e(ib).

We will often identify |torus|, with ogr via this isomorphism. This identification is ex-
tended to an identification of |toric|, and the set of equivalence classes of pairs (7,b),
where b € or and 7 is a face of 0. Here (7,b) and (7/,b") are equivalent if and only if
7 =7 and 0 = bmod . We identify e(ib)0, € |toric|, with the class of (7,b). The
topology of |toric|, is understood as follows. Let z = class (7,b) € |toric|,. Take a finite
set (N;); of generators of the cone 7. Then the following sets V (U, ¢) form a base of
neighborhoods of x. Let U be a neighborhood of b in ogr and let ¢ € R~y. Then, V (U, ¢)
is the set of class (7/,0), where 7’ is a face of 7 and ¥ = 0" + >, y;N; for some b € U
and some real numbers y; > c.

4.2.4. Note that toric, depends on the choice of ' (actually it depends on I'(¢)) though
the notation toric, does not tell this dependence.

However, the topological space |toric|, does not depend on I' as is seen in [£.2.3]
4.2.5. Let

E, := toric, x D, E* := [toric|, x D.

Let E, (resp. E,) be the set of all (¢, F) € E, satisfying the following condition (i)
(resp. (i)’). Write ¢ = e(a)0,, where a € oc and 7 is a face of o.
(i) The pair (,exp(a)F') generates a nilpotent orbit.
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(i) We have NFP C FP~! for N € 7 and p € Z.

We have E, C Eo C E,.

Endow the complex analytic space E, with the pullback log structure from toric,.
Endow E, and E, with the strong topologies ([24], 3.1.1) in E, as reviewed below, with
the inverse images of the sheaf of holomorphic functions on E,, and with the inverse
images of the log structure of E,.

Recall that for a complex analytic space X and a subset S of X, the strong topology
of S in X is the strongest topology on S such that for every complex analytic space Y
and for every morphism A : Y — X of complex analytic spaces such that A(Y) C S, the
map A : Y — S is continuous. It is stronger than the topology on S as a subspace of X.

Let

B = B, N B BE— B, 0Bt

endowed with the topologies as the subspaces of E, and Eo, respectively. Using the
additive presentation of |toric|, in E2Z3, we can identify Ef (resp. E%) with the set of
(class (7,D), F) € |toric|, x D = E! such that (7,exp(ib)F) generates a nilpotent orbit
(resp. such that NFP C FP~! for all N € 7 and p € Z).

4.2.6. We show that as a topological space, E% does not depend on I'. Write F,, E? and
P(o) @EZT) for I' as Er(,, EI{(J) and P(I'(0)), respectively, to express the dependence
on I'(o).

Assume that I'y and 'y are strongly compatible with ¥. Then I'y N T’y is strongly
compatible with . We show that E(r,nr,)) — Er,() are homeomorphisms for j =1,2.
Replacing I'y NI’y by I';, we may assume I'y C 'y, Write Erj(o) as Zj, Er ) as Y},
and EI{J_(J) as Y;-ﬁ (7 = 1,2). Since P(I'y(0)) € P(I'1(0)), and C[P(I'1(0))] is a finitely
generated C[P(I'y(0)])-module, the map toricr,(,) — toricr, () is proper and surjective
and hence the map Z; — Z, is proper and surjective.

We prove that for the map Y} — Y5, the topology of the latter is the image of the
topology of the latter. Let U be a subset of Y5 and assume that the inverse image U’ of U
in Y] is open. We prove that U is open. Let S be an analytic space over C and assume that
we have a morphism S — Z5 whose image is contained in Y3. Our task is to prove that
the inverse image of U in S is open. Let S’ be the fiber product of S — Z3 + Z; in the
category of analytic spaces over C. Since the set Y] is the fiber product of Yo — Z5 < 7,
the image of S’ — Z; is contained in Y;. Hence the inverse image of U’ in S’, which is
the inverse image of U in S’, is open. Since S’ — S is proper surjective, this proves that
the inverse image of U in S is open.

Since Y}ﬁ is closed in Y}, this tells that for the bijection Ylti — Yzﬂ, the topology of the
latter is the image of the topology of the former. Hence the last map is a homeomorphism.

4.2.7. For o € Y, consider the map
0o E, - T'\ Dx; (q, F) > class (1, Z)

with Z = exp(7¢)exp(a)F, where 7 and a € o¢ are such that ¢ = e(a)0,. We endow
['\ Dy, with a structure of a locally ringed space over C and with a log structure as follows.
The topology of I'\ Dy is the strongest topology for which the maps ¢, are continuous
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for all o € ¥. The structure sheaf of I\ Dy, consists of functions whose pullbacks to E,
belong to the structure sheaf of E, for all ¢ € ¥. The log structure of I'\ Dy, is the
subsheaf of the structure sheaf of I'\ Dy consisting of functions whose pullbacks to E,
belong to the log structure of E, for all o € 3.

4.2.8. In this topology of T'\ Dy, if (0,Z) € Dy and if F' € Z and Ny,...,N, € o
generate the cone o, class (0, Z) € I'\ Dy is the limit of class (exp(}_)_, z;N;) ") € '\ D
where z; € C and Im(z;) tends to oo for 1 < j <n.

4.2.9. Here we do not need I'.
For o € ¥, consider the surjective map

o B% — D (class (1,b), F) +— class (1, Z)

with Z = exp(itr) exp(ib)F.
We define the topology of DtiE as the strongest topology such that the composite
Ef — D! — DﬁZ also denoted by ¢ are continuous for all o € 3.

4.2.10. In this topology, if (0, Z) € DﬁE and if ' € Z and Ny,..., N, € o generate the
cone o, (0,7) is the limit of exp(zg;l iy;N;)F € D where y; € Ry and y; — oo for
I1<j<n

4.2.11. Assume that (X,I") is strongly compatible.
Since
E! LN D%,
\ \
E, 2% T'\ Dy

is commutative, we have that the map DﬁZ — I'\ Dy, is continuous.

4.2.12. For an fs log analytic space X, by a strong subspace of X, we mean a subset of
X endowed with the strong topology in X (A23), with the inverse image of the sheaf of
holomorphic functions on X, and with the inverse image of the log structure of X.

For example, E, is a strong subspace of E,.

Let B(log) be the category of locally ringed spaces endowed with a log structure which
are locally isomorphic to a strong subspace of an fs log analytic space. See [24] 3.2.4 and
[21] Part III 1.1.4.

Both E, and E, are objects of B(log).

An object of B(log) is a log manifold if it is locally isomorphic to an open set of
a strong subspace S of a log smooth fs log analytic space X satisfying the following
condition: There is a finite family of log differential forms (w;); on X such that S = {z €
X | wj(x) = 0 for all j}. Here w;(x) denotes the pullback of w; to the log point x (it is
not the germ of w; at x). See [24] 3.5.7 and [2I] Part III 1.1.5.

Later we will show that E,, E,, and I'\ Dy, for a strongly compatible (3,I") with T’
being a neat semi-arithmetic subgroup of G'(Q) (LL.1), are log manifolds. See Theorem
5.7 and Theorem E6.1] (4). We will also show that for such I, the quotient space I'\ D%
is identified with the space (I'\ D)8 (Theorem E6.1] (5)).
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4.3 The space of ratios

We review the space of ratios S|, and discuss Dy, ;) and Dﬁ Which are modified versions

of Dy and Dﬁz, respectively.

4.3.1. This is a review of [2I] Part IV 4.2. Let S be a locally ringed space over E = R
or C with an fs log structure Mg satisfying the following conditions (i) and (ii).

(i) For every s € S, the natural homomorphism E — Og/m; is an isomorphism.
Here, we denote by m, the maximal ideal of Og.

(ii) For every open set U of S and for every f € O(U), the map U — E ; s+ f(s) is
continuous. Here f(s) is the image of f in Ogs/ms = E.

Then we have a topological space S}; over S, called the space of ratios, defined as
follows.

4.3.2. For a sharp fs monoid S, let R(S) be the set of all maps r: (S x &) ~ {(1,1)} —
[0, 00| satisfying the following conditions (i)—(iii).

(1) (g, /) =r(f.9)7"

(i) r(f, 9)r(g,h) = r(f, h) it {r(f,9),r(g,h)} # {0, 00}.

(111) (fga ) - ’l“(f h) + ’l“(g, h)

4.3.3. Let o be the cone Hom (S, R¥!), where R denotes the additive monoid R.
Then R(S) is identified with the set of equ1valence classes of (0, N;)i1<j<n, where n > 0,
o, are faces of o such that {0} =09 C 01 C --- C 0, = 0, and N; is an element of the
interior of o;. The equivalence relation is that (aj, Nj)i<j<n ~ (0}, N Di<j<n if and only if
n =n', o; = o; for all j, and for each j, there is a ¢; > 0 such that N} = ¢;N; mod 0;_; r.

Such a class ((o;, N;);) is identified with » € R(S) defined as follows. For (f,g) € S x
S~ {(1,1)}, take the biggest j such that o,;_; kills f and g. Then r(f, g) = N,(f)/N;(g)-

Remark 4.3.4. There is an error in a related part 4.1.6 in [2I] Part IV. In the definition
of the map R/'(S) — R(S), “oc0” in (2) and “0” in (3) should be interchanged.

4.3.5. Let S be as in A3.J1 We define the set S as the set of (s,r) with s € S and
r e R(Ms/OF)s).

4.3.6. We define the topology of S|; as the weakest topology for which the following
conditions (1) and (2) are satisfied.

(1) The map Spy — S'; (s,7) — s is continuous.

(2) Let U be an open set of S, let f,g € Mg(U), and assume that |f(s)] < 1 and
lg(s)] < 1 for all s € U. Here f(s) is the value at s of the image of f in Oy and g(s)
is defined similarly. Let U be the inverse image of U in Spy. Then the following map
g U = [0,00] is continuous.

Let s € U. If f,g € Og,, then ry,(s,r) = log(|f(s)])/log(|g(s)]). Otherwise,
r1.4(s,7) = r(f(s),4(s)), where f(s) is the image of f in (Mg/O%)s and g(s) is defined
similarly.

4.3.7. Assume that we are given a chart & — Mg. Let ® be a set of faces of S which is
totally ordered for the inclusion relation and which contains S. Let Spj(®) be the subset
of S} consisting of all (s, r) such that if class((o;, Nj)1<j<n) corresponds to r as in £33
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the annihilator of o; in §, which is a face of S, belongs to ® for every 1 < j < n. Here
the annihilator of o; in § means the subset of S consisting of all elements which are sent

to 0 by & — (Ms/O%)s 2 Rxg for all h € ;.

Then Sp(P) for all above ® forms an open covering of Sy (ibid. Part IV 4.2.11).

For a geometric meaning of Sp)(®), see ibid. Part IV 4.2.11-4.2.19 in the general case,
and ibid. Part IV 4.2.20-4.2.22 in the case S = |A|" with |A| :={t e R|0 <t < 1}.

4.3.8. Let |toric|, ) C toric, ) be the inverse image of |toric|, under the map toric,; —
toric,. We have a projection toric, ] — |toric|c,7[:]. This is a unique continuous map which
is compatible with the projection toric, — |toric|,.

4.3.9. We give an additive presentation of |toric|, ;.

We can identify |toric|, ) with the set of equivalence classes of ((0;, N;)1<j<n,b), where
n > 0, o, are faces of o such that {0} C oy C --- C 0, (here 0, need not coincide with
o), N; is an element of the interior of ¢, and b € or. The equivalence relation is that
((05, Nj)i<j<n, b) and ((0F, Nj)1<j<n, b') are equivalent if and only if n' = n, o} = oy,
Nj = ¢;N; mod oj 1 g for some ¢; € Ry (1 < j < n), and ¥ = bmod o, r. Here oy
denotes {0}.

The projection [toric|, ) — |toric|, is understood as class ((¢}, IN;), b) — class (0, b).

4.3.10. Let x = class ((0;, Nj)i<j<n,b) € |toric|, . By a good base for x, we mean a
family of elements (N;)ses of o, satisfying the following conditions (i) and (ii).

(i) The index set S is the disjoint union of some subsets S; (1 < j < n), and the
following holds for each j (1 < j <n). Let S<; :=|],; Sy C S. Then N, € 0; if s € S<;,
and (N;)ses., is a base of the R-vector space o R.

(ii) There are a5 € R~ (s € S;) such that N, = Zsesj

This is a [:]-version of good base discussed in [24] 6.3.

asNsmod o;_j g for1 < j <mn.

Proposition 4.3.11. A good base for x exists.

Proof. For each j, take a simplicial subcone of the cone (0;+0;-1r)/0;j-1Rr consisting of
the interior points except the origin and including the class of N;. Take a base (N,).es,
of this cone and lift N, (s € S;) to an element N, of o; for each j. Then these N,’s form

a good base. O

4.3.12. We describe the topology of |toric|, ] by using the additive presentation

Let n >0, let {0} C 0y C -+ C 0, be faces of o, and let (Ny)ses be a finite family of
elements of o,, satisfying the condition (i) in

Fix an R-subspace B of or such that ogr = 0, r © B.

Let U be the subset of [toric|, ] consisting of classes of ((07,, Ni)i<k<n,b) satisfying
the following conditions. There is an injective increasing map 6 : {1,...,n'} — {1,...,n}
such that o;, = ogy for 1 <k <n'. For 1 <k <1/, if we write Ny = ) y,Ny mod 012—17R=
where s ranges over all elements of S belonging to S; for some j such that (k — 1) <
j < 0(k), then y; € Rop. (In the case & = 1, (k — 1) means 0.) If we write b =
V+>,ysNs mod o, r, Where V' € B and s ranges over all elements of S belonging to Sj
for some j such that (n') < j, then y, € R+y.

Then U is an open set of |toric|, .
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For each j, choose an element ¢; of S;. Let T" be the complement of {¢; | 1 < j < n}
in S. Then we have a homeomorphism

U~RL xR x B

defined as follows. Let 2’ = class ((0},, Nk)i1<k<n’,b) € U, and let 0, ys (s € S), V' € B be
as above. Then the image of ' in RZ; x RL x B is ((t;)1<j<n: (Ys/Ye,)ser, V'), Where t;
are as follows. -

If j is in the image of ¢, then t; = 0.

If j is not in the image of ¢ and j < 6(n'), then t; = y.,,, /yc,.

If O(n') < j, then t; = 1/y,,.

Note that if (N)ses is a good base for & = class ((0, N))1<j<n,b) € |toric|o],
belongs to the above U and hence U is an open neighborhood of x.

4.3.13. Let the notation be as in [4.2.1] Let

Eﬁ [ = |toric|y,y x D C E, [y = toricy x D.
Let

Et

"
b o.[]

— ! — F oy
o] T EO'vH A chr7 T EU?M N Eo,

L] [
We endow Efr ] and Eﬁ ] with the topologies as the subspaces of E, ] and EmH, respec-
tively. These coincide with the topologies defined via the projections E,; — Ei ] and

Em[:] — Eﬂ i respectively.

4.3.14. We show that as topological spaces, [toric|, ) and Eﬁ (] are independent of the
choice of T'.

We describe the proof for Ei[:]. The proof for |toric|, [ is similar. In fact, assume
that I'; (j = 1,2) are strongly compatible with ¥ and assume I'y C I'y. Since Ef“j(a),[:] is
identifies with (Elti] (o))t (the [:]-space of Ef,j (o) Which is endowed with the inverse image
of the log structure of Er, (), Eﬁj(g)v[z]ﬁis proper o;zer Eltij (0)" Since Eltil(a) — EIQQ(U) is
ijjl;zgsgmgzzl;sg i(sﬂﬁl));nzgen ;rrlgii Si{_l o) EFQ(U),[;} is proper continuous and it is

4.3.15. Let Dy [y (resp. Dﬁz,[:]) be the set of (0, Z,class ((0;, N;)1<j<n)), Where o € X,
(0,Z) € Dy, (resp. (0,Z) € DL), n > 0, o, are faces of o such that {0} € o C

-+ C 0, = 0, and N; is an element of the interior of ¢;. The notation class is for the
equivalence relation that (o, Nj)i<j<n ~ (07, N})i<j<n if and only if 0’ = n, o = 0}, and
Nj’- = a;N; mod o;_; g for some a; € Ry (1 < j <n).
We have canonical maps
Dy — Dy, Di — D§
by sending the class of (o, Z, class ((¢j, Nj)1<j<n)) to (0, Z).
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4.3.16. Assume that (X,I") strongly compatible. We define a topology of I'\ Dy, ;).

For o € ¥, by 3.3 E, is identified with the set of triples (g, class ((o;, N;)i<j<n), F),
where ¢ € toric, and writing ¢ as e(a)0,, n > 0, o; are faces of 7 such that {0} C o1 C
-+ C o, = 7, and N, is an element of the interior of ;. The equivalence relation is
defined in the same way as in

For o € X, consider the map

ot Eopp — T'\ Dy 5 (q,class (05, Nj)i<j<n, F) = class (1, Z, class (0, N} ) 1<j<n)

with ¢ = e(a)0, and Z = exp(7¢) exp(a)F.

We endow I'\ Dy, [ with the strongest topology for which the maps ¢, ] are continuous
for all o € 3.

In this topology, if (o, Z, class ((¢, N;)1<j<n)) € Dy,pjand if F' € Z, then class (0, Z, (0, Nj)1<j<n) €
'\ Dy is the limit of class (exp(3."_, z;N;)F) € T'\ D where z; € C, Im(z;) — oo for

j=1
1 <j<nandIm(z)/Im(zj41) +ooforl <j<mn-—1.

4.3.17. Here we do not need I'.
For o € ¥, we have a map

t ot
oy L

o[

— D;,[] ; (class ((O'j, Nj)lgjgn)a b, F) — (O’n, eXp(iO'mR—'—ib)F, class ((O’j, Nj)1§j§n>>-

We define the topology of Dﬁ2 1] as the strongest topology for which the maps wi K

E |
o[ -

In this topology, if x = (0, Z, class ((o;, N))1<j<n)) € Dﬁz,m and if F' € Z and Nj, then
2 is the limit of exp(zg;l iy;N;)F € D where y; € Reo, yj/y;j+1 = oo for 1 < j <mn

(Yny1 = 1).

— Dﬁ2 ] are continuous for all o € X.

4.3.18. The maps I'\ Dy ;j — I'\ Dy, and Dﬁz’H — DﬁE are continuous.

4.4 Valuative spaces, 11

4.4.1. Let F and S be as in 1311

We recall that there are two kinds of valuative spaces Syar) and Sy associated to
S ([21] Part TV 3.1.3).

In the case where S is an object of Bg(log), Sya in Section is identified, as a
topological space, with the topological space Sya(.). On the other hand, Si. for an
object S of B(log) [A2I2) defined in [24] 3.6.18, 3.6.23 is a locally ringed space over C
with log structure, and it is Sai(c)-

These two kinds of Sy, played important roles in our previous works [24] and [21].

Our rule of the notation Sy, in [24] and [21] and in this paper is that if S is an object
of B(log), then Sy, means Sy.(c), but otherwise, Sy, means Sya.)).-

We also consider, for a weak fan X, the maps Dy ya — Dy ;) and ngal - D?

DA

4.4.2. Let E and S be as in £.3.1]
As a set, let Sy (resp. Sva(g)) be the set of triples (s,V,h), where s € S, V
is a submonoid of (Mg/O%)& such that (M'/0%)s = VUV~ (Ms/O%)s C V and
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V>N (Mg/O%)s = {1} (here V* denotes the subgroup V NV~ of (Mg /O%)), and h
is a homomorphism from {f € Mg, | f mod Og, € V*} to Ry (resp. £*) such that
h(u) = |u(s)| (resp. h(u) = u(s)) for all u € Og,.

The topologies of Sy and Syaig) are defined to be the weakest topology having the
following properties (i) and (ii).

(i) The projection (s, V,h) +— s to S is continuous.

(ii) Let U be an open set of S and let f € Mg(U). Then the subset W = {(s,V,h) €
Sval()) (resp. Svamy) | s € U, fmod Og € V} of Su)y (resp. Sa(r)) is open, and the
map W — R (resp. W — E), which sends (s, V, h) to h(f) if f mod Og, € V> and to
0 otherwise, is continuous.

For an object S of B(log), Sva(r) has a structure of a locally ringed space with log
structure given in [24] 3.6.23.

For the understandings of these val spaces using inverse limits for blowing ups along
the log structure, see [21] Part IV Section 3.1.

4.4.3. For a sharp fs monoid S, we recall the set V(S) and the canonical map V(S) —
R(S) from [21] Part IV 4.1.7, 4.1.8. Let R(S) be as in[A3.2and let V(S) be the set of all
valuative submonoids V' of S8 such that V' O § and V* NS = {1}. We have a surjective
map

V(S) = R(S)

sending V' € V(S) to the element ry of R(S) which is the map S x S~ {(1,1)} — [0, o]
defined by

rv(f,9) = sup{a/b | (a,b) € N*~{(0,0)}, f*/g" € V'}
= inf{a/b| (a,b) € N>~ {(0,0)}, 9%/ € V}.

4.4.4. We have proper surjective continuous maps Syai(g) — Svai(.)) — S — 5. Here the
second arrow is defined by [4.4.3]

4.4.5. Define

tOTiCo val == (tOrics )vai(c) D [toric|sval := ([toric|s)vai(-)),

Egval = (Eg)vai(c) D E(ﬁ,,val = (E%)val( ))-

Then Egval is identified with the inverse image of |toric|, va under E, , — toricy .. We
have the projections

toricy var = [toric|pval,  Eoval — Ef

o,val®

4.4.6. The topological spaces |toric|y v and Eﬁvval are independent of I'. The proofs are
similar to the proof for E(ﬁf ;) given in 43714

4.4.7. Let X be a weak fan. We define sets Dy, y, and ngal.

For o € ¥, let Q(0) be the set of all rational linear maps og — R, and let P(0) be
the set of all elements h of Q(o) such that h(o) C Rx.

68



CLASSIFYING SPACES OF DEGENERATING MIXED HODGE STRUCTURES, V

Let Dy va (resp. ngal) be the set of quadruple (o,Z,V,Z"), where (0,Z) € Dy
(resp. Dﬁz), V is a submonoid of Q(c) such that Q(¢) = V U (=V), P(¢) C V, and
VN (=V)NP(o) = {0}, and if A C og NLie(G’) denotes the annihilator of V' N (=V) in
the perfect pairing og NLie (G') x Q(0) — Q of Q-vector spaces, Z' is an exp(Ac) (resp.
exp(iAg))-orbit in Z.

The canonical maps Dy o — Dy, Dt

S = DE are given by (0, 2,V, 2') = (0, 2).
The shapes of the definitions of Dy, and Dgl,val seem to be slightly different from
those in [24], [2I] Part III, but are the same. We hope the presentations of the present

definitions are better.

4.4.8. We have canonical maps of sets

DE,Val - DZ,H’ ngal - Dé,”

sending (0, Z,V,Z') to (0, Z, class ((0;, Nj);)), where V — ry < class ((o;, N;);) by 43
and 3.3l

4.4.9. Assume that (X, T) is strongly compatible.
The structure of I' \ Dy, v as a locally ringed space with log structure is defined by
USINg @oval : Eoval — L'\ Dy yal (0 € X) analogously as 1271

4.4.10. Here we do not need I'.

The topology of Dﬁz,m is defined by using 90g,va1 : Efnval — ngal (o € ¥) analogously
as (4317
4.4.11. The continuity of I'\ Dy, a1 — '\ Dy, and the continuity of Dﬁz,m — DtiE ] are
clear because the topologies of the val spaces are defined by using E, a1, Eg,val, and the

topologies of [:]-spaces are defined by E, ) and Eﬁ o and Eg v — Ey ) and Efnval — Efr ]
are continuous.

4.5 Nilpotent orbits and SL(2)-orbits

In this section we prove the continuity of the CKS map (Theorem [L5.5), which is the
most important bridge in the fundamental diagram. We prove this together with that E,
is open in E, (Theorem E5.6), which implies that E, is a log manifold (Theorem E5.T).

Note that there are mistakes in the corresponding parts [24] and [21I] Part III, which
are corrected in [21] Part IV Appendix in a rather complicated way and, unfortunately,
the correction itself contains several errors. So in this section L5 we present the whole
structure of the corrected (and improved) proof in the present context. For more precise
explanations about the mistakes and errors in the previous works, see Remark E.5.31] at
the end of this section.

4.5.1. In order to define the map 1 in Theorem below as a map of sets, we explain
how to associate an SL(2)-orbit to a nilpotent orbit in LE.THA5.3l. This construction is
a generalization of [2I] Part II 2.4.6 based on the SL(2)-orbit theorem in many variables
for MHS ([20]). The pure case of the construction is essentially due to Cattani, Kaplan
and Schmid ([10]).
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Let (Ny,...,Ny,, F') generate a nilpotent orbit ([LI3]). We give the associated triple
(p, 0, Z), where (p, ) is an SL(2)-orbit in n variables for (Gyeq, ho) and Z C D such that
(pa Z) € DSL(2) for p= class (pa 90) S Drod,SL(2)~

For 0 < j < n, we denote by W) the functor

Vs (V,M(Nvy +---+ Ny, W(V)))

from Rep(G) to the category of finite-dimensional Q-vector spaces endowed with an in-
creasing filtration on its realification. Here N,y denotes the image of N; in Endg(Vgr)
for each j and M(Nyy + --- + N;v,W(V)) is the relative monodromy filtration of
Niy + -+ Njy with respect to W (V). In particular, W© = .

The functor (W™, F) : V s (V,IWO(V), F(V)) is a G-MHS. Let (W™, F{,)) be
the R-split G-MHS defined by the canonical splitting of W™ associated to the G-MHS
(W F) (L35). Then (WY exp(iN,)F) is a G-MHS. Let (W"=1 F,_,)) be the
associated R-split G-MHS defined by the canonical splitting of W1 associated to the

G-MHS (W("_l),exp(iNn)F(n)). Then (W("_z),exp(z'Nn_l)F(n_l)) is a G-MHS. .... In
this way, we obtain inductively an R-split G-MHS (W), F(j)) for 0 < j < n. We have
F(j) S D.

We define r € D as follows. If all N; are 0, let r = F'. If N; # 0 for some j, let £ be
the smallest such j (1 < j < n), and let r = eXp(z'Nk)F(k). (Note that we have used the
symbol ry in [21] Part II 2.4.6 instead of r here. Thus the notation here is not compatible
with that in [20] Theorem 0.5 and in [2I] Part II 2.4. See the remark after [2I] Part II

Theorem 2.4.2.)

4.5.2. Now assume that G is reductive. Then there is a unique homomorphism 7 :
G}, g — Gr whose j-th component 7; gives the R-splitting of W) associated to the
R-split G-MHS (W), ;). This 7; also gives splis, (r) for 1 < j < n. Let 7 Gnr—
Gr C Gr be the homomorphism defined by 7*(t) = 7(t)ko(I[}—, ;)"

Consider the direct sum decomposition of Lie (G ) by the adjoint action of G}, g on
it via 7*. For 1 < j < n, let Nj be the component of N; in this direct sum decomposition
on which the s-th factors of G, for 1 < s < j act trivially. Then there is a unique

0 ¢
for 1 < s < jand gs = 1 for j < s < n and such that the induced map Lie(p) :

s[(2,R)" — Lie(Gr) sends the j-th 8 (1)

holomorphic map ¢ : P}(C)" — D such that ¢(gz) = p(g)¢(z) for all g € SL(2,C)" and
for all z € P}(C)" and such that ¢(i) = r. This holomorphic map ¢ is also characterized
by the properties p(gz) = p(g)p(z) for all g € SL(2,C)™ and for all z € P'(C)" and
0(0) = F,. Tt satisfies p({0} x {i}"~7) = F;) for 0 < j < n.

We call this (p, ¢) the SL(2)-orbit associated to (Ny, ..., Ny,, F).

See [10] 4.20 for the above facts.

homomorphism p : SL(2)} — Gr such that 77(¢) = p(g1, ..., gn), where g, = (1/t 0)

to Nj for 1 < j < n. There is a unique

4.5.3. Now (' is not necessarily assumed to be reductive. Let p = class (p, ¢) € Dreasi(2)-
We define = = (p, Z) € Dsy o) as follows. If N; # 0 for some j and if gr''(Ny) = 0 for
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k =min{j | N; # 0}, let = be the unique B-orbit lying over p such that r € Z. Otherwise,
let x be the unique A-orbit lying over p such that r € Z.

This o = (p, Z) is called the element of Dgy 5y associated to (N, ..., Ny, F).

The rank of p, the family of weight filtrations (Wx(k))lgkgr (resp. (W;gk))ogkgr) associ-
ated x, and the homomorphism 7, = (7, ;)1<j<r (resp. (7ux)o<k<r) associated to z in the
case where x is an A (resp. B)-orbit ([B.3.2]) are described as follows.

(1) Let WU (0 < j <n)beasinE5Iand let {j |1 <j < n WU £ WU-D} =
{s(1),...,s(r)} with 1 < s(1) < --- < s(r) < n. Then r is the rank of p. We have
ngk) = WG6E) for 1 < k < r. In the case where z is a B-orbit, Wéo) =W.

(2) Let 77 : G,,r = Gr (0 < j < n) be the homomorphism corresponding to the
splitting of W) given by F(j) in 5.1l Then 7,4 = Tou) for 1 <k < r. In the case where
x is a B-orbit, 7,9 = 7.

Let s(r+1):=n+1. Then 7, =74 if 1 <k <rands(k) <j<s(k+1),and 7; =1
if 0 < j < s(1). Hence we have:

Assume Ny # 0 in the case n > 1. Then for (¢;)1<j<n € G}, g, We have

7(t) = (1)

(r(t) =11 7(ty), ' € G;{nl:ﬁ’r} if x is an A-orbit, ¢’ € Gi?:ﬁ’r} if x is a B-orbit), where
t' is defined as follows. For 1 < k < r, t| = Hs(k)§j<s(k+1) tj. In the case where z is a

Lemma 4.5.4. There is a unique map 1 : Dﬁz’H — Dgi,2) which sends (o, Z, class ((0;, Nj)i<j<n))

to the element of Dgy2) associated to (Ny,..., Ny, F) for F € Z in[d5.3]
This is proved similarly to [2I] Part IV 4.5.9.

Theorem 4.5.5. The map 1 : Dﬁ2 i DéL(2) 18 continuous.

This map is the unique continuous extension of the identity map of D. We call this
map ¢ the CKS map respecting the work of Cattani, Kaplan and Schmid on their SL(2)-
orbit theorem in many variables in pure case in [I0]. This is the most important map in
the fundamental diagram.

For the proof of Theorem [A.5.5] we use the following theorem.

Theorem 4.5.6. Let 0 € . For the topologies in[A2.0, E, is open in E,.

We will prove Theorem F.5.6] in Proposition 5. 85117
From Theorem [£.5.6] we obtain

Theorem 4.5.7. Let o € ¥. Then E, @&235) and E, are log manifolds.

Proof. For E,, the argument of the proof of [24] Proposition 3.5.10 for the pure standard
case also works for the present case (see also [21] Part III 4.1.1).
The result for E, follows from this by Theorem [.5.6 !

We start to prove Theorem [1.5.6] The following Proposition [4.5.§ is a G-MHS version
of [24] Proposition 7.1.1.
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Proposition 4.5.8. Let & be a weak fan and let 0 € ¥. Let A(o) be the closed analytic
subset of D defined by A(o) = {F € D | N(FPVg) € FP~'We forall N € o,V €
Rep(G),p € Z}, and let A(o) be the subset of D consisting of all elements F such that
(0,exp(oc)F) is a nilpotent orbit. Then A(o) is an open set of A(o) in the strong topology

of A(o) in D @EZH).

Proof. Assume F' € A(o) and assume that a directed family Fy € A(o) converges to
F. We prove that F\ € A(o) for A\ sufficiently large. Let H € D. Take a faithful
representation V' € Rep(G) and take R-polarizations (-, -),, of H(gr!¥V') which are sta-
ble under G’. By (2), for X sufficiently large, the annihilator of F}(grl' V') with
respect to (-, ), is FYTP(grVV). Take a finite set Ny,..., N, of generators of the
cone . The proof of [24] Proposition 7.1.1 shows that if A is sufficiently large, then
exp(Y-7y 2Ny Fagry V) € G(R)H (gr) V) for every w if Im(z;) are sufficiently large.
By [L47 F\ € A(o) for X sufficiently large. O

4.5.9. The proof of Theorem [£5.0] consists of complicated inductions. To clarify the idea,
we explain here the proof when the cone o is of rank one.

By the canonical isomorphisms I'(c) ~ N and P(c) ~ N, we have canonical isomor-
phisms toric, ~ C, |toric|, ~ Rso. We identify E, with C x D and Eg with R>g x D.
Since E, is the inverse image of Ef under |-| : E, — Ef, it is sufficient to prove that E?
is open in Efr

Assume that (qy, F\) € E! converges to (0, F) € Ei. We prove that (qr, F)) € E
for sufficiently large A. Taking subsequences, we divide it into two cases: the case where
g» = 0 for all X and the case g\ # 0 for all A.

Assume ¢, = 0. This is the case Proposition L.5.§ for rank (o) = 1.

Assume ¢y # 0. Let gy = e 2™, We have to see that, for any sufficiently large ),
exp(iyxN)F\ € D (which means (g, F)\) € E, by definition £2.5). Here N € o is such
that exp(/N) corresponds 1 € N via I'(0) ~ N.

First, applying [24] Proposition 3.1.6 to S := E,C X :=E,=CxD,s=(0F),
sx = (qx, Fy), and A := {0} x D, we find F} € D which is very near to Fy such that
(0, F%) € E, and F Y converges to F'. For the precise meaning of “very near” here, see the
condition (i) in Lemma L5.T3

By Proposition [.5.8 again, we may assume that

(1) (IV, FY) generates a nilpotent orbit.

Next, let 7 : G,, r — Gr be the homomorphism corresponding to the splitting of
WO .= M(N, W) given by Fjyy in 5.3}, and let 7 = 7(1/y/zx). By (1), (WD, F}) is a
G-MHS. Together with the fact that 7, splits WM we have

(2) 7'y — F).

From this, we have

(3) 7 texp(iya N ) Fy = exp(iN) 7y, ' Fy — exp(z'N)F(l).

Since F) and F} are very near, we have 7 exp(iya N) Fy — exp(iN)Fyy € D. Since
D is open in D, we conclude

(4) exp(iyaN)Fy € D for sufficiently large A.

4.5.10. Note that a large part of the following 5. TOHA5.17 is a copy from [2I] Part
IV Appendix (after some modifications explained in Remark E5.3T]). For example, the
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statement of Proposition [L5.14 is almost identical to that of [2I] Part IV Proposition
A1.7.

To prove Theorem [£.5.6] since EU,Val — EU is proper and surjective, and E, a1 C EU,Val
is the inverse image of F, C EJ, it is sufficient to prove that £, ., is open in EU,Val. Since
we have the continuous projection Ea,val — Eﬁ,val for which F, ., is the inverse image of

Eﬁ

o,val’

it is sufficient to prove that Eg’val is open in EF

o,val®

Assume that a directed system wy = (qy, FY) € Efwal (A € L, where L is a directed

ordered set) converges in E%_ tow = (¢, F') € E*_,. We prove that wy € E*_ for any

sufficiently large . 7

,val® ,val

4.5.11. We fix notation.

Let wy) = (¢, F') (resp. wy ) = (ta, Fy)) be the image w (resp. wy) in Ei’[:} = |toric|y [ X
D (t,t)\ S |tOl"iC|J7[:], F, F;\ S D)

We use the additive presentation of [toric|, ) in Let n and o, be as those in
there for the point ¢. Take an R-subspace B of or such that ogr = 0, r ® B. Take a good
base (Ny)ses for ¢ and let S; C S be as in the definition of a good base (L3.I0). Write
t = (class ((¢j, Nj)i1<j<n), b), where N; is an interior point of o; and b € B. Let as € R~y
such that N; = Zsesj asNs mod o;_1 g forall 1 <j <n.

Let F' = exp(ib)F’. Then ((Ns)ses, F') generates a nilpotent orbit. We have also the
B-component by € B of ty. Let Fy = exp(iby)F}. Then F) converges to F' in D.

Take an open neighborhood V' of b in B¢ such that the map toric,, x V' — toric,
induced by the canonical map toric,, X Bc — toric, is an open immersion. We may
assume by € VN B.

Let o' C o be the cone generated by Ny (s € S). Replacing N, by Ny /r for some integer
r > 0, we may assume that logI'(¢") C @,.¢ NN, C @, g ZN,. We have the injective

homomorphism I'(¢’) < N5. For s € S we have the s-component I'(¢’) — N, which is
an element g; of P(0’), regarded as a holomorphic function on Spec(C[P(¢’)])*™ x V =
toric,s x V.

We use the description of the topology of |toric|,; in associated to the good
base (Ny)ses for t. We use the notation there. Let U be the open neighborhood of t. We
may assume that all ¢y belong to U.

Since wy — w and since [toric|, va X B is open in |toric|, va, we may assume that all
wy belong to the open set Eogval x V of Emal.

Note that we have ¢; € S; and T as in In the case ¢s(wy) # 0, yrs € Roo
is defined by |g¢s(wy)| = exp(—27myys). If s € S; and gs(wy) # 0, then gy (wy) # 0 for
any s’ € Sy with j* > j, and in the case s # ¢;, Yrs/Yr., gives the s-component of ¢, in
U~Rryx RLyx B— RL,. If s € S; and if the set I = {\ | ¢s(wy) # 0} is cofinal in
the directed index set, then for s’ € Sj with j' > j (resp. for s’ € S;) and for A € I, we
have y)\,s’/yk,s — 0 (resp. y)\,s’/y)\,s — a’s’/as)‘

Let xs1,2) € Dsi(2) be the element associated to (Ny,..., Ny, F) in 5.3 We have
a homomorphism 7 : G}, - Ggr as in (2) in In the following, 7; denotes its j-th
component.

4.5.12. We may assume that there exists an integer m such that 1 < m < n+1 and such
that ¢s(z\) = 0 for any A and s € S<,,,_1 and ¢s(z,) # 0 for any A and s € S5, := |—|k2m S}
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(S<o and S>,41 are defined as the empty set).
For m < j <n, let

ex>; = exp( Z iyrsNs) € Ge,

SESZj

n
T =T (\/yx,cm/yx,cj) €Gr, mz=][nn€Cr
k=)

(Yr,en.s denotes 1). Let F(j) (1 <j <n)be asind5 T associated to (Ny,..., Ny, F).

Lerr}ma 4.5.13. Let the situation and the notation be as above. Let d be a local metric
on D that is compatible with the analytic structure. Let m < j <n and let e > 0. Then
for any sufficiently large A, there ezist Fy € D satisfying the following (i) and (ii).

(i) Y5 d(Fy, FY) — 0 (Vs € Sj).

(ii) (Ns, FY) satisfies Griffiths transversality for any s € S<;.

Proof. We apply [24] Proposition 3.1.6 to the following situation: S := Ey x V C X :=
E, x V = toricyy x V x D ([EZH), where o’ and V are as in E5.11}, and A is the closed
analytic subspace of X defined by ¢, = 0 for s € S¢;.

Consider the images of wy = (¢, F}) and w = (q, F") of 510lin X and S, respectively,
and let F\, F, and y, s be as in L5111

Take a metric on a neighborhood of the image of w in X as the direct sum of a local
metric on toric,s X V and the local metric d on D. Then we get Lemma A5.13 O

The next is a key proposition of this section.

Proposition 4.5.14. Let the situation and the assumption be as above. Then the fol-
lowing assertions (A;) (m —1 < j <mn), (B;) (m < j <n), (C;) (m <j <mn) are
true.

(A;) (resp. (_Bj),vresp. (C;)) form < j <n: Lete > 1. Then for any sufficiently large
A, there are F)EJ) € D satisfying the following (1)—(3).

(1) 95,0, d(F FY) = 0.

(2) ((Ns)sese; e,\ejﬂF/{])) generates a nilpotent orbit.

(3) T3ls ez FY = exp(iNj 1) Fjy.-

(resp. (3) Tiéjek,zjﬂﬂ(]) = ). )

resp. (3) T):;je,\7ZjF§]) — exp(ilN;) F{j).)
Here (A,) is formulated by understanding N1 = 0 and F,41) = F.

(Ay1): For any sufficiently large \, we have the following (2) and (3).

(2) ((Ns)sesgmil, ex>mEh) generates a nilpotent orbit.

(3) TiémE)\ZmF)\ — eXp(’éNm)F(m).
Remark 4.5.15. The case n = 1 was treated in [£.5.90 The case n = m = 1 is the case
gn # 0 for all X in 5.9 The case n = 1 and m = 2 is the case ¢, = 0 for all A in[£.5.9

In the case n = m = 1, the course of the arguments about (1), (2), (3), (4) in is
understood as (1) = (41) = (2) = (B1) = (3) = (C1) = (4) = (Ap).
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4.5.16. We prove Proposition [£5.14] by using the downward induction of the form

(A;) = (B)) = (C;) = (A;—1). (Herem < j <n.)

(Bj) = (C}) is clear.

We prove (A4;) = (B;). By (2), for any sufficiently large A, (W(j),e,\,ZjHFA(j)) is a
mixed Hodge structure, where W) denotes the relative monodromy filtration of N; +
-+ N; with respect to W. Since 7y ; splits W), we have (B;).

We prove (Cj11) = (A;) if m—1<j <nand (4,).

Let e > 1. If m < j < n (resp. j = m—1), then, by Lemma[L5.T3] there are FA(j) eD

)

satisfying (1) and (resp. F /&j := F), satisfies) the condition

(2") (N, F )Sj )) satisfies Griffiths transversality for any s € S<;.

When m —1 < j < n, by (Cj;+1), there are FA(jH) € D satisfying (resp. when j = n,

F )Ej = Ry satisfies) the following.

e i+1
(1) 5., A(Fy, FVTY) — 0.

)

(3") T):;j+le)\72j+1F)Ej+l — exp(iNjH)F(jH). (Recall F(n-i—l) means F.)

By (1”) and (3"), we have
(4) 7ol aeasi Py — exp(iNj1) Fijpa).
By (4) and by (1), we have

(5) T)\_,éj—l-le)\ij‘i'lF)Ej) — eXp(iNj+1>F(j+1).

For the left-hand side of (5), by (2'), (Vs, T)\_’éj+16)\72j+1F§j)) satisfies Griffiths transver-
sality for any s € S<;. On the other hand, concerning the right-hand side of (5),
((Ns)sese,,exp(iNji1)F(j41)) generates a nilpotent orbit. Hence (5) and Proposition 5.8
show that ((Ny)ses.;, Ty, éj +1e,\72j+1F§j)) generates a nilpotent orbit for any sufficiently

large A. This proves that ((N)ses.,,ex>jt1F /{j )) generates a nilpotent orbit for any suf-
ficiently large A. By this and by (1) and (5), we have (A;).

4.5.17. By (A,,—1) (2) of Proposition [.5.14] w, belongs to Eg,val if A is sufficiently large.

This proves that Eg,val is open in Efwal, and hence proves that E, is open in E,

(AE5I0). The proof of Theorem is completed.

4.5.18. We next prove Theorem (the continuity of the CKS map) in 5. TOHA5.30

The outline of the proof of Theorem is as follows. By using the properties of
regular spaces reviewed in applied to the spaces DéL(Q)(CI)), it becomes enough
to discuss the convergence of ordinary points to a boundary point (we do not need to
discuss the convergence of boundary points to a boundary point). We reduce the proof of
Theorem to the three convergences in Proposition These three convergences
are proved in [.5.24] [1.5.28] and A.5.26H4.5.30, respectively. The structure of these proofs
is essentially the same as that in [24], [21] Parts III and IV.

4.5.19. Concerning regular spaces, we first recall two facts.
[24] Definition 6.4.6 ([9], Ch. 1, §8, no. 4, Definition 2). A topological space X is called
reqular if it is Hausdorff and satisfies the following axiom: Given any closed subset F' of
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X and any point = ¢ F', there is a neighborhood of x and a neighborhood of F' which are
disjoint.

([9], Ch. 1, §8, no. 5, Theorem 1.) Let X be a topological space, A a dense subset of
X, f:A— Y amap from A into a regular space Y. A necessary and sufficient condition
for f to extend to a continuous map f: X — Y is that, for each z € X, f(y) tends to a
limit in Y when y tends to  while remaining in A. The continuous extension f of f to
X is then unique.

4.5.20. To prove that 9 : Dﬁz,[:] — DéL(2) is continuous, it is sufficient to prove that the
composition

Ecﬁr,val - Eg,[;} — Dﬁz,[;} o DéL(Z)
is continuous for each o € ..

Let the notation and the assumption be as in and L5111 Assume further that
all wy, belong to Eﬁ,val' Then it is enough to show that the image of w, in DéL(2) converges
to the image of w in DéL(2)'

If (0,7) € Ds, the relative monodromy filtration M (N’ W) exists for any N’ € o,
and M (N', W) depends only on the face ¢’ of & such that N’ is in an interior point of o’.
We will denote M (N', W) as W(d").

Recall that the image of w € Eival in Dy, is (o, Z, class ((0;, Nj)i1<j<n)). Since Nj is
in the interior of o; for each j, Ny + ---+ Nj is in the interior of ¢;, and hence W) in
A5 for (Ny,..., Ny, F) coincides with W (o).

Hence if wy € Efr,val is near to w, the W(o;) of wy are contained in the set ® of
W(o;) (1 <j <n), and hence the image of wy in Dg,(2) is contained in Dgp,2)(P). Since
Dgy,(2)(®) is regular by Proposition B.4.10, we can use the above regular point method,
and hence in the proof of the fact that the image of w) in DéL(2) converges to the image

of w in DéL(z), we may assume that wy € |torus|, x D.

4.5.21. To state Proposition on three kinds of convergences, which are used to
prove the continuity of the CKS map, we recall that we are in the following situation. We
keep the notation in L5.T1] and assume wy € [torus|, x D. So the |torus|,-component of
wy is written as (3, g ynsNs) + .
For each 1 < j <n, we have ¢; € S; and we have N; = Zsesj asNy mod 0;_1R.
Note that (Ny,---, N,, F') generates a nilpotent orbit. Let r € D be the point associ-
ated to (Ny,..., N,, F) in £511

ByB.5.19 for the proof of Theorem @57 it is sufficient to prove that exp(>_ g iy Ns) )
converges to the class in DéL(2) of the SL(2)-orbit associated to (Ny,..., N, F). As will
be explained in [4.5.23] below, this is reduced to the following proposition.

Proposition 4.5.22. We have the following convergences (1)—(3) as A — oo.

Yx,c Cn - ‘ a
(1) T (\/57 tr \/E) eXp(ZSES Zy)\,st)F)\ —rin D’ where Yrentr = L

(2) splyy (exp(X s 1nsNo) Fr) — sply(r) in spl(W).
(3) (exp(D_segiWrsNs)Fa)rea converges to the class in Dyeqgr2) of the SL(2)-orbit as-
sociated to (Ny,..., Ny, F).
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4.5.23. We explain that this Proposition [ shows that z) 1= exp(d_ cqyn.sNs)F2
converges to the class xSL(g) in DSL of the SL(2)-orbit associated to (Ny, ..., N,, F') and
hence proves Theorem [4

By (2) and (3) of Proposition and by Proposition and Proposition [3.4.9]
for the proof of xy — wgy(9), it is sufficient to prove the following (1) and (2). Let
P = TSL(2),red € Dred,SL(2)-

(1) Let 3 be a distance to ®(p)-boundary. Then if zgy,2) is an A-orbit (resp. B-orbit),
Ad(7,(B(x))) 718 (xy) converges to Ad(7,(B(r)))~16(r) (resp. 0o Ad(7,(B(r)))~1é(r)) in L.

(2) Let 8 be a distance to ®(zsy())-boundary. Then 7,y , (6(x))'xx converges to
ey (B(r) ' in D.

We prove that these (1) and (2) follow from (1) of Proposition [.5.22

Let t) = (, /Zi—ﬁ? ,/y;;z?) € RZ;. We have 7(t\) = Tug,, (t)), Where t) €

® . : ®
R>E)mSL(2)) is as in L5.3] (2). Since ¢y converges to 0 in RZ, t) converges to 0 in RZ(OxSL(Z)).

By (1) of Proposition L5.22] we have
(%) Tx = Tug o, (B)uar, uy € G(R)GL(C), uy — 1.

If zg1,(2) is a B-orbit, since r € D1, uar € Dygpy if A is sufficiently large and hence by
(%), &) € Dygp if A is sufficiently large.

We prove (1). By applying 8 to (*).ed, we obtain that if zgp,() is an A-orbit (resp. B-

orbit), Ad(7,(B(rrea))) 0 () is equal to 7,(B(uarrea)) " 0 (ur) (resp. th ;o Ad(7, (8 (uarrea)))”

and this converges to Ad(7,(5(rrea))) 10(r) (resp. 00 Ad(7,(B(rrea))) 1o(r)).

We prove (2). By applying f to (x), we have 7,g , (6(22)) " x = Tagy o, (B(uar)) " tusr,

and this converges to 7, , (B(r))~'r.
4.5.24. We start to prove Proposition [4.5.22

Proposition [£5.22] (1) follows from (Ag) of the case m = 1 of Proposition d.5.14

We prepare the proofs of Proposition [£.5.22] (2) and (3).

For 1 < j < n, let D be the subset of D consisting of all F ' € D such that
((Ns)ses<;, I') generates a nllpotent orbit. We have F € D,,, F\ € D, and we know
from [A.5.11], Proposition [1.5.14] and Theorem that the following ﬁve conditions are
satisfied.

(1) F\ converges to F in D.

(2) yrs — oo for any s € S.
B)If1<j<n,seSqandt € Ssjyq, then y“ 2 — o0.
(

(

Y\,s as
4)If1§jSnands,teSj,thenyTt—)—.

at

5) For 1 < j < n and e > 0, there exist Ff € D (A € L) satisfying the following
conditions (5.1) and (5.2).

(5.1) exp (Ztes>j+1 iy Ne) Fy € D; (X« sufficiently large),

(5.2) Y5 d(F), FY) = 0 (Vs € 5)).
Here d is a metric on a neighborhood of F in D which is compatible with the analytic
topology of D.

7

'0(uar))
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4.5.25. Proof of Proposition (2). (This is almost a copy from [21] Part III 3.3.7.)
We prove the following assertion (A;) by downward induction on j. (Note that (Ay)
is what we want to prove.)
(A;) : Proposition (2) is true in the case where exp (ZteSZjH iyxeN: ) F € D;
for all \. Here D; for 1 < j < n are defined in 5.24] and Dy := D.

Proof. Let 0 < j < n.

Let zy = exp(D_,cqWnsNs)Fx, Tas; = Hj<kgn7'k<« /&—’ZL), and x); = T)>;Tx.
Then, by [20] 10.3, we have

_ _ U,
Txj = Tr>;T\ = exp( Z == Ns) Uy,

y)\,Cj+1
SESSJ'

where U, ; = 7',\7>]-exp( Z z'y,\vtNt>F,\.

t€S>j+1

Assume exp (Ztes>j+1 iy,\tNt)F,\ € Dj. Then (Ny,..., N}, Uy;) generates a nilpotent
orbit, where Ny = 37 o ;’Aﬁ]\fs (1 < k < j). Let s\ be the associated limit splitting.
Ch
By [20] Theorem 0.5 (2) and ibid. Proposition 10.8 (1), there is a convergent power series
uy whose values are in G(R), whose constant term is 1 and whose coefficients depend
on Uy; and yrs/yne, (1 < k < j, s € Si) real analytically such that sply,(z, ;) =
YX,co yA,cj+
y/\,cl L y/\,Cj

(1) splyy (za;) converges to sply, (r).
This already showed (A,,).
Next, assume j < n and assume that (A4;1,) is true. We prove that (A4;) is true.
Choose a sufficiently big e > 0 depending on 7j41,...,7,.
Take F} as in[L.5.24] (5). Define 23 and 23 ; similarly as z and ) j, respectively.
Then we have

(2) splyy(z3 ;) converges to sply,(r), and y§70j+1d(splw(:c,\,j), sply (3 ;)) — 0.
By downward induction hypothesis on 7, we have

(3) sply (x%) = T;;jsplw(:zf\j)ﬂ“%(grw) converges to sply,(r).

By (1)—(3), we have sply, (z)) = T/\_,;jsplw(:c,\,j)nww (gr'") also converges to sply, (r).

Uy ! )s A. oince sy also depends real analytically on U, ;, we have

We next prove (3) of Proposition 5221 We assume that G is reductive in [1.5.26-
4.5.50L

4.5.26. (Cf. [24] 6.2.1.) Let N; € gr (1 < j < n) be mutually commuting nilpotent
elements, let F' € D, and assume that (Ny,...N,, F) generates a nilpotent orbit. Let
(p, ) be the associated SL(2)-orbit in n variables and let r = (i) as in 521l Then,
from [24] 6.1.5 (recall that G is reductive now), we see that there are ¢, € gg, kn € gg
(h € N™), where g* = g=" are the (41)-eigen subspaces of ggr under the Cartan involution

associated to Ky, respectively, such that 3, cn -, t?(j Jand 3 nenn kn [T t?(j ' (t; €
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C) converge when |t;| are sufficiently small, that c¢o = ko = 0 and that, for y;/y;+1 > 0
(1<]<nyn+l—1

(1) <1 | — s ) exp zyJN )F
y2 Yn+1 1<j<n

- eXp( hﬁ (W3 /y41)” 2) 'GXP< > ka ﬁ(yj/yj+1)_h(j)/2) T

heN™ =1 heENn  j=1

Note that these ¢; (h € N™) are uniquely determined (whereas the kj, are not).

Proposition 4.5.27. (Cf. [24] Proposition 6.2.2.) We use the notation in [L526. For
v € gr and e € Z", let v(e) be the component of v on which Ad(7(t)) (t = (tj)1<j<n €
Gn ) acts as [[7_, 57, We denote |e| = (le(j)])1<j<n. Let h € N" < {0}, e € Z".

Then, cp(e) = 0 unless |e| < h for the product order in N", i.e., |e(j)] < h(j)

(1 <j<n)andle| #h.
Proof. This proposition is proved in the same way as [24] 6.2.4-6.2.6. O

4.5.28. The following arguments are almost copied from the proof [24] 6.4.4 of [24] Propo-
sition 6.4.1.

We prove the following assertion (C;) by a downward induction on j. Let 0 < j <n,
and let Dy := D (this is the correction of a typo “Dy := D” in [24] 6.4.4).

(C;) Assume that exp (Zteszjﬂ z'y,\vtNt)F,\ € D; for any \. Then, for a sufficiently

large A\, we have
( y)\ 01 y)\ Ccn ) exp SGS ’Ly)\ st) F
V YA, 62 V Yxent1

Y Ch h(
= €exp (ZhENJ b&h H1§k§3 )k)\ r,

Y, Ch1

where by, € gr (gr denotes the (—1)-eigenspace of gr under the Cartan involution
associated to Ky), kx € Ky, and 32, cn; Oan [Ti<pe; xk(k) (xr, € C) absolutely converges
when |xg| (1 < k < j) are sufficiently small, which satisfy the following three conditions.
Here y.,. ., == 1.

(2) [(Ad o 71,)1<k<j-weight of by x| < h for the product order in N7,

(3) For each h € N/, Ad<Hk2j+1 Tk( Py )) (bxn) converges for v = 0,£1. More-

y)\,ck+1

over, if h =0 then it converges to 0.

Note that by the local structure theorem of Dgp,2) in the reductive group case (Theo-
rem [3.4.17]), Proposition 522 (3) is equivalent to (Cy).
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Lemma 4.5.29. (Cf. [24] Lemma 6.4.3.) Let the notation be as above. Fiz j such that
1 <7 < n, and assume that exp (Ztes>j+1 z'yxvtNt)FA € D; for any \. Put

Nk = Yes, 25N, (L<k <),

Yx,c .
Uni= <Hl2j+1 n < \V yki—zL)) s (Ztessz Zy’\’tNt)F’\’

For each A, let (py,@a) be the SL(2)-orbit in j variables associated to ((Nyx)i<k<j, Unr),
and let vy := py(i). Then, r\ converges to r.

The proof of [24] Lemma 6.4.3 also works for this Lemma [.5.29] which uses the impor-
tant fact that an SL(2)-orbit moves real analytically if the monodromy weight filtration
is constant ([10], see also [24] 6.1.6).

4.5.30. We prove (C,). By [20] 10.3, we have

Yx, 01 Yx,cn
[ 2 / eXp 8 1Yn,sNs ) F
( YA, 62 Y Cn+1) e )
- YX,s
<Hk<] k(\/ Yx Ck+1)> exp (ZS€S<3 Zyk Cjt1 NS)UA
YX,c - Yxe
(Hkq Tk< /y;ckkl)> exp (Z’fﬁjzyx;il Nyi)Un.

Then, by £5.20] at r) (see Lemma 529 for 1)),

( / Y, 01 | YUx,cn ) exp s Zy)\ SNS)F
y)\ C2 y)\ ,Cn+41
Yx,c Yx,c
= (T k(\/ ; ckil)) (T ma(5255)) kaam - where

—h(k)
- Yxe =T
fx = exp (Zhew axn [ Ti<; - ) axn € 9RO

yA,ck+1
/{?17>\ S Km, ]{31,)\ — 1.

Here gg™ denotes the (—1)-eigenspace of gr under the Cartan involution associated to
the maximal compact subgroup K., of Gr.

Claim 1. We can write

ry = gakox T, Thp = Int(gy) oy,
€ (G)wor  wor, kor€ Ky, gh—1, kgy— 1

This claim is proved as exactly in the same way as in [24]. We obtain a proof of this
claim from the corresponding proof in [24] by replacing “py , pr” by Ta, Tk, respectively,
and by replacing “Lemma 6.4.3” by Lemma 5291 The key point of the proof is the
fact that 75, and 7, are the Borel-Serre liftings at ry and r, respectively, of the com-
mon homomorphism G,, — P/P,, where P is a Q-parabolic subgroup of G containing

(G)wo. .wo r-
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By Claim 1, we have

(@) (e R e (Ssima )R
= It (TTee 7 (\/72) ) (92) Intl92) 7 (£2) Int(g2) ™ (ky ks -

r)

Here Int(gy) "' (k1)) € K, and, concerning ay; € gg"" in the definition of fy, we have

Ad(gx)(axn) € gr = gr"- Furthermore, if we write

(5) g =exp (X peni 9r-n)s  9a—n € Lie (G
((Ad o 73)1<k<j-weight of gx_p) = —h, gr—n — 0,

we have

e o k)
(6) Int < HkSJ Tk <\ / y>\,>\c—kk+1) ) (gA) = exp ( ZhGNj g)‘v_h HkSJ ykikil ) ’

By Proposition [4.5.27],

(7) |(Ad o 7% )1<g<;-weight of Ad(g,\)_l(a,\,h)\ < h.

From (4)—(7), we obtain

(8) ( [YA, C1 Yx,cn ) eXp ses ’Ly)\ st) F
y)\ C2 y)\ ,Cn+1

o —h(k)
= exp (ZheNJ b Hkgg Py )k:)\ r, where

Yxepiq
kx = Int(ga) " (ki )kop € K, hx = 1,
ban € gr, b converges for each h, by ,(£h) — 0,
|(Ad o 7y, )1<k<;-weight of by 5| < h.

Here by ,(£h) denotes the parts of by j, of weight +h with respect to (Ad o 73)1<k<;-

In the case j = n, (8) already completes the proof of (C;).

If 0 < j < n, it remains to prove (3) of (C;). This is shown by downward induction
on j, as we have mentioned. First we show the following.

Claim 2. To prove (C;) (3), we may assume exp (Ztes>j+1 iyriNe)Fx € Dy for any
A B

The following is a simplification of the proof of the generalization of [24] 6.4.4 Claim
2 by an observation that we can take yy, = yx; there, so that the condition ibid. (11)
holds trivially.

We prove Claim 2. By the condition (5) of EE5.24 for j + 1, there exist e > 0, Fy € D
satisfying the following (9)—(12).
(9) exp (Zteszjﬂ iyx,tNt)F; € Dji1.

(10) y?\(,icj+1d(F)\7 F))\k) - 0
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(1) Tet ar = (Thsjor 7o (/525 ) ) 030 ( Lress ., #92a ). (Note Uy = ayFy.) Then,

Yx,epq1
y;’inAd(oz,\) —0
in the space of linear endomorphisms of gc¢.

(12) Let )\ = Hk2j+1Tk< ok ) Then,

y)\,ck+1

y):inAd(ﬁ,\)” — 0 for v=0,=%1

in the space of linear endomorphisms of gc.

Define b3, (h € N7) just as by, by replacing F\ by Fy. To prove Claim 2, it is
sufficient to prove

Ad(By)" (ban) — Ad(By)"(b3,) — 0 for v=0,%1.
The left-hand side of this is equal to
Yney (BN (WS ;0 (brn — B3 1))-
Hence, by (12), it is sufficient to prove
Y5 (Oan = 03 ,) = 0.

Since by, is a real analytic function in ((Ng)i<k<j, Ux) ([24], 6.1.6), it is sufficient to
prove that

(13) yi,CjJrld(U)n U;) — 0,
where U = a,F}. By (10), we can write
F\ =exp(x))Fy with =z, € gc, yffcjﬂx)\ — 0.

We have
U)\ = Oé)\F)\ = exp(Ad(oz)\)(x,\))U;f

By (11) and by
Vs Ad(an) (@) = (yxe,, Ad(0n)) (3%, 22) = 0,

we obtain (13). Thus Claim 2 is proved.
By Claim 2, we assume exp (Ztes>j+1 iy,\tNt)FA S Dj+1 for any A. Then, by

at r, we have elements by ;s for b’ € N/ and we have, for h € N/,

_ e ¥
(14) ban = Do b (k)

yA,Cj+2

Using (8), applied to by ) replacing j by j + 1, we have
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(15) |(Ad o 7j41)-weight of by k)| < k. If h = 0, the parts of by ) of (Ad o 7j11)-weight
+k converge to 0.

By the hypothesis of induction,

(16) Ad(Hk2j+2 Tk( Don ))V(b&(hvk)) converges for v = 0, +1.

y/\,ck+1

By (14)-(16), we have (3) of (C;). O
The proof of Proposition (3) is completed.

Remark 4.5.31. As mentioned at the top of this section, [24] and [2I] Part III contain
some mistakes which are corrected as in [2I] Part IV Appendix. But still the corrections
contain some errors. We review the outline of the mistakes of [24] in (1) below, and
explain the errors of [21I] Part IV Appendix in (2) below.

(1) The essence of the errors are in 6.4.12 and 7.1.2 (3) of [24], called the errors (1) and
(2) in [21] Part IV A.1.1, respectively. Both errors base on a misuse of [24] Proposition
3.1.6: In both situations, the authors thought that they could show the existence of real
numbers y3 , satisfying some conditions including the convergence

y§\7s|y>\,t - y;,t| —0,

where e is a fixed nonnegative integer. But, [24] Proposition 3.1.6 (applied in the way
explained there) gives only those satisfying

y;,s(qk,t - qzi,t) - 07

which is not enough.

We use [24] Proposition 3.1.6 correctly in 5.9 and Lemma .5 T3in the present paper.
Then, we generalize (and correct, see (2) below) in this section (SectiondH]) an alternative
argument [21] Part IV A.1.3-A.1.9 explained in [2I] Part IV A.1.2, which shows that, as
is said in [21] Part IV A.1.11, in fact we can take just yx,, yrs as 43 ,, yi, satisfying all
conditions, that is, the stronger statement including y5 |yx: — 93 ;| = 0.

(2) The correction in [2I] Part IV Appendix contains several errors including some
critical typos. For example,

1. In A.1.2, “problem (1)” and “problem (2)” should be interchanged.

2. In A.1.5, the definition of Ny,...,N,,_1 is missing.

3. In the last line of A.1.5, X should be replaced by some log blowing-up of E, and
S should be the corresponding subspace coming from E, (not E,; the tilde was missed).

4. In A.1.8, line 3 : (A,) does not follow from Lemma A.1.6 if m — 1 = n because,
then, Lemma A.1.6 is an empty statement.

5. In A.1.8, line 4: j < n should be j < n.

6. In A.1.10 and A.3.4, all “m = 0”7 should be “m = 1.”

7. In A.3.4, all “A.1.6” should be “A.1.7.”

The proof given in this section (Section [L.3]), in particular, in Proposition [£.5.14] and
Theorem .56, corrects and generalizes, in the present context, that in [2I] Part IV
A.1.3-A.1.9.
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4.6 Properties of the spaces of nilpotent orbits
The aim of this Section is to prove the following theorem.

Theorem 4.6.1. Let ¥ be a weak fan in Lie (G') @I1) and let T be a semi-arithmetic
subgroup (LBT) of G'(Q).

In (1) and (2) below, we assume that T" is compatible with ¥. In (3)—(5) below, we
assume that T is strongly compatible with 3.

(1) Let X be one of Dﬁz, D§]7[1]7 ngal. Then the action of T on X is proper, and the
quotient space I'\ X is Hausdorff.

(2) Let X be as in (1). Assume that T' is torsion-free. Then the action of T" on X is
free, and the projection X — I'\ X is a local homeomorphism.

(3) The quotient space I'\ Dx; is Hausdorff.

(4) Assume that T" is neat. Then I'\ Dy is a log manifold (@.212). In particular, it be-
longs to B(log). For each o € ¥, the map I'(c)8? \ D, — I'\ Dy is locally an isomorphism
of log manifolds.

(5) Assume that I" is neat. Then there is a homeomorphism

(I'\ Ds)"® = T'\ D§,
over I'\ Dy,.
See [A.1.9 for the compatibility and the strong compatibility of I' and ..

Remark 4.6.2. In Theorem [L.G.I], we can use a semi-arithmetic subgroup of G(Q) (not
of G'(Q)) in the following situation (1) and also in the following situation (2).

(1) If either G is semisimple or the condition (1) in Lemma [[.5.3]is satisfied, Theorem
.61 holds for a semi-arithmetic subgroup I' of G(Q). In fact, 'NG'(Q) is of finite index
in ' (see Proposition for the latter case). Hence by (5), we can replace I' by
the semi-arithmetic subgroup I' N G'(Q) of G'(Q).

(2) Assume that G is reductive. Then Theorem .6 Tremains true for a semi-arithmetic
subgroup of G(Q) if we make the following modifications (x) and (x*) below. Let T be
the image of I in (G/Z)(Q), where Z denotes the center of G.

(¥) In (2) (resp. (4) and (5)), the torsion free (resp. neat) property is assumed for T,
not for I'.

(#%) In (1) (resp. (2)), the proper action (resp. free action) is stated for ', not for I'.

For the proof, see . I0.I8

Remark 4.6.3. In [25] Theorem 6.1 and in its proof, the conclusions of Theorem A.G.T]
except the parts on X = Dﬁzv[z], ngal in (1) and (2) for the Mumford-Tate domain D (and
its extensions) associated to a polarized pure Hodge structure H are proved with G being
the (semisimple) Mumford-Tate group associated to H (which is isomorphic to M/Z in
[LE0), I' being an arithmetic subgroup of G(Q) which is in the connected component of
G(R) containing 1, and ¥ being a fan in Lie (G) which is strongly compatible with T
The proof in [25] is a reduction to the case ([24] 4.1.1 Theorem A) of the extended period
domains of classical period domains for pure Hodge structures. Our proof of Theorem

6T bases on our studies of the space of Borel-Serre orbits, the space of SL(2)-orbits, and
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the CKS map, which were not considered in [25], and provides alternative proofs of their
results. (Minor remarks: Precisely, their D and its extensions are connected components
of our period domain D(G, hg), where hg: Sc /m — GRr is the homomorphism associated
to H, and its extensions, respectively, and their results are deduced from Theorem [4.6.1]
Conversely, under the above assumption, their method can treat I'\ D(M, hy) (ho is as
in [L6.6) and its extensions (which are open and closed subspaces of I'\ D(G, ho) and its
extensions, as is seen by the latter half of .10). See for some details. Additionally,
their I" is assumed to be neat, though it is easy to reduce the non-neat case to this case.)

4.6.4. The relation of this theorem (Theorem [L.6.1]) with the results and their proofs in
the former parts is as follows.

The above (3), (4), and (5) of Theorem [.6.1]is the G-MHS versions of Theorem 2.5.5,
Theorem 2.5.2 plus Theorem 2.5.4, and Theorem 2.5.6, respectively, of [2I] Part 1T for
the extended period domains of classical period domains (which are the mixed Hodge
structure versions of (v), (ii) plus (iv), and (vi), respectively, of [24] 4.1.1 Theorem A for
pure Hodge structures). In the case of the extended period domains of classical period
domains, these (3)—(5) of Theorem [.6.] are proved in Section 4 of [21] Part III.

In there, also are proved the portion of (1) where X = Dﬁz, ngal and the portion of

(2) where X = DY, ngal and IT" is neat. The space X = Dg[:] was not considered in [21]

Part 111, and the portion of (1) where X = Dg[:] and the portion of (2) where X = Dﬁz’m
and I is neat follow from [2I] Part IV Theorem 6.1.1.

Most of this Section is devoted to the proof of Theorem [4.6.1] which is completed
in [£.6.2601 Almost descriptions in the proof in this section are some abridged versions of
arguments in [21I] Part III Section 4 etc. We describe the main steps in the proof, but
often omit the details if the arguments are the same as those in [2I] Part III Section 4
etc.

We start to explain the proof of Theorem E.G.11
Let X be a weak fan.

Proposition 4.6.5. Let 0,0’ € X. Let

wy = (yr, F)) € {(y, F) € or x D | exp(iy)F € D} = (|torus|, x D) N E*
and

wh = (4, F}) € {(y, F) € ofg x D | exp(iy)F € D} = (|torus|, x D) N Ef,

be directed families with the same index set. Let x be [:] or val. Assume that wy converges
to o in EY,, w) converges to o/ in E%, ., and exp(iyy)Fy = exp(iyy)FS in D for all \.
Then:

(1) The images of o and o in Dﬁz’* coincide.

(2) yr — yi converges in Lie (GR)-

¥

Proof. In the case * = val, this is a G-MHS version of [21] Part III Proposition 4.2.3. The
proof of the latter works for the proof of Proposition .G.0l for * = val and also for x = [:].
A key point of the proof is the continuity of the CKS map Dg* — DéL@). O
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Ef

o,val*

4.6.6. Let 0 € 2. We consider the continuous actions of iog(C o¢) on E¥, Ef

o.[:]’
For a € og, ia sends the class of (7,b, F) in E¥ (resp. ((oj, N;);,b, F) in Ei[:], resp.
(1,V,b, F) in Ei,val) in the additive presentation to the class of (7,b + a,exp(—ia)F)
(resp. ((0j, N;)j, b+ a,exp(—ia)F'), resp. (7, V,b+ a,exp(—ia)F)).

It may seem strange that we regard the above action as an action of ia (a € or), not
of a, but we do so because, in the situation below, this action of iog on Ef will be
compatible with the action of o¢(D ior) on E,.

We have iog \ Ef = D¥ iUR\Ei[;] = Di[;]a and Z'UR\Ectir =D}

sval o,val*

#

o,va

Proposition 4.6.7. Let 0 € ¥. Then E! — D?, Ei B Dg [ and E*

o,val — D
ior-torsors in the category of topological spaces.

| are

To prove Proposition 6.7 we use the following Lemma [£.6.8 and Lemma [£.6.9

Lemma 4.6.8. Let H be a topological group, X a topological space, and assume that we
have a continuous action H x X — X. Assume the following (i)—(iii).

(i) This action is free set-theoretically.

(ii) This action is proper topologically.

(iii) For each point x € X, there exist a subset S of X which contains x and an open
neighborhood U of 1 in H such that U x S — X, (h, s) — hs, induces a homeomorphism
from U x S onto an open set of X.

Then X — H\ X is an H-torsor in the category of topological spaces.

See [24] Lemma 7.3.3 for the proof.

Lemma 4.6.9. Assume that a Hausdorff topological group H acts on a Hausdorff topolog-
ical space X continuously and freely. Let X' be a dense subset of X. Then, the following
two conditions (i) and (ii) are equivalent.

(i) The action of H on X 1is proper.

(i) Let (hy, xx)x be a directed family of elements of H x X' such that (xy)\ and (hyxy)x
converge in X. Then (hy)x converges in H.

See [24] Lemma 7.2.7 for the proof.
4.6.10. We prove Proposition 6.7l We check that the actions of iog on Ef, Ef = EF

o:]? To,val
satisfy the conditions (i), (ii), (iii) of Lemma 6.8 in Claim 1, Claim 2, Claim 3 below,
respectively, which completes the proof.

Claim 1. The actions of ior on E¥, Eﬁ o Eﬁ,val are free.
Proof of Claim 1. This is a G-MHS version of [21] Part III Proposition 4.2.2 (ii). The
proof of the latter works for the proof of Claim 1.

Claim 2. The actions of ior on E¥, Eﬁ [ E* | are proper.

Proof of Claim 2. For Ecﬁr,[:} and Eg,val, this follows from (2) of Proposition A.6.0 by

Lemma 6.9 The result for E follows from this by (3.2).
Finally we have to check
Claim 3. For X = E¥, Ei[:p Efnval and for each z = (¢, F') € X , there are a subspace

S of X passing through x and an open neighborhood U of 0 in ¢og such that the induced
map U x S — X is an open immersion.
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Proof of Claim 3. The construction of S at the end of the proof of [21I] Part III
Proposition 4.4.3 works here.

Proposition 4.6.11. Let 0 € . Then the inclusion maps D} — Dﬁz, Dg 0 DﬁZ 1 and

# # ;
Dy a1 = Dy a1 are continuous open maps.

Proof. This is a G-MHS version of [2I] Part III Theorem 4.3.1. The proof of the latter
works for the proof of Proposition E.G. 111 O

Proposition 4.6.12. The canonical continuous surjections Dﬁz,val — Dﬁ2 [ and DtiE S

DtiE are proper.

Proof. This is a G-MHS version of [2I] Part III Proposition 4.3.2, Part IV 4.4.3, and
Part IV 4.4.6. By Proposition [1.6.7 and Proposition .6.T1] this is reduced to the fact
that the maps Eg,val — Ei[:] and Ecﬁr,[:} — E* are proper, and hence to the fact that
|toric|,val — |toric|s,[; and [toric|, ) — |toric|, are proper. O

Proposition 4.6.13. The spaces Dﬁz, Dﬁz’m, and ngal are Hausdorff. (This is the case
' = {1} of (1) of Theorem E61l.)

Proof. Let  be [:] or val. By Proposition £.6.12 and by the case H = {1} of (3.2) of 223.6]
the Hausdorffness of D% follows from that of Dg*.

To see that Dﬁz’* is Hausdorff, by Proposition L6.T1], it is enough to show the following.
(1) Let 0,0’ € L and let B € D!, and 3 € Dfr'v*‘ Assume that z) € D converges to

[ in Dfn* and to " in Dg,v*. Then ﬁ’: £ in Dg*.

We prove (1). By Proposition .67, there exist an open neighborhood U of § in Dfn*
(resp. U’ of " in Di,7*) and a continuous section s, : U — E%_ (resp. sy : U' — Eg,*)
of the projection Ef, — Df  (resp. E§,7* — Dg,7*). Let wy = sy(2), Wy = sor(x),
a = $,(8), and o = s,(f'). Then we can apply Proposition (1) and conclude
p=p. O

4.6.14. We prove (1) and (2) of Theorem E.6.Il Let I' be a semi-arithmetic subgroup
of G'(Q) which is compatible ([LI.9) with 3. Under this assumption, the action of I' on
DéL@) is proper by Theorem B.I1.Tl Together with Theorem [£.5.5] and the fact that Dﬁz’m

is Hausdorff by Proposition [1.6.13] we see that the action of I' on DtiE ;] 1s proper 234
(3.1)). Hence, again by Proposition IL6.13] and 3.6 (3.1), the action of I' on ngal is

proper. Since Dﬁz’m — DﬁZ is proper and surjective, the action of I' on DtiE is also proper
(234 (3.2)). By (1), the quotient spaces by these proper actions are Hausdorff.
Thus we proved (1) of Theorem LGl

We prove (2) of Theorem [.G.Il Assume that I' is torsion-free. Then the action of T’
on DﬁE is free. In fact, by using a neat subgroup of I' of finite index, this is reduced to the
case where I' is neat. Then it becomes the G-MHS version of [2I] Part III Theorem 4.3.5
(i) whose proof also works in the present situation. By (2), we have the stated local
homeomorphism.
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In E6TOHAG26, we assume that ' is a semi-arithmetic subgroup of G'(Q) and is
strongly compatible with X.

4.6.15. Let 0 € X. We consider the action
oc X EO' — EJ; (aa (Q>F)) = (e(a)Q>eXp(_a)F)

of oc on E,, where a € o¢, ¢ € toric,, F € D and (¢, F) € E,. This is an action in
the category of log manifolds (we endow o¢ with the trivial log structure). This action is
compatible with the action of iog on Ef in 6.6l We have oc \ E, = I'(0)2"\ D,.

The following Proposition E.6.16] and Proposition L6.17 are proved together.

Proposition 4.6.16. In the category of locally ringed spaces over C with log structures,
E, = T'(0)8*\ D, is a oc-torsor.

Proposition 4.6.17. The space I'(0)8? \ D, is a log manifold.

Lemma 4.6.18. Let H be a complex analytic group, X a log manifold, and assume that
we have an action H x X — X in the category of log manifolds (we regard H as having
the trivial log structure). Assume the following (i)—(iii).

(i) This action is free set-theoretically.

(ii) This action is proper topologically.

(iii) For each point x € X, there exist a log manifold S and a morphism ¢ : S — X of
log manifolds whose image contains x and an open neighborhood U of 1 in H such that
UxS — X, (h,s) = hu(s), induces an isomorphism of log manifolds from U x S onto
an open set of X.

Then:

(1) The quotient topological space H \ X has a unique structure of a log manifold such
that, for an open set V of H\ X, Op\ x(V) (resp. M\ x(V')) is the set of all functions
on V whose pullbacks to the inverse image V' of V in X belong to Ox (V') (resp. Mx(V")).
(Here M, denotes the log structure of *.)

(2) X — H\ X is an H-torsor in the category of log manifolds.

See [24] Lemma 7.3.3 for the proof.

4.6.19. We prove Proposition and Proposition [1.6.T71 By Lemma [L.6.18 it is
sufficient to prove the following Claim 1-Claim 3. We prove these claims one by one,
which completes the proofs.

Claim 1. The action of o¢ on E, is free.

Proof of Claim 1. This is a G-MHS version of [21] Part III 4.2.2 (i) whose proof also
works as a proof in the present situation.

Claim 2. The action of o¢ on E, is proper.

Proof of Claim 2. This is a G-MHS version of [2I] Part III 4.4.2 whose proof also
works as a proof in the present situation. (The properness of the action of iog on E? in
Claim 2 in is used in the proof through the projection E, — Ef.)

Claim 3. For each point x € E,, there exist a log manifold S and a morphism
t: S — FE, of log manifolds whose image contains x and an open neighborhood U of 0 in
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oc such that U x S — E,, (h,s) — hu(s), induces an isomorphism of log manifolds from
U x S onto an open set of E,,.

Proof of Claim 3. The construction of S at the end of the proof of [21] Part III 4.4.3
works here.

4.6.20. We have the special case (I'(¢)2P \ D, )¢ ~ T'(c)8 \ D! of (5) of Theorem EG.]
as follows.

The map E, — I'(0)#P \ D, induces a continuous map (FE,)"¢ — (I'(¢)&?\ D,)"e. On
the other hand, the map |toric|, = Hom (P (o), RE§!") — (toric, )¢ = Hom (P (o), REU x
SY (P(o) is as in EZT and S' = {u € C* | |u| = 1}) induces a continuous map
E! — (E,)"°8. The composition Ef — (E,)"° — (I'(0)8"\ D,)¢ induces I'(c)&P\ D} —
(C(c)eP \ D, )¢, The last map is a homeomorphism by Proposition as in [21] Part
I 4.4.4.

Proposition 4.6.21. Assume that I' is neat. Let x = (0,7) € Dy, v € I', and assume
yr =x. Then vy € T'(0)2P.

Proof. This is a G-MHS version of [21] Part III 4.3.5 (ii), and the proof of the latter works
for the proof of Proposition E.6.21] O

Lemma 4.6.22. Let X be a topological space with a continuous action of a discrete group
I', let Y be a set with an action of ', and let f : X — Y be a I'-equivariant surjective
map. Let Ty be a subgroup of I'. We introduce the quotient topologies of X on I'y\'Y and
on I'\Y. Let V be an open set of Iy \'Y and let U be the inverse image of V in I'y\ X.
We assume moreover the three conditions (1)—(iii) below. Then, the map V- — I'\'Y is a
local homeomorphism.

(i) X = I'\ X s a local homeomorphism and I'\ X is Hausdorff.

(ii) The map U — V is proper.

(i) If v € X and v € T, and if the images of vx and x in Iy \'Y are contained in V
and they coincide, then v € T'y.

Proof. This is [24] Lemma 7.4.7. O

4.6.23. Assume that I' is neat. We prove that the map I'(¢)8\ D, — I'\ Dy, is a local
homeomorphism.

We use Lemma @G22 for X = DL, Y = Dy, I =T, Ty = ['(0)#, V = I'(6)#" \ D, and
U =T(0)®?\ D%, The (1) and (2) of Theorem E.G.1] show that the condition (i) in Lemma
is satisfied. By £.6.20} the condition (ii) in Lemma is satisfied. Proposition
[L.G.2T shows that the condition (iii) in Lemma is satisfied.

4.6.24. We obtain (4) of Theorem 6.1l by Proposition L6.17 and by
We obtain (5) of Theorem 6.1l by 4.6.201 and by 4.6.23

Proposition 4.6.25. The map F\DﬁE — '\ Dy, is proper and surjective.

Proof. Replacing I" by its neat subgroup of finite index, we may assume that [' is neat.
Then this follows from (5) of Theorem [1.6.1] 0O
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4.6.26. By Proposition and by (1) of Theorem EG.T], we obtain (3) of Theorem
461l

The proof of Theorem [L.G.1] is completed.

Proposition 4.6.27. Let the assumption be as in (4) of Theorem 6.1l Then we have
canonical homeomorphisms

(P'\ D)y =T\ Dy, (I'\ Ds)va = T'\ Ds v,
((T\ Dy)%);y ~ T\ D 1 and ((0\ Dg)'°%) e =~ T\ DS, val"

Here topologies of the spaces on the right hand side of these homeomorphisms are as in

1310, 49, and (1) of Theorem G
Proof. This follows from (4) and (5) of Theorem A.6.11 O

Remark 4.6.28. The conclusion of Proposition holds if G is reductive, I' is a
semi-arithmetic subgroup of G(Q), and if the image of I' in (G/Z)(Q) is neat, where Z
is the center of G. See for the proof.

4.7 Valuative spaces, II1

The spaces S} of ratios are endowed with new log structures and the associated valuative
spaces Spvay are extensively studied in [21] Part IV Section 4. In this section, we review

this subject and obtain a space D val] OVEr D

4.7.1. Let E, S and Mg be as in[43.1l Let S[z] be the topological space defined in [4.3.9]
and

We review the definition of the new log structure on Sy ([21] Part IV 4.3.3). We endow
Sy with the sheaf Og of all R-valued continuous functions. Assume that we are given a
chart S — Mg with S being a sharp fs monoid such that |f(s)| < 1 for any f € S\ {1}
and any s € S. Let ® = {SUW |0 < j <n} withS =80 2580 > ... > 8™ be as
in 37 Take ¢; € SU=H S for 1 < j < n. We consider the log structure on Sp(®)
(37) associated to a chart

n—1

N" = Og;, 5 m= ([ r(gi1, 497 - (=1/1og(lgnl)) "2,

J=1

These log structures on S}j(®) are glued to an fs log structure Mgf}w — Og,, on Sy which
is independent of any choices.

We denote by Spy the valuative space (S})va associated to Sy endowed with this new
log structure. We have a proper and surjective map Spay — Sy ([21] Part IV Corollary
3.1.10).

4.7.2. Let ¥ be a weak fan in Lie (G”). Let 0 € ¥.
There is a log structure on E? which is the inverse image of that of E, but it depends
on I' (precisely speaking, on I'(c)8P).
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We define the new log structure M™%V = g‘iw of Dz ] by using the new log structure
Mg — O, for § = E? in E7.1] as follows.
Let U be an open set of Djj . An R-valued continuous function on U belongs to the

new log structure of Dﬂz’m if its pullback on E(ﬁf’w belongs to the new log structure of Ea,[:]
for all o € X.

Locally on Dﬁz,m, for o € ¥, for an open set U of Dfn[:], and for a continuous section
s: U — Ei[:] of Eg’w — Di’w given on U, the restriction of this new log structure to U
coincides with the inverse image of the new log structure of E(ﬁf’w by s.

Hence the new log structure M"Y on D isan fs log structure which is independent

5[]
of the choice of I". Denote by Dﬁ2 fvall the valuative space associated to the new log structure

MPe¥W of Dz I

4.7.3. Consider the log structure of DéL(2) which is defined in Proposition B.4.10] by using
distance to the boundary. Similarly as in [2I] Part IV 4.5.12, we can prove that the
continuous map Dﬂz’m — DéL(2) (Theorem E5.0) respects these log structures. (In [21]
Part IV 4.5.12, the reference 4.3.3 is a little ambiguous. The precise meaning is as above.)

Thus the map Dﬁz’H — DéL induces the continuous map Djj — DéL(z),val of
associated valuative spaces (cf. ﬂﬂﬂ Part IV 4.5.13).

33, [val]

Proposition 4.7.4. Let the notation and the assumption be as in (1) and (2) of Theorem
A.GI. Then the conclusions of (1) and (2) of Theorem LGl and their variants in Remark
1.6.2] are true also for X = D;,[Val}'

Proof. This follows from the corresponding results for X = D% . because the map

5[
DﬁE [val] Dg[:] is separated. O

4.8 Mild degeneration

We consider the G-MHS version of [2I] Part IV Section 5.1 in which we studied mild
degenerations.

4.8.1. We define the mild part D2 of Dy, as the part of points (o, Z) which satisfy the
following condition.

(C) For each N in the cone o, there is an R-splitting of W (which can depend on N)
that is compatible with N.

For the other spaces of nilpotent orbits Dﬁz, Dy, 1y, D Dz} val, and so on, we define
their mild parts D5™, Dyl Dﬁzn[“]ld, D), and so on as the inverse images of D4,

4.8.2. Let D, be the subset of D mﬂd x L consisting of all elements (p, Z,9) ((p, Z) €

Dgﬁ?;ld with p € Dieqsie) and Z C D B22), § € L = W_,Lie(G,r)) satisfying the
following conditions (i) and (ii).

(i) Let n be the rank of p, and let 0 := (0, ...,0) € Z". Then the Ad(7)-weights of &
are < 0.
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(ii) For every = € Z, dw(x) coincides with the component of ¢ of Ad(7;)-weight 0
We define the structure of Dg; ) as an object of Bg (log) by the embedding Dg ) S

D;ﬁ;l)d x L.
We regard D as a subspace of Dg; , via the embedding z — (z, dw ().

This is the G-MHS version of [2I] Part IV 5.1.8, 5.1.9.

Proposition 4.8.3. The canonical map D§L(2) — Dreasriz) X spl(W) induces a bijection
from Dg; o) to the subset of Dieqsr(2) X spl(W) x L consisting of (p,s,d) satisfying the
following conditions (i) and (ii).

(i) The Ad(7y)-weights of § are < 0.

(i) Let (p, ) be an SL(2)-orbit for Greq which represents p. Then the component of &
of Ad(7))-weight 0 is of Hodge type (< —1,< —1) with respect to o(i).

This is a G-MHS version of [21] Part IV Proposition 5.1.11 and is proved in the same
way.

Theorem 4.8.4. The identity map of D extends uniquely to a continuous map D%rﬁld —
Dgy 9y The last map is compatible with the new log structure of Dﬂ’nﬁld and the log

structure of DSL(2 and induces a continuous map between the associated valuative spaces

g, mild o
DZ J[val] - DSL(2 val *

This is a G-MHS version of [2I] Part IV Theorem 5.1.10 and is proved in the same

way.

4.8.5. For mild degenerations, we can replace the upper right part of the fundamental
diagram in Introduction by the following commutative diagram (maps respect structures
of the spaces) which contain the space D§L(2) and its associated valuative space D<S>L(2) val’

g,mild ¥ o *,mild m mild
D - DSL(2),Va1 - D E) DBS,Val

3, [val] SL(2),val
! 4 4 4
f,mild ¥, *,mild mi
Dgw = Dge — Dg Dy
_ l » 4
[\ Dgid . pimi Dsy2)

Proposition 4.8.6. The conclusions of Theorem BI1LIl and their variants in BI1L4 and
Proposition 110 are true also for X = D<S>L(2)

Proof. This follows from the corresponding results for X = D10 because the map
D¢y o) = Dgy 9y is continuous and Dg; o is Hausdorff. O

4.9 The fundamental diagram in examples

We explain what our fundamental diagram tells in special examples.

In particular, by using the fundamental diagram, we give a complement to the work
of Goresky and Tai [I5] on the relation of the toroidal compactification and the reductive
Borel-Serre compactification (see FL.9.4)).
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In £9.1] 9.3 2941 9.7 we consider cases in which G is reductive. For a reductive
G, the main part of the fundamental diagram in Introduction becomes

Dipay = Dsipwm = Desa
{ 1 1
D%H = Dsiiz) Dgs >

I'\Dy « D&
and we consider this part.

4.9.1. Example. Let G = GL(2) and h : S¢/r — G be the standard one (cf. [LG.3]).
Then D = D(G, h) is the complex analytic manifold $* = {7 | Im(7) # 0} = C\ R
on which G(R) = GL(2,R) acts naturally.
We describe the space Dgg of Borel-Serre orbits. Let

pP= (; I) C GL(2)q = G.

All parabolic subgroups of G other than G are conjugate to P under G(Q), and hence
the whole Dgg can be understood as the union of the following picture of the open set
Dgps(P). Let P, := PNG'. Foriy € D (y € R*), the Borel-Serre lifting of Sp, = P,/ P,

is the group of matrices (8 2) such that ab = 1. The adjoint action of this matrix on

00
this matrix to a='b. Hence the isomorphism Ap ~ R given by the fundamental root

. 1/4/r 0
sends 7 € R+ to the matrix ( /6/_ S

Ap sends z + iy to x + ir~'y. From this, we have a commutative diagram of spaces

(O 1) € Lie (Py,,) is the multiplication by ab™!, and hence the fundamental root sends

). Hence the Borel-Serre action of r € R+ >~

D~ RxR.x{%l}
N N
DBS(P) ~ R x RZO X {ﬂ:l},

in which the upper horizontal arrow sends z+iy (x € R,y € R*) to (z,1/]y|,sgn(y)) and
the lower isomorphism preserves the structure of real analytic manifolds with corners. We
have Dggval = Dags.

Next we describe the space Dgy,2) of SL(2)-orbits. Let W’ € 20(G) be the filtration
associated to the homomorphism

_ ' 1/t 0
a.Gm—>G7tr—><0 t)’

and let & = {W’'}. Since Dgo) = UgeG(Q) gDs1,2)(®), the whole Dgpz) can be un-
derstood as the union of the following picture of the open set Dgp2)(®). We have the

93



CLASSIFYING SPACES OF DEGENERATING MIXED HODGE STRUCTURES, V

distance  : D — R to ®-boundary defined as = + iy — 1/4/|y|. Then the injective
real analytic map

Vap - DSL(2)((I)) E} RZO X D X Spl(W,)
in Proposition B4 sends =+ iy (z € R,y € R*X) to (1/+/|y|, z|y|~' +1i-sgn(y), z), where

we identify spl(W’) with R by sending z € R to - s with s € spl(W’) given by

1 z
0 1
a. The closure of v, 5(D) in the target space is C' = {(r,z,z) | z = zr® £1i}. Since D
is dense in Dgp9)(®P), v, induces an injective map Dgy2)(®) — C. Let p € Dgpo)(P)
be the class of the SL(2)-orbit in Then v, s sends 8 Z_f
€ € {£1} to (0,i¢,x). This proves the surjectivity of Dgp,2)(®) — C and hence we have
an isomorphism Dgy o) (®) = C of objects By (log). From this, we have a commutative
diagram of spaces

- p € DSL(Q)((I)) for

D =~ RxReyx {1}
N N
DSL(2)((I)) ~ R x RZO X {j:]_},

in which the upper horizontal arrow sends = + iy (r € R,y € R*) to (z, 1/\/m, sgn(y))
and the lower isomorphism preserves the real analytic structure and the log structure with
sign. The image of p € Dgp2)(®) under the lower horizontal arrow is (0,0,1). We have
Dag1,2),val = Dsr,(2)-

By Theorem [3.8.2] the identity map of D extends uniquely to a morphism Dgp,2) —
Dgg in Bg(log). This induces Dgy,2)(®) — Dgs(P) for which the following diagram is
commutative.

~

DSL(2)((I>) — R x RZO X {ﬂ:l}
1 \
DBS(P) :> R x RZO X {ﬂ:l}

Here the right vertical arrow is (z,7,€) + (z,7%€). Thus the map Dgp2) — Dgs is a
homeomorphism, but their real analytic structures are slightly different.

Next we describe the spaces of nilpotent orbits for the fan ¥ consisting of all cones
R>oN with N € Lie(G') = sl(2,Q) such that N* = 0 as a (2,2)-matrix. Then for
a congruence subgroup I' of SL(2,Z), I'\ Dy, is a compactified modular curve. We have
D;,[Val} = Dﬁzv[:] = Dﬁz, and the CKS map induces a homeomorphism DﬁZ = Dﬁzv[:] = Dgp(2).-

Define o, 7 € ¥ by

o:=R>oN, 7:=R5o(—N) with N = <8 (1]) .

The CKS map induces a homeomorphism D? U D! = Dgp,2)(®). For a € R, this map
sends the nilpotent i-orbit (o, a + iR) € D! (resp. (7,a + iR) € D?) to the element of
Dgt,(2)(®) corresponding to the element (a,0,1) (resp. (a,0,—1)) of RxR>ox{£1}. Here
a + iR is regarded as a subset of D by identifying D with P'(C) D a + iR.

The part about Dgg and Dgp,s) as topological spaces in this [£.9.1] is essentially de-
scribed in [23] 6.2.
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G, G,
0 1
homomorphism which induces Sg/r(R) = C* = Grea(R) : 2+ 271271 (2 € C¥). Let
x € D = D(G, h) be the point defined by the homomorphism S¢/r — Ggr which induces

2 lz7b 0 o
»—>< 0 1) (z € CY).

Then we have an isomorphism of complex analytic manifolds

~ 1 ¢
C—)D,c»—)(o 1)-x

Let p be the unique element of D,.q. The real analytic isomorphism D = spl(W) x L(p)
in Proposition sends c=a+ib € C=D (a,b € R) to (s(a),d(b)), where

4.9.2. Example. Let G = and let h : Sc/r — Grar = Gpr be the

Scr(R)=C* = G(R) = (I({)X If) ;

s(a) = ((1) ‘f) splyp (), 3(b) = (8 8) € W sLic (Gr) = gr',Lic (Gr).

Let P be the unique parabolic subgroup of Gieq, that is, Gieq itself. Since Ap = {1},
Bp = R~¢. By 244 the Borel-Serre action of t € Bp on D = C sends ¢ = a + ib
(a,b € R) to a+it~2b. As topological spaces with sheaves of real analytic spaces and with
log structures with sign, all the spaces Dps, Dpsats Dpys Dip) Dé£(2)= Déi(z
D{;(2)> Dép () var coincide with the real analytic manifold with corners R x [—o0, 0] D
R xR ~ D, where R x R ~ D sends (a,0) ¢ RxRtoa+ibe C=D. Fora€ R,
(a,00) € R x [—00,00] corresponds to the element (p,a + iR~q) of Dgr2) and to the
element (P,a + iR~) of Dgs, and (a, —00) € R x [—00, 00] corresponds to the element
(p,a+iR<g) of Dgr2) and to the element (P, a + iR<o) of Dgs.

Define

,val? ),val?

0:=R5oN, 7:=R>¢(—N) with N = (8 é) € Lie (G"),

S — ({0}, 0,7}, T = (é f)

Then I' and X are strongly compatible. We have isomorphisms of complex analytic man-
ifolds
'\D~C*, TI\Dy~P!C),

where the class of ¢ € C = D in I'\ D is identified with exp(27wic) € C*. The point
0 € P!(C) corresponds to the class of the nilpotent orbit (o, C) and the point oo € P1(C)

corresponds to the class of the nilpotent orbit (7,C). We have DﬁE hal] = DﬁZ = Dﬁz,

and the CKS map induces a homeomorphism D% = Dﬁz’H = DéL(Z)' For a € R, this
map sends the nilpotent i-orbit (o,a + iR) € D! to the element of Dgy,) corresponding
to (a,00) € R X [—00, 00, and the nilpotent i-orbit (7,a + iR) € D! to the element of
Dsr,2) corresponding to (a, —o00) € R X [—00, o0]. Here a + iR is regarded as a subset of
D=D=C.
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4.9.3. FEzample. We omit the details in this
Let G = GL(2) x GL(2) and let h : Scyr — GL(2)r x GL(2)r be the diagonal
embedding of the homomorphism in [£.9.1l This h is R-polarizable. We have

D =T x H*.

Let ¥ be the fan consisting of all cones of the form R>oN; x RsgNo C Lie(GR) =
sl(2,R) x sl(2,R), where N; is an element of the j-th sl(2,Q) in Lie (G’) such that
sz = 0 as a (2,2)-matrix (7 = 1,2). Then in the category of topological spaces, the
fundamental diagram presents

{ {
Dﬁg [] — DSL(2) ~l/
{ N\
DX SN Dgs

Furthermore, Dﬁ2 is canonically isomorphic to the product of two copies of DﬁE of L9.1] and
Dgs is canonically isomorphic to the product of two copies of Dgg of [.9.7] (see Proposition
L106).

The proper surjective map Dﬁz’H — Dﬁ2 is not injective as the following property of
the convergences show, and hence the map Dgy,2) — Dps is not injective.

Consider the point p = (iy1,iy2) € H X H C D (y1,y2 € R-p). In the following (1),
(2), (3), we give examples of the convergence of p in Dﬁz, Dﬁz’m, and Dﬁz,[valp respectively,
to show how the topologies of these three spaces are different.

(1) If y; — oo for j = 1,2, p converges to the class of the nilpotent i-orbit (o, Z),

where 0 = R>oN; X R>oNy with N; the matrix (8 (1)) in the j-th s[(2,Q) in Lie (G")

(j =1,2) and Z is the exp(ior) orbit which passes (i,7) € D.

(2) If y1,y2 — oo and y;/ys — oo, then p converges in Dﬁz’H to a point a, and if
y1,Y2 — oo and y;/ys — 1, then p converges in Dg[:] to a point b, and a # b. These
a,be Dg[:] lie over the above class of (o, Z) in D,

(3) If yo — oo and y; /y2 — oo, then p converges in DtiE al) 10 @ point ¢, and if o — 00

1

and vy, /ys — oo, p converges in DﬁE [ toa point d, and ¢ # d. These ¢, d € D, fval

the point a € DﬁE [

| lie over

4.9.4. Shimura varieties.

Assume that G is reductive and that hy : Sc/r — GRr satisfies the condition that the
Hodge type of Lie (Gr) via hg is in {(1,—1),(0,0), (=1,1)} (as in BZT]).

Then for an arithmetic subgroup (that is, a subgroup satisfying the condition (A) in
L57) I' of G'(Q), there is a fan ¥ which is strongly compatible with I" such that I' \ Dy,
is compact. This compact space is called a Mumford (or toroidal) compactification of
'\ D.

As in Theorem [3.8.2] we have a morphism Dsgy,2) — Dpg which extends the identity
morphism of D. We can prove Dgy,2) val 5 Dgs a1, but we do not give the proof here.
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As an application of the fundamental diagram, we have the following complement
to the work [I5] of Goresky and Tai on the relation of toroidal compactifications and
reductive Borel-Serre compactification.

The reductive Borel-Serre space, which we denote by D2q here, is defined to be the
quotient of Dgg by the following equivalence relation. For p; = (P, Z1),p2 = (P, Z5) €
Dgs, p1 ~ po if and only if P, = P5 and P, 2, = P, Zs, where (-), denotes the unipo-
tent radical. The quotient F\D']’SS is compact, and is called the reductive Borel-Serre
compactification of I'\ D.

Let T" be a neat arithmetic subgroup of G'(Q) and let ¥ be strongly compactible with
' such that I'\ Dy, is compact.

Then concerning the relation of the compactifications I'\ Dy, and T'\ Djg of T'\ D,
Goresky and Tai obtained the following result. The identity map of I'\ D extends to
a “continuous map modulo homotopy” from I'\ Dy — I'\ Djg if we replace X by a
sufficiently finer subdivision. Precisely speaking, if we replace ¥ by a sufficiently finer
subdivision, there are a compact topological space T" which contains I'\ D as a dense
open subspace, and continuous surjective maps f : T — '\ Dy and g : T — T"\ D%S such
that f is a homotopy equivalence and such that f and g induce the identity map of I\ D.

We have the following result. The map I'\ Dy ; — I'\ Dy, is proper surjective and
a weak homotopy equivalence, and we have the continuous surjective map I'\ Dy —
'\ Dbg induced by the continuous maps Dﬂz’m — Dsp,2) — Dgg by passing to the quo-
tients. That is, compared to [I5], we do not need a subdivision of ¥ here and we present
a standard space I'\ Dy, j which connects I'\ Dy, and T\ Djg. This gives an alternative
proof for the existence of the canonical maps H™(I'\ Dig, A) — H™('\ Dy, A) with A
being an abelian group for any m, A being a group for m = 1, and A being a set for
m = 0, obtained by Goresky—Tai. We plan to discuss the details in a forthcoming paper.

4.9.5. An example of D = D(G,h) with G reductive for which the identity map of D
does not extend to a continuous map Dsgr,2) — Dgs is given in [L.I10.10 basing on [23] and

[24].

Remark 4.9.6. The spaces ngal and DtiE ] in the fundamental diagram play similar
roles in our work. The former appears in [24] and in [21] Part II, Part 11T and so on of
our series of papers, and the latter appears in [2I] Part IV and in this part. Both have
canonical proper continuous maps to D% and also continuous maps (the CKS maps) to
Dgr,2). In this Part V | we are using Dy, 3 (and the related space I'\ Dy 1) more than
ngal (and the related space '\ Ds ). The advantages of the space DL, i and I'\ Dy
are:

(1) The space DtiE ] naturally produces the space Dﬁ2 fval] from which we can go to
DéL@)’Val (and in the case G is reductive, to Dpg va and Dgg).

(2) The definition of the CKS map by using DﬁE ;7 is simpler and more natural than
that by using ngal. The convergences of ratios such as y;/yj11 — a; (a; € Rso),
Yj/yj+1 — oo appear in SL(2)-orbit theorem and these are the convergences in the space

of ratios, and so the relation to the SL(2)-orbit theorem of DﬁE ] seems stronger than that
8
of DZN&I.
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(3) The spaces DﬁZ i and I'\ Dy, [y have the application described in I.0.4]
On the other hand, the space I'\ Dy, ya1 has the sheaf of holomorphic functions which
the space I'\ Dy, j does not have.

4.10 Functoriality in G

4.10.1. Assume that we are given a homomorphism f : G; — G5. We describe how we
can relate the period domains and extended period domains for G; and those for Gs.

We have to introduce some conditions for this functoriality.

We assume f(Gy,) C Ga, and hence f induces freq @ Gired — Garea. We assume
that we are given h; : Sc/r — Girear as in [L2.13] and we further assume that the
induced homomorphism hy := fieq © h1 : Sc/r — Garedr satisfies the condition that the
composition G, r — Sc/r RN Gared r 1s central.

Then we have holomorphic maps

D(Gh hl) — D(G27 h2)7 D(Gl,redu hl) — D(G2,red7 h2)-
In EI02HETI0.4] we further assume that b, and hy are R-polarizable.

4.10.2. We first consider the spaces of Borel-Serre orbits.
Assume the the following condition (i) is satisfied.

(i) The map Lie (G}) — Lie (G%) is surjective.

Here as usual, (—)" denote the commutator groups. Then we have a morphism of real
analytic manifolds with corners

D(G1, h1)p§® = D(Ga, ho)Bd® s (P1, Z1) = (Py, Za),

where P; is a parabolic subgroup of Gy ieq, Z1 is an Ap-orbit in D(Gy, hy), P is the
algebraic subgroup of G5 generated by the image of P, and the center of G5, which is a
parabolic subgroup of Gy, and Z, is the unique Ap,-orbit in D(Gs, hy) which contains the
image of 7.

Assume that the above condition (i) and the following condition (ii) is satisfied.

(ii) The map Lie (Gy,) — Lie (Ga.) is injective.

Then we have a morphism of real analytic manifolds with corners
D(G1, hi)ps = D(Ga, ha)ss 5 (P1, Z1) = (Pa, Za),

where P, and P, are as above, Z, is as above if Z; is an Ap,-orbit, and in the case where
Zy is a Bp,-orbit, Z, is the unique Bp,-orbit which contains the image of 7.

Here in the case where Z; is a Bp,-orbit, the image of Z; in D(Gjy, hy) does not meet
D(Gg, ha)spi by the injectivity of Lie (Gy,,) — Lie (Ga,y).

4.10.3. Next we consider the spaces of SL(2)-orbits.

In the case G; and G, are reductive, we have a morphism D(G1, hy)sL) — D(Ga, ha)si2)
of locally ringed spaces with log structures with sign, which sends the class of an SL(2)-
orbit (p1,¢1) (p1: SL(2)k — Gr, @1 : H™ — D(Ga, he)) to the class of (pa, p2), where py
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is the composition SL(2)% 2 G1r — Gar and @9 is the composition H” — D(Gy, hy) —
D(Gy, hs).

In general, we have morphisms

D(G1,h1)4 ) — D(Ga, ha)§y (for the structures I,1T),

*,mild *,mild
D(Gy, h1>SL(2) — D(Gy, h2)SL(2) ’

where (—)* denotes the part consisting of A-orbits, which sends (py, Z1) to (p2, Z2) (p1 €
D(G1, hi)reasiiz), Z1 is an A-orbit in D(G, hy), ps is the image of p; in D(Gy, ha)red,si(2)
and Z is the unique A-orbit in D(Gjy, hy) containing the image of Z7).

If Lie (G .4) — Lie (Gay) is injective, we have morphisms

D(Gy, hi)sr) — D(Ga, ho)sie) (for the structures I, 17),
D(Gy, hl)gL(2) — D(Gy, h2)§L(2)a

which sends (p1, Z1) to (p2, Z2) (p1 € D(G1, h)red,sL(2), P2 is the image of py in D(G2, ha)red,s1(2)5
either 7 is an A-orbit in D(G1, hy) and Z, is the unique A-orbit in D(Gs, hy) containing

the image of Z;, or Z; is a B-orbit in D(Gy, hy) and Zs is the unique B-orbit in D(Ga, hs)
containing the image of 7).

4.10.4. Lastly, we consider the spaces of nilpotent orbits.

Assume that we are given Y; for G;. Assume that the images of elements of ¥; in
Lie (G g) form a weak fan X, in Lie (G3). (For example, this is satisfied if Lie (G7) —
Lie (G%) is injective.) Then we have a map

D(G1, h)s, = D(Ga, ho)s,,
a continuous map

D(Gy, hl)ﬁzh* — D(Go, hg)ﬁ22 for x = [:], val, [val],

and a morphism of log manifolds
[\ D(Gy, ha)s, — Do\ D(Ga, ho)s,,

where I'; C G%(Q) (j = 1,2) are neat semi-arithmetic subgroups such that I'; is strongly
compatible with ¥; and the image of I'; in G5(Q) is contained in I'y.

Proposition 4.10.5. Let G| and G be linear algebraic groups over Q and let h; : Sc/r —
Gir (7 = 1,2) be homomorphisms as in[L2I3. Let h = (hy, hs) : Sc/r — (G1 X G2)r.
Then h satisfies the condition as in[L2I3l The morphisms D(Gy x Gz, h) — D(G;, h;)
associated to the projections Gy x Gy — G (j = 1,2) induce an isomorphism

D(Gl X GQ, h) :> D(Gl, hl) X D(GQ, hg)
Proof. In the case where G; and G5 are reductive, this is proved as

D(G; x Gy, h) = {(G; x G3)(R)-conjugate of h}
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2
= [[{G;(R)-conjugate of h;} = D(G1,h1) x D(Ga, hy).
j=1

The general case is reduced to the reductive case by Proposition using (G X
Ga)u(R) = G14(R) X Gy, (R) (this proves that spl(W) for Gy x Gy is the product of
spl(W) for G;) and L(p) = L(p1) x L(p2) for p; € D(Gj,hj)ea and p = (p1,p2) €
D(Gl X GQ, h)rod- ]

Proposition 4.10.6. Let the notation be as in Proposition and assume that h;
(7 =1,2) are R-polarizable.

Then h is R-polarizable and we have:

(1) The canonical maps D(Gy X Go, h)§dd — D(G;, hy)Bld (j = 1,2) induce an iso-
morphism of real analytic manifolds with corners

D(Gy x Gy, h)E1 2 D(G, hy)B8 x D(Gy, ho)Bid,
In particular, if G1 and Gy are reductive, we have
D(Gy x G, h)ps — D(G1, hi)ps x D(Go, hs)gs.
(2) Assume that ¥; for G; are given (j =1,2). Let ¥ = {0y X 05 | 0; € £;}. Then

D(Gl X Gg, h)ﬁEleg :) D(Gl, hl)ﬁz X D(Gg, hg)ﬁzz

1

as topological spaces, and for neat semi-arithmetic subgroups I'; of G;(Q) which are
strongly compatible with ¥; (j =1,2), we have an isomorphism of log manifolds

(Fl X Fg) \D(Gl X GQ, h)z; :> Fl \D(Gl, hl)El X FQ\D(GQ, h2)22.

Proof. (1) Parabolic subgroups of Gy x Gy are Py x P, for parabolic subgroups P; of Gj.
(This fact is deduced from the surjectivity of the map Hom (G,,,, G) — {parabolic subgroups of G}
in B37 and from Hom (G,,,G; x G2) = Hom (G,,,G;) x Hom (G,,,, G3).) We have
Ap «xp, = Ap, x Ap,. Hence the converse map is given by ((Pi, Z1), (P, Z3)) — (P X
Pg, Zl X Zg)
(2) The converse map is given by ((o1, Z1), (09, Z2)) — (01 X 09, Z1 X Z3). O

Remark 4.10.7. On the other hand, even if G is reductive, D(G1 x G2, h)s1,(2) need not
be the product of D(G}, hj)sie) (j = 1,2) as examples in E9.1] and show.

In[A.10.8H4.10.10, we give examples of G; — G5 whose associated morphisms of spaces
of Borel-Serre orbits do not exist, looking at examples of convergence and divergence in
the extended period domains.

4.10.8. Ezample. Let (Gy, hy) be the (G, h) of 92 and let Gy = G x G, hy = (h,h) :
Sc/r — G X G, let Gy = G, let G; — G be the second projection. Then the induced
morphism D(Gy, hy) — D(G3, hy) is understood as C?* — C ; (cy,c3) = cp. This
morphism does not extend to a continuous map D(G1, hy)ps — D(Go, ho)ps. Note that
in this case, Lie (G1,) — Lie (Ga,) is not injective. Let P, = G ycq, the unique parabolic
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subgroup of G 1eq. For 6 € R, let Z(0) be the Bp-orbit {(ir cos(f),irsin(d) | r € Rxo}
in C* = D(G1, hy). Then when 6 — 0 and r — oo, (ir cos(f),irsin(f)) € C? = D(G4, hy)
converges to (P;, Z(0)) € D(G1, h1)gs, but the image irsin(f) € C = D(Gs, hy) does not
converge in D(Gs, hy)ps.

The point is that for finite dimensional graded R-vector spaces Vi and V5 of weigh
< —1 and for a linear map f : Vi — V5 which is compatible with the gradings, the
following three conditions are equivalent. (i) Either f is injective or V5 = 0. (ii) f extends
to a continuous map V', — V. If these conditions are satisfied, f extends to a morphism
V1 — V, of real analytic manifolds with corners uniquely.

4.10.9. Ezample. Let G; = GL(2) x GL(2), G5 = GSp(4), and let f : G; — G2 be
the natural embedding. Let h; : Sc/r — G1r be as in and let hy @ Sc/r — Gaor
be f o hy. Then both h; and hy are R-polarizable. We show that the canonical map
D(G4, h1) = D(Ga, hs), which we also denote by f, does not extend to a continuous map
D(Gl, hl)BS — D(Gg, hg)Bs.

In fact, we have:

(1) When yy, 92 — 00, (iy1,iy2) € HT x HF = D(G1, hy) converges in D(G1, hi)ps.

On the other hand, the identity map of D(Gs,hs) extends to a homeomorphism
D(Gs, ha)st2) = D(G2, he)ps ([23] Theorem 6.7). We have

(2) When ys, y1/y2 — 00, f(iy1,iy2) converges in D(G, ho)st2) to a point a, and when
y1,Y2/y1 — o0, f(iy1,iys) converges in D(Go, hy) to a point b, and a # b.

Hence in D(Ga, ho)gs, f(iy1,iy2) for yi,y2 — oo with y;/ys — oo and that with
y2/y1 — 0o have different limits.

4.10.10. Ezample. Let Gy = GL(2) x GL(2), G2 = GSp(6), and let f : Gy — G4 be the
homomorphism (g1, g2) + g1 ® Sym?(gs). Let hy : Sc/r — Gir be as in and let
hy : Sc/m — Gar be foh;. Both hy and hy are R-polarizable.

We explain the following (1) and (2).

(1) The canonical map D(G1, hy) — D(Gs, hy), which we also denote by f, does not
extend to a continuous map D(G1, hy)ps — D(Gs, ha)ps.

(2) The identity map of D(G', hs) does not extend to a continuous map D(Ga, he)si2) —
D(GQ, hg)Bs.

These (1) and (2) follow from (3)—(6) below. Note that D(Gy, hi) = H* x H*.

(3) When y1,yo — 00, (iy1,iy2) converges in D(G1, hy)gs.

(4) When ya, y2/y1 — 00, f(iy1,iys) converges in D(Ga, ha)sia).-

Let P and @ be the parabolic subgroup of GGy associated to the following homomor-
phisms u : G,, — G5 and v : G,, = G, respectively.

o =i((' 8) (0 D) o= 8) ()

Then P # (@) because the adjoint action of G, on Lie (G3) defined by p (resp. ) multiplies
01 0 0
N_f<(o o)’(1 0))
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(5) When y — oo, f(iy3,iy) converges in D(Ga, he)ps to a point whose associated
parabolic subgroup of G5 is P.

(6) When y — oo, f(iy?,iy?) converges in D(Gy, hy)ps to a point whose associated
parabolic subgroup of G5 is Q.

(These (5) and (6) are essentially contained in [23] Proposition 6.10 and also in [24]
Section 12.4.)

In the rest of this Section [£10, we assume that G is reductive and let Z be the center
of G. We consider the case G4 = G and G, = G//Z. We assume that hg : Sc/r — Gr is
R-polarizable. We will see that the extended period domains for GG are understood from
those of the semisimple group G/Z.

Lemma 4.10.11. Let ho be the homomorphism Scr — (G/Z)gr induced by hy : Sc/r —
GRr. Then hg is R-polarizable.

Proof. This is because Lie ((G/Z)") = Lie (G') and hence Ad(h(i)) on Lie ((G/Z)R) is a
Cartan involution. O

Proposition 4.10.12. The complex analytic manifold D(G, ho) is an open and closed
submanifold of the complex analytic manifold D(G/Z, hy).

Proof. We have a canonical morphism D(G, hg) — D(G/Z, hg) of complex analytic man-
ifolds. Hence, to prove Proposition 1012 it is sufficient to prove that via this map,
D(G, hy) is an open and closed real analytic submanifold of D(G/Z, hy).

We first prove

Claim. Let g € G(C). Then Int(g)(ho) = ho in Hom (S¢/r,c,Gc) if and only if
Int(g)(ho) = ho in Hom (Sc/r.c, (G/Z)c). Here Int(g) denotes the inner-automorphism
given by g.

Proof of Claim. Assume Int(g)(hg) = ho. Then there is a homomorphism z :
Sc/r,c — Zc such that Int(g)(ho(s)) = z(s)ho(s) for all s € Sc/r,c. Since z(s) =
Int(g)(ho(s))ho(s)~* belongs to the commutator subgroup G of G and G N Z¢ is fi-
nite, the image of 2 : Sc/r.c — Zc is finite. Since Sc¢/r,c is connected, z is the trivial
homomorphism. Claim is proved.

Let N = {g € G(C) | Int(g)(ho) = ho} = {g € G(C) | Int(g)(ho) = ho} and let
N = N/Z(C). Since G(R)/Z(R) is an open and closed real analytic submanifold of
(G/Z)(R), D(G, ho) = G(R)/(G(R) N N) = (G(R)/Z(R))/((G(R)/Z(R)) N N) is an
open and closed real analytic submanifold of (G/Z)(R)/((G/Z)(R)NN) = D(G/Z, hy)
as a real analytic manifold. O

4.10.13. Erxample. The map D(G, hy) — D(G/Z, hy) for a reductive G' need not be
bijective. Let (Z/4Z)(1) be the algebraic group of 4-th roots of 1 over R and let G be the
semi-direct product of Sc/r and Z/4Z(1) in which Sc g is the normal subgroup and the
action of the generator of Z/4Z(1) on Sc/gr via the inner-automorphism is z + z~*. Let
ho : Sc/m — G be the inclusion map. Then G(R) = C* x {£1} (here {£1} C Z/4Z(1))
and D(G, hy) is a one-point set. On the other hand, G/Z is the semi-direct product of
Scr/{£1} and Z/47Z(1)/{£1} ~ {£1} in which S¢/r/{%1} is normal and the generator
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of Z/4Z(1)/{£1} acts on it via the inner-automorphism by z + 2~!. Hence D(G/Z, hy)
consists ofv two points. . -
Both D(G, hy) and D(G/Z, hy) consist of two points.

Proposition 4.10.14. As a real analytic manifold with corners, D(G, ho)gs is canonically
isomorphic to an open and closed subspace of D(G/Z, hy)gs.

Proof. By Proposition B.I0.12, we have that Y := D(G/Z, ho) is the disjoint union Y; [ Y»
of open closed subspaces Y; and Y; of Y such that the map X := D(G, hg) — D(G/Z, hy)
induces an isomorphism X = Y;. As is easily seen, Vs is the disjoint union Yisa [ Vas.e,
where Yps; (j = 1,2) is the open and closed subset of Ygg consisting of all elements
(P, Z) such that Z C Y;. The morphism X — Y induces a morphism Xpgs — Ypg and
this induces a morphism Xpg — Ygs ;. We show that the last morphism is an isomorphism.

We have a bijection P +— P/Z from the set of all parabolic subgroups of G to that
of G/Z. Tt is sufficient to prove that we have an isomorphism Xpg(P) — Yps1(P/Z) =
Yis1 N Yes(P/Z). Since Ap = Ap)z and Ap = Ap,z, we have

XBS(P) = D(G, ho) XAP AP :) Yi XAP/Z AP/Z = YBSJ(P/Z).
]

Proposition 4.10.15. As a locally ringed space with log structure with sign, D(G, ho)si2)
(resp. D(G, ho)Bs val, resp._D(G, ho)si(2)val) s canonically isomorphic to an open and
closed subspace of D(G/Z, ho)si2) (resp. D(G/Z, ho)gsyal, Tesp. D(G/Z, ho)st2)val)-

Proof. We use the notation in the proof of Proposition [£.10.14]

The case of Dgr ) is proved as follows. As is easily seen, Ygp, o) is the disjoint union
of Ysu2)1 [ YsrL(2),2, where Ysi2); (j = 1,2) is the open and closed subspace of Y2
consisting of all elements whose torus orbits are contained in Y;. The map Xgy,2) — Ysr(2)
induces a morphism Xgy,2) — Ysp,(2),1- We show that the last morphism is an isomorphism.
We use

Claim. For any field £ O Q, the map Hom (SL(2)%, Gg) — Hom (SL(2)%, (G/Z)E)
is a bijection.

We prove Claim. We first prove the injectivity. Assume that hy, hy € Hom (SL(2)%, Gg)
have the same image in Hom (SL(2)%, (G/Z)g). Then there is a homomorphism a :
SL(2)% — Zg such that hy = ah;. But a is trivial because SL(2)" = [SL(2)", SL(2)"].
Next we prove the surjectivity. Let h € Hom (SL(2)%, (G/Z)g). Then the image of h
is contained in the commutator subgroup G%/(G' N Z)g of (G/Z)g, where G’ = [G, G].
Since G' — G'/(G' N Z) is an isogeny and since SL(2)" is simply connected, this homo-
morphism SL(2)% — G%/(G' N Z)p comes from a homomorphism SL(2)% — G’%. Claim
is proved.

By Claim and by using the description of the set of SL(2)-orbits in (ii) or (iii) in Lemma
B.1.3l we see that the map Xgr,) — Ysr(2),1 is bijective. It remains to compare the real
analytic structures and the log structures with sign. By using the local descriptions
Proposition B.4.4] of these structures, it is sufficient to prove that the canonical map

from space spl(W’) in Proposition B4 for (G, hy) to the corresponding space spl(W)
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for (G/Z, hy) is an isomorphism of real analytic manifolds. This map is identified with

~

the map Grw'uw — Graiv, and is identified with the isomorphism Lie (Grw’u) —
Lie (Gr ). This completes the proof for Dgy,).

The proof for Dggva (resp. Dsi2)va1) is similar to that for Dgg (Proposition A.10.14))
(resp. for Dgr,(2)). O

Proposition 4.10.16. Let ¥ be a weak fan in Lie (G'). Then D(G, ho)ﬁE (resp. D(G, ho)ﬁz,w,
D(G, ho)gval, D(G, hO)ﬁZ,[V@Ll]) is canonically homeomorphic to an open and closed subset
of D(G/Z;ho); (resp. D(G/Z, 1)l g, DIGIZ: ho)ss s DIGIZ B0l )

Here we denote the image of ¥ under the isomorphism Lie (Gg) — Lie ((G/Z)g) by
the same letter 2.

Proof. We use the notation in the proof of Proposition FLTQ. 15l

For j = 1,2, let Yg[:]’j be the inverse image of Yg,(2),,; under the CKS map YEﬁ,[:} —
Ysr2)- Then YEﬁ,[:} is the disjoint union of an open and closed subsets Yzﬁ,[;m and Yg[:].’z.
Since the map YEﬁ,[:} — Yg is proper and all fibers of this map are connected, Yg is the
disjoint union of the open and closed subsets Yzﬁ,l and Yg,z, where Yg ;i (7 =1,2) denotes
the image of Yg,[:}d in Yé. The set ngj is the subset of Yg consisting of nilpotent i-orbits
(0,7) such that there is an F' € Z having the property that if Ny,..., N, generate
o, then exp(> ,_, iyxNg)F € Yj if yy > 0 for all k. From this description, we see
that the map X% — Yzﬁ,l is bijective. The coincidence of the topologies can be seen
by the fact that for each o € ¥, both X? and Y, have the quotient topologies of the
topology of {(q, F') € |toric|, x X | (¢, F') belongs to B, of (G,ho)} = {(q, F) € [toric|, x
Y1 | (¢, F) belongs to E, of (G/Z, hy)} (this fact follows from Proposition .6.7). This
proves Proposition ELIOIA for D%. The proofs for Dﬁz’m, ngal and Dﬁz,[val] are similar. [

Proposition 4.10.17. Let ¥ be a weak fan in Lie (G'), and let I be a semi-arithmetic
subgroup of G(Q) which is strongly compatible with ¥ and such that the image T of T
in (G/Z)(Q) is neat. Then as a locally ringed space with log structure, I'\ D(G, hg)s, is
canonically isomorphic to an open and closed subspace of T\ D(G/Z, hy)s,.

Proof. We use the notation in the proof of Proposition For j = 1,2, let Yy,
be the subset of Y5, consisting of nilpotent orbits (o, Z) such that for some F' € Z, if
Ni (1 < k < n) generate o, then exp(d>_;_, zeNg)F € Y; if Im(z;,) > 0 for all k. By
the similar descriptions of Yé,j for j = 1,2 in the proof of Proposition [.T0.16, we have
that Yy is the disjoint union of Yy, ; for j = 1,2. From the bijectivity of X% — Yg’l, we
obtain the bijectivity of X5, — Y5 ;. Hence the map I'\ X5 — T'\ Y is bijective. The
coincidence of the sheaf of rings of holomorphic functions and the coincidence of the log

structure can be seen by the following facts (i) and (ii) concerning both I'()8P \ X, and
[(0)eP\ Y, for o € 2.

(i) A subset U is open if and only if for any fs log analytic space S and for any morphism
S — toric, x X =~ toric, X Y; whose image is contained in {(g, F') € toric, x X | (¢, F') €
E, of (G, ho)} ~ {(q, F) € toric, x Y1 | (¢, F) € E, of (G/Z,hg)}, the inverse image of U
in S is open.
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(i) For an open set U and for a function f : U — C, f belongs to O(U) (resp. M(U))
if and only if for any S and S — toric, x X =~ toric, x Y] as in (i) such that Og is a
sheaf of reduced rings (i.e., rings without non-zero nilpotent elements), the pullback of f
on the inverse image of U in S belongs to Og(U) (resp. Mg(U)).

These (i) and (ii) follow from Proposition FL6.16] O

4.10.18. We prove Proposition 2.6.6] Proposition B1T.5, (2) of Remark 6.2}, and Remark
E628 If I' is a semi-arithmetic subgroup of G(Q), the image I' of ' in (G/Z)(Q) is a
semi-arithmetic subgroup, and T' N (G/Z)'(Q) is of finite index in T'. By (5) and by
Propositions ILT0.14] T0.15 T0.176, LT10.17, we can replace G by G/Z and replace I’
by the semi-arithmetic subgroup T' N (G/Z)'(Q) of (G/Z)'(Q). Thus Proposition 6.0
Proposition BITH (2) of Remark A.6.2] and Remark L.6.28 are reduced to Theorem 2Z.6.1]
Theorem B.ITIl Theorem [A.6.1] and Proposition d.6.27] respectively.

4.10.19. We describe some details of the relation of this paper with the work [25] ex-
plained in Remark 6.3l

Let H, M, h(] : SC/R — MR, }_7/0 : SC/R — (M/Z)R be as in [L6.6l Let I' be a
neat arithmetic subgroup of (M/Z)(Q) which is contained in the connected component of
(M/Z)(R) containing 1 and let 3 be a fan in Lie ((M/Z)") = Lie (M’) which is strongly
compatible with I". Then I" acts on D(M, hy) and on D(M, hg)s. The work [25] shows
that I'\ D(M, ho)yx, is a logarithmic manifold. The method in [25] is to use the inclusion
map D(M, hy) — D(A) (A is as in [[L6.6) and to use the work [24] on the toroidal partial
compactification for D(A).

This result can be deduced also from Theorem .61l for G = M/Z as follows. Take
a neat semi-arithmetic subgroup I'y of M’(Q) whose image I'; in (M/Z)(Q) is a normal
subgroup of T" of finite index. Then by Proposition IO, T’y \ D(M, hg)s, is an open
and closed subspace of I'; \ D(M/Z, hy)s. By taking the quotients by I'/T'y, we have that
'\ D(M, hg)s, is an open and closed subspace of I'\ D(M/Z, hg)s, which is a logarithmic
manifold by Theorem [.6.1] and by the part of Remark (1) for semisimple algebraic
groups, and hence is a logarithmic manifold.

4.11 G-log mixed Hodge structures

We consider the G-MHS version of the notion log mixed Hodge structure.
In this Section IT], T denotes a semi-arithmetic subgroup (LE1) of G(Q).

4.11.1. Let S be an object of the category B(log) (£212]). Recall that the topological
space S'°% is endowed with a proper surjective continuous map 7 : S'°¢ — S and a sheaf
of rings (’)lsog over 771(Og). A log Q-mixed Hodge structure on S is a triple (Hq, W, Ho),
where Hgq is a locally constant sheaf on S'°% of finite-dimensional Q-vector spaces, W is
an increasing filtration on Hq, Hp is a vector bundle on S endowed with an isomorphism
OFRqHg~ O ®Rr—1(04) T (Hp) and with a decreasing filtration F', satisfying certain
conditions (see [2I] Part III 1.3). We denote by LMH(S) the category of log Q-mixed
Hodge structures over S.

A G-log mized Hodge structure (G-LMH, for short) over S is an exact ®-functor from

Rep(G) to LMH(S).
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A G-LMH on S with a I'-level structure is a G-LMH H over S endowed with a global
section of the quotient sheaf I'\ Z, where Z is the following sheaf on S$'°8. For an open set
U of S8 Z(U) is the set of all isomorphisms Hgq|y — id of ®-functors from Rep(G) to
the category of local systems of Q-modules over U.

4.11.2. Let ¥ be a weak fan in Lie (G') which is strongly compatible with I' (1.9). A
G-LMH H over S with a I'-level structure A is said to be of type (ho,X) if for any s € S,
any ¢ € s'°¢, and any ®-isomorphism ), : Hq; ~ id which belongs to A, there is a 0 € %
satisfying the following (i) and (ii).

(i) The logarithm of the action of Hom ((Mg/O%)s, N) C m(s"°8) on Hq is contained,
via A, in o C Lie (Gg).

(ii) Let a : Ols‘ff — C be a ring homomorphism which induces the evaluation Og, — C
at s and consider the element F : V +— M\a(H(V)) of Y (LZI)). Then this element belongs
to D and (o, F) generates a nilpotent orbit ([ L3).

Remark 4.11.3. The definition of the type (ho, X) in [22] 4.2.2 should be modified as
above because “the smallest cone satisfying (i)” in the condition (ii) there may not be
well-defined when ¥ is not a fan.

4.11.4. If (H, ) is a G-LMH with a I[-level structure of type (hg,Y), we have a map
S — I'\ Dy, called the period map associated to (H, \), which sends s € S to the class of
the nilpotent orbit (o, Z) € Dyx. Here o is the smallest cone of ¥ satisfying (i) and (ii) in
MIT2, which exists by a variant of [2I] Part III Lemma 2.2.4 (see also Appendix of this
paper), and Z is the associated exp(o¢)-orbit obtained in (ii) in

4.11.5. Let S be an object of B(log). Let S° be the underlying locally ringed space over
C of S with the trivial log structure. By a G-MHS on S with a I'-level structure, we mean
a G-LMH on S° with a I'-level structure. By a G-MHS on S with a I'-level structure of
type ho, we mean a G-LMH on S° with a I'-level structure of type (hg, ), where ¥ is the
fan consisting of the one cone {0}.

4.12 Moduli of G-log mixed Hodge structures and period maps

We show that I\ Dy is a moduli space of G-LMH.
In this Section 12| let I' be a subgroup of G(Q), and assume that either one of the
following two conditions is satisfied.

(i) T is a neat semi-arithmetic subgroup (Z6.3, [L5.7) of G'(Q).
(ii) G is reductive, I' is a semi-arithmetic subgroup of G(Q), and the image of I' in

(G/Z)(Q) is neat, where Z is the center of G.
Note first the following.

Proposition 4.12.1. The complex analytic manifold '\ D represents the functor
S+ {isomorphism class of G-MHS on S with a I'-level structure of type hg}
from B(log) to the category of sets.

The main result here is the following.
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Theorem 4.12.2. Let ¥ be as inLIT2. Then I'\ Dy, represents the functor
S+ {isomorphism class of G-LMH on S with a I'-level structure of type (ho,>)}.

from B(log) to the category of sets.

4.12.3. The proof of Theorem T2 is similar to the proof of [21] Part 111 Theorem 2.6.6.
The first part of the proof is to understand the functor which E, represents. Then
take the quotient I'(0) \ D, of E, by oc.

4.12.4. There is a variant of Theorem for G-LMH with adelic level structure.

Let GG1 be a closed algebraic subgroup of G and let K be an open compact subgroup
of G1(Ag), where Ay is the adele ring of Q without the oo-component. We show that
under certain assumptions, the space

G1Q)\(D x G1(AQ)/K)

is a moduli space of G-MHS with K-level structure and its toroidal partial compactifica-
tion is a moduli space of G-LMH with K-level structure.

For each g € G1(Ay)/K, let I'(g) = G1(Q)NgK g, where § denotes a lifting of g to
G1(AQ). Then I'(g) is an arithmetic subgroup of G1(Q). We have I'(yg) = ~T'(g)y " for
7 € G1(Q) and g € Gi(Ag)/K.

Let R be a representative of G1(Q) \ G1(Ag)/K in G1(Ag)/K.

We assume that for every g € G1(Ag)/K (equivalently, for each g € R), the subgroup
of I'(g) of G(Q) is neat and satisfies either one of the conditions (i) and (ii) at the
beginning of Section [£.12]

We also assume that for each g € R, we are given a weak fan ¥(g) in Lie (G”) which
is strongly compatible with I'(g). For each g € G1(Ag)/K, define X(g) := Ad(7)¥(go),
where g = gy with v € G1(Q) and gy € R (then X(g) is independent of the choices of
such v and go). We have X(yg) = Ad(y)X(g) for all v € G1(Q) and g € G1(AF)/K.

Then we have a log manifold

QN [ Do =GN U Dsgx{g})/K=]] T@)\ Ds

gEG1(A>®)/K 9eG1(AZ)/K geR

(here the action of v € G1(Q) sends an element (z, g) of [ [ e, (ax),x Ds(g) With z € Dxy
and g € G1(Agy)/K to the element (yx,vg)). This log manifold contains

G1(Q)\(D x G1(AZ)/K) =[] Ty

geER

as an open set.
By Theorem {.12.2] this log manifold represents the functor

S — {isomorphism class of G-LMH on S with a K-level structure of type (hg, )}
and the above open set represents the functor

S +— {isomorphism class of G-MHS on S with a K-level structure of type hg}.
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Here ¥ denotes the family (X(g)),. A K-level structure on a G-LMH (or its special case
G-MHS) H on S means a global section of the quotient sheaf K\ J;, where [J; is the
following sheaf on S'°8. Let J be the following sheaf on S'°8. For an open set U of S'°8,
J(U) is the set of all isomorphisms Hqly ®q Ay = id®q A of @-functors from Rep(G)
to the category of sheaves of Ag-modules over U. Then G1(Ag) acts on J and we have
a canonical injective morphism Z — J for Z as imn LTIl Let J) = G1(Ag)Z C J. For a
G-LMH (resp. G-MHS) H on S with a K-level structure, we say that H is of type (hg, %)
if for each s € S, if the K-level structure at the point of S°8 lying over s € S is g~'\
with g € G1(Ag) and A € Z, then H with the I'(g)-level structure A is of type (ho, %(g))
(resp. hg). The period morphism from S to this log manifold (resp. the above open set)
associated to H with this K-level structure of type (hg,>) (resp. hg) is as follows. On
an open neighborhood of s, taking the above g in R, it is the period map from S to
I'(g) \ Dxg) (resp. I'(g) \ D) associated to (H, \).

Next we consider extensions of the associated period maps in Theorem M.I12.5 and
Theorem [4.12.6]

Theorem 4.12.5. Let S be a connected, log smooth, fs log analytic space, and let U be
the open subspace of S consisting of all points of S at which the log structure of S is
trivial. Let (H,\) be a G-MHS on U with a I'-level structure of type hy (AI15]). Let
w:U — T\ D be the associated period map. Assume that (H, \) extends to a G-LMH on
S with a T-level structure (@EILI]). Then:

(1) For any point s € S, there exist an open neighborhood V' of s, a log modification
V' of V ([24] 3.6.12), a subgroup I'y of I', and a fan (we do not need a weak fan here) 3
in Lie (G") which is strongly compatible with I’y such that the period map p|uny lifts to a
morphism U NV — T'1\ D which extends uniquely to a morphism V' — T'y\ Dx, of log
manifolds. Furthermore, we can take a commutative group I'y.

U > UnV cC |74

| ! !

F\D — Fl\D C Fl\DE-

(2) Assume that S\ U is a smooth divisor. Then we can take V =V' =S5 and 'y =T
in (1). That is, we have a commutative diagram

U - S

| J

T \ D c T \ Dxs,.
(3) Assume that I is commutative. Then we can take I'y =T in (1).

(4) Assume that T is commutative and that the following condition (i) is satisfied.

(i) There is a finite family (S;)1<j<n of connected locally closed analytic subspaces of
S such that S = U;.Lzl S; as a set and such that, for each j, the inverse image of the sheaf
Mg/OZ on S; is locally constant.

Then we can take I'y =T and V =S in (1).
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This is the G-MHS version of [21] Part IIT Theorem 7.5.1 in mixed Hodge case and of
[24] Theorem 4.3.1 in pure Hodge case. The proof goes exactly in the same way as in the
pure case treated in [24].

Theorem 4.12.6. Let the notation S, U, (H,\) and the assumptions be as in Theorem
AI2H. Let ¢ : U — T'\ D be the associated period map. Let Sﬁg = Sl x5 Sy and let
S[hv)agl] = 5"8 X g Spyay, and regard U as open sets of these spaces. Then:
(1) The map ¢ : U — I'\ D extends uniquely to continuous maps
lo lo
S[;}g - F\DéL(2)> S[ S F\DéL(Z)

val] ,val*

(2) Assume that the complement S\ U of U is a smooth divisor on S. Then the map
p:U =T\ D extends uniquely to a continuous map

58 T \ D§L(2)

,val
and hence extends uniquely to a continuous map S8 — T\ Dgg va1 and to S8 — '\ Dpgs.

This is the G-MHS version of [21] Part IV Theorem 6.3.1. The proof goes exactly in
the same way as there. In the proof of loc. cit., there are typos, i.e., the two S in the
middle of the proof should be changed to S[ljg .

4.13 Infinitesimal study

In this section, we consider the logarithmic tangent bundle of the moduli space of G-LMH.
We will prove

Proposition 4.13.1. Let Z = I'\ Dy, be as in Theorem EI2.2 and let (Hypniy, A) be the
universal object on Z. Let 07 be the logarithmic tangent bundle of Z (i.e., the Oz-dual of
the sheaf w}, of differential forms with log poles). Then, we have a canonical isomorphism

of Oz-modules
0, ~ Hiv(Lie (G))o/F°H v (Lie (G))o.

This is an analogue of [24] Proposition 4.4.3 and proved in a similar way as below.

4.13.2. In EI32HATI T, let S be an object of B(log) and assume that S is log smooth
(this means that S is locally a strong subspace ([LZI2) of a log smooth fs log analytic
space).

Let H be a G-LMH on S. We will construct a commutative diagram of Og-modules

~

93 — és
} }
H(Lie (G))o/F* 5 EH) = E(H)

whose horizontal arrows are isomorphisms. Here g is the logarithmic tangent bundle of
S and the sheaves g, E(H) and E(H) are defined below.

Furthermore, in the case S =I'\ Dy, we will show that the right vertical arrow is an
isomorphism. This will give the isomorphism in Proposition L I3.11
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4.13.3. Define the sheaf 0g as follows.

Let U be an open set of S, and let U = U[T]/(T?) = (U, Oy[T]/(T?)). Then 05(U) is
the set of all morphisms U — S which extend the inclusion morphism U — S.

We have a canonical isomorphism g = 95.

4.13.4. We define the sheaf £(H).

A section of £(H) is a collection of an Og-homomorphism 6,y : FPH(V)o — H(V)eo/F?
for p € Z and V' € Rep(G) satistying the following conditions (i)—(iii).

(i) Functoriality in V. For a morphism V; — V5 in Rep(G), the square

FPH(Vi)o — H(Vi)o/F?

! I
FrH(V)o — H(Va)o/F”

is commutative.
(ii) The diagram
Frag(Vye "8 H(V)e/FP!
\J \J
FPHV)o 2% H(V)o/F?
is commutative for every p.
(iii) For V3, V4 € Rep(G) and for p, q € Z, the following diagram is commutative.

FPH(V)o @ F1H(V2)o — (H(V1)o/F? @ F1H(Va)o) ® (FPH(Vi)o ® H(Va)o/F1)

] }
FP‘HIH(‘/I@%)O N H(%@%)O/Fp+q

Here the vertical arrows are the evident ones. The upper horizontal row is z ® y
(0p v () ® Y,  ® 0g15,(y)). The lower horizontal arrow is 0,44 viavs-

A section of £(H) on an open set U of S is defined in the same way by replacing S by
U.

We have the evident homomorphism H (Lie (G))o/F° — E(H).

4.13.5. We define the sheaf £(H). . .
Let U be an open set of S, and let U be as in L1338l Then £(H)(U) is the set of all

isomorphism classes of G-LMH H on U whose pullbacks to U coincide with the restriction
of H toU.

4.13.6. We define the map 05 — E(H).
Note that for V € Rep(G), H(V)o = 7.(09¥ ©q H(V)q). Then, d® 1y, : O Q¢
H(V)e — wg'® @c H(V)¢ induces a connection

V: H(V)o — wé RKog H(V)o

We define a map
0s — EPHom(F*H(V)o, H(V)o/F")

p
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by assigning d € s the element of B, Hom(FPH(V)o, H(V)o/F?) induced by the com-
posite map
H(V)o 5 wh @0y HV)o — H(V)o.

Note that this map is not Og-linear but that it induces an Og-linear map FPH (V) —
H(V)o/FP?. Thus, we have a homomorphism of Og-modules

4.13.7. We have a map fs — £(H) which sends a morphism f : U — S to the class of
f*H.

4.13.8. We have a canonical isomorphism &(H) — £(H) defied as follows.

Let (6,1 ), be a section of E(H) on U. Define the corresponding G-LMH H on U
as follows. We identify the topological spaces U"%% and (U)"°. We define H (V)q with
the weight filtration and the level structure as the same as the restriction of H(V)q
to U'®. Since Og’g = Op Qo, OF, HV)o = T*(Og)g ® H(V)q) is identified with
Op @0y H(V)o|y. We define the p-th Hodge filter on H(V)e as the Op-submodule of
Ho = Oy @0, H(V)o|v generated by x4+ Ty, where 2 € FPH(V )|y and y € H(V)oly
such that y mod FPH(V)o|y coincides with 0,y (x). It is easy to see that this E(H) —
E(H) is an isomorphism.

4.13.9. The diagram
bs = s
! g
EH) — &E(H)

1S commutative.

4.13.10. By Tannaka duality (see below), H (Lie (G))o is identified with the collection of
dy € Endp,(H(V)p) for V € Rep(G) satisfying the following conditions (i) and (ii).

(i) It is functorial in V. That is, for a morphism h : Vi — V5 in Rep(G), we have
h05V1 :5\/2 o h.

(ii) For all Vi, V5 € Rep(G), dv,ev, coincides with 0y, @ 14 1 ® dy,.

Here Tannaka duality is used as follows. By [30], locally on S, the functors Rep(G) >
Vi— Os®qV and Rep(G) 3 V — H(V)p are isomorphic as ®@-functors. By this and by
the Tannaka duality ([30]) applied to the functor Rep(G) 2 V +— Og[T]/(T?) ®q V, we
have the above understanding of H(Lie (G))o.

Lemma 4.13.11. The map H(Lie (G))o/F°H (Lie (G))o — E(H) is an isomorphism.

Proof. By [30] Ch. IV 2.4, the ®-functors with filtrations V +— H(V)p and V — grp(H(V)o)
are isomorphic locally on S. Hence we may assume that they are isomorphic. Fix an
isomorphism. Then via it, H(Lie(G))o/F? is identified with @, _, egry(H (Lie (G))o)
and £(H) is identified with the sheaf of collections dy : grp(H(V)) — grp(H(V))
(V € Rep(@G)) satistying the following conditions (i)-(iii).

(i) V = 6y is functorial in V.

(11) (5\/1@\/2 = 5\/1 RK1+1® 5\/2 for all ‘/1, Vé S RGP(G)
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(iii) Image(dy) C D,y grp(H(V)o).
By L1310, the sheaf of those (v )y satisfying (i) and (ii) (not necessarily satisfying (iii))
is 1somorphlc to grp(H (Lie (G))e). This proves Lemma [L.I3.11] O

4.13.12. If S =T'\ Dy and H = H v, Oy — g(S) is an isomorphism because S is the
moduli space.

Consequently, we have 0g — E(H) ~ H(Lie (G))o/F°. This completes the proof of
Proposition 1311

4.13.13. Let Z = T'\ Dy, be as in Proposition I3l We define 0} = gry.! Hoio (Lie (G))o.

4.13.14. Let Z =T\ Dy, be as above. Let S be a logarithmically smooth object of B(log),
let (H,\) be a G-LMH on S of type (ho, %), and let ¢ : S — Z be the corresponding
period map. Then H is the pullback of Hy,, on Z by ¢, and the map 05 — E(H) ~
H(Lie (G))o/F° is identified with the canonical map fs — ©*(0) and grz' (H (Lie (G))o)
is identified with ©*(6}).

The connection of H(V)e satisfies the Griffiths transversality for every V' € Rep(G)
if and only if the map 05 — ¢*0, factors through ¢*6.

4.14 Generalizations, I

In this section and the next, we give two generalizations of the theory in this paper.

4.14.1. Let F be a subfield of R. We have the following generalization whose case £ = Q
is the theory explained so far, as far as I' is not involved.

Let G be a linear algebraic group over F. Assume that we are given a homomorphism
ho : Sc/r — Grea @ R of algebraic groups over R such that the composition G,, r —
Sc/R — Greda ®r R comes from a homomorphism kg : Gy, g — Grea Whose image is
contained in the center of G.q such that for some (and hence for every) lifting l;:o :
Gn.g — G of kg, the adjoint action of G, g on Lie(G,) via ko is of weights < —1. Let
Repg(G) be the category of finite-dimensional representations of G over E. Note that
every V € Repg(G) has a G-stable weight filtration W, V.

Let D = D(G, ho) be the set of isomorphism classes of exact ®@-functors H : Rep(G) —
EMHS over E which keeps the underlying E-vector spaces and their weight filtrations
satisfying the following condition. The homomorphism Sc/r — Gred ®r R associated to
the restriction of H to Repy(Gred) 18 Grea(R)-conjugate to hy.

By the method of Section [[L4] D is regarded as a complex analytic manifold.

4.14.2. Define Dgg in the same way as in Section 2] except that for a parabolic subgroup
P of Geq (defined over E), Sp is defined this time to be the maximal E-split torus in
the center of Peq and Ap := Hom (X (Sp)*, RZ3M). (X (Sp)™ is defined in the same way
as in 2421) We have the Borel-Serre action of Ap on D and the Borel-Serre action of
R>0 X Ap on Dnspl-

Thus Dgs is defined to be the set of all pairs (P, Z), where P is a parabolic subgroup
of Greq and Z is either an Ap-orbit in D or a Bp-orbit in Dy for the Borel-Serre action.

By the method of Section 2.5 Dgg is regarded as a real analytic manifold with corners.
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4.14.3. Define the objects Dg ), DSL( 5, and Déi of By (log) in the same way as in
Sectlon Bl except that we change the condition of the rationality of the weight filtrations
W to the E-rationality.

4.14.4. We define the topological spaces Dﬁz, Dﬁ 501 and D 5, [val] 85 explained in Section []
except that the rationality of cones in X are replaced by E- ratlonahty

4.14.5. We have the following fundamental diagram (without I'):

f *
Dy vy = Dsc@pva < Diojva = DBsyal

} + + +
Dg — D; 1 — DSL(Q) D§L(2) DBSa

where the arrows respect the structures (the structure of Dg; , as an object of By (log),
etc.) of these spaces.
These extended period domains are Hausdorff spaces.

4.14.6. Assume that G = G ®q E for a linear algebraic group G over Q and that ko :
G g — Grea comes from G,,, = Greq. Then D is the same as the period domain D(G, hg)
for GG, and the above extended period domains contain the ones for G.

4.14.7. In this generalization, however, we can not have a nice theory of the quotients
by T.

We show an example in which G = G ®q E, where G is a reductive algebraic group
over Q, I' is a semi-arithmetic subgroup of G'(Q), and I'\ Dgg, I'\ Dgy,(2), and I' \ Dy, for
some FE-rational fan ¥ which is strongly compatible with I', are not Hausdorff.

Let L be a totally real field of degree > 2 and let E be a subfield of R which contains all
conjugates of L. Let G := Resy/q(GL(2)1), G := G ®q E = [[;_, v;(GL(2)L) = GL(2)},
where n = [L : Q] and vy,..., 1y, are all the different field homomorphisms L — E.
Let hy : Sc/r — G ®r R = GL(2)} be the homomorphism z — ((2),...,(z)) (LE3).
Then D is canonically isomorphic to $”, the n-fold product of the upper half plane, and
G(Q) = GL(2, L) acts on it via (v1,...,1y).

Let T be a subgroup of SL(2,0p) of finite index. We show that the quotient spaces
I'\ Dgs, I'\ Dgr,(2), and I' \ Dy, are not Hausdorff, where ¥ is the set of all nilpotent cones
in Lie (Gr) = gl(2, R)" of the form P7_, RN; with N; a nilpotent (2, 2)-matrix over E.

First we show that '\ Dpg is not Hausdorff. For z € ), let pps(z) € Dgs be the
limit of (iy,...,iy,—1,2) € D = H", where y; € Ryo and y; — oo. That is, pps(2)
is the Ap-orbit containing (i,...,,z), where P is the E-parabolic subgroup H;LZI P; of
; :) C GL(2)g for 1 < j <n—1and P, = GL(2)g. Let
S = {pps(ia) | a € Rso}. Then the diagonal matrix (u,u™") with u € O} in SL(2, L)
acts on S as (io0o,...,i00,1a) — (100, ..., 100, 1av,(u)?). But {v,(7)* | v € 1} \ Rs for
a subgroup I'y of O} of finite index is not Hausdorff.

Next we show that I'\ Dgy,9) is not Hausdorff. For z € §, let pgp2)(2) be the limit
point of (iy1,...,iY,—1, 2), where y; € R-g, y;/y;s1 = 00 (1 < j <n—1) with y, := 1.
That is, psi2)(z) is the class of (p,r), where p : SL(2)x ' — Gr = GL(2)§ is the

G = GL(2)% with P; = (
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homomorphism (g4, .., 9n-1) = (g1,--+,9n-1,1) and r = (i,...,4,2). Let S be the set
{psi(2)(ia) | @ € Rso}. The rest of the proof is similar to the above.

Lastly, we show that I"\ Dy, is not Hausdorff. For z € §), let px(z) € I'\ Dy be the
limit point of (z1,...,2,-1,2) mod I', where z; € $ and Im(z;) — co. That is, psi(2)(2)
is the class mod I' of the nilpotent orbit (o, Z), where 0 = 07 X - -+ X 7, C gl(2,R)" with

g = (8 S) for 1 <j <n—1and o, = {0} and Z is the exp(oc)-orbit in D which

contains "' x {z}. Let S = {ps(z) | z € H}. The rest of the proof is similar to the
above (we use the fact that for a subgroup I'; of O of finite index, {v,(7)* |y € T1}\H
is not Hausdorff).

4.15 Generalizations, II

Here we give a generalization which contains partial toroidal compactifications of higher
Albanese manifolds treated in [22]. This generalization is used in [19] for applications to
number theory.

4.15.1. Let G be a normal algebraic subgroup of G and let @ = G/G. We fix an element b
of D(G, hy). Let D(G, hy,G,b) C D(G, hy) be the inverse image in D(G, hg) of the image
of bin D(Q, ho,g), where hg o denotes the composite homomorphism Sc/r hy Gredr —
Qred,R-

Proposition 4.15.2. The morphism D(G, hy) — D(Q, ho.o) is smooth.
This follows from the surjectivity of the map of tangent spaces.
Corollary 4.15.3. D(G, hy,G,b) is smooth.

4.15.4. We consider the quotient space I'\ D(G, hg,G,b) and its toroidal partial com-
pactification for a neat semi-arithmetic subgroup I' of G'(Q).

4.15.5. Example 1. A higher Albanese manifold is regarded as an example of I' \ D(G, ho, G, b)
as is explained in [22].

4.15.6. Fxample 2. Let Hy be a Z-MHS, that is, a Q-MHS endowed with a Z-lattice
Hyz in Hyq. Assume that we have a polarization p,, : ngJVHO ® grLVUVHO — Q(—w) in the
sense of Deligne for each w € Z. Then for G, G, hg and b as below, I'\ D(G, hy, G, b) is
identified with

() the set of all isomorphism classes of Z-MHS H endowed with isomorphisms gr'V H ~
gr’’ Hy of Z-HS for all w.

Let

G ={(g,t) € Aut(Hoq, W)X Gy, | pu(gz®9y) = t"pu(z,y) for all w € Z,z,y € grl) Hoq},

g:Gm

and hence

Q:G/g:Gred:
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{(g,t) € (H Aut(grl) Hoq)) X G | pu(gur®guy) = tpu(z®y) for all w € Z,z,y € gry) Hoq}-
Then we have hy : Sc/r — Grar = 9r and b € D(G, hg) corresponding to Hy as
follows. We have the homomorphism hy which is associated to the Hodge structure
grVH,. Then the condition (1) in Lemma is satisfied. Let Cy (resp. Corea) be
the smallest full subcategory of QMHS (resp. QHS) which contains Hy and Q(1) (resp.
gr'V Hy and Q(1)) and which is stable under taking @, ®, duals and subquotients. Let
7o be the Tannakian group of Cy associated to the fiber functor H +— Hgq. Then 7 yeq is
identified with the Tannakian group of Cy seq associated to the fiber functor 4 — Hg. We
have a homomorphism Sc/r — Toreq,r associated to gr'V Hy, which we denote also by hy.
We have a canonical homomorphism 7y — G and this induces a morphism D(7g, hy) —
D(G, hy). We have the canonical element of D(7y, hg) which sends V' € Rep(7p) to the
corresponding QMHS. Let b be the image of this canonical element under D(7g, ho) —
D(G, hy).
Let
I'={g € Aut(Hyz, W) | gl (g) = 1 for all w € Z}.

We prove that '\ D(G, hg, G, b) is identified with the above set (x). For an element
H € D(G,hy,G,b), H(V) for V.= Hyq € Rep(G) with the Z-lattice Hjz gives an
element of the set (x). This gives a map I'\ D(G, ho,G,b) — (*). Conversely let H
be a ZMHS with gr!V H ~ gr'V H, for all w. Let C be the smallest full subcategory of
QMHS which contains H and Q(1) and which is stable under taking &, ®, duals and
subquotients. Let 7 be the Tannakian group of C associated to the fiber functor H' — Hy,.
We have Tiea = Torea and we have a canonical element D(T, hy). We have a canonical

homomorphism 7 — G, and the image of this canonical element in D(G, hg) belongs to
D(G, hy,G,b). This gives the converse map (x) — I'\ D(G, hg, G, b).

4.15.7. Toroidal partial compactifications of I'\ D(G, hg, G, b) are obtained by using a
weak fan ¥ in Lie (G) which is strongly compatible with I' such that ¢ C Lie (Gr) for
all 0 € ¥. In fact, for such a ¥, the map D(G, ho) — D(Q, hy o) induces a morphism
'\ D(G, ho)s = D(Q, ho,o) of log manifolds. Let D(G, ho,G,b)x. be the inverse image of
bg € D(Q, hoo) in D(G, ho)s. The fiber I'\ D(G, hy, G, b)s, of bg in I'\ D(G, hy)x, is our
toroidal partial compactification of I'\ D(G, hg, G, b).

Proposition 4.15.8. The space I'\ D(G, by, G,b)s is a log manifold which represents
the following functor on B(log): It sends S € B(log) to the set of all morphisms S —
D(G, ho)s such that the composition S — D(G,ho)s — D(Q, (ho)g) is the constant
function bg.

Proof. Let X =T'\ D(G, hy)s, Y = D(Q,bg), and let x € X. Then the proof of Claim
3 in shows that there are an open neighborhood U of z in X, a log smooth fs
log analytic space Z over C, and log differential forms wy,...,w, on Z such that the
morphism U — Y factors as U — Z — Y satisfying the following conditions (i) and (ii).
Let Z' ={z € Z |wj(z) =0for 1 <j < n}. Here w;(z) denotes the log differential form
on the log point z obtained from w; (£.2.12).

(i) U is isomorphic over Z to an open subspace of Z’ for the strong topology of Z’ in
Z.
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(ii) The morphism Z — Y is log smooth.

Hence the fiber Z, of bg in Z is log smooth, and the fiber of bg in U is an open
subspace (for the strong topology) of {z € Z, | wj(z) = 0 for 1 < j < n} and hence is a
log manifold. !

4.15.9. In Example 1 in LI585 '\ D(G, hg, G, b)s, is the toroidal partial compactification
of the higher Albanese manifold discussed in [22] Section 5.

4.15.10. In Example 2 in II56 T'\ D(G, ho,G,b)s, represents the functor on B(log)
which sends S € B(log) to the set of all isomorphism classes of Z-LMH H of type (hg, %)
on S endowed with isomorphisms gr’V H ~ gr'V H, of Z-LMH for all w € Z (this tells that
grW H are constant Z-HS for all w). See [21] Part III Section 5 for a more general moduli
space of Z-LMH on S with given graded quotients for the weight filtration.

4.15.11. On this toroidal partial compactification I'\ D(G, hg, G, b)s, Huniv(Lie (G))o/F°
is the log tangent bundle (this is a generalization of Proposition LI3.T]).

A Appendix

Here we give a complement to [21] Part IIL.

In the proof of (2) = (2)” in [2I] Part III Lemma 2.2.4, it is stated that “(oq, F)
generates a nilpotent orbit because both (7, F') and (o, F') generate nilpotent orbits.” It
turns to be valid, though not trivial, and follows from the following proposition.

Proposition A.1. Let A = (Ho, W, ((, - )w)w, (F*9),4) be as in [21] Part III 2.1.1. Let
o be a nilpotent cone, let oo be its face, let N be an interior of o, and let F € D.
Assume that both (o, F) and (N, F') generate nilpotent orbits. Then (oo, F') also generates
a nilpotent orbit.

First, the admissibility and the Griffiths transversality for (oo, F') follow from those
for (o, F'). Thus the problem is reduced to the following proposition by forgetting o.
(Notation is changed.)

Proposition A.2. Let o be an admissible nilpotent cone, let Ny be an interior of o, and
let F € D such that F' satisfies the Griffiths transversality with respect to o. Assume that
(No, F') generates a nilpotent orbit. Then (o, F) also generates a nilpotent orbit.

Remark A.2.1. The proof below shows that the assumption of admissibility is weakened
to that the weight filtration with respect to an interior is constant. (Cf. the first and the
second lines of [10] p.505.)

We prove Proposition [A.2l Let Ny, ..., N, generate o. Then the conclusion is equiv-
alent to that exp(>_ 1y,;N;)F € D for any y; > 0. Since this condition can be checked on
each gr’V', we can reduce to the pure case. In the rest of this proof, we assume that we
are in the situation of pure weight k.

Let M be the weight filtration of one (and hence for any) interior of . By Remark in

Part IIT 1.3.2 (which is seen by [10] (4.66)), the conclusion of Proposition[A.2is equivalent
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to that (Ho, (-, )0, M|[—k], F') is a mixed Hodge structure polarized in the sense of [10]
(2.26) by any interior N of . By the assumption that (Ny, F) generates a nilpotent orbit,
(Ho, M[—FE|, F) is at least a mixed Hodge structure. Hence for an interior IV, the condition
for NV is equivalent to that for any [ > 0, the primitive part Py := Ker (N*: grit, —
grd, ) for N is a Hodge structure polarized by Sy := (-, N'-)o. Note here that by the
assumption, each gr is already a Hodge structure, and by Griffiths transversality, any
interior N is a homomorphism of Hodge structures so that the primitive part Py, for
any N is a Hodge structure (of weight k£ + [) whose Hodge numbers are independent of
N (determined by those for gr).

Consider the Hodge decomposition of the Hodge structure on P.; for N and denote
its (p, ¢)-component by PY?. Since the dimension of Py? is constant with respect to N
(as noted in the above) and the pair of the subspace Py? of (grp’;)c and the induced
Hermitian form S%? by Sy (-,7) on Py? varies continuously with respect to N, if we prove
that SN? is always nondegenerate, the positivity for one N inherits to all N.

We prove the nondegeneracy. Assume that S&? degenerates for some N, p,q. Then
there is a nonzero vector v € Py? such that Sy(-,7) is zero on P{?. Since the Hodge
components are orthogonal with respect to Sy(+,7), Sy(+,7) is zero on the whole Py, for
this N. Further, consider the decomposition of grﬁl into the images of primitive parts
of weights > k + [. Then this decomposition is orthogonal with respect to Sy = (-, N-)g
(32] Lemma (6.4)). Hence (-, N'T)q is zero on grp}, . Since My, is the orthogonal
complement to Mj_;_; (the same lemma of ibid.), N'o = 0 in gry’,  and v = 0 in gryl, o,
a contradiction.

Correction to [21] Part IV

There are some typos in the proof of Theorem 6.1.1 in [21] Part IV. Here we give correc-
tions to them.

In the line 3 of the proof of loc. cit., Dy, ay — Dy ;] — I'\ Dy, should be changed to
D;,[Val} — Dﬁz,[;] — D,

In the lines 4, 5 of the proof of loc. cit., Ds vay, Dy, and I'\ Dy, should be changed
to Dﬁz,[vauv Dg[z]7 and Dﬁz, respectively.
There are some typos in the proof of Theorem 6.1.3 in [21] Part IV.
In the line 2, D, should be I'\ D§ .

In the lines 4, 5, Sy, should be S[lgg.

Correction to [22]

Here we give a correction to [22] 6.1.2. The construction there does not necessarily give
an MHS on Lie (Gr).
Change the part

We define the weight filtration on Lie (Gr) (resp. the Hodge filtration on Lie (Gr)¢) as
the image of that of Lie (Gr,) (resp. Lie (Gr,)c) (2.2.4, 2.3). This gives a structure of an
MHS on Lie (Gr) which is independent of the choice of r.
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into

Hereafter we assume that Lie (Gr) has an MHS which is a quotient of MHS on Lie (Gr,)
induced from the canonical variation of MHS in 2.2.4. Note that this MHS on Lie (Gr) is
independent of the choice of r.

List of notation

Period domains
D =D(G,hy) [II4
Dy [I33
D [@TZ1
Extended period domains
Dps A0
Dgr)  BII0 (case of reductive groups), B2l (general case)
Structures of Dgp,2): DéL(2) B.4.10, D§£(2) B.4.7

Dgpy B2I]
Dy, BIT
D;ﬂz) B9T

Dss vty Di1oyvats Dénymats DLy BI02
Ds, DY EIR
Dy, D%, E3T3
Dy a, D%y AT
Dé,[val] 4. L2
Diy ) HEXZ

Categories
Bg(log) B4l

B(log)
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