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Abstract

For a linear algebraic group G over Q, we consider the period domains D classi-
fying G-mixed Hodge structures, and construct the extended period domains DBS,
DSL(2), and Γ \DΣ. In particular, we give toroidal partial compactifications of
mixed Mumford–Tate domains.
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0 Introduction

In this paper, we generalize the theories of Mumford–Tate domains (see Green–Griffiths–
Kerr’s book [16]) and their toroidal partial compactifications by Kerr–Pearlstein ([25])
to mixed Hodge theory. We also construct the corresponding Borel–Serre spaces and the
spaces of SL(2)-orbits. In [22], we described this generalization briefly with an application
to construct the toroidal partial compactifications of higher Albanese manifolds. In this
paper, we give the details.

In Section 1, for a linear algebraic group G, we define the period domain D as a space
of G-mixed Hodge structures. Here a G-mixed Hodge structure means an exact ⊗-functor
from the category of linear representations of G endowed with weight filtrations to the
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category of mixed Hodge structures. In the case where G is reductive, our period domain
D is essentially the Mumford–Tate domain studied in [16].

In Sections 2, 3, and 4, we construct the extended period domains DBS, DSL(2), and
Γ \DΣ, the space of Borel–Serre orbits, the space of SL(2)-orbits, and the space of nilpo-
tent orbits, respectively. In the case where G is reductive, Γ \DΣ is essentially the space
of Kerr–Pearlstein ([25]).

Our method to construct DBS, DSL(2), and Γ \DΣ is similar to that for the usual period
domain developed in [24] and in the preceding parts of this series of papers [21]. Actually,
the present paper is regarded as a generalization of our pervious works in Parts I–IV of
[21]. We prove similar results (the Hausdorffness etc.) for these spaces to what we have
proved so far for the corresponding spaces in the case of usual period domain. We obtain
a fundamental diagram

D⋆
SL(2),val

η⋆−→ DBS,val

ւ ↓ ց ↓
D♯

Σ,[val]

ψ→ DI
SL(2),val → DII

SL(2),val D⋆,+
SL(2) D⋆,W

SL(2) → DBS

↓ ↓ ↓ ւ ց ↓
Γ \DΣ,val ← D♯

Σ,val → D♯
Σ,[:]

ψ→ DI
SL(2) → DII

SL(2) D⋆
SL(2)

↓ ↓
Γ \DΣ ←− D♯

Σ

of the same style as the fundamental diagram in Part IV of [21], which is commutative
and in which the maps respect the structures of the spaces. The good properties of these
spaces are proved starting from the spaces on the right-hand-side and then moving to the
left-hand-side, similarly as in [24] and [21].

The authors thank Teruhisa Koshikawa for helpful discussions. The authors thank
Katsutoshi Shinohara for a help to complete Example 2 in Remark 1.5.12. K. Kato
was partially supported by NFS grants DMS 1001729, DMS 1303421, DMS 1601861, and
DMS 2001182. C. Nakayama was partially supported by JSPS Grants-in-Aid for Scientific
Research (C) 22540011, (B) 23340008, (C) 16K05093, and (C) 21K03199. S. Usui was
partially supported by JSPS Grants-in-Aid for Scientific Research (B) 23340008 and (C)
17K05200.

1 The period domain D

Let G be a linear algebraic group over Q. Let Gu be the unipotent radical of G, and
let Gred = G/Gu be the reductive quotient of G. Let Rep(G) be the category of finite-
dimensional linear representations of G over Q.

1.1 Definition of the period domain D

1.1.1. In this Section 1.1, we give the definition of our period domain D considered in
this paper. As we will see in Section 1.2, this is the period domain D in our previous
work [22]. In this Section 1.1, we introduce D from the following point of view: We want
to have a period domain endowed with an action of G. More precisely, we want to have a
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complex analytic period domain D for Q-mixed Hodge structures which is endowed with
a real analytic action of the subgroup G(R)Gu(C) of G(C). Then we naturally come to
the definition of our D.

1.1.2. For a subfield E of R, let (EMHS) be the category of E-mixed Hodge structures.
By a G-mixed Hodge structure (G-MHS for short), we mean an exact ⊗-functor ([14]

2.7) H : Rep(G)→ (QMHS);V 7→ (H(V )Q,W, F ). (This definition of G-MHS is slightly
different from the definition in our previous work [22].)

1.1.3. LetDall(G) be the set of all isomorphism classes ofG-MHSH : Rep(G)→ (QMHS)
which preserves the underlying Q-vector spaces (that is, for any V ∈ Rep(G), H(V )Q = V
as a Q-vector space) and which satisfy the following conditions (i) and (ii).

(i) For every V ∈ Rep(G), the weight filtration W of H(V ) is stabilized by the action
of G on V .

(ii) For every V ∈ Rep(G), Gu acts trivially on grWV .
Then the subgroup G(R)Gu(C) of G(C) acts on Dall(G): For H ∈ Dall(G) and g ∈

G(R)Gu(C), gH ∈ Dall(G) is defined as follows. For V ∈ Rep(G), (gH(V ))Q = V , the
weight filtration W of gH(V ) is that of H(V ), and the Hodge filtration F of gH(V ) is
given by F p(gH(V )) := gF pH(V ) ⊂ VC := C⊗QV , where F pH(V ) is the Hodge filtration
of H(V ).

1.1.4. By a period domain of G-MHS, we mean a G(R)Gu(C)-orbit in Dall(G).
This is the definition of the period domain of this paper, which we denote by D.

1.1.5. As will be shown in 1.2.15, for a reasonable topology on Dall(G), each period
domain is open and closed in Dall(G) and hence as a topological space, Dall(G) is a
disjoint union of all period domains in Dall(G).

Remark 1.1.6. We think this definition of D is a natural way to have a period domain
for Q-MHS with an action of G(R)Gu(C).

To consider a G-MHS is a natural way to have an action of G on the period domain
because each V ∈ Rep(G) has an action of G.

The group G(R) acts on Dall(G) by the condition (i) in 1.1.3. We remark how this
condition (i) is important. Note that if (V,W, F ) is a Q-MHS with V ∈ Rep(G), W
the weight filtration, and F the Hodge filtration, then for g ∈ G(R), we have an R-MHS
(VR, gWR, gF ). But if gWR is rational for all g ∈ G(R) (we need this to have the action of
G(R) on the set of Q-MHS), W must be stabilized by the connected component of G(R)
containing 1. (That is, rational weight filtrations can not move continuously.) Hence it is
natural to put the condition that G stabilizes W .

We have the action of Gu(C) on Dall(G) by the condition (ii) in 1.1.3.

Remark 1.1.7. The condition G stabilizes W may be natural also for the following
reason. In the definition of a period domain of mixed Hodge structures, it is natural to
fix the weight filtration and move the Hodge filtration. This is because in a variation of
mixed Hodge structure, the weight filtration is put on the local system and the Hodge
filtration is put on the vector bundle, and hence the weight filtration is constant locally
and Hodge filtration varies continuously.
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1.1.8. For a subfield E of R, by an E-HS, we will mean an E-MHS which is a direct
sum of pure E-Hodge structures. (They are also called split E-mixed Hodge structure.)
Let (EHS) be the category of E-HS. By G-HS, we mean a G-MHS which has values in
(QHS)⊂ (QMHS).

Proposition 1.1.9. Assume that G is reductive and let H ∈ Dall(G). Then H is a G-HS.
For V ∈ Rep(G) and for w ∈ Z, if Vw denotes the underlying Q-vector space of the part
of H(V ) of weight w, Vw is G-stable in V .

Proof. Since any representation of a reductive group is semisimple, the weight filtration on
V has a splitting which is compatible with the action of G. Hence there is a decomposition
V =

⊕

w Vw such that Vw is G-stable and WwVw = Vw, Ww−1Vw = 0. We have H(V ) =
⊕

wH(Vw) and H(Vw) is a pure Hodge structure of weight w.

1.2 Relation to [11] Section 5 and [12] 1.5–1.8 of Deligne

1.2.1. Let SC/R be the Weil restriction of Gm from C to R. It represents the functor
A 7→ (C ⊗R A)× for commutative rings A over R. We have SC/R(R) = C×, which is
understood as C× regarded as an algebraic group over R.

Let w : Gm,R → SC/R be the homomorphism induced from the natural maps A× →
(C⊗R A)× for commutative rings A over R.

In [11] and [12], Deligne related SC/R to the theory of Hodge structures as follows.

1.2.2. The following (1) and (2) are identified.
(1) An R-HS.
(2) A (finite-dimensional) linear representation of SC/R over R.
In fact, a linear representation of SC/R over R is equivalent to a finite-dimensional

R-vector space V endowed with a decomposition

VC := C⊗R V =
⊕

p,q∈Z

V p,q
C

such that for any p, q, V q,p
C coincides with the complex conjugate of V p,q

C (that is, the
image of V p,q

C under C⊗R V → C⊗R V ; z ⊗ v 7→ z̄ ⊗ v). For a linear representation V
of SC/R, the corresponding decomposition is defined by

V p,q
C = {v ∈ VC | [z]v = zpz̄qv for z ∈ C×}.

Here [z] denotes z regarded as an element of SC/R(R). By taking V p,q
C as the (p, q)-Hodge

component of VC, this is understood as an R-HS with underlying R-vector space V .
The weight m-part of this R-HS is the part on which z ∈ R× = Gm,R(R) acts as

multiplication by zm via w : Gm,R → SC/R.

1.2.3. (1) The following (1.1) and (1.2) are identified.
(1.1) An exact ⊗-functor H : Rep(G) → (RHS) with the underlying R-vector space

H(V )R = R⊗Q V (V ∈ Rep(G)).
(1.2) A homomorphism h : SC/R → GR.
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(2) The following (2.1) and (2.2) are identified.
(2.1) A G-HSH : Rep(G)→ (QHS) (1.1.8) preserving the underlying Q-vector spaces.
(2.2) A homomorphism h : SC/R → GR such that h ◦ w : Gm,R → GR is defined over

Q.
We explain (1). If we are given a homomorphism SC/R → GR in (1.2), for any

V ∈ Rep(G), H(V )R = R ⊗Q V has an action of SC/R and is regarded as an R-HS.
Conversely, if we have a functor H : Rep(G) → (RHS) having the property in (1.1),
then by 1.2.2 and by the theory of Tannakian categories, we have a homomorphism
SC/R → GR. This shows (1).

Taking account of Q-structures, we get (2) from (1).

1.2.4. Let D̂all(G) be the set of all isomorphism classes of exact ⊗-functors H : Rep(G)→
(RMHS) with the underlying R-vector space H(V )R = R ⊗Q V (V ∈ Rep(G)) such
that for every V ∈ Rep(G), the action of G on V stabilizes the weight filtration W on
VR = R ⊗Q V and the action of Gu on grWVR is trivial. (Note that Dall(G) in 1.1.3 is
identified with the set of those functors whose weight filtrations are Q-rational.)

Let D̂′
all(G) be the set of all pairs (h, δ), where h is a homomorphism SC/R → GR and

δ is an element of Lie (G)R satisfying the following condition (i). Consider the adjoint
action of G on Lie (G) and the induced action of SC/R on Lie (G)R via h. By this, Lie (G)R
becomes an R-HS. For m,n ∈ Z, let Hm,n be the Hodge (m,n)-component of the weight
(m+ n)-part of Lie (G)C.

(i) δ ∈
⊕

m<0,n<0H
m,n.

Proposition 1.2.5. We have a bijection

D̂′
all(G)→ D̂all(G) ; (h, δ) 7→ eiδH,

where H is the functor Rep(G)→ (RHS) corresponding to h in 1.2.3 (1).

Proof. This follows from [10] Proposition (2.20).

Lemma 1.2.6. Let H ∈ D̂all(G) (1.2.4). Consider the adjoint action of G on Lie (G)
and consider the weight filtration of Lie (G)R and the Hodge filtration of Lie (G)C defined
by H.

(1) Let ℓ ∈ Lie (G)R and w ∈ Z. Then ℓ ∈ WwLie (G)R if and only if, for any V ∈
Rep(G) and any k ∈ Z, the Lie action Lie (G)R × VR → VR satisfies ℓWkVR ⊂Wk+wVR.

(2) Let ℓ ∈ Lie (G)C and p ∈ Z. Then ℓ ∈ F pLie (G)C if and only if, for any V ∈
Rep(G) and any r ∈ Z, the Lie action Lie (G)C × VC → VC satisfies ℓF rVC ⊂ F r+pVC.

Proof. The only if parts are clear.
Take a V ∈ Rep(G) such that the map Lie (G) → End(V ) induced by the Lie action

is injective. Then since this is a homomorphism of R-MHS, we have WwLie (G)R =
Lie (G)R ∩ WwEnd(VR) = {h ∈ Lie (G)R | hWkVR ⊂ Wk+wVR for any k ∈ Z}, and a
similar relation of Hodge filtrations. This proves the if parts.

1.2.7. (1) Let ΨW (G) be the set of all homomorphisms k : Gm → Gred satisfying the
following conditions (i) and (ii).

(i) The image of k is contained in the center of Gred.
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(ii) For some homomorphism (and hence for any homomorphism) k̃ : Gm → G which
lifts k, the adjoint action of Gm on Lie (Gu) via k̃ is of weight ≤ −1.

Note that in the case where G is reductive, the condition (ii) is automatically satisfied.

(2) Let ΨH(G) be the set of all homomorphisms h : SC/R → Gred,R satisfying the
following condition: There exists k ∈ ΨW (G) such that h ◦ w : Gm,R → Gred,R comes
from k (see 1.2.1 for w).

We have a canonical map ΨH(G)→ ΨW (G) ; h 7→ k.

1.2.8. Let k ∈ ΨW (G).
Then, for any V ∈ Rep(G), the action of Gm on V via a lifting k̃ of k defines a

rational increasing filtration W on V called the weight filtration, which is independent of
the lifting. For any V ∈ Rep(G), WwV is G-stable for any w ∈ Z and the action of Gu in
grWV is trivial.

Proposition 1.2.9. (1) Let H ∈ D̂all(G) (1.2.4). Then the following conditions (i) and
(ii) are equivalent.

(i) H ∈ Dall(G) (1.1.3).
(ii) The restriction of H to Rep(Gred) is a G-HS (1.1.8), and the corresponding ho-

momorphism h : SC/R → Gred,R (1.2.3 (2)) belongs to ΨH(G) (1.2.7 (2)).

(2) Let H ∈ D̂all(G) (1.2.4). If the equivalent conditions in (1) are satisfied, the weight
filtrations of H are given by the image k of h in ΨW (G) as in 1.2.8.

(3) If G is reductive, the map Dall(G)→ ΨH(G) ; H 7→ h is bijective.

Proof. In the case where G is reductive, (1) follows from Proposition 1.1.9.
(3) follows from the case of (1) where G is reductive.
We prove (1) and (2).
Assume (i). Then, by Proposition 1.1.9, the restriction is a G-HS. Further, the induced

homomorphism h ◦ w : Gm,R → Gred,R is defined over Q and its image is in the center
of Gred,R. We prove that Lie (Gu) is of weight ≤ −1, which implies (ii). Since Gu acts
on grWV trivially for any V ∈ Rep(G), the Lie action of Lie (Gu) on V induces the zero
action on grWV . By Lemma 1.2.6, this proves that Lie (Gu) has weights ≤ −1.

Assume (ii). Since H comes from D̂′
all(G) (Proposition 1.2.5), the weight filtration W

of H is given by the image k of h in ΨW (G) as in 1.2.8. Hence the weight filtration of H
is rational, that is, H ∈ Dall(G). Thus we have proved (1) and (2).

By Proposition 1.2.9 (1), we have a map

Dall(G)→ ΨH(G) ; H 7→ h.

Corollary 1.2.10. If Dall(G) is not empty, Gu is contained in the commutator subgroup
of G.

Proof. If Dall(G) is not empty, via the maps Dall(G) → ΨH(G) → ΨW (G), we see that
ΨW (G) is not empty. For a lifting k̃ : Gm → G of an element k : Gm → Gred of ΨW (G),
since Lie (Gu) is of weight ≤ −1 for k̃, we have Gu = [k̃(Gm), Gu].
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Proposition 1.2.11. Consider the maps Dall(G)→ ΨH(G)→ ΨW (G).
(1) Let H ∈ Dall(G) and let h be the image of H in ΨH(G). Then for g1 ∈ G(R)

and g2 ∈ Gu(C), the image of g1g2H ∈ Dall(G) in ΨH(G) is g1,redhg
−1
1,red : SC/R → Gred,R.

Here g1,red is the image of g1 in Gred(R).
(2) Let h ∈ ΨH(G) and let k be the image of h in ΨW (G). Then for g ∈ Gred(R), the

image of ghg−1 in ΨW (G) is k.
(3) The map Dall(G) → ΨH(G) is surjective. The action of Gu(C) on each fiber of

this map is transitive.

Proof. (1) and (2) are straightforwards.
We prove (3). Let h ∈ ΨH(G). By Proposition 1.2.5, the fiber of h in Dall(G) consists

of the images eiδH of (h̃, δ) ∈ D̂′
all(G) in D̂all(G), where h̃ : SC/R → GR are liftings of h

and H denotes the functor Rep(G)→ (RHS) corresponding to h̃. The fiber is not empty
because a lifting h̃ of h exists. Let (h̃, δ), (h̃′, δ′) ∈ D̂′

all(G), where h̃, h̃
′ are liftings of h and

let H and H ′ be the functors corresponding to h̃ and h̃′, respectively. For V ∈ Rep(G),
the weight filtration W on V given by eiδH and that given by eiδ

′

H ′ coincide because
they are given by the image of h in ΨW (G) as in 1.2.8. Let sV : grWVR → VR and
s′V : grWVR → VR be the splittings of W over R defined by h̃ ◦w and h̃′ ◦w, respectively.
Then (s′V ◦ s−1

V : V → V )V comes from an element u of Gu(R) and h̃′ = uh̃u−1. We have
H ′ = uH and hence eiδ

′

H ′ = geiδH , where g = eiδ
′

ue−iδ ∈ Gu(C).

We will prove a more precise result on the fibers in Theorem 1.4.6 below.

1.2.12. Fix k ∈ ΨW (G). Then the inverse image of k in Dall(G) under Dall(G)→ ΨW (G)
is identified with the set of all G-MHS which preserve the underlying Q-vector spaces and
whose weight filtrations are given by k as in 1.2.8.

1.2.13. Fix a homomorphism
h0 : SC/R → Gred,R

which belongs to ΨH(G) (1.2.7). Then, by Proposition 1.2.11, there is a uniqueG(R)Gu(C)-
orbit D(G, h0) in Dall(G) whose image in ΨH(G) is the set of all G(R)-conjugates of h0.
We call this period domain of G-MHS (1.1.4) the period domain associated to h0. By
1.2.12, D(G, h0) coincides with the period domain associated to h0 defined in our previ-
ous paper [22].

In the case where G is reductive, D(G, h0) is identified with the set of all G(R)-
conjugates of h0 (Proposition 1.2.9 (3)). In this case, the definition of the period domain
D(G, h0) as the set of G(R)-conjugates of h0 appears in Section 5 of [11] and 1.5 of [12]
of Deligne. We borrow the notation h0 from [12].

1.2.14. If G is reductive and h0 in 1.2.13 satisfies the Shimura data in 1.5 of [12], then
as in 1.8 of ibid.,

(1) G(Q) \(D(G, h0) × G(A∞
Q ))/K, where A∞

Q is the adele ring of Q without ∞-
component and K is an open compact subgroup of G(A∞

Q ),

is a Shimura variety over C associated to h0.
We expect that the set (1) in general (it is a complex analytic space as in Section 1.4

below) is also important in number theory. [19] is a trial of the study in this direction.

8



Classifying spaces of degenerating mixed Hodge structures, V

We show that each period domain is isolated in Dall(G).

Proposition 1.2.15. (1) If G is reductive, each G(R)-orbit is open in Dall(G), where we
endowDall(G) with the topology induced by the compact-open topology of Hom cont(C

×, G(R))
via the injection Dall(G) ≃ ΨH(G)→ Hom cont(C

×, G(R)).
(2) For a general G, for any topology of Dall(G) such that the map Dall(G)→ Dall(Gred)

is continuous for the above topology of Dall(Gred), each G(R)Gu(C)-orbit is open in
Dall(G). That is, as a topological space, Dall(G) is the disjoint union of period domains.

Proof. (1) The set of homomorphisms from Gm,R to the center of GR is discrete for the
topology induced by the compact-open topology of Hom cont(R

×, G(R)). Hence we are

reduced to proving that for S
(1)
C/R := Ker(norm : SC/R → Gm,R), every G(R)-conjugacy

class in Hom (S
(1)
C/R, GR) is open for the topology induced by the compact-open topology

of Hom cont(S
(1)
C/R(R), G(R)). But this follows from the case K = S

(1)
C/R(R) = {z ∈

C× | |z| = 1} and L = G(R) of the result of Lee and Wu [26] that for a compact group
K and for a locally compact group L, each L-conjugacy class in Hom cont(K,L) is open
for the compact-open topology.

(2) follows from (1) because D is the inverse image of its image Dred in Dall(Gred) and
Dred is open in Dall(Gred) by (1).

1.2.16. We compare the above period domain with the Griffiths period domain [17] and
its generalization [35] to MHS. (A more precise comparison is given in Section 1.6.)

The period domain in [35] classifies MHS with a fixed weight filtration and fixed Hodge
numbers of each grWw , and there the Hodge filtrations move.

In the definition of the period domain of G-MHS in the present paper, fixing W in
ibid. corresponds to fixing k0 ∈ ΨW (G) as in 1.2.8, and fixing Hodge numbers of each grWw
in ibid. corresponds to the fact that we fix the Gred(C)-conjugacy class of the composition

Gm,C → Gm,C ×Gm,C = SC/R,C
h0→ Gred,C, where the first arrow is z 7→ (z, 1). Moving

the Hodge filtration in ibid. corresponds to moving H ∈ D by G(R)Gu(C).

1.3 The real analytic structure of D

Let h0 : SC/R → Gred,R be as in 1.2.13 and let D = D(G, h0) be the associated period
domain (1.2.13). We consider the real analytic structure of D.

1.3.1. D is regarded as (G(R)Gu(C))/Ix for the isotropy subgroup Ix of G(R)Gu(C) at
x ∈ D. Furthermore, Ix is a real algebraic subgroup of G(R)Gu(C). This gives a real
analytic structure on D, and it is independent of the choice of x ∈ D.

1.3.2. The image of the composite map D → ΨH(G) → ΨW (G) is a one point k0 ∈
ΨW (G). Hence the weight filtration W on V ∈ Rep(G) given by x ∈ D is independent of
x and it is defined by k0 as in 1.2.8.

Let spl(W ) be the set of all isomorphisms of ⊗-functors from Rep(G) to the category
of R-vector spaces

(V 7→ grWVR)
∼→ (V 7→ VR) preserving the weight filtrations.

9
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(The notation spl(WR) may be better because we are considering splittings over R, but
we use the notation spl(W ) for simplicity and for the compatibility with our notation in
[21] Parts I–IV.) Then spl(W ) is a Gu(R)-torsor. Hence it is regarded as a real analytic
manifold.

1.3.3. Let Dred = D(Gred, h0). This set is identified with the set of all G(R)-conjugates
of h0 in Hom (SC/R, Gred,R). We have a canonical surjective projection D → Dred. For
x ∈ D, let xred be the image of x in Dred.

1.3.4. Let L =
⊕

w≤−2 gr
W
w Lie (G)R.

Consider the adjoint action of G on Lie (G). Since the weight filtration is stable under
the action of G and since Gu acts trivially on grWLie (G) (1.2.8), Gred acts on grWLie (G).
For p ∈ Dred, define L(p) = grWLie (G)R ∩ (

⊕

m<0,n<0H
m,n) ⊂ L, where Hm,n denotes

the Hodge (m,n)-component of grWm+nLie (G)C with respect to p.
By Proposition 1.2.5, any element x of D is written uniquely as

x = s(eiδp) : V 7→ s(eiδp(grW (V ))),

where p ∈ Dred, s ∈ spl(W ), δ ∈ L(p). In fact, this is the understanding of x as the
image of (h̃, sδs−1) ∈ D̂′

all(G) in D̂all(G), where h̃ : SC/R → GR is the lifting of the

homomorphism h : SC/R → Gred,R, corresponding to p, defined as h̃(z) = sh(z)s−1

(z ∈ SC/R).
We denote this δ ∈ L(p) by δ(x).

1.3.5. We have a canonical real analytic map

splW : D → spl(W ) ; x 7→ splW (x)

which is a modification splW (x) = s◦exp(ζ) of the real analytic map D → spl(W ) ; x 7→ s
in 1.3.4 by an element ζ ∈ L(p) explained below. This splitting splW (x) is called the
canonical splitting of W at x.

We explain ζ ∈ L(p). For each V ∈ Rep(G), ζV ∈ Lp(V ) is defined as a universal Lie
polynomial of the Hodge (j, k)-components δV,j,k of δV ([10] (3.28), (6.60); see also [20]
1.4, Appendix, [21] Part II 1.2). We can show ζV⊗V ′ = ζV ⊗ idV ′ + idV ⊗ ζV ′, and we have
ζ ∈ L(p).
Proposition 1.3.6. We have a canonical isomorphism of real analytic manifolds

D
∼→ {(p, s, δ) ∈ Dred × spl(W )× L | δ ∈ L(p)}

given by x 7→ (xred, splW (x), δ(x)).

We have an isomorphism of the same form even if we replace the map splW : D →
spl(W ) by the map D → spl(W ) ; x 7→ s of 1.3.4, but the isomorphism in Proposition
1.3.6 behaves better in degeneration (see Remark 1.3.10 below).

1.3.7. If p, p′ ∈ Dred, p
′ = gp for some g ∈ Gred(R), and we have L(p′) = Ad(g)L(p).

Hence all L(p) (p ∈ Dred) are isomorphic as graded R-vector spaces.
Let L = L(p) for some p ∈ Dred.
By Proposition 1.3.6, we have

10
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Corollary 1.3.8. D is an L-bundle over Dred × spl(W ).

1.3.9. Let Dspl be the part of D consisting of exact ⊗-functors Rep(G)→ (QMHS) such
that the image of the composition Rep(G)→ (QMHS)→ (RMHS) is contained in (RHS)
(that is, such that the images are R-split mixed Hodge structures). Then

Dspl = {s(p) | s ∈ spl(W ), p ∈ Dred} = {x ∈ D | δ(x) = 0}

and Dspl is a closed real analytic submanifold of D. Here s(p) : Rep(G)→ (QMHS) sends
a V ∈ Rep(G) to the Q-MHS on the underlying Q-vector space of V which is induced by
p(grWV ) and s(V ) : grWVR ≃ VR. Let Dnspl = D rDspl.

In the rest of this Section 1.3, we explain how splW : D → spl(W ) is important and
why we prefer this map to the map D → spl(W ) ; x 7→ s in 1.3.4.

Remark 1.3.10. When we consider degeneration along a nilpotent orbit, the canonical
splitting splW : D → spl(W ) behaves better than the splitting D → spl(W ) in 1.3.4. We
explain this. Assume that (N1, . . . , Nn, F ) generates a nilpotent orbit as in 4.1.3 below.
For y = (yj)1≤j≤n ∈ Rn with yj are sufficiently large for all j, let splW (y) and s(y)
be the above splittings associated to the mixed Hodge structure (W, exp(

∑n
j=1 iyjNj)F ).

Then, splW (y) converges in spl(W ) when yj/yj+1 →∞ (1 ≤ j ≤ n, yn+1 denotes 1) ([20]
Theorem 0.5 (1), [21] Part II 2.4.2 (i)), whereas s(y) can diverge. For this convergence,
the term ζ in the canonical splitting splW (y) plays a crucial role ([20] Example 13.3).

The canonical splitting of W of MHS has a special importance and a characterization
related to the theory of SL(2)-orbits as in Remark 1.3.11 and Remark 1.3.12 below ([20]
8.7).

Remark 1.3.11. Assume that we are given a nilpotent orbit (HR, 〈·, ·〉, N, F ) of weight
w as in [24] 5.4.1. Let W ′ be the −w twist of the monodromy filtrationM of N . (That is,
W ′ is the twist of M such that the central graded quotient of W ′ is of weight w whereas
the central graded quotient of M is of weight 0.) Then (W ′, F ) is a MHS. The canonical
splitting of W ′ of this MHS is explained as follows.

For y ≫ 0, (HR, 〈·, ·〉, exp(iyN)F ) is a polarized Hodge structure. Let sBS(y) be
the unique splitting of W ′ such that sBS(y)(gr

W ′

w ) and sBS(y)(gr
W ′

w′ ) with w 6= w′ are
orthogonal with respect to the Hodge metric of (HR, 〈·, ·〉, exp(iyN)F ). (This splitting of
W ′ is treated in the theory of Borel–Serre lifting. See 2.2.2 below.) As is proved in [20],
when y → ∞, sBS(y) converges to the canonical splitting splW ′(F ) of W ′ associated to
the MHS (W ′, F ).

In the theory of SL(2)-orbits, we have a homomorphism of algebraic groups ρ :
SL(2)R → AutR(HR) over R associated to (N,F ). It is the unique homomorphism such

that ρ

(

1/t 0
0 t

)

acts on the part of HR of weight j for splW ′(F ) as tj−w and such that

the Lie algebra homomorphism Lie (ρ) : sl(2)R → EndR(HR) sends the matrix

(

0 1
0 0

)

to N . That is, the action of the diagonal part of SL(2) in the theory of SL(2)-orbits gives
the canonical splitting splW ′(F ). This splW ′(F ) is denoted as splBS

W ′(F ) in 3.3.8.

11
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Remark 1.3.12. The canonical splitting of the weight filtration is functorial for MHS.
Any MHS F ′ is embedded in a MHS F which appears in Remark 1.3.11 ([20]). Hence
Remark 1.3.11 characterizes the canonical splitting.

1.4 The complex analytic structure of D

We consider the complex analytic structure of D.
Fix a homomorphism h0 : SC/R → Gred,R as in 1.2.13.

1.4.1. Let Y be the set of all isomorphism classes of exact ⊗-functors from Rep(G) to the
following category C preserving the underlying vector spaces and the weight filtrations.
C is the category of triples (V,W, F ), where V is a finite-dimensional Q-vector space,

W is an increasing filtration on V (called the weight filtration), and F is a decreasing
filtration on VC (called the Hodge filtration).

Then G(C) acts on Y by changing the Hodge filtration F . We have D ⊂ Y and D is
stable in Y under the action of G(R)Gu(C).

Let
Ď := G(C)D ⊂ Y.

Since the action of G(C) on Ď is transitive and the isotropy group of each point of Ď is
an algebraic subgroup of G(C), Ď has a natural structure of a complex analytic manifold
as a G(C)-homogeneous space.

Proposition 1.4.2. For x ∈ Ď, the tangent space of Ď at x is canonically isomorphic to
Lie (G)C/F (x)

0Lie (G)C, where F (x) denotes the Hodge filtration of x on Lie (G)C defined
by the adjoint action of G on Lie (G).

The tangent bundle of Ď is canonically isomorphic to Lie (G)O/F
0Lie (G)O, where

Lie (G)O := O ⊗ Lie (G) with O = OĎ the sheaf of holomorphic functions on Ď.

Proof. By definition of F (x), F (x)0Lie (G)C is the Lie algebra of the isotropy subgroup
of G(C) at x under the action of G(C) on Ď in 1.4.1. The assertions of this proposition
follow.

Proposition 1.4.3. D is open in Ď.

Proof. Let x ∈ D. Since the Hodge filtration F (x)•Lie (Gred)C is pure of weight 0, the
map Lie (Gred)R → Lie (Gred)C/F (x)

0Lie (Gred)C is surjective. Hence the map Lie (G)R+
Lie (Gu)C → Lie (G)C/F (x)

0Lie (G)C is surjective. Since Lie (G)C/F (x)
0Lie (G)C is the

tangent space of Ď at x (Proposition 1.4.2), the last surjectivity shows that G(R)Gu(C)x
is a neighborhood of x in Ď.

Corollary 1.4.4. D is a complex analytic manifold.

Remark 1.4.5. This Proposition 1.4.3 is Proposition 3.2.7 of [22]. The proof of it given
there is wrong.

The real analytic structure of D given in 1.3.1 coincides with the one induced by this
complex analytic structure.
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Theorem 1.4.6. The map D → Dred is smooth and surjective. For x ∈ D, the fiber over
xred ∈ Dred (1.3.3) in D is isomorphic to Gu(C)/F (x)0Gu(C). Here F (x)0Gu(C) is the
C-valued points of the algebraic subgroup of Gu,C whose Lie algebra is F (x)0Lie (Gu)C).

Proof. The smoothness follows from the smoothness of D and Dred and the surjectivity
of the map TxD → Txred(Dred) of tangent spaces which follows, by Proposition 1.4.2,
from the surjectivity of Lie (G)→ Lie (Gred). Consider the action of Gu(C) on the fiber.
The action is transitive by Proposition 1.2.11 (3). We prove that the isotropy subgroup
of Gu(C) at x is F (x)0Gu(C). Let g ∈ Gu(C). Then g ∈ F (x)0Gu(C) if and only if
log(g) ∈ F (x)0Lie (Gu)C), that is, if and only if log(g) ∈ F (x)0Lie (G)C. By Lemma 1.2.6
(2), the last condition is equivalent to the condition that log(g)F (x)pVC ⊂ F (x)pVC for
any V ∈ Rep(G) for the Lie action. This condition is equivalent to the condition that
gF (x)pVC = F (x)pVC for any V ∈ Rep(G), that is, g fixes x.

1.4.7. In this paper, we will often use the following fact (see [27] Theorem 4.14): If G is a
linear algebraic group over a field E and if V1 is a finite-dimensional faithful representation
of G, V1 generates the ⊗-category Repk(G) of all finite-dimensional representations of G
over E. That is, all V ∈ Repk(G) can be constructed from V1 by taking ⊗, ⊕, the dual,
and subquotients.

Lemma 1.4.8. For V ∈ Rep(G), define D(V ) (resp. Ď(V )) as the set {FH(V ) | H ∈ D}
(resp. {FH(V ) | H ∈ Ď}) of decreasing filtrations on VC.

Assume that V ∈ Rep(G) is faithful. Then the mapD → D(V ) (resp. Ď → Ď(V ));H 7→
FH(V ) is a bijection. If H ∈ D (resp. Ď), D(V ) (resp. Ď(V )) coincides with the
G(R)Gu(C)-orbit (resp. G(C)-orbit) in the set of decreasing filtrations on VC contain-
ing FH(V ).

Proof. Since V is faithful, the map D → D(V ) (resp. Ď → Ď(V ));H 7→ FH(V ) is
injective by 1.4.7, and hence bijective by definition of D(V ) (resp. Ď(V )). The action of
G(R)Gu(C) (resp. G(C)) on D (resp. Ď) is transitive. The second assertion follows.

1.5 Polarizability

For a linear algebraic group G, let G′ := [G,G] be the commutator algebraic subgroup.
Note that Gu ⊂ G′ if Dall(G) is non-empty (1.2.10).

1.5.1. There are two formulations of polarization of a Hodge structure: the “classical
formulation” ([17] I 2) and the formulation by Deligne ([12]). We adopted the former in
Part I–Part IV of this series of papers [21].

Let H be a Q-Hodge structure of weight w. Then a polarization in the “classical
sense” is a Q-bilinear form 〈·, ·〉 : HQ × HQ → Q which is symmetric if w is even and
anti-symmetric if w is odd, satisfying 〈F p, Fw+1−p〉 = 0 for any p, where F is the Hodge
filtration, and the condition that the Hermitian form (·, ·) : HC × HC → C defined
by (x, y) = 〈x, ip−qȳ〉 for x ∈ HC and y ∈ Hp,q

C is positive definite. (This positive
definite Hermitian form (·, ·) is called the Hodge metric of the polarization. Note that the
restriction of the Hodge metric (·, ·) of the polarization to HR ×HR is a positive definite
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symmetric bilinear form HR × HR → R and it is written as (x, y) 7→ 〈x, h(i)y〉 for the
action h of SC/R on HR (1.2.3).)

On the other hand, a polarization in the sense of Deligne is a homomorphism p :
HQ ⊗ HQ → Q(−w) = Q · (2πi)−w of Hodge structures of weight 2w such that the
induced Q-bilinear form HQ×HQ → Q ; (x, y) 7→ (2πi)wp(x⊗ y) is a polarization in the
above classical sense.

To keep the consistency with Parts I–IV of this series of papers, we adopt in this Part
V the formulation of polarization in the classical sense. When we use the formulation of
Deligne, we will say that it is a polarization in the sense of Deligne.

We formulate polarizations of R-Hodge structures in the same way.

1.5.2. Let h0 : SC/R → Gred,R be as in 1.2.13. Let C := h0(i) (Weil operator) be the
image of i ∈ C× = SC/R(R) by h0 in Gred(R).

We say that h0 is R-polarizable if {a ∈ (Gred)
′(R) | Ca = aC} is a maximal compact

subgroup of (Gred)
′(R).

That is, h0 is R-polarizable if and only if Ad(C) on Lie (G′
red)R) is a Cartan involution.

In the following lemma, which is a variant of [13] Section 2, we compare several
polarizabilities (the above R-polarizability is put as the condition (4.0)).

Lemma 1.5.3. Let h0 : SC/R → Gred,R be as in 1.2.13. Then, for a = 1, 2, 3, the
following conditions (a.1) and (a.2) are equivalent. Furthermore, the conditions (4.0),
(4.1), and (4.2) are equivalent. For the conditions (a) := (a.1)⇔ (a.2) (a = 1, 2, 3), and
the condition (4) := (4.0)⇔ (4.1)⇔ (4.2), we have the implications (1)⇒ (2)⇒ (4) and
(1)⇒ (3)⇒ (4).

(1.1) (resp. (1.2)). There is a homomorphism t : Gred → Gm such that t(h0(w(x))) =
x−2 (x ∈ Gm). Furthermore, if we consider the action of G on Q · (2πi)r (r ∈ Z) via
tr : Gred → Gm and identify H(Q·(2πi)r) for H ∈ D = D(G, h0) with the Hodge structure
Q(r), then, for every H ∈ D and every V ∈ Rep(G) (resp. for some H ∈ D and some
faithful representation V ∈ Rep(G)) and for each w ∈ Z, there exists a homomorphism
grWw (V )⊗grWw (V )→ Q · (2πi)−w in Rep(G) which polarizes the Hodge structure grWw H(V )
of weight w in the sense of Deligne.

(2.1) (resp. (2.2)). There is a homomorphism t : Gred,R → Gm,R such that t(h0(w(x))) =
x−2 (x ∈ Gm,R) and such that, for every H ∈ D and every V ∈ Rep(G) (resp. for some
H ∈ D and some faithful representation V ∈ Rep(G)) and for each w ∈ Z, there exists
an R-bilinear form 〈·, ·〉 : grWw (V )R × grWw (V )R → R satisfying 〈gx, gy〉 = t(g)−w〈x, y〉
(g ∈ Gred,R) which polarizes the R-Hodge structure grWw H(V )R of weight w.

(3.1) (resp. (3.2)). For every H ∈ D and every V ∈ Rep(G) (resp. For some H ∈ D
and some faithful representation V ∈ Rep(G)) and for each w ∈ Z, there exists a Q-
bilinear form 〈·, ·〉 : grWw (V )×grWw (V )→ Q satisfying 〈gx, gy〉 = 〈x, y〉 for g ∈ G′

red which
polarizes the Hodge structure grWw H(V ) of weight w.

(4.0) The homomorphism h0 : SC/R → Gred,R is R-polarizable in the sense of 1.5.2.
(4.1) (resp. (4.2)). For every H ∈ D and every V ∈ Rep(G) (resp. For some H ∈ D

and some faithful representation V ∈ Rep(G)) and for each w ∈ Z, there exists an R-
bilinear form 〈·, ·〉 : grWw (V )R × grWw (V )R → R satisfying 〈gx, gy〉 = 〈x, y〉 for g ∈ G′

red,R

which polarizes the R-Hodge structure grWw H(V )R of weight w.
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Proof. For a = 1, 2, 3, 4, the implication (a.1) ⇒ (a.2) is clear and the implication (a.2)
⇒ (a.1) follows from 1.4.7. For b = 1, 2, the implications (1.b) ⇒ (2.b) ⇒ (4.b) and the
implications (1.b) ⇒ (3.b) ⇒ (4.b) are clear.

We prove the equivalence of (4.0) and (4.2).
To see the equivalence, by taking grW , we may assume that G is reductive. Then the

equivalence is an analogue of [13] lemme 2.8, and proved as follows. We assume that G is
reductive.

Assume (4.0). We prove that (4.2) is satisfied.

Let K := {a ∈ G′(R) |Ca = aC}. Let S
(1)
C/R be the kernel of the norm map SC/R →

Gm,R and let K1 ⊂ G(R) be the image of S
(1)
C/R(R) = {z ∈ C× | |z| = 1} under h0. We

first show that there is a compact subgroup K2 of G(R) which contains both K and K1.
Let J = {a ∈ GR | Ca = aC} and let K2 be a maximal compact subgroup of J(R) which
contains K1. Then, since K2 contains some conjugate of K in J(R) and since K is normal
in J(R), we have K ⊂ K2.

By [28], there is a finite-dimensional faithful representation V of GR and a positive
definite symmetric R-bilinear form (·, ·) : V × V → R which is fixed by K2 such that GR

is stable in AutR(V ) under the transpose g 7→ tg with respect to (·, ·). Note that the last
condition implies that G′

R is also stable under the transpose.

Claim 1. The Cartan involution θK : G′
R → G′

R associated to K is g 7→ tg−1.

Note that this claim is also used in [7].
Proof of Claim 1. This is an algebraic homomorphism and its set of fixed points is compact
and contains K. Since K is a maximal compact subgroup of G′(R) by the assumption,
K coincides with the set of fixed points of θK . This proves Claim 1.

On the other hand, we know that g 7→ C−1gC is the Cartan involution ofG′
R associated

to K. Hence, by Claim 1, we have C−1gC = tg−1.
Put 〈x, y〉 := (x, C−1y). We show that it is G′

R-invariant. Let g be in G′
R. Then we

have 〈gx, gy〉 = (gx, C−1gy) = (gx, tg−1C−1y) = (g−1gx, C−1y) = (x, C−1y) = 〈x, y〉.
Let Vw for w ∈ Z be the part of V of weight w with respect to h0. Let c ∈ R× ⊂

C× = SC/R(R). We prove that th0(c)v = cwv for v ∈ Vw. Since th0(c) belongs to
G(R) in AutR(V ), we have th0(c)Vw = Vw. For every v′ ∈ Vw, we have (th0(c)v, v

′) =
(v, h0(c)v

′) = (v, cwv′) = (cwv, v′). Since (·, ·) : Vw × Vw → R is non-degenerate, we
have th0(c)v = cwv. We prove 〈Vw, Vw′〉 = 0 unless w = w′. For v ∈ Vw and v′ ∈ Vw′,
cw(v, v′) = (h0(c)v, v

′) = (v, th0(c)v
′) = (v, cw

′

v′) = cw
′

(v, v′). Hence if w 6= w′, then
(Vw, Vw′) = 0 and hence 〈Vw, Vw′〉 = 0.

Let 〈·, ·〉w : Vw,R × Vw,R → R be the pairing induced by 〈·, ·〉. We prove that 〈·, ·〉w
is a polarization on Vw. Let (·, ·)w : Vw,C × Vw,C → C be the positive definite Hermitian
form induced by (·, ·). Let Hp,q

w (p + q = w) be the (p, q)-Hodge component of Vw,C
with respect to h0. It is sufficient to show that (Hp,q

w , Hp′,q′

w ) = 0 unless p = p′. Let

u ∈ K1 = S
(1)
C/R(R). Then, since (·, ·)w is K1-invariant, we have, for v ∈ Hp,q

w and

v′ ∈ Hp′,q′

w , (v, v′) = ([u]v, [u]v′) = up−quq
′−p′(v, v′) = u2(p−p

′)(v, v′). Hence p = p′. This
proves that the condition (4.2) is satisfied.

Assume (4.2). We prove that (4.0) is satisfied. Take a faithful representation V ∈
Rep(G). By our assumption, there is a G′

R-invariant bilinear form 〈·, ·〉 on VR such that
(x, y) := 〈x, Cy〉 is positive definite and symmetric.
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Claim 2. For g ∈ G′
R, we have C−1gC = tg−1, where the transpose is with respect to

(·, ·).
Proof. This follows from the fact that 〈·, ·〉 is G′

R-stable.
The following Claim 3 is well-known.

Claim 3. Let U be a finite-dimensional R-vector space endowed with a positive definite
symmetric bilinear form (·, ·). Let G be an algebraic subgroup of GLU which is stable
under g 7→ tg, where the transpose is with respect to (·, ·). Then {g ∈ G(R) | tg = g−1}
is a maximal compact subgroup of G(R).

By Claim 2 and Claim 3, {g ∈ G′(R) |C−1gC = g} is a maximal compact subgroup
of G′(R). Thus (4.2) implies (4.0).

1.5.4. The conditions (1)–(4) in Lemma 1.5.3 are different from each other as the following
examples show.

Example 1. Let E be a cubic extension field ofQ having one real place and one complex
place and let G = E× regarded as a torus over Q of dimension 3. Let h0 : SC/R → GR be
the homomorphism such that the induced map SC/R(R) = C× → G(R) = (E ⊗Q R)× =
R× × C× sends z ∈ C× to (zz̄, z2). This example satisfies the conditions (2) and (4),
but does not satisfy the conditions (1), (3). In fact, (2) is satisfied because we have t :
GR → Gm,R which sends (r, z) ∈ G(R) = R××C× to r(zz̄)−1, and for V = E ∈ Rep(G),
we have an R-bilinear form on ER = R × C with values in R · (2πi)−2 = R given by
((x1, y1), (x2, y2)) 7→ x1x2 − y1ȳ2 − ȳ1y2 (xj ∈ R, yj ∈ C) which polarizes the Hodge
structure of E of weight 2 associated to h0. But the condition (3) is not satisfied because
there is no bilinear form on the Q-vector space E which polarizes the Hodge structure
associated to h0.

Example 2. Let E be an imaginary quadratic field over Q and let G = E× regarded as
a torus over Q of dimension 2. Let h0 : SC/R → GR be the homomorphism such that the
induced map SC/R(R) = C× → G(R) = (E ⊗Q R)× = C× sends z ∈ C× to z/z̄. This
example satisfies the conditions (3) and (4), but does not satisfy the conditions (1), (2).
In fact, there is no homomorphism t : GR → Gm,R such that t(h0(w(x))) = x−2. The
condition (3) is satisfied because E × E → Q ; (x1, x2) 7→ −x1x̄2 − x̄1x2 (xj ∈ E) is the
polarization of the Hodge structure of E of weight 0 associated to h0.

We thank Teruhisa Koshikawa for his advice on R-polarizability and for showing the
above Example 1 to us.

1.5.5. Let G be a semisimple algebraic group over R.
Let X be the set of all maximal compact subgroups of G(R). Then X is not empty.

The group G(R) acts on X by conjugation, and this action is transitive. See [28] Theorem
3.1, [4] Proposition 1.12. For K ∈ X, we have a bijection G(R)/K → X ; g 7→ gKg−1.
Via this bijection, we regard X as a real analytic manifold. This real analytic structure
is independent of the choice of K. This X is called the symmetric space associated to G.
1.5.6. Consider the commutator subgroup G′

red = [Gred, Gred] of Gred = G/Gu. This is a
semisimple algebraic group. Let X be the symmetric space associated to G′

red,R.
Let h0 : SC/R → Gred,R be R-polarizable as in 1.5.2. From Dred = D(Gred, h0) (1.3.3),

we have a canonical map
Dred → X
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which sends h ∈ Dred ⊂ Hom (SC/R, Gred,R) to a maximal compact subgroup K = {g ∈
G′

red(R) | gh(i) = h(i)g} of G′
red(R) associated to the Weil operator h(i).

1.5.7. Let Γ be a subgroup of G(Q). We call Γ an arithmetic subgroup (resp. semi-
arithmetic subgroup) of G(Q) if the following condition (A) (resp. (SA)) is satisfied.

(A) There are n ≥ 1 and an injective homomorphism ρ : G→ GL(n) such that Γ is a
subgroup of {g ∈ G(Q) | ρ(g) ∈ GL(n,Z)} of finite index.

(SA) There are n ≥ 1 and an injective homomorphism ρ : G → GL(n) such that
ρ(Γ) ⊂ GL(n,Z). That is, there is a faithful representation V ∈ Rep(G) and a Z-lattice
L in V such that L is stable under the action of Γ.

The terminology arithmetic subgroup is used by many people. We hope the terminol-
ogy semi-arithmetic group is acceptable.

The next two lemmas are straightforward.

Lemma 1.5.8. (1) The condition (A) is equivalent to the following condition (′A).
(′A) For every n ≥ 1 and every homomorphism ρ : G→ GL(n), ρ(Γ)∩GL(n,Z) is of

finite index in ρ(Γ) and in ρ(G(Q)) ∩GL(n,Z).
(2) The condition (SA) is equivalent to the following condition (′SA).
(′SA) For every n ≥ 1 and every homomorphism ρ : G → GL(n), ρ(Γ) ∩ GL(n,Z) is

of finite index in ρ(Γ).

Lemma 1.5.9. Let f : G1 → G2 be a homomorphism of linear algebraic groups over Q,
let Γ1 be a subgroup of G1(Q) and let Γ2 be the image of Γ1 in G2(Q).

(1) If Γ1 is a semi-arithmetic subgroup of G1(Q), Γ2 is a semi-arithmetic subgroup of
G2(Q).

(2) If Γ1 is an arithmetic subgroup of G1(Q) and if f is surjective, Γ2 is an arithmetic
subgroup of G2(Q).

Remark 1.5.10. If Γ is a semi-arithmetic subgroup of G(Q), Γ is discrete in G(R).
(The converse is not valid: A subgroup of G(Q) which is discrete in G(R) need not
be semi-arithmetic. For example, let G = SL(2), and let Γ be the subgroup of G(Q)
consisting of diagonal matrices with diagonal entries (2n, 2−n) (n ∈ Z). Then Γ is discrete
in G(R) = SL(2,R) but Γ is not semi-arithmetic. Another example is G = Gm and
Γ = {2n |n ∈ Z}.)

Proposition 1.5.11. Let h0 : SC/R → Gred,R be as in 1.2.13. Assume that h0 is R-
polarizable (1.5.2). Let Γ be a semi-arithmetic subgroup of G′(Q) (1.5.7). Then the
following holds.

(1) The action of Γ on D is proper and the quotient space Γ \D is Hausdorff.
(2) If Γ is torsion-free, the action of Γ on D is free (that is, if γ ∈ Γ and if γp = p

for some p ∈ D, then γ = 1), and the projection D → Γ \D is a local homeomorphism.

This Proposition 1.5.11 follows from its stronger version Theorem 2.6.1. (We will not
use this 1.5.11 before we prove 2.6.1.)

Remark 1.5.12. Proposition 1.5.11 for a semi-arithmetic subgroup of G(Q) need not be
true as is shown in the following examples.
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Example 1. Let E be a number field (a finite extension of Q), and let G be the
algebraic group E× over Q (that is, G(R) = (E ⊗Q R)× for any commutative ring R
over Q). Then the unit group O×

E of OE is an arithmetic subgroup of G(Q). Take any
homomorphism h0 : SC/R → GR (for example, the trivial homomorphism). Then h0 is
R-polarizable and D consists of one point. The action of Γ := O×

E on the one-point set
D is proper if and only if Γ is finite. But O×

E need not be finite, e.g., for a real quadratic
extension field E over Q.

Example 2. Let E be a real quadratic field, and let G be the algebraic group

{(

a b
0 1

)
∣

∣

∣

∣

a ∈ E×, b ∈ E
}

over Q (that is, G(R) =

{(

a b
0 1

)
∣

∣

∣

∣

a ∈ (E ⊗Q R)×, b ∈ E ⊗Q R

}

for any commutative

ring R over Q). Then the group Γ :=

{(

a b
0 1

)
∣

∣

∣

∣

a ∈ O×
E , b ∈ OE

}

is an arithmetic

subgroup of G(Q). Let h0 : SC/R → Gred,R be the composite SC/R → Gm,R → E×
R =

Gred,R, where the first homomorphism is the norm inverse and the second is the natural
inclusion, that is, the one such that the induced map SC/R(R) = C× → (E ⊗ R)× =
Gred(R) sends z ∈ C× to |z|−2. Then h0 is R-polarizable (simply because (Gred)

′ is

trivial). Let H ∈ D be the element corresponding to the composition SC/R
h0→ E×

R ⊂ GR.
By Theorem 1.4.6, or by 1.4.8 applied to V = E2, we have D = Gu(C) = E ⊗Q C, where
g ∈ Gu(C) is identified with gH ∈ D. Via this identification, the action of Γ on D comes
from the adjoint action of G on Gu, and described as

(

a b
0 1

)

· (x⊗ w) = (ax+ b)⊗ w (a ∈ O×
E , b ∈ OE, x ∈ E, w ∈ C).

The subspace Γ \(E ⊗Q R) of the quotient Γ \D is not Hausdorff because it is homeo-
morphic to the quotient of the real torus OE \(E⊗QR) by the action of O×

E , and the last
action has a dense orbit ([29]). Hence, Γ \D is also not Hausdorff.

Proposition 1.5.13. Assume that the condition (1) of Lemma 1.5.3 is satisfied. Then
for a semi-arithmetic subgroup Γ of G(Q), Γ ∩G′(Q) is of finite index in Γ.

Proof. By Gu ⊂ G′ (1.2.10), we have G/G′ ∼→ Gred/G
′
red. Hence by replacing Γ by the

image of Γ in Gred(Q), we are reduced to the case G is reductive.
Assume that G is reductive. Let Γ0 = Γ ∩ Z(G)(Q) and Γ1 = Γ ∩ G′(Q). Since

Z(G) × G′ → G is an isogeny, the image of Γ0 × Γ1 → Γ is of finite index. Hence it is
sufficient to prove that Γ0 is finite. We prove this.

The image of Γ under t : G(Q) → Gm(Q) = Q× is contained in {±1}. Hence in the
faithful representation V of G in (1.2) in Lemma 1.5.3, for H ∈ D(G, h0), the action of
some subgroup of Γ0 of finite index preserves the Hodge filtration and the polarization
of H(grWw V ) and hence preserves the Hodge metric for every w. The elements of G(R)
which preserve these Hodge metrics for all w form a compact subgroup and Γ0 is discrete,
and hence Γ0 is finite.
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1.6 Relations with usual period domains and Mumford–Tate

domains

In this section, in 1.6.1–1.6.5, we explain that the classical Griffiths domains [17] and their
mixed Hodge generalization in [35] are essentially regarded as special cases of the period
domains in this paper. In this case, our partial compactifications essentially coincide
with those in [21] Part III. Next in 1.6.6, we explain that the Mumford–Tate domains
studied in [16] are regarded as important cases of our period domains for reductive G.
For Mumford–Tate domains, our toroidal partial compactifications essentially coincide
with those in [25].

1.6.1. Let Λ = (H0,Q,W, (〈·, ·〉w)w, (hp,q)p,q) be as in [21] Part III 2.1.1. That is, H0,Q is
a finite-dimensional Q-vector space, W is a finite increasing filtration on H0,Q, 〈·, ·〉w for
each w ∈ Z is a non-degenerate Q-bilinear form grWw × grWw → Q which is symmetric if
w is even and anti-symmetric if w is odd, hp,q are non-negative integers given for each
(p, q) ∈ Z2 such that

∑

p,q h
p,q = dimQH0,Q,

∑

p+q=w h
p,q = dimQ grWw for every w ∈ Z,

and hp,q = hq,p for all (p, q).
Let G be the subgroup of Aut(H0,Q,W ) × Gm consisting of all elements (g, t) such

that 〈gx, gy〉w = tw〈x, y〉w for all w and for all x, y ∈ grWw H0,Q.
Let D(Λ) be the period domain of [35]. As a set, it is the set of all decreasing filtrations

F on H0,C = C ⊗Q H0,Q such that dimC(gr
p
F (gr

W
w H0,C)) = hp,w−p for all w, p ∈ Z and

such that (grWw , F (gr
W
w ), 〈·, ·〉w) is a polarized Hodge structure for any w ∈ Z.

Let D±(Λ) be the set of all decreasing filtrations on H0,C such that dimC(gr
p
F (gr

W
w )) =

hp,w−p for all w, p ∈ Z and such that either (grWw , F (gr
W
w ), 〈·, ·〉w) is a polarized Hodge

structure for any w ∈ Z or (grWw , F (gr
W
w ), (−1)w〈·, ·〉w) is a polarized Hodge structure for

any w ∈ Z. Then D±(Λ) = D(Λ) if and only if grWw H0 = 0 for all odd w. If grWw 6= 0 for
some odd w, there is a (g, t) ∈ G(Q) such that t < 0 and that D±(Λ) = D(Λ)

∐

gD(Λ).

1.6.2. Assume that D(Λ) is not empty and fix an r ∈ D(Λ). Then the Hodge decomposi-
tion of r(grW ) induces a homomorphism h0 : SC/R → Gred,R. We have 〈h0(z)x, h0(z)y〉w =
|z|2w〈x, y〉w for z ∈ C× = SC/R(R) and x, y ∈ grWw . The condition (1) of Lemma 1.5.3 is
satisfied.

Proposition 1.6.3. We have an isomorphism

D
∼→ D±(Λ) ; H 7→ H(H0,Q),

where D = D(G, h0) is the period domain of the present paper.

Proof. This is seen by Lemma 1.4.8.

1.6.4. In the above situation, the extended period domains DBS, DSL(2), and Γ \DΣ in
this paper generalize those in [21] Part I–Part IV.

1.6.5. (Classical) Example. Take Λ in 1.6.1 as follows. H0,Q = Q2 = Qe1 + Qe2,
W1 = H0,Q, W0 = 0, 〈 , 〉1 is the anti-symmetric form characterized by 〈e2, e1〉1 = 1,
h1,0 = h0,1 = 1, and other hp,q are 0. Identify GL(2) with the subgroup G in 1.6.1 by
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g 7→ (g, det g). Let h0 : SC/R → GR be the homomorphism whose homomorphism of
R-valued points is C× → GL(2,R) ; z 7→ 〈z〉, where

〈z〉 =
(

a −b
b a

)

for z = a + bi (a, b ∈ R, (a, b) 6= (0, 0)).

Then we have unique isomorphisms

H± ≃ D := D(G, h0), P1(C) ≃ Ď,

which send i ∈ H ⊂ H± to h0 such that the former is GL(2,R)-equivariant and the latter
is GL(2,C)-equivariant. Here H± denotes the disjoint union of the upper half plain and

the lower half plain, which are interchanged by

(

0 1
1 0

)

.

In fact, consider the natural action of G = GL(2) on V = Q2. The eigenvalues of

h0(z) are z, z̄, and the eigenspace decomposition is VC = C

(

i
1

)

⊕C

(

−i
1

)

, which yields

the Hodge decomposition corresponding to i ∈ H.

1.6.6. Let H be a polarized Q-Hodge structure.
Let C be the Tannakian category of Q-Hodge structures generated by H and Q(1).

Let M be the Tannakian group of C. This means that C is identified with the Tannakian
category Rep(M). This M is reductive. Let h0 : SC/R → MR be the associated homo-
morphism. Then our period domain D(M,h0) coincides with the Mumford–Tate domain
in [16] associated to H .

Take Λ = (H0,Q,W, (〈·, ·〉w)w, (hp,q)p,q) in 1.6.1 as follows. H0,Q is the Q-structure HQ

of H . W is the weight filtration on HQ (that is, if w0 denotes the weight of HQ, Ww = HQ

if w ≥ w0 and Ww = 0 if w < w0). 〈·, ·〉w0 is the polarization of H (times (2πi)w0). hp,q

is the dimension of the (p, q)-Hodge component of H . Let L be the algebraic group G in
1.6.1. Then M is identified with the smallest algebraic closed subgroup M of L defined
over Q such that MR contains the image of the homomorphism SC/R → LR associated
to H . The Mumford–Tate domain D(M,h0) is identified with the M(R)-orbit in D(Λ)
containing the class of H .

This h0 satisfies the condition (1) in Lemma 1.5.3.
The period domain D(M/Z, h̄0), where Z is the center of M and h̄0 denotes the

composition SC/R
h0→ MR → (M/Z)R, for the semisimple algebraic group M/Z is also

considered as a Mumford–Tate domain, for example, as in [25]. The period domain
D(M,h0) is identified with an open and closed subspace of the period domain D(M/Z, h̄0)
(Proposition 4.10.12).

2 The space of Borel–Serre orbits

We define and study the space DBS ⊃ D of Borel–Serre orbits. This is the G-MHS
version of the space D(Λ)BS ⊃ D(Λ) for the classical period domain D(Λ) (1.6) defined
and studied in [23] (in the pure case) [21] Part I (in the mixed case).
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For an algebraic group G, G◦ denotes the connected component of G as an algebraic
group which contains 1 ∈ G. A parabolic subgroup P of G is a closed algebraic subgroup
P ⊂ G◦ such that G/P is a projective variety (see e.g. [3] IV (11.2)).

The organization of this Section 2 is as follows. After preliminaries in Sections 2.1
and 2.2 and a review of Borel–Serre space XBS in Section 2.3, we define our space DBS as
a set in Section 2.4, which we endow with a real analytic structure (precisely speaking,
a structure of a real analytic manifold with corners) in Section 2.5. In Section 2.6, we
prove the nice properties of DBS (e.g. Hausdorffness of the quotient by a semi-arithmetic
subgroup of G′(Q)).

2.1 Real analytic manifolds with corners

As will be explained in Section 2.5, our space DBS is a real analytic manifold with corners.
In this Section 2.1, we review this notion real analytic manifold with corners ([7]

Appendix by A. Douady and L. Herault) and consider spherical compactifications as
examples of real analytic manifolds with corners.

2.1.1. Let m,n ≥ 0 and consider the topological space S = Rm ×Rn
≥0 which is endowed

with the inverse image OS of the sheaf of (R-valued) real analytic functions on Rm+n.
That is, OS is the sheaf of functions which are locally extendable to real analytic functions
on an open subset of Rm ×Rn.

A real analytic manifold with corners is a locally ringed space over R which has an
open covering whose each member is isomorphic to an open set of the above S = Rm×Rn

≥0

with the restriction of OS for some m,n ≥ 0.

2.1.2. Consider a finite-dimensional graded real vector space V =
⊕

w≤−1 Vw. In the

rest of this Section 2.1, we review the compactification V of V defined as a real analytic
manifold with corners in [21] Part I Section 7. We call it the spherical compactification of
V because as a topological space, it coincides with the spherical compactification of V in
[1] Definition 2.1. We will use this V in Section 2.4.

As in [24] and [21], the property compact includes Hausdorff in our terminology.

2.1.3. Consider the action of the multiplicative group R>0 on V given by t ◦ (∑w vw) :=
∑

w t
wvw (t ∈ R>0, vw ∈ Vw).

Let
V := V ×R>0 R≥0 r {(0, 0)},

which we endow with the natural topology.
Recall that for a group H , for a set X on which H acts from the right, and for a set Y

on which H acts from the left, X ×H Y denotes the quotient of X ×Y by the equivalence
relation (xh, y) ∼ (x, hy) (x ∈ X , y ∈ Y , h ∈ H). When we use the notation X ×H Y
in this paper, H is a commutative group (as above) and hence right or left in the action
doesn’t matter.

Embed V into V by v 7→ class(v, 1) (v ∈ V ). We have V r V = {class(v, 0) | v ∈
V r {0}}, and for v ∈ V r {0}, when t ∈ R>0 converges to 0, t ◦ v = class(tv, 1) =
class(v, t) converges to class(v, 0). This space V is covered by the two open sets, V and
the complement V r {0} of 0 ∈ V ⊂ V .
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2.1.4. We regard V as a real analytic manifold with corners as follows.

There is a real analytic map f : V r {0} → R>0 such that

(1) f(t ◦ v) = tf(v) for any t ∈ R>0 and v ∈ V r {0}.
For example, taking a base (ew,j)j of Vw for each w and taking an integer m < 0

satisfying m/w ∈ 2Z for any w such that Vw 6= 0, let f(
∑

w,j xw,jew,j) := (
∑

w,j x
m/w
w,j )1/m.

Then, this f satisfies the condition (1).

Let f : V r {0} → R>0 be a real analytic map satisfying (1). Let V (1) = f−1(1).
Then V (1) ×R>0

∼→ V r {0} ; (v, t) 7→ t ◦ v. The inverse map is v 7→ (f(v)−1 ◦ v, f(v)).
We have a canonical homeomorphism V (1) ×R≥0 → V r {0}. We endow V r {0} with
the structure of a real analytic manifold with corners via this homeomorphism. This
structure is independent of the choice of f . This is because if f ′ : V r{0} → R>0 is also a
real analytic map satisfying (1) and if V (1)′ := (f ′)−1(1), the isomorphism V (1) ×R≥0

∼→
V (1)′ × R≥0 ; (v, t) 7→ (f ′(v)−1 ◦ v, tf ′(v)) of real analytic manifolds with corners is
compatible with the homeomorphisms to V̄ r {0}.

Furthermore, the restriction of this structure to V r {0} coincides with the natural
structure of it as a real analytic manifold. Hence there is a unique structure on V of a
real analytic manifold with corners whose restriction to V r {0} is the structure which
we just defined and whose restriction to V is the natural structure of V as a real analytic
manifold.

2.1.5. The map V (1) ×R≥0 → V r {0} in 2.1.4 extends to a surjective continuous map
V (1) × [0,∞]→ V which sends all points (v,∞) (v ∈ V (1)) to 0 ∈ V . Via this map, V is
homeomorphic to the quotient of the compact space V (1)× [0,∞] obtained by identifying
all (v,∞) (v ∈ V (1)). Hence V is compact.

2.2 Borel–Serre liftings

2.2.1. Borel–Serre lifting. Let G be a semisimple algebraic group over R. Let P be a
parabolic subgroup of G, and let SP be the largest R-split torus in Pred = P/Pu, where
Pu is the unipotent radical of P. Let K be a maximal compact subgroup of G(R).

Then we have a unique homomorphism SP → P ; a 7→ aK which lifts the inclusion
map SP →֒ Pred and which satisfies θK(aK) = a−1

K for any a ∈ SP(R), where θK is the
Cartan involution of G(R) associated to K ([7] Proposition 1.6).

We call this aK the Borel–Serre lifting of a ∈ SP at K.

Remark 2.2.2. We remark that the Borel–Serre lifting is understood as the splitting of
a filtration by taking the orthogonal complements.

By [28] (see also [4] Section 1), there is a finite-dimensional faithful representation V
of G and a positive definite symmetric R-bilinear form (·, ·) : V × V → R which is fixed
by K such that G is stable under the transpose g 7→ tg for (·, ·). Furthermore, there are
R-subspaces of V such that 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vm = V which are stable under P
satisfying (g − 1)Vj ⊂ Vj−1 for all g ∈ Pu and 1 ≤ j ≤ m. For example, we can take
Vj = {v ∈ V | (g1 − 1) · · · (gj − 1)v = 0 for all g1, . . . , gj ∈ Pu } (then Vj are P-stable and
Vm = V for some m).
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We have a commutative diagram

SP(R) ⊂ Pred →
∏m

j=1AutR(Vj/Vj−1)

↓ ↓
P(R)

⊂−→ AutR(V ),

where the left vertical arrow is the Borel–Serre lifting at K and the right vertical arrow is
given by the orthogonal decomposition of the filtration (Vj)j . That is, we have a unique
decomposition V =

⊕m
j=1 V[j] such that Vj =

⊕

k≤j V[k] for all j and such that V[j] and V[k]
are orthogonal for (·, ·) if j 6= k. The right vertical arrow is given by Vj/Vj−1 ≃ V[j].

We prove that the above diagram is commutative, that is, aK for a ∈ SP(R) preserves
V[j]. Note that the Cartan involution of G(R) associated to K is given by θK(g) = (tg)−1

for g ∈ G(R). Hence t(aK) = θK(aK)
−1 = aK . Since V[j] = (

⊕

k≥j V[k]) ∩ Vj and aK
preserves Vj , it is sufficient to prove that aK preserves

⊕

k≥j V[k]. Note that
⊕

k≥j V[k] is
the annihilator of Vj−1 for (·, ·). For x ∈

⊕

k≥j V[k] and y ∈ Vj−1, we have (aKx, y) =
(x, t(aK)y) = (x, aKy) = 0. Hence aKx ∈

⊕

k≥j V[k].

2.3 Review of Borel–Serre theory

Let G be a semisimple algebraic group over Q. Let X be the associated symmetric space
as in 1.5.5.

In this Section 2.3, we review how the Borel–Serre space XBS ⊃ X is constructed in
the paper of Borel–Serre [7].

2.3.1. Let P be a parabolic subgroup of G. Let SP be the largest Q-split torus in the
center of Pred := P/Pu. Let X(SP ) be the character group of SP . Let X(SP )

+ be the
submonoid of X(SP ) generated by roots. Here a root means an element χ ∈ X(SP ) such
that for some (equivalently, for any) lifting s : SP → P of the embedding SP →֒ Pred,
there is a non-zero element v of Lie (Pu) such that Ad(s(t))v = χ(t)−1v for t ∈ SP . Then
X(SP )

+ is a free monoid, that is, X(SP )
+ ≃ Nn for some n ≥ 0. The basis ∆(P ) of the

monoid X(SP )
+ is called the set of fundamental roots (or, of simple roots).

Let

AP := Hom (X(SP )
+,Rmult

>0 ) = R
∆(P )
>0 ⊂ ĀP := Hom (X(SP )

+,Rmult
≥0 ) = R

∆(P )
≥0 .

Since X(SP )
+ generates a subgroup of X(SP ) of finite index, the identification SP (R) =

Hom (X(SP ),R
×) induces an isomorphism SP (R)◦

∼→ AP , where SP (R)◦ denotes the
connected component of the topological group SP (R) containing 1.

2.3.2. Borel–Serre action (geodesic action, in the terminology of [7] 3.3). Let P be as in
2.3.1. We have the action ◦ of the group AP on X, which we call the Borel–Serre action,
defined as follows. For K ∈ X and a ∈ AP , let aK ∈ P (R) be the Borel–Serre lifting of a
at K obtained by applying 2.2.1 to G = GR, P = PR and SP ⊃ SP,R. Define

a ◦K = aKKa
−1
K .

2.3.3. As a set, the Borel–Serre space XBS is defined by XBS := {(P, Z)}, where P runs
over parabolic subgroups of G and Z is an AP -orbit for the Borel–Serre action.
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2.3.4. For a parabolic subgroup P of G, let

XBS(P ) := {(Q,Z) ∈ XBS |Q ⊃ P}.

Then we have a bijection

XBS(P ) ≃ X×AP ĀP , (Q,Z)↔ (K, a),

defined as follows.
Let Q be a parabolic subgroup of G such that Q ⊃ P . Then, ∆(Q) is regarded as a

subset of ∆(P ), AQ is regarded as a subgroup of AP , and Q 7→ ∆(Q) is a bijection from
the set of all parabolic subgroups of G such that Q ⊃ P to the set of all subsets of ∆(P ).

For (Q,Z) ∈ XBS(P ), K is any element of Z and a ∈ ĀP is defined by a(χ) = 0 if
χ ∈ ∆(Q) and a(χ) = 1 if χ /∈ ∆(Q). For (K, a) ∈ X × ĀP , Q is the parabolic subgroup
of G containing P such that ∆(Q) = {χ ∈ ∆(P ) | a(χ) = 0} and Z := {a′ ◦ K | a′ ∈
AP , χ(a

′) = a(χ) for any χ ∈ ∆(P ) − ∆(Q)}. Note that, when Q ⊃ P , at a common
K, the Borel–Serre action of AQ for Q coincides with its action for P regarding AQ as a
subgroup of AP .

2.3.5. The set XBS has a structure of a real analytic manifold with corners defined as
follows.

For a parabolic subgroup P of G, there exists a real analytic map f : X → AP
satisfying

(1) f(a ◦K) = af(K) for all a ∈ AP and all K ∈ X.

We sketch the proof of this assertion. Let ◦P :=
⋂

χKer (χ2 : P → Gm), where χ runs
over all homomorphisms P → R× of algebraic groups over Q. Then, Pu⊂ ◦P and the
composition AP → P (R)/Pu(R)→ P (R)/◦P (R) is an isomorphism by [7] 1.2, which we
use by taking Pred as G there. Let π : P (R) → P (R)/◦P (R) ≃ AP . Fix K ∈ X. Since
G(R) = P (R)K (see [2] §11) and since π kills the compact subgroup P (R) ∩ K, there
exists a unique map G(R) → AP sending pk to π(p) (p ∈ P (R), k ∈ K), which factors
through f : X ≃ G(R)/K → AP . Since the action of a ∈ AP on G(R) is a ◦ pk = paKk,
f satisfies the property f(a ◦K) = af(K).

The set XBS(P ) is regarded as a real analytic manifold with corners as follows.
Let X(1) := f−1(1). Then we have

(2) X(1) ×AP ∼→ X ; (K, a) 7→ a ◦K, an isomorphism of real analytic manifolds,

(3) X(1) × ĀP → X×AP ĀP = XBS(P ), a bijection of sets.

We regard XBS(P ) as a real analytic manifold with corners via the bijection (3). This
structure of XBS(P ) does not depend on the choice of f because if f ′ : X → AP satisfies
the same condition as f and if Y := X(1) = f−1(1) and Y ′ := (f ′)−1(1), the map (3)
and the map Y ′ × ĀP → XBS(P ) are compatible with the isomorphism Y × ĀP

∼→
Y ′ × ĀP ; (K, a) 7→ (f ′(K)−1 ◦K, f ′(K)a) whose inverse is (K, a) 7→ (f(K)−1K, f(K)a).

XBS has a unique structure of a real analytic manifold with corners such that for any
parabolic subgroup P of G, XBS(P ) is open in XBS and the structure of XBS(P ) as a real
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analytic manifold with corners defined above coincides with the restriction of that of XBS.
This follows from the following (4) and (5).

(4) Let Q be a parabolic subgroup of G such that Q ⊃ P . Then XBS(Q) is an open
subset of XBS(P ) and the structure of XBS(Q) as a real analytic manifold with corners
coincide with the restriction of that of XBS(P ).

(4) is shown as follows. Let f : X→ AP be a real analytic map satisfying (1) and let
Y = f−1(1). Let p be the projection AP → AQ. Then f ′ := h ◦ f : X → AQ satisfies
the condition on f with Q replacing P . Let Y ′ = (f ′)−1(1). Let T be the kernel of
p. Then the map (3) and the map Y ′ × ĀQ → XBS(Q) are compatible with the open

immersion Y ′× ĀQ ≃ Y × T ×AQ ⊂→ Y × ĀP , where the first isomorphism is induced by
Y ×T ∼→ Y ′ ; (K, a) 7→ a◦K and the second map is induced by T×ĀQ → ĀP ; (t, a) 7→ ta.

(5) For parabolic subgroups P and Q of G, XBS(P ) ∩ XBS(Q) = XBS(P ∗ Q). Here
P ∗Q is the algebraic subgroup of G generated by P and Q, which is a parabolic subgroup
of G.

2.3.6. We will often use the following basic things about proper actions. Let H be a
Hausdorff topological group.

(1) If H acts properly on a topological space X , the quotient space H \X is Hausdorff.
(2) If H is discrete and if H acts properly on a Hausdorff space X , and if this action

is free (that is, hx = x with h ∈ H and x ∈ X implies h = 1), the projection X → H \X
is a local homeomorphism.

(3) Assume that H acts on topological spaces X and Y , and let f : X → Y be an
equivariant continuous map.

(3.1) If H acts properly on Y and if X is Hausdorff, then H acts properly on X .
(3.2) If H acts on X properly and if the map f is proper and surjective, then H acts

properly on Y .
Here in (3.2) and throughout this paper, as in [24] and [21], for a continuous map

f : X → Y of topological spaces, f is proper means that it satisfies the following (a) and
(b). (a) For any topological space Z, the induced map X ×Y Z → Z is a closed map. (b)
The map X → X ×Y X is a closed map.

(4) Let H1 be a closed normal subgroup of H and let H2 := H/H1. Assume that
H (resp. H2) acts on a topological space X1 (resp. X2) continuously. Assume that for
j = 1, 2, the action of Hj on Xj is proper and free. Assume that there are a neighborhood
U of 1 in H2 and a continuous map U → H which lifts the inclusion map U → H2. Then
the diagonal action of H on X1 ×X2 is proper and free.

(5) Let H1 be a closed subgroup of H of finite index. Assume that H acts on a
topological space X continuously. If the action of H1 on X is proper, then the action of
H on X is proper.

For proofs of (1), (2), (3), see [9] Ch.3 §4 no.2 Proposition 3, ibid. Ch.3 §4 no.4
Corollary, ibid. Ch.3 §4 no.2 Proposition 5, respectively. The proof of (4) is given in [21]
Part III Definition 4.2.4. (5) is proved in an elementary manner.

2.3.7. Let Γ be a semi-arithmetic subgroup of G(Q)(1.5.7). Then:
(1) The action of Γ on XBS is proper, and the quotient space Γ \XBS is Hausdorff.
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(2) If Γ is torsion-free, the action of Γ on XBS is free, and the map XBS → Γ \XBS is
a local homeomorphism.

(3) If Γ is an arithmetic subgroup of G(Q), Γ \XBS is compact.

These are given in [7] 9.3 Theorem and 9.5 for arithmetic subgroups Γ of G(Q). Since
a semi-arithmetic subgroup of G(Q) is a subgroup of an arithmetic subgroup of G(Q),
the properness in (1) is reduced to the case of an arithmetic subgroup. The Hausdorffness
in (1) follows from the properness in (1) (2.3.6 (1)). We prove (2). We may assume
that Γ has a subgroup Γ1 of finite index which is a subgroup of a torsion-free arithmetic
subgroup. Assume that γ ∈ Γ fixes some point of XBS. Take n ≥ 1 such that γn ∈ Γ1.
By the result for an arithmetic subgroup, we have γn = 1. Since Γ is torsion-free, we
have γ = 1. The rest of (2) follows from the properness in (1) and from this free property
(2.3.6 (2)).

2.4 The set DBS

Let G be a linear algebraic group over Q and let h0 : SC/R → Gred,R be a homomorphism
as in 1.2.13 which is R-polarizable.

2.4.1. Let G′
red = [Gred, Gred] be the commutator subgroup of Gred = G/Gu. This is a

semisimple algebraic group.
We have bijections between the sets

(parabolic subgroups of G)↔ (parabolic subgroups of Gred)↔ (parabolic subgroups of G′
red)

given as follows. The bijection from the second set to the first set is to take the inverse
image in G. The bijection from the second set to the third set is to take the intersection
with G′

red.

2.4.2. Let P be a parabolic subgroup of Gred.
Let P ′ := P ∩G′

red. Then P
′ is a parabolic subgroup of G′

red. We will denote AP ′ by
AP . This AP is also described as follows.

Let SP be the largest Q-split torus in the center of Pred. Let X(SP )
+ be the submonoid

of the character group X(SP ) generated by the inverses of characters which appear in
the adjoint action on Lie (Pu) of a lifting of SP in P (see 2.3.1). Then the canonical
map X(SP ) → X(SP ′) induces an isomorphism X(SP )

+ ∼→ X(SP ′)+ and a bijection
∆(P )→ ∆(P ′) between the bases. Hence we can write

AP = Hom (X(SP )
+,Rmult

>0 ) = R
∆(P )
>0 ⊂ ĀP = Hom (X(SP )

+,Rmult
≥0 ) = R

∆(P )
≥0 .

2.4.3. We define the Borel–Serre action of AP on D as follows. Let a ∈ AP and x ∈ D.
Let (p, s, δ) ∈ Dred × spl(W ) × L, with δ ∈ L(p), be the element corresponding to x
(Proposition 1.3.6). Let K(p) ∈ X be the image of p under Dred → X (1.5.6). We have
the Borel–Serre lifting AP → P ′(R) ; a 7→ aK(p) associated to K(p). Then a◦x is defined
to be the element of D whose image in Dred × spl(W )×L is (aK(p)p, s,Ad(aK(p))δ).

2.4.4. Let BP = R>0 × AP . Then we define the action of BP on Dnspl (see 1.3.9) as
follows. Let b = (t, a) ∈ R>0×AP . Then, for x ∈ Dnspl, b◦x := a◦ (t◦x), where t◦x ∈ D
corresponds to the element (p, s, t ◦ δ) of Dred × spl(W ) × L (see 2.1.3). Here (p, s, t) is
the element corresponding to x by Proposition 1.3.6.

26



Classifying spaces of degenerating mixed Hodge structures, V

2.4.5. Let DBS be the set of all pairs (P, Z), where P is a parabolic subgroup of Gred and
Z is either an AP -orbit in D or a BP -orbit in Dnspl for the Borel–Serre action.

We denote by Dmild
BS the part of DBS consisting of AP -orbits and by Dnspl,BS the subset

of DBS consisting of all elements of the form (P, Z) such that Z ⊂ Dnspl. (Dmild
BS and

Dnspl,BS correspond to D
(A)
BS and D

(B)
BS in the notation of [21] Part I 8.1, respectively.)

2.5 The real analytic structure of DBS

We are in the same setting as in 2.4. We endow DBS with a structure of a real analytic
manifold with corners.

Lemma 2.5.1. Let P be a parabolic subgroup of G. Then there is a real analytic map
f : D → AP such that f(a ◦ x) = af(x) for any a ∈ AP and x ∈ D.

Proof. Take a real analytic map fX : X → AP such that fX(a ◦ K) = afX(K) for any

a ∈ AP and K ∈ X (2.3.5), and define f to be the composite map D → Dred → X
fX→ AP ,

where the second arrow is as in 1.5.6.

Lemma 2.5.2. Let P be a parabolic subgroup of G. Then there is a real analytic map
f : Dnspl → BP such that f(b ◦ x) = bf(x) for any b ∈ BP and x ∈ Dnspl.

Proof. By Lemma 2.5.1, there is a real analytic map fD : Dred → AP such that fD(a◦p) =
afD(p) for any a ∈ AP and any p ∈ Dred.

Let L = W−2gr
WLie (G)R be as in 1.3.4. It is a graded R-vector space with weights

≤ −2. By 2.1.4, there is a real analytic map fL : Lr{0} → R>0 such that fL(t◦δ) = tfL(δ)
for any t ∈ R>0 and δ ∈ Lr {0}. Define f : Dnspl ⊂ Dred × spl(W )× (Lr {0})→ BP =
AP × R>0 by f(p, s, δ) = (fD(p), fL(Ad(fD(p)p)

−1δ)) (p ∈ Dred, s ∈ spl(W ), δ ∈ L(p)),
where fD(p)p is the Borel–Serre lifting of fD(p) ∈ AP at p. This f satisfies f(b ◦ x) =
bf(x).

2.5.3. Let P be a parabolic subgroup of G. Let DBS(P ) := {(Q,Z) ∈ DBS |Q ⊃ P}.
Let Dmild

BS (P ) := DBS(P ) ∩Dmild
BS and Dnspl,BS(P ) := DBS(P ) ∩ Dnspl,BS. Then, in the

same way as in the case of XBS(P ), we have

Dmild
BS (P ) = D ×AP ĀP , Dnspl,BS(P ) = D ×BP B̄P .

We endow DBS(P ) with the structure of a real analytic manifold in the following way.
First, the set U1 := Dmild

BS (P ) is regarded as a real analytic manifold with corners as
follows. By Lemma 2.5.1, there is a real analytic map fA : D → AP satisfying

(1) fA(a ◦ x) = afA(x) for all a ∈ AP and all x ∈ D.

Let D
(1)
A = f−1

A (1). Then

(2) D
(1)
A ×AP

∼→ D ; (x, a) 7→ a ◦ x.
This map (2) induces a bijection

(3) D
(1)
A × ĀP → D ×AP ĀP = Dmild

BS (P ).
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We regard U1 = Dmild
BS (P ) as a real analytic manifold with corners via the bijection (3).

This structure of Dmild
BS (P ) does not depend on the choice of fA.

Next, the set U2 := Dnspl,BS(P ) is regarded as a real analytic manifold with corners as
follows. By Lemma 2.5.2, there is a real analytic map fB : Dnspl → BP satisfying

(4) fB(b ◦ x) = bfB(x) for all b ∈ BP and all x ∈ Dnspl.

Let D
(1)
B = f−1

B (1). Then

(5) D
(1)
B ×BP

∼→ Dnspl ; (x, b) 7→ b ◦ x.
This map (5) induces a bijection

(6) D
(1)
B × B̄P → D ×BP B̄P = Dnspl,BS(P ).

We regard U2 := Dnspl,BS(P ) as a real analytic manifold with corners via the bijection (6).
This structure of Dnspl,BS(P ) does not depend on the choice of fB.

It is easy to prove that for j = 1, 2 and for the structure of a real analytic manifold
with corners on Uj , the intersection U1 ∩ U2 is an open set of Uj and that the restriction
of the structure of the real analytic manifold with corners of U1 to U1 ∩U2 coincides with
that of U2. Hence there is a unique structure of a real analytic manifold with corners on
U1∪U2 = DBS(P ) for which U1 and U2 are open sets and whose restriction to Uj coincides
with that of Uj for j = 1, 2.

Proposition 2.5.4. The set DBS has a unique structure of a real analytic manifold with
corners for which DBS(P ) is an open set and whose restriction to DBS(P ) coincides with
that of DBS(P ) defined in 2.5.3 for any parabolic subgroup P of G.

Proof. It is easy to see that for parabolic subgroups P and Q of G such that Q ⊃ P ,
DBS(Q) is an open set of DBS(P ) and the restriction of the structure of DBS(P ) as a real
analytic manifold with corners to DBS(Q) coincides with that of DBS(Q). Furthermore,
DBS(P ) ∩DBS(Q) = DBS(P ∗Q). This proves Proposition 2.5.4.

Remark 2.5.5. When G is semisimple, the Borel–Serre partial compactification G(R)BS

in [6] Proposition 6.3 coincides with our D(G, h0)BS in Proposition 2.5.4 as real analytic
manifolds with corners.

2.5.6. We have a morphism
DBS → XBS

of real analytic manifolds with corners induced by Dred,BS → XBS ; (P, Z) 7→ (P, Z ′),
where Z ′ is the image of Z ⊂ Dred under Dred → X (1.5.6).

Proposition 2.5.7. If G is reductive, the map DBS → XBS is proper.

Proof. Since G is reductive, we have DBS(P ) = Dmild
BS (P ). Hence it is sufficient to prove

that DBS(P ) → XBS(P ) is proper. Since DBS(P ) = D
(1)
A × ĀP (2.5.3 (3)) and XBS(P ) =

X(1) × ĀP (2.3.5 (3)), the properness of DBS(P ) → XBS(P ) is reduced to that of D
(1)
A →

X(1). The latter is reduced to the properness of D → X by 2.5.3 (2) and 2.3.5 (2). Take
a point p ∈ D, let K ′ be the isotropic subgroup of G(R) at p, and let K be the isotropic
subgroup of G(R) at the image of p in X . Then K is a maximal compact subgroup of
G(R) and K ′⊂K is a compact subgroup. Hence D = G(R)/K ′ → X = G(R)/K is
proper.
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2.5.8. Let P be a parabolic subgroup of G. Fix f : Dred → AP , which is induced from
Lemma 2.5.1, let Y = f−1(1) ⊂ Dred and let bf be the compositionDred,BS(P ) = Y ×ĀP →
Y ⊂ Dred (see 2.4.1). Consider the isomorphism of real analytic manifolds

D
∼→ {(p, s, δ) ∈ Dred × spl(W )× L | δ ∈ L(bf (p))} ; x 7→ (p, splW (x),Ad(f(p)p)

−1δ(x)),

where p = xred and f(p)p is the Borel–Serre lifting of f(p) to P at p.

Proposition 2.5.9. This isomorphism extends uniquely to an isomorphism of real ana-
lytic manifolds with corners

DBS(P )
∼→ {(p, s, δ) ∈ Dred,BS(P )× spl(W )× L | δ ∈ L(bf (p))}.

This map sends x = (Q,Z) to (p, s, δ) defined as follows. p = (Q,Zred). s = splW (y)
for any y ∈ Z, which is independent of the choice of y. δ = Ad(f(z)z)

−1(δ(y)), where
y ∈ Z and z = yred, which is independent of the choice of y.

By this map, the image of x ∈ DBS(P ) in L belongs to L if and only if x is an AP -orbit.

Proposition 2.5.10. The map DBS → Dred,BS × spl(W ) is proper. It is an L̄-bundle.
Note that L̄ here is L(p) for any p.

We hope that our notation Dred,BS is not confusing with the reductive Borel–Serre
space in [37].

2.6 Global properties of DBS

We are still in the setting in Section 2.4.

Theorem 2.6.1. Let Γ be a semi-arithmetic subgroup of G′(Q) (1.5.7).
(1) The action of Γ on DBS is proper and the quotient space Γ \DBS is Hausdorff.
(2) If Γ is torsion-free, the action of Γ on DBS is free and the map DBS → Γ \DBS is

a local homeomorphism.
(3) If Γ is an arithmetic subgroup of G′(Q), Γ \DBS is compact.

2.6.2. We first prove that DBS is Hausdorff, that is, the case Γ = {1} of 2.6.1 (1).
The map DBS → X × spl(W ) is proper by Propositions 2.5.7 and 2.5.10. Since X is

Hausdorff (2.3.7) as well as spl(W ) which is isomorphic to Gu(R), we have that DBS is
Hausdorff.

2.6.3. We say that a subgroup Γ of G(Q) is neat if it satisfies the following condition (1).
(1) There is a faithful representation V ∈ Rep(G) such that for every element γ ∈ Γ,

the subgroup ofC× generated by all the eigenvalues of the action of γ on VC is torsion-free.
By 1.4.7, the condition (1) is equivalent to the following condition (1′).
(1′) For every γ ∈ Γ, every n ≥ 1, and every homomorphism ρ : G → GL(n), the

subgroup of C× generated by all the eigenvalues of ρ(γ) is torsion-free.
A neat subgroup of G(Q) is torsion-free.
Every semi-arithmetic subgroup Γ (1.5.7) has a neat subgroup of finite index ([2] 17.4).
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2.6.4. We prove Theorem 2.6.1. Let Γ be a semi-arithmetic subgroup of G′(Q) (1.5.7).
The proof is similar to that of [21] Part I Theorem 9.1.
By 2.3.6 (5), the properness in (1) is reduced to the case where Γ is neat. We prove

the properness in (1) and the free property in (2) assuming Γ is neat. We apply 2.3.6 (4)
to H = Γ, H1 = Γu := Γ ∩ Gu(Q), X1 = spl(W ), X2 = X. The action of Γ/Γu on X is
proper and free by (1) and (2) of 2.3.7, and the action of Γu on spl(W ) is proper and free
because spl(W ) ≃ Gu(R) on which Γu acts through the inclusion Γu → Gu(R). Hence
the action of Γ on spl(W ) × X is proper and free. By using the canonical continuous
equivariant map DBS → spl(W )× X, we have that the action of Γ on DBS is proper and
free by 2.6.2 and 2.3.6 (3.1).

The Hausdorffness in (1) follows from the properness in (1) (2.3.6 (1)) and the local
homeomorphism property in (2) follows from it and from the properness in (1) (2.3.6 (2)).

(3) follows from the compactness of (Γ/Γu) \XBS, where Γu = Γ ∩ Gu(Q), the com-
pactness of Γu \Gu(R), and Proposition 2.5.10.

In Theorem 2.6.1, we can use an arithmetic subgroup and a semi-arithmetic subgroup
of G(Q) (not of G′(Q)) in the following situations in Remark 2.6.5 and Proposition 2.6.6.

Remark 2.6.5. If either G is semisimple or the condition (1) in Lemma 1.5.3 is satisfied,
2.6.1 holds for a semi-arithmetic subgroup Γ of G(Q). In fact, Γ∩G′(Q) is of finite index
(cf. Proposition 1.5.13 for the latter case). Hence by 2.3.6 (5), we can replace Γ by the
semi-arithmetic subgroup Γ ∩G′(Q) of G′(Q).

Proposition 2.6.6. Assume that G is reductive. Let Γ be a subgroup of G(Q). Then:
(1) If Γ is a semi-arithmetic subgroup of G(Q), Γ \DBS is Hausdorff.
(2) Let Z be the center of G. If Γ is a semi-arithmetic subgroup of G(Q) and the image

of Γ in (G/Z)(Q) is torsion-free, then the map DBS → Γ \DBS is a local homeomorphism.
(3) If Γ is an arithmetic subgroup of G(Q), Γ \DBS is compact.

See 4.10.18 for the proof.

3 The space of SL(2)-orbits

Let G be a linear algebraic group defined over Q. We define and study the extended
period domains DSL(2) and D⋆

SL(2) of SL(2)-orbits which contain D. This DSL(2) (resp.

D⋆
SL(2)) is the G-MHS version of the space D(Λ)SL(2) (resp. D(Λ)⋆SL(2)) for the classical

period domain D(Λ) (1.6) defined and studied in [23] (in the pure case) and [21] Part II
(in the mixed case) (resp. in [21] Part IV).

Assume that we are given an element h0 : SC/R → Gred,R of ΨH(G) (1.2.7). We assume
the R-polarizability (1.5.2). We denote by k0 ∈ ΨW (G) the homomorphism Gm → Gred

(defined over Q) which induces h0 ◦ w : Gm,R → Gred,R.

3.1 The set DSL(2) when G is reductive

In this Section 3.1, we assume that G is reductive.
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3.1.1. Let n ≥ 0. By an SL(2)-orbit in n variables, we mean a pair (ρ, ϕ)

ρ : SL(2)nR → GR, ϕ : P1(C)n → Ď,

where ρ is a homomorphism of algebraic groups over R and ϕ is a holomorphic map
satisfying the following conditions (i)–(iii).

(i) ϕ(gz) = ρ(g)ϕ(z) (g ∈ SL2(C)n, z ∈ P1(C)n).
(ii) ϕ(Hn)⊂D.
(iii) For z ∈ Hn, the homomorphism Lie (ρ) : sl(2,R)n → Lie (GR) = Lie (G)R of Lie

algebras induced by ρ is a homomorphism of R-Hodge structures if we endow sl(2,Q)n

with the Q-Hodge structure of weight 0 associated to z (see below) and endow Lie (G)
with the Q-Hodge structure of weight 0 associated to ϕ(z) ∈ D and the adjoint action of
G on Lie (G).

Here the Q-Hodge structure of sl(2,Q)n associated to z = (zj)1≤j≤n is the direct
sum of the Q-Hodge structure of the j-th sl(2,Q) induced by the Q-Hodge structure of
VC = C2 corresponding to zj (e.g. [24] 1.2.3) and the adjoint action of GL(2)Q on sl(2,Q).

3.1.2. (Classical) Example. Assume G = GL(2) and let h0 be the homomorphism z 7→ 〈z〉
in 1.6.5. Let ρ : SL(2)R → GR be the inclusion map and let ϕ : P1(C)→ Ď be the identity
map in 1.6.5. Then (ρ, ϕ) is an SL(2)-orbit in one variable.

Lemma 3.1.3. Let n ≥ 0. Then the following sets (i), (ii), (iii), (iii)′, and (iv) can be
identified.

(i) The set of all SL(2)-orbits (ρ, ϕ) in n variables.
(ii) The set of all pairs (ρ, ϕ), where ρ is a homomorphism SL(2)nR → GR of algebraic

groups over R and ϕ is a holomorphic map Hn → D satisfying the condition (i) in 3.1.1
for g ∈ SL2(R)n and z ∈ Hn and satisfying the condition (iii) in 3.1.1.

(iii) The set of all pairs (ρ, r), where ρ is a homomorphism SL(2)nR → GR of algebraic
groups over R and r ∈ D satisfying the following condition.

The homomorphism Lie (ρ) : sl(2,R)n → Lie (GR) is a homomorphism of R-Hodge
structures with respect to the Hodge structure of sl(2,R)n associated to i and the Hodge
structure of Lie (GR) associated to r.

(iii)′ The set of all pairs (ρ, r), where ρ is a homomorphism SL(2)nR → GR of algebraic
groups over R and r ∈ D satisfying the following condition.

Let S
(1)
C/R be the kernel of norm SC/R → Gm,R; z 7→ zz̄. Let ξ1 : S

(1)
C/R → GR be the

homomorphism defined by

ξ1(u) := r(u)ρ(〈u〉, . . . , 〈u〉)−1,

where we regard r as a homomorphism SC/R → GR and 〈u〉 ∈ SO(2)R is as in 1.6.5.

Then ξ1(u)ρ(g) = ρ(g)ξ1(u) for any u ∈ S(1)
C/R and g ∈ SL(2)nR.

(iv) The set of all homomorphisms SL(2)nR × S
(1)
C/R → GR satisfying the following

conditions (iv.1) and (iv.2). Let ρ (resp. ξ1) be the restriction of this homomorphism to

SL(2)nR (resp. S
(1)
C/R).

(iv.1) k0(−1) = ξ1(−1)ρ(−1, . . . ,−1). Here −1 inside ρ(−) denotes the scaler matrix
−1 in SL(2)R.
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(iv.2) Define the homomorphism r : SC/R → GR by r(tu) := k0(t)ξ1(u)ρ(〈u〉, . . . , 〈u〉),
where t ∈ Gm,R ⊂ SC/R and u ∈ S(1)

C/R. Then r ∈ D.

Proof. We will prove that the first three sets are identified. In fact, the bijectivities of
the evident maps (i)→ (ii)→ (iii) are well-known (for their 1-variable cases, see [32], [36]
Remark (2.2), and [31]), but we give a proof here. To prove that (i)→ (ii) → (iii) are
bijective, since they are injective, it is sufficient to prove that (i) → (iii) is surjective. Let
(ρ, r) be an element of the set (iii). We prove that if g ∈ H := {g ∈ SL(2,C)n | gi = i},
then ρ(g)r = r. This will imply that we have a map ϕ : P1(C)n → Ď ; gi 7→ ρ(g)r
having the desired properties. Since H is connected, it is sufficient to prove that for
X ∈ Lie (H) = F 0

i sl(2,C)n, Lie (ρ)(X) respects the Hodge filtration of r. But this follows
from Lie (ρ)(X) ∈ F 0

r Lie (G)C.
We prove (iii) = (iii)′. Since the Hodge structures on the Lie algebras in the condition

in the definition of (iii) are of weight 0, the condition in (iii) is equivalent to the condition

that for u ∈ S(1)
C/R(R), the action Ad(〈u〉, . . . , 〈u〉) on sl(2,R)n and the adjoint action of

r(u) on Lie (GR) are compatible via Lie (ρ). This is equivalent to the condition that the
action Ad(ξ1(u)) on Lie (ρ)(sl(2,R)n) is trivial for every u and hence to the condition
that ξ1(u) and ρ(g) commute for every u and g ∈ SL(2)nR.

The evident map (iii)′ → (iv) is bijective because the inverse map is given as in (iv.2).
Thus we can identify the sets (i), (ii), (iii), (iii)′, and (iv).

Proposition 3.1.4. Let (ρ, ϕ) be an SL(2)-orbit in n variables and let r = ϕ(i) : SC/R →
GR and ξ1 : S

(1)
C/R → GR be as in Lemma 3.1.3. Define a homomorphism ξ : SC/R → GR

of algebraic groups over R by

ξ(t) := k0(t)ρ(diag(1/t, t), . . . , diag(1/t, t)) for t ∈ Gm,R ⊂ SC/R,

ξ(u) := ξ1(u) for u ∈ S(1)
C/R,

where ξ1 is as in Lemma 3.1.3 (iv). Then the Hodge filtration of ξ is ϕ(0), where 0 =
(0, . . . , 0) ∈ P1(C)n.

Proof. To relate ξ and r, we use the Cayley element

c :=
1√
2

(

1 i
i 1

)

∈ SL(2,C).

We use the following properties (i) and (ii) of c.
(i) By the action of SL2(C) on P1(C), c sends 0 ∈ P1(C) to i ∈ P1(C).

(ii) 〈u〉 = c diag(u−1, u) c−1 for u ∈ S(1)
C/R.

Let V ∈ Rep(G), let VC,ξ (resp. VC,r) be VC endowed with the action of SC/R via ξ
(resp. r), and let V p,q

C,ξ (resp. V
p,q
C,r) be the Hodge (p, q)-component of VC,ξ (resp. VC,r).

Claim. ρ(c, . . . , c)(
⊕

q V
p,q
C,ξ) =

⊕

q V
p,q
C,r in VC.

We prove Claim. For (a, b, c) ∈ Z3, let V
(a,b,c)
C be the part of VC on which k0(t) for t ∈

C× acts as ta, ξ1(u) for u ∈ S(1)
C/R acts as ub, and ρ(diag(1/t, t), . . . , diag(1/t, t)) for t ∈ C×

acts as tc. Then VC is the direct sum of these V
(a,b,c)
C . On V

(a,b,c)
C , ξ(tu) (t ∈ Gm,R ⊂ SC/R,
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u ∈ S(1)
C/R) acts as t

a+cub and hence V
(a,b,c)
C has the Hodge type ((a+b+c)/2, (a−b+c)/2).

On the other hand, by the above property (ii) of c, r(tu) acts on ρ(c, . . . , c)V
(a,b,c)
C as taub+c

and hence ρ(c, . . . , c)V
(a,b,c)
C has the Hodge type ((a+ b+ c)/2, (a− b− c)/2). This proves

Claim.
Since ϕ(0) = ρ(c, . . . , c)−1ϕ(i) by the property (i) of c, Claim shows that ξ gives

ϕ(0).

The fact that the Cayley element relates ϕ(0) and ϕ(i) was used also in [36].

3.1.5. Let (ρ, ϕ) be an SL(2)-orbit in n variables. Then the rank of (ρ, ϕ) is defined to
be the number of j (1 ≤ j ≤ n) such that the j-th component ρj : SL(2)R → GR of ρ is
a non-trivial homomorphism.

Let r be the rank of (ρ, ϕ) and let (ρ′, ϕ′) be the SL(2)-orbit in r variables defined as
follows. Let {s(1), . . . , s(r)} (s(1) < · · · < s(r)) be the set of all j (1 ≤ j ≤ n) such that
ρj is non-trivial. Define ρ′ : SL(2)rR → GR to be the unique homomorphism satisfying
ρ(g1, . . . , gn) = ρ′(gs(1), . . . , gs(r)) and let ϕ′ be the unique map P1(C)r → Ď such that
ϕ(z1, . . . , zn) = ϕ′(zs(1), . . . , zs(r)).

We call (ρ′, ϕ′) the SL(2)-orbit in r variables of rank r associated to (ρ, ϕ).

3.1.6. Let (ρ, ϕ) be an SL(2)-orbit in n variables of rank n. For 1 ≤ j ≤ n, define
homomorphisms τ ⋆j , τj : Gm,R → GR as follows.

τ ⋆j (t) = ρ(g1, . . . , gn) (t ∈ R×), where

gk =

(

1/t 0
0 t

)

if 1 ≤ k ≤ j, gk = 1 if j < k ≤ n.

τj(t) := τ ⋆j (t)k0(t) (t ∈ R×),

where k0 ∈ ΨW (G) is as in the beginning of Section 3.

3.1.7. We define the equivalence relation between SL(2)-orbits.
An SL(2)-orbit in n variables and an SL(2)-orbits in n′-variables are equivalent if and

only if they have the same rank r and their associated SL(2)-orbits of rank r are equivalent
in the following sense.

For SL(2)-orbits in n variables of rank n, the equivalence relation is given as follows:
(ρ, ϕ) ∼ (ρ′, ϕ′) if and only if there is a t = (tj)1≤j≤n ∈ Rn

>0 such that

ρ′(g) = τ(t)ρ(g)τ(t)−1, ϕ′(z) = τ(t)ϕ(z)

for any g ∈ SL(2)nR and z ∈ Hn, where τ(t) denotes
∏n

j=1 τj(tj) associated to (ρ, ϕ).

In terms of Lemma 3.1.3 (iv), (ρ, ξ1) ∼ (ρ′, ξ′1) if and only if there is a t = (tj)1≤j≤n ∈
Rn
>0 such that ρ′(g) = τ(t)ρ(g)τ(t)−1 for every g ∈ SL(2)nR and ξ1 = ξ′1.

Remark 3.1.8. We have the same equivalence relation ∼ even if we replace τj by τ ⋆j .
This is because τ(t)ρ(g)τ(t)−1 = τ ⋆(t)ρ(g)τ ⋆(t)−1 and the actions of τ(t) and τ ⋆(t) on D
are the same. Here τ ⋆(t) =

∏

j τ
⋆
j (tj) which is associated to (ρ, ϕ).
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3.1.9. Let (ρ, ϕ) be an SL(2)-orbit in n variables.

Let 1 ≤ j ≤ n. For V ∈ Rep(G), let W
(j)
• VR be the increasing filtration on VR defined

by the action of Gm,R via τj . That is, for w ∈ Z, W
(j)
w VR is the part of VR on which the

action of Gm,R via τj is of weights ≤ w.

For 1 ≤ j ≤ n, define Nj ∈ Lie (GR) by

Nj = Lie (ρ)(g1, . . . , gn) with gj =

(

0 1
0 0

)

, gk = 0 for k 6= j,

where Lie (ρ) is the homomorphism sl(2,R)n → Lie (GR) induced by ρ. Let W (0) = W .
Then for 0 ≤ j ≤ k ≤ n and for any al ∈ R>0 (j < l ≤ k) and any V ∈ Rep(G), the

filtration W
(k)
• VR is the relative weight filtration of the nilpotent operator

∑

j<l≤k alNl :

VR → VR with respect to W
(j)
• VR.

For 1 ≤ j ≤ n, the following conditions (i)–(iv) are equivalent. (i) ρj is trivial. (ii) τj
is trivial. (iii) W (j) = W (j−1). (iv) Nj = 0.

We say that the weight filtrations of (ρ, ϕ) are rational if the weight filtrations W (j)

(1 ≤ j ≤ n) of the associated SL(2)-orbit in n variables of rank n has the following

property: For any V ∈ Rep(G), the filtrations W
(j)
• VR (1 ≤ j ≤ n) on VR are Q-rational.

This rationality depends only on the equivalence class of (ρ, ϕ).

3.1.10. We define the set DSL(2) as the set of all equivalence classes of SL(2)-orbits whose
weight filtrations are rational.

Remark 3.1.11. The rationality condition on the weight filtrations will become impor-
tant to have the good properties (Hausdorff property etc.) of the quotient space Γ \DSL(2)

for a semi-arithmetic subgroup Γ of G′(Q) (cf. Section 4.14).

3.1.12. Let p ∈ DSL(2). Let (ρ, ϕ) be the SL(2)-orbit in n variables of rank n whose class
is p.

Let

τp, τ
⋆
p : Gn

m,R → GR

be the homomorphisms τ and τ ⋆ associated to (ρ, ϕ) as in 3.1.7, respectively. Let τp,j and
τ ⋆p,j (1 ≤ j ≤ n) be the j-th component Gm,R → GR of τp (resp. τ

⋆
p ).

We will call

{ϕ(iy1, . . . , iyn) ∈ D | yj ∈ R>0 (1 ≤ j ≤ n)} = τp(R
n
>0)ϕ(i) = τ ⋆p (R

n
>0)ϕ(i)

the torus orbit associated to p.

3.2 The sets DSL(2) and D⋆
SL(2)

When we do not assume that G is reductive, unlike the case where G is reductive, there
are several sets of SL(2)-orbits. Here we define the most important two sets DSL(2) and

D⋆
SL(2). Other sets of SL(2)-orbits D⋆,+

SL(2), D
⋆,W
SL(2) will be defined later.

34



Classifying spaces of degenerating mixed Hodge structures, V

3.2.1. Let Dred = D(Gred, h0) be as in 1.3.3. Let Dred,SL(2) = D(Gred, h0)SL(2) be DSL(2)

for (Gred, h0) in 3.1.10. This Dred,SL(2) is a G-MHS version of the space DSL(2)(gr
W )∼ in

[21] Part II 3.5.1.
For p ∈ Dred,SL(2) and let τp, τ

⋆
p : Gn

m,R → Gred,R be the homomorphism in 3.1.12
associated to p, where n is the rank of p.

Let DSL(2) (resp. D
⋆
SL(2)) be the set of pairs (p, Z), where p is an element of Dred,SL(2)

and Z is a subset of D whose image in Dred coincides with the torus orbit (3.1.12) of
p, satisfying one of the following conditions (A) and (B) for every (equivalently, for all)
z ∈ Z. Let s = splW (z).

(A) Let h : Gn
m,R → GR be the homomorphism defined by

h(t) := sτp(t)s
−1 (resp. sτ ⋆p (t)s

−1).

Then Z is a h(Rn
>0)-orbit.

(B) Let h : Gm ×Gn
m,R → G be the homomorphism defined by

h(t0, (tj)1≤j≤n) := s(k0(t0)
n
∏

j=1

τp(tj))s
−1 (resp. s(k0(t0)

n
∏

j=1

τ ⋆p (tj))s
−1).

Then Z is an h(R>0 ×Rn
>0)-orbit contained in Dnspl.

3.2.2. Let x = (p, Z) ∈ DSL(2) (resp. D
⋆
SL(2)). We call x an A-orbit in the case (A), and

a B-orbit in the case (B).
We define the mild part of D⋆

SL(2) as the part consisting of all A-orbits and denote it

by D⋆,mild
SL(2) .

We denote by DSL(2),spl the subset of DSL(2) consisting of (p, Z) whose Z is contained
in Dspl, and by DSL(2),nspl its complement.

3.2.3. For x = (p, Z) ∈ DSL(2) (resp. D
⋆
SL(2)), the homomorphism h in 3.2.1 is independent

of the choice of z ∈ Z. In the case x ∈ DSL(2) (resp. D
⋆
SL(2)), we denote this homomorphism

h by τx (resp. τ ⋆x).

3.3 Weight filtrations associated to SL(2)-orbits

In this Section 3.3, we give preliminary definitions which are used in Section 3.4.

3.3.1. Let E be a field of characteristic 0 and let G be a linear algebraic group over E.
Let RepE(G) be the category of finite-dimensional representations of G over E. Let W ′

be an increasing filtration on the functor V 7→ V from RepE(G) to the category of finite-
dimensional E-vector spaces. Then, by [30] Chap. IV 2.4, the following two conditions (i)
and (ii) are equivalent.

(i) There is a homomorphism a : Gm,E → G which defines W ′. That is, for V ∈
RepE(G), W ′

wV is the part of V on which the action of Gm,E via a is of weights ≤ w.
(ii) W ′ is an exact ⊗-filtration in the sense of [30] Chapter IV 2.1. That is, grW

′

w is
an exact functor for every w ∈ Z, and W ′

w(V1 ⊗ V2) =
∑

j+k=w W ′
jV1 ⊗E W ′

kV2 for every
V, V2 ∈ RepE(G) and w ∈ Z.
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We denote by W(G) the set of all W ′ satisfying the above equivalent conditions (i)
and (ii).

If E ⊂ E ′, via the injectionW(G)→W(GE′) induced by the homomorphism Hom (Gm,E ,G)→
Hom (Gm,E′,GE′), we often regard W(G) as a subset of W(GE′).

Actually only the cases E = Q and E = R are important to us.

3.3.2. Let x = (p, Z) ∈ DSL(2) and let n be the rank of p = xred. In the case where x is
an A (resp. B)-orbit, we defined in 3.2.3 a homomorphism

τx : G
n
m,R = G

{1,...,n}
m,R → GR (resp. Gm,R ×Gn

m,R = G
{0,...,n}
m,R → GR).

For 1 ≤ j ≤ n (resp. 0 ≤ j ≤ n), let W
(j)
x be the increasing filtration on the functor

V 7→ VR = R ⊗Q V given by τx,j : Gm,R → G. For 1 ≤ j ≤ n, we have W
(j)
x = s(W

(j)
p ).

That is, for V ∈ Rep(G), W
(j)
x,wVR =

⊕

k∈Z s(W
(j)
p,wgrWk VR). In the case where x is a

B-orbit, W
(0)
x = W . These W

(j)
x (1 ≤ j ≤ n) (resp. (0 ≤ j ≤ n)) are called the weight

filtrations associated to x.
For x ∈ DSL(2), let

Φ(x) ⊂W(GR)

be the set of weight filtrations associated to x.
We have W ∈ Φ(x) if and only if x is a B-orbit. If G is reductive, W /∈ Φ(x) and we

have Φ(x) ⊂W(G).

Proposition 3.3.3. (p, Z) ∈ DSL(2) (resp. D
⋆
SL(2)) is determined by (Φ(p), Z).

Proof. When G is reductive, the proof of [23] Lemma 3.10 for Q-polarization works for
R-polarization. The general non-reductive case follows easily from this.

This will be used in the proof of the injectivity in Propositions 3.4.4 (2), 3.4.5 (2),
3.4.9 (2) in Section 3.4.

Proposition 3.3.4. Let x ∈ DSL(2) and let n be the rank of xred ∈ Dred,SL(2). Let V ∈
Rep(G), V 6= 0. Let 0 ≤ j ≤ n. Let W

(0)
x := W also in the case where x is an A-orbit.

Define the mean value µj ∈ Q and the variance σ2
j ∈ Q of W

(j)
x by

µj :=
∑

w∈Z

dimR(gr
W

(j)
x

w VR)w/ dimR(VR), σ2
j :=

∑

w∈Z

dimR(gr
W

(j)
x

w VR)(w−µj)2/ dimR(VR).

Then µj is independent of j and σ2
j ≤ σ2

k if j ≤ k. Furthermore, if V is a faithful
representation of G, then σ2

j < σ2
k for 0 ≤ j < k ≤ n.

Proof. This follows from [21] Part II Proposition 2.1.12.

3.3.5. We denote by W(G) the set of all subsets Φ of W(GR) such that Φ = Φ(x) for
some x ∈ DSL(2).

For Φ ∈ W(G), let Φred ∈ W(Gred) be {grW (W ′) | W ′ ∈ Φ, W ′ 6=W}. If x = (p, Z) ∈
DSL(2), then Φ(x)red = Φ(p).

Let Φ ∈ W(G) and let n be the order of Φred. In the case W /∈ Φ (resp. W ∈ Φ),
we often identify Φ with the set {1, . . . , n} (resp. {0, 1, . . . , n}) in the unique way that if
W ′,W ′′ ∈ Φ correspond to i, j ∈ {1, . . . , n} (resp. {0, 1, . . . , n}), respectively, then i ≤ j
if and only if the variance of W ′ ≤ the variance of W ′′ (3.3.4).
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3.3.6. For Φ ∈ W(Gred), let DSL(2)(Φ) (resp. D
⋆
SL(2)(Φ)) be the set of all points (p, Z) of

DSL(2) (resp. D
⋆
SL(2)) such that Φ(p) ⊂ Φ.

For Φ ∈ W(G), let DSL(2)(Φ) = {x ∈ DSL(2) | Φ(x) ⊂ Φ}.
Then, in the next Section 3.4,

D⋆
SL(2) =

⋃

Φ∈W(Gred)

D⋆
SL(2)(Φ)

will be an important open covering of D⋆
SL(2),

DSL(2) =
⋃

Φ∈W(Gred)

DSL(2)(Φ)

will be an important open covering of DII
SL(2), and

DSL(2) =
⋃

Φ∈W(G)

DSL(2)(Φ) =
(

⋃

Φ∈W(G),W /∈Φ

DSL(2)(Φ)
)

∪
(

⋃

Φ∈W(G),W∈Φ

DSL(2),nspl(Φ)
)

(here DSL(2),nspl(Φ) := DSL(2),nspl∩DSL(2)(Φ)) will be an important open covering of DI
SL(2).

3.3.7. Let the notation be as in 3.3.1. Assume that G is reductive and let W ′ ∈ W(G).
Then, by [30] Chap. IV 2.2.5, the stabilizer P = G◦W ′ ⊂ G◦ of W ′ in G◦ is a parabolic
subgroup of G.

We thus have a map

Hom (Gm,E ,G)→ {parabolic subgroup of G}.

This map is surjective (cf. [27] Theorem 25.1, [34] 15.1.2 (ii)).
Let W ′ ∈W(G) and let P be the associated parabolic subgroup of G.
If a homomorphism a : Gm,E → G defines W ′, then the image of a in G is contained

in P . The composition Gm,E
a→ P → Pred is independent of the choice of a and has the

image in the center of Pred. The adjoint action of Gm,E on Lie (Pu) via a is of weights
≤ −1.

Let spl(W ′) be the set of all isomorphisms of ⊗-functors from RepE(G) to the category
of E-vector spaces

(V 7→ grW
′

V )
∼→ (V 7→ V ) preserving the increasing filtrations defined by W ′.

Then spl(W ′) is a Pu(E)-torsor. We have a natural bijection from the set of all homo-
morphisms Gm,E → G which define W ′ to spl(W ′).

3.3.8. Assume that G is reductive.
Let W0(GR) be the set of all W ′ ∈W(GR) satisfying the following condition.
(∗) For some (equivalently, for every) homomorphism a : Gm,R → GR which defines

W ′, the image of the homomorphism a⋆ : Gm,R → GR ; t 7→ a(t)k0(t)
−1 belongs to the

commutator subgroup G′ of G, where k0 is as in the beginning of this Section 3.
For a point p ∈ DSL(2), we have Φ(p) ⊂ W(G) ∩W0(GR). In fact, the condition (∗)

is satisfied by W ′ ∈ Φ(p) because SL(2)n coincides with its commutator subgroup and
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hence for any linear algebraic group H , the image of any homomorphism SL(2)n → H is
contained in the commutator subgroup H ′.

Let W ′ ∈W0(GR). We have a canonical real analytic map

splBS
W ′ : D → spl(W ′) := splR(W

′)

defined as follows. Let ι : Gm → G◦
W ′,red be the canonical homomorphism in 3.3.7. Let

x ∈ D. We have a Borel–Serre lifting a⋆ : Gm,R → (G′)◦W ′,R of Gm → (G′)◦W ′,red ; t 7→
ι(t)k0(t)

−1 associated to the image of x under D → X. We define splBS
W ′(x) to be the

R-splitting of W ′ associated to Gm,R → G◦
W ′ ; t 7→ a⋆(t)k0(t).

Note that this splitting splBS
W ′(x) is also defined as follows. Let V ∈ Rep(G). Then

for H = x, V = H(V ) =
⊕

w Vw where Vw is the part of V of weight w, and we have a
polarization 〈 , 〉w on Vw,R = H(Vw)R in the condition (4.1) in Lemma 1.5.3. Then the
splitting splBS

W ′(x) of W ′
•VR is the direct sum for w ∈ Z of the orthogonal decomposition

of W ′
•Vw,R with respect to the Hodge metric associated to 〈 , 〉w. See 2.2.2.

An important fact is that, for p ∈ DSL(2) of rank n, if r is an element of the torus

orbit of p and 1 ≤ j ≤ n, the splitting of W
(j)
p given by τp,j : Gm,R → GR coincides with

splBS

W
(j)
p
(r). See [23] Lemma 3.9. This fact is in the basis of the relation of SL(2)-orbits

and Borel–Serre orbits considered in this paper and in our former papers [24], [21].

3.3.9. Let Φ ∈ WR(G). Let GR,Φ =
⋂

W ′∈ΦGR,W ′, where GR,W ′ denotes the stabilizer
subgroup of W ′ in GR. By a splitting of Φ, we mean a homomorphism

α : GΦ
m,R → GΦ,R

such that for each W ′ ∈ Φ, the W ′-component Gm,R → GR of α is a splitting of W ′.
A splitting of Φ exists. In fact, if Φ = Φ(x) for x ∈ DSL(2), τx (3.3.2) is a splitting of

Φ.
In the case W /∈ Φ (resp. W ∈ Φ), by a distance to Φ-boundary, we mean a real

analytic map
β : D → RΦ

>0 (resp. Dnspl → RΦ
>0)

such that β(α(t)x) = tβ(x) for all splittings α of Φ, all t ∈ RΦ
>0, and all x ∈ D (resp.

x ∈ Dnspl).

Proposition 3.3.10. A distance to Φ-boundary exists.

This is a G-MHS version of [21] Part II 3.2.5. The proof given below is similar to that
of loc. cit.

Proof. We first prove the case where G is reductive of 3.3.10. Take a submonoid V of
X(GΦ

m) such that V ∪V −1 = X(GΦ
m), V ⊃ X(GΦ

m)+ and such that V × ∩X(GΦ
m)+ = {1}.

Let P = PV be the parabolic subgroup of G′ associated to V . Then (G′)◦Φ ⊂ P and, for
every splitting α of Φ, the map GΦ

m,R → Pred,R is injective and independent of the choice
of α, and the image of this homomorphism is contained in SP . Let RΦ

>0 → AP be the
induced injective map. Take a homomorphism of Lie groups h : AP → RΦ

>0 which splits
the last injection. Let π : P (R) → AP be the canonical map defined in 2.3.5, and let

38



Classifying spaces of degenerating mixed Hodge structures, V

f : X → AP be the map there induced by π by fixing K ∈ X. Then the composition

D → X
f→ AP

h→ RΦ
>0 is a distance to Φ-boundary.

Now we consider the general case. Let n be the order of Φred. Let βred : Dred → Rn
>0

be a distance to the Φred-boundary.

In the case W /∈ Φ, the composition D → Dred
βred−→ Rn

>0 is a distance to Φ-boundary.

Next we prove the case W ∈ Φ of 3.3.10. Fix p0 ∈ Dred. Let Z be the center of
Gred(R). By the R-polarizability, K = {g ∈ Gred(R)/Z | gp0 = p0} is compact. For each
integer w ≤ −2, take a K-invariant positive symmetric R-bilinear form (·, ·)w on the part
Lw of L := L(p0). Define a map f : Lr{0} → R>0 by f(δ) := (

∑

w≤−2 (δw, δw)
−1/w)−1/2,

where δw denotes the component of δ of weight w. For p ∈ Dred, if g is an element of
Gred(R) such that p = gp0, then we have an isomorphism Ad(g) : L = L(p0) ∼→ L(p). The
map fp : L(p)r {0} → R>0, δ 7→ f(Ad(g)−1δ) is independent of the choice of g. This is
because (g′)−1g ∈ K if g, g′ ∈ Gred(R) and gp0 = g′p0. Define γ′ : Dnspl → R>0 by sending
an element corresponding to (p, s, δ) (p ∈ Dred, s ∈ spl(W ), δ ∈ L(p)r {0}) to fp(δ). For
x ∈ Dnspl, define γ(x) = γ′(x) ˙

∏n

j=1βred,j(xred)
−1. Then (γ, βred) : Dnspl → R>0 ×Rn

>0 is a
distance to Φ-boundary.

3.4 The real analytic structures of DSL(2) and D⋆
SL(2)

In this Section 3.4, we endow DSL(2) and D
⋆
SL(2) with the sheaves of real analytic functions

and with the log structures with sign. In fact, like in Part II of [21], DSL(2) is endowed
with two kinds of such structures, DI

SL(2) and D
II
SL(2).

A basic property of these structures is that in the case where G is reductive, if (ρ, ϕ)
is an SL(2)-orbit in n variables with class p in DSL(2), ϕ(iy1, . . . , iyn) converges to p when
yj/yj+1 →∞ for 1 ≤ j ≤ n (yn+1 denotes 1).

We first review the category B′
R(log) in 3.4.1–3.4.3. The above spaces with the above

structures become objects of B′
R(log)

3.4.1. The categories B′
R and B′

R(log) (see [21] Part IV 1.3).
Let B′

R be the category of locally ringed spaces S over R satisfying the following
condition (i) locally on S. Endow Rn with the sheaf ORn of real analytic functions.

(i) There are n ≥ 0 and a morphism ι : S → Rn of locally ringed spaces over R such
that ι is injective, the topology of S coincides with the topology induced from that of Rn,
and the map ι−1(ORn)→ OS is surjective.

For an object S of B′
R , we often call the structural sheaf OS the sheaf of real analytic

functions on S (though S need not be a real analytic space).

For an object S of B′
R, a log structure with sign on S means a log structure M on S

endowed with a submonoid sheaf M>0 of M satisfying the following (i) and (ii).

(i) M>0 ⊃ O×
S,>0 . Here O×

S,>0 denotes the subgroup sheaf of O×
S consisting of all local

sections whose values are > 0.
(ii) The map M>0 × {±1} → M ; (f, ǫ) 7→ ǫf is an isomorphism of sheaves. Here we

regard {±1} ⊂ O×
S ⊂M .

Let B′
R(log) be the category of objects of B′

R endowed with an fs log structure with
sign.
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Real analytic manifolds with corners are regarded as objects of B′
R(log) ([21] Part IV

1.3.8 (2)).
The category B′

R(log) has fiber products (ibid. Proposition 1.3.11 (1)).

3.4.2. For an object X of B′
R(log), for an object Y of B′

R and for a morphism Y → X
in B′

R, we have an fs log structure with sign (MY ,MY,>0) on Y , called the inverse image
of the log structure with sign (MX ,MX,>0) of X , defined as follows. The log structure
MY is the inverse image of the log structure MX , that is, MY is the push-out of O×

Y ←
f−1(O×

X) → f−1(MX) in the category of sheaves of commutative monoids on Y , and
MY,>0 is the push-out of O×

Y,>0 ← f−1(O×
X,>0) → f−1(MX,>0) in the category of sheaves

of commutative monoids on Y .

3.4.3. ([21] Part IV 1.3.16.) Let X be an object of B′
R(log) satisfying the following

condition (C).

(C) The canonical map from OX to the sheaf of R-valued functions on X is injective.

Let Y be a subset of X . Then Y has a structure of an object of B′
R(log) satisfying

(C) such that for any object S of B′
R(log) satisfying (C), MorB′

R
(log)(S, Y ) is identified

with {f ∈ MorB′
R
(log)(S,X) | f(S) ⊂ Y }. This structure on Y is defined as follows. The

topology is the one as a subspace of X . OY is the image of the canonical map from the
pullback of OX on Y to the sheaf of R-valued functions on Y . The log structure with
sign of Y is the inverse image of that of X (3.4.2).

We will say this is the structure of Y as an object of B′
R(log) induced by the injection

Y → X (or by the embedding of Y in X).

In the rest of this Section 3.4, we state definitions and properties of the structures
DI

SL(2) and D
II
SL(2) of DSL(2) and the structure of D⋆

SL(2) as objects of B′
R(log). The almost

all proofs will be given in Section 3.5.
We first consider the case where G is reductive. In this case, DI

SL(2) = DII
SL(2) = D⋆

SL(2).

Proposition 3.4.4. Assume that G is reductive. Let Φ ∈ W(G) (3.3.5). Take a splitting
α of Φ and a distance β to Φ-boundary (3.3.9).

(1) There is a unique map

να,β : DSL(2)(Φ)→ RΦ
≥0 ×D ×

∏

W ′∈Φ

spl(W ′)

satisfying the following conditions (i) and (ii).
(i) For p ∈ D, να,β(p) = (β(p), αβ(p)−1p, (splBS

W ′(p))W ′∈Φ) ∈ RΦ
>0×D×

∏

W ′∈Φ spl(W ′).
(ii) For p ∈ DSL(2)(Φ), να,β(p) is the limit of να,β(τp(t)r) for a fixed point r of the torus

orbit (3.1.12) of p and for t ∈ R
Φ(p)
>0 which tends to (0, . . . , 0) ∈ R

Φ(p)
≥0 .

(2) This map να,β is injective.
(3) The structure of DSL(2)(Φ) as an object of B′

R(log) induced via the injection να,β
(3.4.3) is independent of the choice of (α, β).

We will denote this map να,β as p 7→ (β(p), bα,β(p), (splW ′(p))W ′).
Next we consider DII

SL(2) and D
⋆
SL(2) for a general linear algebraic group G over Q.
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Proposition 3.4.5. Let Φ ∈ W(Gred). Let DSL(2)(Φ) (resp. D⋆
SL(2)(Φ)) be the inverse

image of Dred,SL(2)(Φ) in DSL(2) (resp. D
⋆
SL(2)).

Let α be a splitting of Φ and let β be a distance to Φ-boundary (3.3.9).
(1) There is a unique map

να,β : DSL(2)(Φ)→ Dred,SL(2)(Φ)× spl(W )× L

(resp. ν⋆α,β : D⋆
SL(2)(Φ)→ Dred,SL(2)(Φ)× spl(W )×L)

satisfying the following conditions (i) and (ii).
(i) For x ∈ D, set p = xred. Then,

να,β(x) = (p, splW (x),Ad(αβ(p))−1δ(x))

(resp. ν⋆α,β(x) = (p, splW (x),Ad(α⋆β(p))−1δ(x))).

(ii) Let x = (p, Z) ∈ DSL(2)(Φ) (resp. D
⋆
SL(2)(Φ)) (3.2.1). Then Iνα,β(x) (resp. ν

⋆
α,β(x))

is the limit of να,β(τx(t)r) (resp. ν⋆α,β(τ
⋆
x(t)r)) for a fixed point r of Z, where t ∈ R

Φ(x)
>0

and t→ (0, . . . , 0) ∈ R
Φ(x)
≥0 .

(2) This map να,β (resp. ν⋆α,β) induces the bijection

DSL(2)(Φ)
∼→ {(p, s, δ) ∈ Dred,SL(2)(Φ)× spl(W )×L | δ ∈ L(bα,β(p))}

(resp. D⋆
SL(2)(Φ)

∼→ {(p, s, δ) ∈ Dred,SL(2)(Φ)× spl(W )× L | δ ∈ L(bα,β(p))}).
Here bα,β(p) is as after Proposition 3.4.4. The ones for να,β and for ν⋆α,β coincide.

(3) The structure of DSL(2)(Φ) (resp. D⋆
SL(2)(Φ)) as an object of B′

R(log) induced via

the bijection να,β (resp. ν⋆α,β) is independent of the choice of (α, β).

In the bijection in the above (2), the image of x ∈ DSL(2)(Φ) (resp. x ∈ D⋆
SL(2)(Φ))

belongs to L if and only if x is an A-orbit.
For DSL(2) (resp. D⋆

SL(2)), this Proposition 3.4.5 is a G-MHS version of [21] Part II

Proposition 3.2.6 (ii), Proposition 3.2.7 (ii), and the situation (c) of [21] Part IV Propo-
sition 2.3.9 (resp. of the situation (a) of [21] Part IV Proposition 2.3.9) which treated
the extended period domain DSL(2) ⊃ D(Λ) (resp. D⋆

SL(2) ⊃ D(Λ)) for a classical period

domain D(Λ) (1.6).

Remark 3.4.6. This is a remark on the description of a related part of [21]. There are
fourteen “resp.,”s in [21] Part IV 2.3.8, which are divided into two groups, and correspond
only to the ones belonging to the same group. Precisely, the fourth, the fifth, the seventh,
and the last “resp.,”s correspond, and the other ten “resp.,”s correspond. But four and
ten do not correspond.

Proposition 3.4.7. DSL(2) (resp. D
⋆
SL(2)) has a unique structure of an object of B′

R(log)

such that for every Φ ∈ W(Gred), DSL(2)(Φ) (resp. D⋆
SL(2)(Φ)) is open in DSL(2) and the

induced structure on it coincides with the structure in Proposition 3.4.5 (3).
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The DSL(2) as an object B′
R(log) with the above structure is denoted by DII

SL(2).

For DSL(2) (resp. D⋆
SL(2)), this is the G-MHS version of the situation (c) (resp. (a))

of [21] Part IV Proposition 2.3.10 for DSL(2) (resp. D
⋆
SL(2)) extending the classical period

domain. For DSL(2) of ibid., [21] Part II Theorem 3.2.10 also gives the same structure of
DII

SL(2).

Proposition 3.4.8. (1) The map DII
SL(2) → Dred,SL(2) × spl(W ) is proper. It is an L̄-

bundle.
(2) The map D⋆

SL(2) → Dred,SL(2) × spl(W ) is proper. It is an L̄-bundle.

For DII
SL(2) (resp. D

⋆
SL(2)), this is a G-MHS version of [21] Part II Theorem 3.5.15 (resp.

the situation (a) of [21] Part IV Proposition 2.3.16).
We give a proof of Proposition 3.4.8 assuming Proposition 3.4.7. Let p ∈ Dred,SL(2)(Φ),

r := bα,β(p) ∈ Dred. Take an open neighborhood V of r in Dred and a real analytic
map g : V → Gred(R) such that g(r) = 1 and such that v = g(v)r for all v ∈ V . Let
U ⊂ Dred,SL(2)(Φ) be the inverse of V under bα,β : Dred,SL(2)(Φ) → Dred and let Ũ be the
inverse image of U under the projection DSL(2)(Φ) → Dred,SL(2)(Φ) (resp. D⋆

SL(2)(Φ) →
Dred,SL(2)(Φ)). Then we have an isomorphism

Ũ
∼→ U × spl(W )× L(r) ; x 7→ (xred, splW (x),Ad(g(bα,β(xred)))

−1δ(bα,β(xred))).

We next consider the structure DI
SL(2) of DSL(2).

Proposition 3.4.9. Let Φ ∈ W(G).
(1) Let α be a splitting of Φ and let β be a distance to Φ-boundary.
If W /∈ Φ (resp. W ∈ Φ),there is a unique map

µα,β : DSL(2)(Φ)→ D (resp. DSL(2),nspl(Φ)→ D)

satisfying the following conditions (i) and (ii).
(i) If x ∈ D (resp. x ∈ Dnspl),

µα,β(x) = α(β(x))−1x.

(ii) Assume W /∈ Φ (resp. W ∈ Φ) and let x = (p, Z) be an element of DSL(2)(Φ)

(resp. DSL(2),nspl(Φ)). Let z ∈ Z. Then µα,β(x) is the limit of µα,β(τx(t)z) where t ∈ R
Φ(x)
>0

and t→ (0, . . . , 0) ∈ RΦ
≥0.

(2) If W /∈ Φ (resp. W ∈ Φ), the structure of DSL(2)(Φ) (resp. DSL(2),nspl(Φ)) as an
object of B′

R(log) induced by the injection

DSL(2)(Φ) (resp. DSL(2),nspl(Φ))→ DII
SL(2) ×D ; x 7→ (x, µα,β(x))

(3.4.3) is independent of the choice of (α, β).

This is a G-MHS version of [21] Part II Proposition 3.2.6 (i), Proposition 3.2.7 (i).

Proposition 3.4.10. DSL(2) has a unique structure of an object of B′
R(log) such that for

every Φ ∈ W(G) such that W /∈ Φ (resp. W ∈ Φ), DSL(2)(Φ) (resp. DSL(2),nspl(Φ)) is open
in DSL(2) and the induced structure on this coincides with that in Proposition 3.4.9 (2).
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This generalizes [21] Part II Theorem 3.2.10 (i).
The structure of DSL(2) in Proposition 3.4.10 as an object of B′

R(log) is denoted by
DI

SL(2).

The identity map of DSL(2) is a morphism DI
SL(2) → DII

SL(2) of B′
R(log). The log

structure with sign of DI
SL(2) is the inverse image of that of DII

SL(2).
To prove the existence of the global structures Propositions 3.4.7 and 3.4.10, we need

the following Proposition 3.4.12 and the local descriptions in Theorems 3.4.15, 3.4.16, and
3.4.18 which are proved by using Proposition 3.4.12.

3.4.11. Assume that G is reductive. Let p ∈ DSL(2). We define the subset U(p) of
DSL(2) in the same way as in [24] Section 10.2, as follows. Let (ρ, ϕ) be an SL(2)-orbit
belonging to p. For each J ⊂ Φ(p) = {1, . . . , n}, we define pJ ∈ DSL(2) as the class of the
SL(2)-orbit (ρJ , ϕJ) in m-variables, where m is the cardinality of J , defined as follows.
ρJ(g1, ..., gm) := ρ(h1, ..., hn), ϕJ(z1, ..., zm) := ϕ(w1, ..., wn), where hj and wj (1 ≤ j ≤ n)
are as follows. Write J = {s1, . . . , sm} ⊂ {1, . . . , n}, s1 < · · · < sm. If j ≤ sk for some k,
define hj := gk and wj := zk for the smallest integer k with j ≤ sk. Otherwise, hj := 1
and wj := i. We have Φ(pJ) = J .

Let

U(p) :=
⋃

J⊂Φ(p)

G′
J(R) · pJ ⊂ DSL(2)(Φ(p)),

where G′
J is the stabilizer of the weight filtrations W (j) (j ∈ J) in G′.

The following proposition is a generalization of [24] Theorem 10.2.2.

Proposition 3.4.12. The set U(p) is open in DSL(2).

In the case p ∈ D, Proposition 3.4.12 follows from the case where G is reductive of (1)
of the following Lemma 3.4.13.

Lemma 3.4.13. (1) D is a finite disjoint union of G′(R)Gu(C)-orbits which are open
and closed.

(2) Ď is a finite disjoint union of G′(C)-orbits which are open and closed.

Proof. These are reduced to the case where G is reductive. Assuming that G is reductive,
let Z be the center of G. Then these are reduced to the facts that G′(R)Z(R) is an
open (and hence closed) subgroup of G(R) of finite index and G′(C)Z(C) is an open (and
hence closed) subgroup of G(C) of finite index.

3.4.14. Assume that G is reductive. Let p ∈ DSL(2), let n be the rank of p, and take a
representative (ρ, ϕ) of p. Let r = ϕ(i) ∈ D. We have Lie (G′

R) =
⊕

m∈Zn Lie (G′
R)m,

where

Lie (G′
R)m = {x ∈ Lie (G′

R) | Ad(τp(t))x =
n
∏

j=1

t
m(j)
j x for all t ∈ RΦ

>0}.

For x ∈ Lie (G′
R), let xm ∈ Lie (G′

R)m be the m-component of x.
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Let Kr be the maximal compact subgroup of G′(R) associated to r. Let ′Kr be the
stabilizer of r in Kr. Take R-subspaces R ⊂ Lie (G′

R) and S ⊂ Lie (Kr) such that

Lie (G′
R) = Lie (Rn

>0)⊕ Lie (Kr)⊕ R, Lie (Kr) = Lie (′Kr)⊕ S,

where Rn
>0 is embedded in G′(R) via τp, and such that

R =
∑

m∈ZΦ

R ∩ (Lie (G′
R)m ⊕ Lie (G′

R)−m).

Such R and S exist.
Let Y be the subset of Rn

≥0 × Lie (G′
R) × Lie (G′

R) × Lie (G′
R) × S consisting of all

elements (t, f, g, h, k) satisfying the following conditions (i)–(iv). Let J = {j | tj = 0} ⊂
{1, . . . , n}.

(i) Let m ∈ ZΦ. Then: gm = 0 unless m(j) = 0 for all j ∈ J . fm = 0 unless m(j) ≤ 0
for all j ∈ J . hm = 0 unless m(j) ≥ 0 for all j ∈ J .

(ii) Let t′ be any element of Rn
>0 such that t′j = tj for all j ∈ {1, . . . , n}rJ . If m ∈ Zn

and m(j) = 0 for all j ∈ J , then fm = (
∏n

j=1(t
′
j)
m(j))gm and hm = (

∏n
j=1(t

′
j)
m(j))−1gm.

(iii) We have g ∈ R and we have fm + h−m ∈ R for all m ∈ Zn.
(iv) exp(k)r ∈ G′

J(R) · r.
Let Y0 = {(t, f, g, h, k) ∈ Y | t ∈ Rn

>0}. Then

Y0
∼→ Rn

>0 × R× S ; (t, f, g, h, k) 7→ (t, g, k).

Hence by Lemma 3.4.13, the map

Y0 → D ; (t, f, g, h, k) 7→ τp(t) exp(g) exp(k)r = exp(f)τp(t) exp(k)r

is an open map.

The following Theorems 3.4.15 and 3.4.16 are variants of [21] Part II Theorem 3.4.4
and [21] Part IV Theorem 2.3.14.

Theorem 3.4.15. Assume that G is reductive. Let the notation be as in 3.4.14. Then
there exists an open neighborhood U of (0, . . . , 0) in Y and an open immersion U → DSL(2)

which sends (0, . . . , 0) to p such that if U0 denotes the subset of U consisting of (t, f, g, h, k)
such that t ∈ Rn

>0, then it sends (t, f, g, h, k) ∈ U0 to τp(t) exp(g) exp(k)r.

We return to the general G not necessarily reductive, that is, in the next theorem, G
is a (general) algebraic linear group over Q.

Theorem 3.4.16. Let x ∈ DSL(2) (resp. D
⋆
SL(2)) and let p be the image of x in Dred,SL(2).

Take the spaces Y , U , U0 in Theorem 3.4.15 for Gred and p, and denote them by Yred,
Ured, and Ured,0, respectively. Let Vred be the image of the open immersion Ured → Dred,SL(2)

in Theorem 3.4.15. Let L = L(r). Let V be the inverse image of Vred in DII
SL(2) (resp.

D⋆
SL(2)). Then there is an open immersion U := Ured × spl(W ) × L̄ → V which sends

(t, f, g, h, k, s, δ) ∈ Ured,0×spl(W )×L to the element of D whose image in Dred×spl(W )×L
is

(τp(t) exp(g) exp(k)r, s, Ad(τp(t) exp(g) exp(k))δ)
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(resp. (τ ⋆p (t) exp(g) exp(k)r, s, Ad(τ ⋆p (t) exp(g) exp(k))δ))

such that the diagram

U → V
↓ ↓
Ured → Vred

is cartesian.

3.4.17. We next consider the local property of DI
SL(2). Let x = (p, Z) ∈ DSL(2). Take

z ∈ Z and let s0 = splW (z) ∈ spl(W ). Then s0 is independent of the choice of z.. Let
r = zred ∈ Dred. Let δ0 = δW (z) ∈ L := L(r). Let n be the rank of p.

Let E = L in the case where x is an A-orbit, and let E = L̄ r {0} in the case where
x is a B-orbit.

Take the space Y in Theorem 3.4.14 for Gred and p, and denote it by Yred here. In
the case where x is a B-orbit, take a real analytic map β0 : L r {0} → R>0 such
that β0(c ◦ δ) = cβ0(δ) for all c ∈ R>0 and δ ∈ L r {0}. We define a subset X of
Yred × Lie (GR,u) × Lie (GR.u) × E as the set of (t, f, g, h, k, u, v, δ) ((t, f, g, h, k) ∈ Yred,
u, v ∈ Lie (GR,u), δ ∈ E) satisfying the following conditions (i)–(iv). Let n be the rank of
p and let J := {j | 1 ≤ j ≤ n, tj = 0}, m ∈ Zn.

(i) um = 0 unless m(j) ≤ 0 for all j ∈ J .
(ii) vm = 0 unless m(j) = 0 for all j ∈ J .
(iii) If δ ∈ L̄r L (this happens only in the case where x is a B-orbit), then v = 0.

(iv) Assume m(j) = 0 for all j ∈ J . Let t′ be an element of Rn
>0 such that t′j = tj

if j ∈ {1, . . . , n} r J . Then if x is an A-orbit, we have vm =
∑n

j=1(t
′
j)

−m(j)um. If x is a

B-orbit and δ ∈ Lr {0}, we have vm = Ad(τx,0(β0(δ)))
−1

∏n
j=1(t

′
j)

−m(j)um.

The following Theorem 3.4.18 is a variant of [21] Part II Theorem 3.4.6.

Theorem 3.4.18. There are an open neighborhood V of (0, . . . , 0) in Y × Lie (GR,u) ×
Lie (GR,u) and an open immersion U → DI

SL(2), where U is the inverse image of V in

X, which sends (0, . . . , δ0) (resp. (0, . . . , 0, 0 ◦ δ)) to x such that if U0 denotes the sub-
set of U consisting of all (t, f, g, h, k, u, v, δ) such that t ∈ RΦ

>0 and δ ∈ L, it sends
(t, f, g, h, k, u, v, δ) ∈ U0 to the element of D whose image in Dred × spl(W )×L is

(τp(t) exp(g) exp(k)r, exp(u)s0, Ad(τp(t) exp(g) exp(k))δ).

Remark 3.4.19. In [21] Part II 3.4.5, in the definition of the space Y I(p, r, R, S), the last
sentence “If t0 = 0, ...” in the condition (6′) should be deleted. After this modification,
Part II Theorem 3.4.6 becomes correct. In our series of papers [21], Part II Theorem 3.4.6
is used in Part IV 2.7.16, but Part IV 2.7.16 is correct with the modified Part II Theorem
3.4.6.

Another remark concerning Part II 3.4.5 is that the presentation of (5′) can be sim-
plified: The condition “exp(v)sr = sr” there is equivalent to a simpler one “v = 0”.

3.4.20. We can show that our SL(2)-spaces belong to the category B′
R(log)

+ of nice
objects in B′

R(log) as in [21] Part IV Section 2.7, though the details are omitted.
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3.5 Proofs for Section 3.4

We give proofs of the statements in Section 3.4 that have not yet proved.

3.5.1. The proofs of Proposition 3.4.4 for Φ ∈ W(G), Proposition 3.4.5 for Φ ∈ W(Gred),
and Proposition 3.4.9 for Φ ∈ W(G) are similar to the corresponding parts in [21] Part
II and Part IV, which are indicated after each proposition.

3.5.2. The proofs for the remaining results in Section 3.4 are also parallel to the corre-
sponding parts in [21] Part II and Part IV.

That is, by Propositions 3.4.4, 3.4.5, and 3.4.9 for respective Φ already proved, we
first endow the Φ-parts of each sets DSL(2) and D

⋆
SL(2) with the space structures. Then we

consider the following version of Proposition 3.4.12 for Φ-part:

(1) U(p) in 3.4.11 is open in DSL(2)(Φ) if Φ(p) ⊂ Φ.

We prove this (1) in 3.5.5 after preparations 3.5.3 and Lemma 3.5.4.

3.5.3. Let Φ ∈ W(G). Fix a splitting α : GΦ
m,R → GΦ,R of Φ and a distance to Φ-

boundary β : D → RΦ
>0. Let J be a subset of Φ. Let n be the order of Φ and let m

be the order of J . Let αJ : GJ
m,R → GJ,R be the splitting of J defined as follows. If we

write the inclusion map J → Φ between totally ordered sets as an injective increasing
map θ : {1, . . . , m} → {1, . . . , n}, then αJ(t1, . . . , tm) = α(t′1, . . . , t

′
n), where: If j ≤ θ(k)

for some k, define t′j := tθ(k) for the smallest integer k such that j ≤ θ(k). Otherwise,
t′j := 1.

Let P be the subset of DSL(2) consisting of all elements p such that Φ(p) = J and
τp = αJ . Let Q be the set of SL(2)-orbits in m variables whose classes belong to P . We
define a map

θα,β : P → Q

as follows. (There is an evident projection Q → P , but the composition P
θα,β−→ Q → P

need not be the identity map.)
Let p ∈ P . Take an SL(2)-orbit (ρ, ϕ) with class p. Then θα,β(p) is the SL(2)-orbit

(ρ′, ϕ′) whose class p′ satisfies τp′ = τp = αJ such that the Nj of ρ′ (denote it by N ′
j)

for 1 ≤ j ≤ m is defined by using Nj := (Nj of ρ) as N ′
j := Ad(α(β(r)))−1(Nj), where

r = ϕ(i), and such that ϕ′ is defined as ϕ′(z) = α(β(r))−1ϕ(z). Then (ρ′, ϕ′) depends
only on p and is independent of the choice of (ρ, ϕ).

Lemma 3.5.4. Let E be a field of characteristic 0 and let V be a finite-dimensional vector
space over E on which the Lie algebra sl(2, E)m acts. Denote the action of X ∈ sl(2, E)m

on V by [X, ·]. For 1 ≤ j ≤ m, let Nj ∈ sl(2, E)m be the element whose j-th component

is

(

0 1
0 0

)

and whose k-th components are 0 for all k 6= j, and let Yj ∈ sl(2, E)m be

the element whose j-th component is

(

−1 0
0 1

)

and whose k-th components are 0 for all

k 6= j. Let Bj be the set of all elements v of V such that [Yj, v] = −2v, [Yk, v] = 0 for
all k 6= j, and [Nk, v] = 0 for all k 6= j. Let Sj ∈ Bj for 1 ≤ j ≤ m. Then there is an
element v ∈ V such that [Yj, v] = 0 for all j and such that [Nj , v] = Sj for all j.
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Proof. Let Aj be the set of all elements v of V such that [Yk, v] = 0 for all k and [Nk, v] = 0
for all k 6= j. For a finite-dimensional E-vector space V ′ on which the Lie algebra
sl(2, E) acts, if we define N, Y ∈ sl(2, E) in the similar way to the above and we define
V ′
a = {v ∈ V ′ | [Y, v] = av} for a ∈ Z, the map V ′

0 → V ′
−2 ; v 7→ [N, v] is surjective as

is well known. By applying this to V ′ = {v ∈ V | [Yk, v] = [Nk, v] = 0 for all k 6= j},
we have that the map Aj → Bj ; v 7→ [Nj , v] is surjective. Take vj ∈ Aj such that
[Nj , vj] = Sj. Let v =

∑

j vj . Then [Nj , v] = Sj for all j.

3.5.5. Assume that G is reductive. We prove 3.5.2 (1). To do so, it is enough to show
the following (1).

(1) If p′ ∈ U(p) and if p′λ ∈ DSL(2)(Φ) converges to p
′, then p′λ ∈ U(p) for all sufficiently

large λ. (Here (p′λ)λ denotes a directed family.)

Since U(p′) ⊂ U(p), by replacing p′ by p, we can reduce (1) to the following:

(2) If pλ ∈ DSL(2)(Φ) converges to p, then pλ ∈ U(p) for all sufficiently large λ.

Dividing the sequence (pλ)λ into subsequences, we may assume that, for a fixed J ⊂
Φ = {1, ..., n}, the family of weight filtrations associated to pλ is J for every λ. Since
DSL(2)(Φ(p)) is open in DSL(2)(Φ) (in fact, the former is the inverse image of the open set
of RΦ

≥0 consisting of elements whose ΦrΦ(p)-components are non-zero), we may assume
J ⊂ Φ(p). Assume J ⊂ Φ(p). Let m be the order of J .

Fix a splitting α of Φ. Let αΦ(p) : G
Φ(p)
m,R → GΦ,R (resp. αJ : GJ

m,R → GJ,R) be the
splitting of Φ(p) (resp. J) induced by α defined as in 3.5.3.

We prove the following.

(3) We may assume τp = αΦ(p) (3.5.3) and τpλ = τpJ = αJ for all λ.

We prove (3). There exists a unique u ∈ (GΦ(p))u(R) = (G′
Φ(p))u(R) such that τp(t) =

uαΦ(p)(t)u
−1 (t ∈ R

Φ(p)
>0 ) and there exists a unique uλ ∈ (GJ)u(R) = (G′

J)u(R) such that
τpλ(t) = uλαJ(t)u

−1
λ (t ∈ RJ

>0) . Then τpJ (t) = uαJ(t)u
−1 (t ∈ RJ

>0). For j ∈ J , we have
the convergence splBS

j (pλ) → splBS
j (p) = splBS

j (pJ). Since τpλ gives (splBS
j (pλ))j∈J and τpJ

gives (splBS
j (pJ))j∈J , uλ converges to u. Let p′ = u−1p and p′λ := u−1

λ pλ. Then τp′ = αΦ(p)

and τp′λ = τp′J = αJ and p′λ → p′. If we can prove that p′λ ∈ G′
J(R)p′J for λ sufficiently

large, we can obtain pλ ∈ G′
J(R)pJ for λ sufficiently large. This proves (3).

We now assume τp = αΦ(p) and τpλ = τpJ = αJ for all λ.

Fix a distance β to Φ-boundary. Let (ρ′J , ϕ
′
J) := θα,β(pJ) and (ρ′λ, ϕ

′
λ) := θα,β(pλ)

(3.5.3). Let (ρ′J , ξ
′
1,J) and (ρ′λ, ξ

′
1,λ) be the elements of the set (iv) in Lemma 3.1.3 corre-

sponding to (ρ′J , ϕ
′
J) and (ρ′λ, ϕ

′
λ), respectively.

We prove the following.

(4) (ρ′λ, ξ
′
1,λ) converges to (ρ′J , ξ

′
1,J) for the compact-open topology of the space of

continuous homomorphisms SL(2,R)m × S(1)
C/R(R)→ G(R).

We prove (4). For j ∈ J , let D(j) be the subset of D consisting of all F such that
for every V ∈ Rep(G), (W (j), F (V )) is an R-mixed Hodge structure. Then we have a
continuous map δW (j) : D(j) → Lie (GR) (the δ in 1.3.4 for the weight filtration W (j)).
Let (ρJ , ϕJ) and (ρλ, ϕλ) be SL(2)-orbits in m variables whose classes in DSL(2) are pJ
and pλ, respectively. Then να,β(p) = να,β(pJ) = αβ(r)−1r, where r = ϕJ(i). Since
r = exp(iN1 + · · ·+ iNj)ϕJ({0}j × {i}m−j), where Nj is the Nj of ρJ , we have να,β(pJ) ∈
⋂

j∈J D
(j) and δW (j)(να,β(pJ)) = N ′

1 + · · ·+ N ′
j for 1 ≤ j ≤ m, where N ′

j is the Nj of ρ
′
J .
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Similarly, να,β(pλ) ∈
⋂

j∈J D
(j) and δW (j)(να,β(pλ)) = N ′

1,λ+· · ·+N ′
j,λ for 1 ≤ j ≤ m, where

N ′
j,λ is the Nj of ρ′λ. Since pλ converges to p, να,β(pλ) converges to να,β(p) = να,β(pJ).

Hence N ′
j,λ converges to N ′

j for 1 ≤ j ≤ m. Furthermore, ϕ′
λ(i) = να,β(pλ) converges to

ϕ′
J(i) = να,β(pJ). This proves (4).
We prove the following.
(5) If λ is sufficiently large, there is gλ ∈ G′(R) which commutes with αJ(t) for all

t ∈ (R×)m such that N ′
j,λ = Ad(gλ)N

′
j for all j ∈ J and such that gλ → 1.

We apply Lemma 3.5.4 to the case E = R, V = R ⊗Q Lie (G′), and the action of
sl(2,R)m on V is induced by the adjoint action of SL(2)mR on V via ρJ . Let H ⊂ G′

R

be the centralizer of the image of αJ : Gm
m,R → G′

R. Let Bj (1 ≤ j ≤ m) be as in
Lemma 3.5.4, let B =

∏m
j=1Bj , and let b = (N ′

j)1≤j≤m ∈ B. Then Lie (H) = {v ∈
V | [Yj, v] = 0 for 1 ≤ j ≤ m}. The map H → B ; g 7→ Ad(g)b induces the map
Lie (H) → Tb(B) = B, where Tb(B) denotes the tangent space of B at b, and this last
map is written as v 7→ ([v,N ′

j])1≤j≤m. By Lemma 3.5.4, this last map is surjective. Hence
the map H → B is smooth at 1 ∈ H(R) as a morphism of algebraic varieties. Hence
there is gλ ∈ H(R), gλ → 1 such that Ad(gλ)Nj = Nj,λ. Thus (5) is proved.

Now we complete the proof of 3.5.2 (1). By (5), we may assume that ρ′λ = ρ′J . Consider

ξ′1,λ, ξ
′
1,J : S

(1)
C/R → CG′(ρ) (Lemma 3.1.3). Here CG′(ρ) denotes the centralizer. We use a

result in [26] concerning homomorphisms from compact groups to locally compact groups,

applied to homomorphisms from the compact group S
(1)
C/R(R) to the locally compact group

CG′(ρ)(R) given by ξ′1,λ, ξ
′
1,J . By the above-mentioned result, if λ is sufficiently large, there

is an A ∈ CG′
R
(ρ)(R) such that ξ′1,λ = Aξ′1,JA

−1. Hence (ρ′λ, ξ
′
1,λ) = A(ρ′J , ξ

′
1,J)A

−1 and
hence, by Lemma 3.1.3, (ρ′λ, ϕ

′
λ) is the twist of (ρ′J , ϕ

′
J) by A. Hence pλ is the twist of pJ

by an element of G′
J(R). Thus 3.5.2 (1) is proved.

3.5.6. As in [21] Part II Section 3.4, we can reformulate Theorems 3.4.15, 3.4.16, and
3.4.18 in terms of Φ-parts, which will be equivalent to the original statements as soon as
the global space structures will be well-defined (Propositions 3.4.7 and 3.4.10), and whose
proofs are similar to those of [21] Part II Section 3.4 and Part IV Theorem 2.3.14. Here,
the openness of U(p) in DSL(2)(Φ) in 3.5.2 (1) is used in connection with the condition
(iv) in 3.4.14.

The well-definedness of the global structures as objects of B′
R(log) on the SL(2)-spaces

(Proposition 3.4.7, Proposition 3.4.10) follows from the versions of Theorems 3.4.15, 3.4.16
and 3.4.18 in terms of Φ-parts explained above similarly as in the corresponding results in
[21] Part II and Part IV indicated after each proposition. That is, first we directly prove
that the structure on each Φ-part is independent on the choices of (α, β). Next, since
the intersection of Φ-part and Φ′-part coincides with Φ ∩ Φ′-part, it is enough to show
that the localization map from Φ′-part to Φ-part is an open immersion whenever Φ′ ⊂ Φ.
The last statement is proved by using the version of Theorems 3.4.15, 3.4.16 and 3.4.18
in terms of Φ-parts.

3.6 The fan of parabolic subgroups

3.6.1. For a split torus T over a field, let X(T ) = Hom(T,Gm) be the group of characters
of T and let X∗(T ) = Hom (Gm, T ) be the group of cocharacters of T .
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In this Section 3.6, we give a variant 3.6.9 of the classical theory of Weyl fan (3.6.10).
Let E be a field of characteristic 0, let G be a reductive algebraic group over E, let T be
a split torus over E, and let a : T → G be a homomorphism. Then in 3.6.9, we will have
a bijection between a certain set of parabolic subgroups of G and the set of all cones of
a certain cone decomposition of R ⊗ X∗(T ). In the case where E is algebraically closed
and T is a maximal torus in G with the inclusion map a : T → G, this is the well-known
bijection (3.6.10) between the set of all parabolic subgroups of G which contain T and
the set of all cones of a cone decomposition called Weyl fan. This variant 3.6.9 should be
also well-known, and is treated in our previous work [21] Part IV Section 2.6 in a certain
situation.

In the next Section 3.7, we will use the results in 3.6 to connect the space of SL(2)-
orbits and the space of Borel–Serre orbits

3.6.2. Let X∗ and X∗ be finitely generated free abelian groups which are the Z-duals of
each other. We will denote the paring X∗ ×X∗ → Z by 〈·, ·〉.

Assume that we are given a finite subset R of X∗ such that R = −R.
In 3.6.3–3.6.5, we will show that we have a fan Σ(R) whose support is R ⊗ X∗.

(Actually, the cones in this fan need not be sharp, and so Σ(R) should be called a quasi-
fan. But we call it a fan for simplicity.)

For a finite subset S of X∗, let 〈S〉 be the cone in R⊗X∗ generated by S and let

σ(S) = {y ∈ R⊗X∗ | 〈y, x〉 ≥ 0 for all x ∈ S}.

We have 〈S〉 = {x ∈ X∗ | 〈y, x〉 ≥ 0 for all y ∈ σ(S)}.

Lemma 3.6.3. For a subset R′ of R, the following two conditions (i) and (ii) are equiv-
alent.

(i) There is y ∈ X∗ such that R′ = {x ∈ R | 〈y, x〉 ≥ 0}.
(ii) The following (ii-1) and (ii-2) are satisfied.
(ii-1) R = R′ ∪ (−R′).
(ii-2) 〈R′〉 ∩R = R′.

Proof. The implication (i) ⇒ (ii) is clear.
We prove (ii) ⇒ (i). Let y be an interior point of σ(R′). We prove that R′ satisfies

(i) with this element y. Let x ∈ R and assume 〈y, x〉 ≥ 0. We prove x ∈ R′. Assume
x /∈ R′. Then since R = R′ ∪ (−R′), we have −x ∈ R′. Hence 〈y,−x〉 ≥ 0 and hence
〈y,−x〉 = 0. Since y is in the interior of σ(R′) and −x ∈ R′, this shows that −x = 0.
Hence x = −x ∈ R′.

3.6.4. Let Σ∗(R) be the set of all subsets R′ of R satisfying the equivalent conditions in
3.6.3.

Note that R′ ∈ Σ∗(R) is recovered from σ(R′) as R′ = {x ∈ R | 〈y, x〉 ≥ 0 for all y ∈
σ(R′)}.

Let
Σ(R) = {σ(R′) | R′ ∈ Σ∗(R)}.

We have a bijection Σ∗(R)→ Σ(R) ; R′ 7→ σ(R′).
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Proposition 3.6.5. Σ(R) is a rational finite fan whose support is R⊗X∗.

Proof. We need to prove the following (i), (ii) and (iii).
(i) If σ ∈ Σ(R) and if τ is a face of σ, then τ ∈ Σ(R).
(ii) If σ, τ ∈ Σ(R), then σ ∩ τ ∈ Σ(R).
(iii) If σ, τ ∈ Σ(R) and τ ⊂ σ, τ is a face of σ.
Proof of (i). Let σ = σ(R′) (R′ ∈ Σ∗(R)). Let τ be a face of σ and let A = {x ∈

〈R′〉 | 〈y, x〉 = 0 for all y ∈ τ}. Then A is a face of 〈R′〉 and τ = {y ∈ σ | 〈y, x〉 =
0 for all x ∈ A}. Let S = R′ ∩ A. Since the cone 〈R′〉 is generated by R′, the cone A is
generated by S. Hence τ = {y ∈ σ | 〈y, x〉 = 0 for all x ∈ S} = σ(R′ ∪ (−S)) ∈ Σ(R).

Proof of (ii). For R′
1, R

′
2 ∈ Σ∗(R), we have σ(R′

1) ∩ σ(R′
2) = σ(R′

3), where R′
3 =

〈R′
1 ∪R′

2〉 ∩R ∈ Σ∗(R).
Proof of (iii). If R′, R′′ ∈ Σ∗(R) and if R′ ⊂ R′′, then R′′ = R′ ∪ (−S) for some subset

S of R′, and hence σ(R′′) is a face of σ(R′).
We prove that the support of Σ(R) is R ⊗ X∗. It is sufficient to prove that for each

y ∈ X∗, there is R′ ∈ Σ∗(R) such that y ∈ σ(R′). In fact R′ = {x ∈ R | 〈y, x〉 ≥ 0} has
this property.

3.6.6. Now let G be a reductive algebraic group over a field E of characteristic 0, let T
be an E-split torus, and let a : T → G be a homomorphism. Let

X∗ = X(T ) = Hom(T,Gm), X∗ = X∗(T ) = Hom (Gm, T ) = Hom (X(T ),Z).

Let
R = {χ ∈ X∗ | Lie (G)χ 6= 0},

where Lie (G)χ denotes the part of Lie (G) on which the adjoint action of T via a is given
by χ.

3.6.7. Let the notation be as in 3.6.6. Then we have R = −R. This can be seen as
follows.

In the case where E is algebraically closed and T is a maximal torus in G with a :
T → G the inclusion map, R = −R is well-known in the theory of root systems.

The general case is reduced to this case by taking an algebraic closure Ē of E and a
maximal torus in G ⊗E Ē which contains the image of a : T ⊗E Ē → G ⊗E Ē.

Lemma 3.6.8. Let the notation be as in 3.6.6. Then for a connected closed algebraic
subgroup P of G, the following two conditions (i) and (ii) are equivalent.

(i) There is y ∈ X∗ such that P is the parabolic subgroup of G associated to the
homomorphism a ◦ y : Gm → G in the sense of 3.3.7.

(ii) There is R′ ∈ Σ∗(R) such that Lie (P ) =
⊕

χ∈R′ Lie (G)χ−1. Here we denote the

group law of X∗ multiplicatively, and so χ−1 denotes the inverse of χ.

Proof. Assume that (i) is satisfied. Let R′ ∈ Σ∗(R) be the set associated to y as in 3.6.3
(i). Then (ii) is satisfied by this R′.

Conversely assume that (ii) is satisfied. Take y ∈ X∗ which gives R′ as in 3.6.3 (i),
and let P1 be the parabolic subgroup of G associated to a ◦ y. Then Lie (P ) = Lie (P1).
Since both P and P1 are connected, we have P = P1.
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3.6.9. Let the notation be as in 3.6.6.
Let P be the set of all parabolic subgroups P of G satisfying the equivalent conditions

in Lemma 3.6.8.
For P ∈ P, let R(P ) := {χ ∈ X∗ | Lie (P )χ−1 6= 0}.
By Lemma 3.6.8, we have a bijection

P 1:1←→ Σ∗(R)

which sends P ∈ P to R(P ) and conversely sends R′ ∈ Σ∗(R) to the unique parabolic
subgroup P of G such that Lie (P ) =

⊕

χ∈R′ Lie (G)χ−1 .
Hence we have the composite bijection

P 1:1←→ Σ(R).

For P ∈ P, we denote the corresponding element of Σ(R) by σ(P ).

3.6.10. Let the notation be as in 3.6.6. Assume that E is algebraically closed, T is a
maximal torus in G, and a : T → G is the inclusion map.

In this case, Σ(R) is called the Weyl fan and P coincides with the set of all parabolic
subgroups of G which contain T .

If P ∈ P is a minimal parabolic subgroup, i.e., a Borel subgroup, the open cone of
interior points of σ(P ) is called the dominant Weyl chamber for P ([27] Definition 21.35)
and Σ(R) =

⋃

w (faces of wσ(P )), where w ranges over all elements of the Weyl group
(while P is fixed).

See [34] Theorem 8.4.3.

3.6.11. Let the notation be as in 3.6.6. Now fix an isomorphism T ≃ Gn
m,E .

Then X(T ) is identified with Zn. Let X(T )+ = Nn ⊂ Zn = X(T ). Let R+ =
R ∩X(T )+. Let Σ∗(R)+ be the subset of Σ∗(R) consisting of all R′ such that R+ ⊂ R′.
Let P+ be the corresponding subset of P and let Σ(R)+ ⊂ Σ(R) be the corresponding
subset. Then Σ(R)+ is a subfan of Σ(R). Its support is X∗(R)R,+ = Rn

≥0 = σ(R+) ⊂
Rn = R ⊗X∗. (In fact, if y ∈ X∗ and y ∈ σ(R+), then for R′ := {x ∈ X∗ | 〈y, x〉 ≥ 0},
we have R′ ∈ Σ∗(R)+ and y ∈ σ(R′).)

For 1 ≤ j ≤ n, let W (j) be the increasing filtration on the functor V 7→ V from

RepE(G) to the category of E-vector spaces associated to Gm,E
j-th−→ Gn

m,E → G (3.3.1),

where j-th means the j-th component. Let GΦ ⊂ G be the stabilizer of Φ := (W (j))1≤j≤n,
and let G◦Φ be its connected component containing 1. Then G◦Φ is the unique connected
algebraic subgroup of G such that Lie (G◦Φ) =

⊕

χ∈R+
Lie (G)χ−1 .

For P ∈ P, P ∈ P+ if and only if G◦Φ ⊂ P .

3.6.12. This is a complement to 3.6.11. Let G be a reductive group and assume that we
are given increasing filtrations W (j) (1 ≤ j ≤ n) on the functor V 7→ V from RepE(G) to
the category of E-vector spaces such that there is a homomorphism Gn

m,E → G whose j-th

Gm,E → G gives W (j) for 1 ≤ j ≤ n. Let Φ = (W (j))1≤j≤n and let GΦ be the stabilizer
of Φ. Then we have a canonical homomorphism T := Gn

m,E → GΦ,red whose every lifting
T → GΦ gives Φ. The sets R+, Σ∗(R)+, and P+, and the fan Σ(R)+ associated to
Gn
m,E → G are independent of the choice of such lifting, for such liftings are conjugates

in GΦ of each other.
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Lemma 3.6.13. Let the situation and the notation be as in 3.6.11. Then the following
three conditions are equivalent.

(i) G◦Φ is a parabolic subgroup of G.
(ii) R+ ∈ Σ∗(R), that is, R = R+ ∪ (−R+).
(iii) Σ(R)+ coincides with the set of all faces of σ(R+).

Proof. This is clear.

3.7 Relation of D⋆
SL(2) and DBS

We relateD⋆
SL(2) andDBS. To do this, the problem is thatD⋆

SL(2) does not involve parabolic
subgroups though DBS does. We define a modification

D⋆,W
SL(2),which is something like “D⋆

SL(2) plus parabolic subgroups,”

of D⋆
SL(2) and connect D⋆

SL(2) and DBS via D⋆,W
SL(2). More precisely, we define a log modifi-

cation D⋆,W
SL(2) → D⋆

SL(2) associated to cone decompositions related to parabolic subgroups,

and define a morphism D⋆,W
SL(2) → DBS.

3.7.1. Assume that G is reductive.
For Φ ∈ W(G) and for a splitting α : GΦ

m,R → GR of Φ, we apply 3.6.12 to the case
E = R, G = GR, T = GΦ

m,R, and a = α.
Note that for Φ ∈ W(G), we haveX(GΦ

m)+ = NΦ → M>0/O×
>0 onDSL(2)(Φ). The cone

decomposition of X∗(G
Φ
m)R,+ in 3.6.12 defines a log modification DW

SL(2)(Φ) of DSL(2)(Φ).
It is independent of the choice of the splitting α. When Φ moves, these are glued to a log
modification DW

SL(2) → DSL(2). (Here the superscript W respects the Weyl fan. For a log

modification in the category B′
R(log), see [21] Part IV 1.4.6.)

In general, for a linear algebraic group G over Q, we define D⋆,W
SL(2) to be the fiber

product of D⋆
SL(2) → Dred,SL(2) ← DW

red,SL(2).

3.7.2. As a set, D⋆,W
SL(2) is identified with the set of triples (x, P, Z), where p ∈ Dred,SL(2),

x := (p, Z ′) ∈ D⋆
SL(2), P is a parabolic subgroup of Gred satisfying the conditions in 3.6.11

and the condition Gred,Φ,u ⊂ Pu with Φ being the set of weight filtrations associated to p,
and Z is a subset of Z ′ satisfying the following (i). Let Ap,P be the inverse image of AP
under τp : R

Φ
>0 → Pred(R).

(i) If x is an A-orbit, Z is a τ ⋆x(Ap,P )-orbit. If x is a B-orbit, Z is a τ ⋆x(R>0×Ap,P )-orbit.

The map D⋆,W
SL(2) → D⋆

SL(2) is understood as (x, P, Z) 7→ x.

3.7.3. We have a map

D⋆,W
SL(2) → DBS ; (x, P, Z) 7→ (P,AP ◦ Z).

The fact that this is a morphism is proved by using the local structure theorem (The-
orem 3.4.16). The proof is similar to the proof of [21] Part IV Theorem 2.6.22 (1).
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Remark 3.7.4. In [21] Part IV Sections 2.5 and 2.6, we considered

D⋆,+
SL(2) → D⋆

SL(2) → D⋆,−
SL(2) ← D⋆,BS

SL(2) → DBS.

In that situation, DW
red,SL(2) in 3.7.1 coincides with DSL(2)(gr

W )BS in [21] Part IV 2.6.3,

D⋆,W
SL(2) is the fiber product of D⋆

SL(2) → D⋆,−
SL(2) ← D⋆,BS

SL(2), and the map D⋆,W
SL(2) → DBS in

3.7.3 coincides with the composition D⋆,W
SL(2) → D⋆,BS

SL(2) → DBS. The fiber product property
can be seen as

D⋆
SL(2) ×D⋆,−

SL(2)
D⋆,BS

SL(2) = D⋆
SL(2) ×D⋆,−

SL(2)
(D⋆,−

SL(2) ×DSL(2)(grW ) DSL(2)(gr
W )BS)

= D⋆
SL(2) ×DSL(2)(grW ) DSL(2)(gr

W )BS = D⋆
SL(2) ×DSL(2)(grW ) D

W
red,SL(2) = D⋆,W

SL(2),

where the first equality is [21] Part IV Proposition 2.6.14.

Remark 3.7.5. (1) In the second line of [21] Part IV 2.6.3, D⋆,−
SL(2)(gr

W ) should be

DSL(2)(gr
W ). In the last line of loc. cit., D⋆

SL(2)(gr
W )BS should be DSL(2)(gr

W )BS.

(2) In the proof of [21] Part IV Proposition 2.6.9, line 11 from the end of the proof,
L = S(σ) ∪ S(σ)−1 must be corrected as R(Q) ⊂ S(σ) ∪ S(σ)−1.

3.8 Case of Shimura varieties

3.8.1. Assume that G is reductive and that h0 : SC/R → GR satisfies the condition that
the Hodge type of Lie (GR) via h0 is in {(1,−1), (0, 0), (−1, 1)} (as in Shimura data).
Then h0 is R-polarizable by [12] (Lemma 1.5.3).

We prove

Theorem 3.8.2. Let the assumption be as in 3.8.1. Then we have an isomorphism

DW
SL(2)

∼→ DSL(2)

in B′
R(log). In particular, the identity map of D extends uniquely to a morphism

DSL(2) → DBS

of locally ringed spaces with log structures with sign.

3.8.3. Note that for a field E of characteristic 0 and for n ≥ 0, a finite-dimensional repre-
sentation of SL(2)nE over E is semisimple and each irreducible representation is isomorphic
to ρ(r) := Symr(1)(ρ1)⊗· · ·⊗Symr(n)(ρn) for some r ∈ Nn, where ρj : SL(2)

n
E → GL(2)E is

the composition of the j-th projection SL(2)nE → SL(2)E and the inclusion homomorphism
SL(2)E → GL(2)E. Consider the homomorphism Gn

m,E → SL(2)nE whose restriction to
the k-th Gm,E (1 ≤ k ≤ n) is

t 7→ (g1, . . . , gn), gj =

(

t−1 0
0 t

)

for 1 ≤ j ≤ k, gj = 1 for k < j ≤ n.
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Write the standard base of E2 by (e1, e2). Then the action of Gn
m,E on

⊗n
j=1(e

a(j)
1 e

r(j)−a(j)
2 )

(a ∈ Nn, a ≤ r) via ρ(r) is given by the character

(

k
∑

j=1

r(j)− 2

k
∑

j=1

a(j))1≤k≤n ∈ Zn = X(Gn
m,E).

We will use the following lemma later.

Lemma 3.8.4. Let r ∈ Nn and let c ∈ Zn = X(Gn
m,E) be a character which appears in

the representation of Gn
m,E in ρ(r) via the above homomorphism Gn

m,E → SL(2)nE. Assume
that either one of the following conditions (i)–(iii) is satisfied. Then we have either c ∈ Nn

or −c ∈ Nn.
(i) r(k) = 0 for all k.
(ii) There is k such that 1 ≤ k ≤ n, r(k) > 0, and r(j) = 0 for all j 6= k.
(iii) There are k, l such that 1 ≤ k < l ≤ n, r(k) > 0, r(l) = 1, and r(j) = 0 for

j 6= k, l.

Proof. We consider the character c of the action of Gn
m,R on

⊗n
j=1(e

a(j)
1 e

r(j)−a(j)
2 ) (0 ≤

a(j) ≤ r(j) for 1 ≤ j ≤ n).
In the case (i), c = 0.
In the case (ii), c(j) = 0 if j < k and c(j) = r(k)− 2a(k) if j ≥ k.
In the case (iii), c(j) = 0 if j < k, c(j) = c(k) = r(k) − 2a(k) if k ≤ j < l, and

c(j) = c(l) = r(k)+ r(l)−2(a(k)+a(l)) if j ≥ l. Since r(l) = 1 and a(l) ∈ {0, 1}, we have
|c(k) − c(l)| = 1. Hence we have either {c(k), c(l)} ⊂ N or {−c(k),−c(l)} ⊂ N. Since
c(j) ∈ {0, c(k), c(l)} for all j, we have either c ∈ Nn or −c ∈ Nn.

3.8.5. Assume that G is reductive. Let (ρ, ϕ) be an SL(2)-orbit in n variables of rank
n for (G, h0), and let V ∈ Rep(G). Let r ∈ Nn and assume that ρ(r) appears in the
action of SL(2)nR on VR induced by ρ. Then, by Claim in the proof of 3.1.4, for the Hodge
structure of V given by any element of D, there is p ∈ Z such that the (p+b, p−b)-Hodge
component of V is non-zero for 0 ≤ b ≤

∑n
j=1 r(j).

3.8.6. We prove Theorem 3.8.2. Let Φ ∈ W(G). Let (ρ, ϕ) be an SL(2)-orbit in n
variables of rank n whose associated family of weight filtrations is Φ. Then by 3.8.5 and
by the fact that only the Hodge type (1,−1), (0, 0), (−1, 1) appears in Lie (G), we have
that if ρ(r) appears in the representation Lie (GR) of SL(2)

n
R, then we have

∑n
j=1 r(j) ≤ 2.

Hence if ρ(r) appears in Lie (GR), the assumption of 3.8.4 for r is satisfied. Hence by
3.8.4, each character of Gn

m,R which appears in Lie (GR) is either in R+ or −R+, that is,
R = R+∪(−R+). Hence the condition (ii) of 3.6.13 is satisfied for Φ. Hence the condition
(iii) of 3.6.13 is satisfied. This proves that DW

SL(2)(Φ)→ DSL(2)(Φ) is an isomorphism and
hence proves Theorem 3.8.2.

3.8.7. In the classical case of h0 : SC/R → GSp(g)R which gives the Siegel upper half
space Hg of degree g, DSL(2) → DBS is a homeomorphism ([23] Theorem 6.7).

But even in the case g = 1, the real analytic structures of DBS and DSL(2) are slightly
different as is seen in 4.9.1. For the case of some Shimura variety as in 4.9.3, the map
DSL(2) → DBS is not bijective.
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3.9 Relation of D⋆
SL(2) and DII

SL(2)

We define a log modification D⋆,+
SL(2) → D⋆

SL(2) associated to a cone decomposition, and

define a morphism D⋆,+
SL(2) → DII

SL(2).

3.9.1. Let Φ be a finite set of weight filtrations which has a common splitting.
Note that we have X(Gm ×GΦ

m)+ = N ×NΦ → M>0/O×
>0 on D⋆

SL(2)(Φ). Let β⋆0 ∈
M/O× be the image of (1, 0, ..., 0) and let βtot ∈M/O× be the image of (0, 1, ..., 1). These
β⋆0 and βtot are glued to global sections of M>0/O×

>0 on D⋆
SL(2) which we still denote by

β⋆0 and βtot, respectively.
Let D⋆,+

SL(2)(Φ) be the log modification of D⋆
SL(2)(Φ) associated to the cone decomposi-

tion of X∗(Gm ×GΦ
m)+ = N×NΦ consisting of cones

σ1 := {(x0, x1, . . . , xn) | x0 ≤
∑n

j=1xj} and σ2 := {(x0, x1, . . . , xn) | x0 ≥
∑n

j=1xj}

and their faces.
When Φ moves, these are glued to a log modification D⋆,+

SL(2) → D⋆
SL(2).

For j = 1, 2, let D⋆,+
SL(2)(σj) be the open set of D⋆,+

SL(2) whose intersection with D⋆,+
SL(2)(Φ)

coincides with its σj-part. Then D
⋆,+
SL(2)(σ1) (resp. D

⋆,+
SL(2)(σ2)) coincides with the set of all

points s of D⋆.+
SL(2) such that βtot (resp. β

⋆
0) is divided by β⋆0 (resp. βtot) at s.

3.9.2. We define a map D⋆,+
SL(2) → DII

SL(2) as follows (cf. [21] Part IV 2.5.4).

Let x+ be a point of D⋆,+
SL(2) lying over x ∈ D⋆

SL(2). We define the image xII of x+ in

DII
SL(2). There are four cases.

Case 1. Both β⋆0 and βtot are trivial at x+. That is, x+ = x ∈ D.
Case 2. β⋆0 is strictly divided by βtot at x

+.
Case 3. βtot is strictly divided by β⋆0 at x+.
Case 4. β⋆0 and βtot coincide at x+ but are nontrivial.
In Case 1, xII = x+ = x ∈ D.
In Cases 2–4, write x = (p, Z).
In Case 2, xII is x = (p, Z) regarded as an element (a B-orbit) of DSL(2).
In Case 3, xII is (p, Zspl), where Zspl := {splW (z)(zred) | z ∈ Z}. (See 1.3.9 for the

notation.)

In Case 4, Z in x = (p, Z) is a τ ⋆x(R>0 × R
Φ(p)
>0 ) = τx(R>0 × R

Φ(p)
>0 )-orbit, and x+ is

identified with a triple (p, Z, Z ′) where Z ′ is a τx({1} ×R
Φ(p)
>0 )-orbit contained in Z. We

define xII = (p, Z ′).
The proof of the fact that the map just defined is a proper and surjective morphism

is similar to that of [21] Part IV Theorem 2.5.5 (1).

Proposition 3.9.3. There is a unique morphism D⋆,mild
SL(2) → DII

SL(2) of B′
R(log) which

extends the identity map of D.

This is a G-MHS version of a part of [21] Part IV Theorem 2.5.5 (1), and proved
similarly as follows. The map D⋆,+

SL(2) → D⋆
SL(2) is an isomorphism over the open set D⋆,mild

SL(2)

of D⋆
SL(2) as is easily seen. Hence the morphism D⋆,+

SL(2) → DII
SL(2) induces a morphism

D⋆,mild
SL(2) → DII

SL(2).
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Remark 3.9.4. Let B′
R(log)

+ be the full subcategory of B′
R(log) defined in Part IV 2.7.5

of [21]. Then by the method in Section 2.7 of ibid. basing on the local structure theorems
(Theorems 3.4.16 and 3.4.18), we can prove the following G-MHS version of Theorem
2.7.14 of ibid. The spaces DI

SL(2), D
II
SL(2), D

⋆
SL(2), D

⋆,W
SL(2), D

⋆,+
SL(2) belong to B′

R(log)
+. We

do not give the details of the proof.

3.10 Valuative spaces, I

Recall that, for an abelian group L, a submonoid V of L is said to be valuative if V ∪V −1 =
L.

3.10.1. We review the associated valuative space.
For an object S of B′

R(log), we have a locally ringed space Sval endowed with a log
structure with sign defined as in [21] Part IV 3.1.13. As a set, Sval is the set of triples
(s, V, h), where s ∈ S, V is a valuative submonoid of (MS/O×

S )
gp
s such that V ⊃ (MS/O×

S )s
and such that V ×∩ (MS/O×

S )s = {1}, and, Ṽ>0 being the inverse image of V in Mgp
S,>0,s, h

is a homomorphism (Ṽ>0)
× → Rmult

>0 extending the evaluation homomorphism f 7→ f(s)
on O×

S,>0,s at s.
[21] Part IV Proposition 3.1.9 explicitly describes the projection Sval → S as a pro-

jective limit of log modifications of S ([21] Part IV Proposition 1.4.6). It follows that the
projection Sval → S is proper and surjective (Corollary 3.1.10).

3.10.2. By 3.10.1, we have the following locally ringed spaces with a log structure with
sign

DBS,val, D
⋆
SL(2),val, D

I
SL(2),val, D

II
SL(2),val

associated to the objects DBS, D
⋆
SL(2), D

I
SL(2), D

II
SL(2) of B′

R(log), respectively.

The underlying sets of DI
SL(2),val and D

II
SL(2),val are identified because the log structure

with sign of DI
SL(2) is the inverse image of that of DII

SL(2). We will denote their common
underlying set by DSL(2),val.

Theorem 3.10.3. (1) There is a unique morphism D⋆
SL(2),val → DBS,val which extends the

identity map of D. This map is injective.
(2) There is a unique morphism D⋆

SL(2),val → DII
SL(2),val which extends the identity map

of D. It is proper and surjective.

Proof. (1) The morphism D⋆,W
SL(2) → DBS in Section 3.7 induces the morphism D⋆

SL(2),val →
DBS,val which extends the identity map of D because D⋆,W

SL(2) is a log modification of D⋆
SL(2)

(3.7.2). The uniqueness is by the density of D in D⋆
SL(2),val. The proof of the injectivity is

similar to the proof of [21] Part IV Theorem 3.4.4 (1).
(2) The morphism D⋆,+

SL(2) → DII
SL(2) in Section 3.9 induces the morphism D⋆

SL(2),val →
DII

SL(2),val which extends the identity map of D because D⋆,+
SL(2) is a log modification of

D⋆
SL(2) (cf. 3.9.2). The uniqueness is by the same reason as in (1).

This morphism is proper, because both terms are proper over Dred,SL(2) × spl(W ) by
Proposition 3.4.8. The surjectivity of this map follows from its properness and the fact
that the image of this map contains D and hence is dense in DII

SL(2),val.
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3.10.4. The inverse image of Dmild
BS,val under D

⋆
SL(2),val → DBS,val is D

⋆,mild
SL(2),val.

Remark 3.10.5. Let CR(val)+ be the category defined in Part IV 3.2.5 of [21]. Then
by the method in Section 3.2 of ibid., we can prove the following G-MHS version of a
statement in 3.3.1 of ibid. The spaces DBS,val, D

I
SL(2),val, D

II
SL(2),val, D

⋆
SL(2),val belong to

CR(val)+. We do not give the details of the proof.

3.11 Global properties of DI
SL(2), D

II
SL(2), D

⋆
SL(2) etc.

Theorem 3.11.1. Let X be one of DI
SL(2), D

II
SL(2), D

⋆
SL(2), D

I
SL(2),val, D

II
SL(2),val, D

⋆
SL(2),val,

DBS,val, D
⋆,+
SL(2), D

⋆,W
SL(2). Let Γ be a semi-arithmetic subgroup of G′(Q) (1.5.7).

(1) The action of Γ on X is proper and the quotient space Γ \X is Hausdorff. In
particular, X is Hausdorff.

(2) If Γ is torsion-free, the action of Γ on X is free and the map X → Γ \X is a local
homeomorphism.

The proof, given in 3.11.2 and 3.11.3 below, is similar to that of [21] Part II Theorem
3.5.17 and that of [21] Part IV Theorem 6.1.1. Starting from DBS, we transport various
properties along the fundamental diagram in Introduction.

3.11.2. We first prove that the case Γ = {1} of (1), that is, the space X is Hausdorff.
We have an injective continuous map D⋆

SL(2),val → DBS,val (Theorem 3.10.3 (1)). Since

DBS is Hausdorff (Proposition 2.6.2), DBS,val is Hausdorff. Hence, D⋆
SL(2),val is Hausdorff.

Since D⋆
SL(2),val → D⋆,W

SL(2), D
⋆
SL(2),val → D⋆,+

SL(2) and D
⋆
SL(2),val → D⋆

SL(2) are proper and sur-

jective, D⋆,W
SL(2), D

⋆,+
SL(2) and D

⋆
SL(2) are Hausdorff. Since the maps D⋆

SL(2),val → DII
SL(2),val →

DII
SL(2) are proper and surjective (Theorem 3.10.3 (2)), DII

SL(2),val and D
II
SL(2) are Hausdorff.

Since we have a bijective continuous map DI
SL(2) → DII

SL(2), D
I
SL(2) is Hausdorff. Hence

DI
SL(2),val is also Hausdorff.

3.11.3. We prove Theorem 3.11.1.

(1) We prove the former part, that is, that the action is proper. Since it is valid
for X = DBS (Theorem 2.6.1 (1)), we see that it is valid for DBS,val and D⋆

SL(2),val by

using continuous maps D⋆
SL(2),val → DBS,val → DBS, 3.11.2, and the fact 2.3.6 (3.1). Then

we see that it is valid also for D⋆,W
SL(2), D

⋆,+
SL(2), D

⋆
SL(2), D

II
SL(2),val and DII

SL(2) by using the

proper and surjective maps D⋆
SL(2),val → D⋆,W

SL(2), D
⋆
SL(2),val → D⋆,+

SL(2), D
⋆
SL(2),val → D⋆

SL(2),

D⋆
SL(2),val → DSL(2),val → DSL(2) and the fact 2.3.6 (3.2). Then we see it also for DI

SL(2)

and DI
SL(2),val by using the continuous maps DI

SL(2) → DII
SL(2) and D

I
SL(2),val → DII

SL(2),val.

The latter part of (1) follows from the former part by 2.3.6 (1).
(2) We prove the former part, that is, the action is free, by using a similar argument as

in 2.6.4. We apply 2.3.6 (4) to H = Γ, H1 = Γu, X1 = spl(W ), X2 = Dred,SL(2). The action
of Γ/Γu on Dred,SL(2) is free, by a similar argument in the proof of [23] Lemma 5.7, and
the action of Γu on spl(W ) ≃ Gu(R) is free. Hence the action of Γ on spl(W )×Dred,SL(2)

is free. By using the canonical maps from DI
SL(2), D

II
SL(2), D

⋆
SL(2) to spl(W ) × Dred,SL(2)
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together with the related maps in the fundamental diagram, we see that the action of Γ
on X is free.

The latter part of (2) follows from the former by 2.3.6 (2), the properness of the action
proved in (1), and 3.11.2.

3.11.4. In Theorem 3.11.1, we can use a semi-arithmetic subgroup of G(Q) (not of G′(Q))
in the following two situations.

First, if either G is semisimple or the condition (1) in Lemma 1.5.3 is satisfied, 3.11.1
holds for a semi-arithmetic subgroup Γ of G(Q). In fact, Γ ∩ G′(Q) is of finite index
(cf. Proposition 1.5.13 for the latter case). Hence by 2.3.6 (5), we can replace Γ by the
semi-arithmetic subgroup Γ ∩G′(Q) of G′(Q).

Next

Proposition 3.11.5. Assume that G is reductive. Let X be one of DSL(2), DSL(2),val,
DBS,val. Let Γ be a semi-arithmetic subgroup of G(Q).

(1) The quotient space Γ \X is Hausdorff.

(2) Let Z be the center of G. If the image of Γ in (G/Z)(Q) is torsion-free, the map
X → Γ \X is a local homeomorphism.

See 4.10.18 for the proof.

4 The space of nilpotent orbits

Let D = D(G, h0) be as in 1.2.13. We assume that h0 is R-polarizable (1.5.2).

In this section, we define and study the toroidal partial compactification Γ \DΣ of
Γ \D, an extended period domain consisting of nilpotent orbits. We consider Γ \DΣ

as the moduli of G-log mixed Hodge structures. It is the G-MHS version of the toroidal
partial compactification Γ \D(Λ)Σ of Γ \D(Λ) for the classical period domain D(Λ) (1.6).
This Γ \D(Λ)Σ is defined and studied in [24] (in the pure case) and in [21] Part III and
Part IV (in the mixed case) and is the moduli space of LMH.

4.1 The sets DΣ and D♯
Σ

4.1.1. A nilpotent cone is a subset σ of Lie (G′
R) satisfying the following (i)–(iii).

(i) σ = R≥0N1 + · · ·+R≥0Nn for some N1, . . . , Nn ∈ Lie (G′
R).

(ii) For every V ∈ Rep(G), the image of σ under the induced map Lie (GR) →
EndR(VR) consists of nilpotent operators.

(iii) We have [N,N ′] = 0 for N,N ′ ∈ σ.

4.1.2. Recall that for a vector space V over a field E, for an increasing filtration W
on V , and for a nilpotent linear map N : V → V such that NWw ⊂ Ww for all w, an
increasing filtration M on V is called the relative monodromy filtration of N relative to
W if NMw ⊂Mw−2 for all w and Nm : grMw+mgr

W
w

∼→ grMw−mgr
W
w for all w and all m ≥ 0.

The relative monodromy filtration M need not exist, but it is unique if it exists.
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4.1.3. Let F ∈ Ď and let σ be a nilpotent cone. We say that the pair (σ, F ) generates a
nilpotent orbit if the following conditions (i)–(iii) are satisfied.

(i) Let N1, . . . , Nn be as in (i) in 4.1.1. Then exp(
∑n

j=1 zjNj)F ∈ D if zj ∈ C and
Im(zj)≫ 0.

(ii) NF p ⊂ F p−1 for all N ∈ σ and p ∈ Z.
(iii) For every N ∈ σ and every V ∈ Rep(G), the relative monodromy filtration of

N : VR → VR with respect to W (V )R exists.

In this case, we also say that (N1, . . . , Nn, F ) generates a nilpotent orbit.
Note that the above condition (i) is independent of the choice of (N1, . . . , Nn) as in

(i) in 4.1.1. Note also that it is equivalent to the condition that exp(
∑n

j=1 iyjNj)F ∈ D
if yj ∈ R and yj ≫ 0.

Proposition 4.1.4. Let F ∈ Ď and let σ be a nilpotent cone. Then the following condi-
tions (i), (ii), and (iii) are equivalent.

(i) (σ, F ) generates a nilpotent orbit in the sense of 4.1.3.
(ii) For every V ∈ Rep(G), we have the following (ii-1), (ii-2), (ii-3).

(ii-1) For each w ∈ Z, there is a G′
R-invariant R-bilinear form 〈·, ·〉w : grWw VR ×

grWw VR → R such that if zj ∈ C and Im(zj)≫ 0 (1 ≤ j ≤ n), (grWw VR, exp(
∑n

j=1 zjNj)F (gr
W
w V ))

is a Hodge structure of weight w polarized by 〈·, ·〉w.
(ii-2) NF p(V ) ⊂ F p−1(V ) for all N ∈ σ and p ∈ Z.
(ii-3) For every N ∈ σ, the relative monodromy filtration of N : VR → VR with

respect to W exists.
(iii) For some faithful V ∈ Rep(G), the above conditions (ii-1)–(ii-3) are satisfied.

Proof. Assume (i). We prove (ii). Consider the continuous map Cn → Ď ; z 7→
exp(

∑n
j=1 zjNj)F . For some c ∈ R, the image of S := {z ∈ Cn | Im(zj) ≥ c} ⊂ Cn

under this map is contained in D. Hence it induces a continuous map S → D. Since
D is a disjoint union of G′(R)Gu(C)-orbits which are open and closed and since S is
connected, the image of S in D is contained in one G′(R)Gu(C)-orbit D′. Take F ′ ∈ D′.
Let V ∈ Rep(G). By the R-polarizability and Lemma 1.5.3, for each w ∈ Z, there is a
G′

R-invariant R-bilinear form 〈·, ·〉w : grWw VR × grWw VR → R which polarizes F ′(grWw ). If
z ∈ S, exp(

∑n
j=1 zjNj)F = gF ′ for some g ∈ G′(R). Since 〈·, ·〉w is fixed by g, it polarizes

exp(
∑n

j=1 zjNj)F .
The implication (ii) ⇒ (iii) is clear.
By 1.4.7 and by [21] Part III 1.2.2.1, 1.2.2.2, we have the implication (iii) ⇒ (i).

Proposition 4.1.5. Assume that (σ, Z) generates a nilpotent orbit. Then we have a
filtration M(τ) ∈ W(GR) (3.3.1) for each face τ of σ satisfying the following conditions
(i)–(iii). If σ is rational, then all M(τ) belong to W(G).

(i) NM(τ)w ⊂M(τ)w for all N ∈ σ and w ∈ Z.
(ii) M(0) = W .
(iii) If τ and τ ′ are faces of σ and if N ∈ σ, and if τ ′ is the smallest face of σ containing

τ and N , then M(τ ′) is the relative monodromy filtration of N with respect to M(τ).

Proof. This follows from Kashiwara [18] 4.4.1 and 5.2.5.
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4.1.6. A nilpotent orbit (resp. nilpotent i-orbit) is a pair (σ, Z) of a nilpotent cone σ and
an exp(σC) (resp. exp(i ·σR))-orbit in Ď satisfying that, for some F ∈ Z, (σ, F ) generates
a nilpotent orbit in the sense of 4.1.3. Here σC (resp. σR) denotes the C (resp. R)-linear
subspace spanned by σ in Lie (G′

C) (resp. Lie (G
′
R)).

4.1.7. A weak fan Σ in Lie (G′) is a nonempty set of sharp rational nilpotent cones in
Lie (G′

R) satisfying the following conditions (i) and (ii).
(i) If σ ∈ Σ and if σ′ is a face of σ, then σ′ ∈ Σ.
(ii) Let σ, σ′ ∈ Σ, and assume that σ and σ′ have a common interior point and that

there is an F ∈ Ď such that both (σ, F ) and (σ′, F ) generate nilpotent orbits. Then
σ = σ′.

4.1.8. Let DΣ be the set of all nilpotent orbits (σ, Z) such that σ ∈ Σ. Then D is
naturally embedded in DΣ via F 7→ ({0}, {F}).

Let D♯
Σ be the set of all nilpotent i-orbits (σ, Z) such that σ ∈ Σ. Then D is also

naturally embedded in D♯
Σ via F 7→ ({0}, {F}).

We have a canonical map D♯
Σ → DΣ ; (σ, Z) 7→ (σ, exp(σC)Z).

For a rational nilpotent cone σ, we define Dσ := D{face of σ}, D
♯
σ := D♯

{face of σ}.

4.1.9. Let Γ be a subgroup of G(Q) satisfying (SA) (1.5.7).
We say that Σ and Γ are compatible if Σ is stable under the adjoint action of Γ. If

this is the case, Γ naturally acts on DΣ.
We say that Σ and Γ are strongly compatible if they are compatible and if every σ ∈ Σ

is generated by elements whose exp in G(R) belong to Γ.

4.2 Eσ and the spaces of nilpotent orbits

For Σ and Γ which are strongly compatible, we endow Γ \DΣ with a structure of a locally
ringed space over C and with a log structure. We endow D♯

Σ with a topology.

4.2.1. Let Σ and Γ be as in 4.1.7 and in 4.1.9. Assume that they are strongly compatible
(4.1.9). Let σ ∈ Σ.

Let Γ(σ) := Γ∩exp(σ) in G(R). Then Γ(σ) is an fs monoid and Γ(σ)gp = Γ∩exp(σR)
is a finitely generated free abelian group. Let

torusσ = torusσ,Γ = C× ⊗ Γ(σ)gp.

Let P (σ) = Hom (Γ(σ),N). Let

toricσ = toricσ,Γ = Hom (P (σ),Cmult) = Spec(C[P (σ)])an.

Here Cmult = C regarded as a multiplicative monoid. The standard log structure of the
toric variety Spec(C[P (σ)]) induces the log structure of the analytic toric space toricσ.

We regard torusσ as an open set of toricσ via the embedding

torusσ = Hom (P (σ)gp,C×) ⊂ toricσ.
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We have a natural action of torusσ on toricσ. We have an exact sequence

0→ Γ(σ)gp
log−→ σC

e−→ torusσ → 0,

where
e(z ⊗ log(γ)) = e2πiz ⊗ γ for z ∈ C, γ ∈ Γ(σ)gp.

For a face τ of σ, let 0τ ∈ toricσ be the homomorphism P (σ) = Hom(Γ(σ),N)→ Cmult

which sends h ∈ Hom (Γ(σ),N) to 1 if h(Γ(τ)) = 0 and to 0 otherwise.
Each element q of toricσ is written in the form q = e(a) ·0τ for a ∈ σC and for a face τ

of σ. The face τ of σ is determined by q and called the face associated to q, and a modulo
τC + log(Γ(σ)gp) is determined by q. The stalk of M/O× of toricσ at q is identified with
Hom (Γ(τ),N).

4.2.2. Let the notation be as in 4.2.1. Define

|toric|σ := Hom (P (σ),Rmult
≥0 ) ⊃ |torus|σ := Hom (P (σ)gp,R>0) = R>0 ⊗ Γ(σ)gp.

Here Rmult
≥0 denotes the multiplicative monoid R≥0. Thus we have |toric|σ ⊂ toricσ and

|torus|σ ⊂ torusσ.
We have projections q 7→ |q| ; toricσ → |toric|σ and torusσ → |torus|σ induced by

taking the absolute value | · | : Cmult → Rmult
≥0 .

4.2.3. We give additive presentations of |torus|σ and |toric|σ.
We have an isomorphism of topological groups

σR ≃ |torus|σ ; b 7→ e(ib).

We will often identify |torus|σ with σR via this isomorphism. This identification is ex-
tended to an identification of |toric|σ and the set of equivalence classes of pairs (τ, b),
where b ∈ σR and τ is a face of σ. Here (τ, b) and (τ ′, b′) are equivalent if and only if
τ ′ = τ and b′ ≡ b mod τR. We identify e(ib)0τ ∈ |toric|σ with the class of (τ, b). The
topology of |toric|σ is understood as follows. Let x = class (τ, b) ∈ |toric|σ. Take a finite
set (Nj)j of generators of the cone τ . Then the following sets V (U, c) form a base of
neighborhoods of x. Let U be a neighborhood of b in σR and let c ∈ R>0. Then, V (U, c)
is the set of class (τ ′, b′), where τ ′ is a face of τ and b′ = b′′ +

∑

j yjNj for some b′′ ∈ U
and some real numbers yj ≥ c.

4.2.4. Note that toricσ depends on the choice of Γ (actually it depends on Γ(σ)) though
the notation toricσ does not tell this dependence.

However, the topological space |toric|σ does not depend on Γ as is seen in 4.2.3.

4.2.5. Let
Ěσ := toricσ × Ď, Ě♯

σ := |toric|σ × Ď.
Let Eσ (resp. Ẽσ) be the set of all (q, F ) ∈ Ěσ satisfying the following condition (i)

(resp. (i)′). Write q = e(a)0τ , where a ∈ σC and τ is a face of σ.
(i) The pair (τ, exp(a)F ) generates a nilpotent orbit.
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(i)′ We have NF p ⊂ F p−1 for N ∈ τ and p ∈ Z.
We have Eσ ⊂ Ẽσ ⊂ Ěσ.
Endow the complex analytic space Ěσ with the pullback log structure from toricσ.

Endow Eσ and Ẽσ with the strong topologies ([24], 3.1.1) in Ěσ as reviewed below, with
the inverse images of the sheaf of holomorphic functions on Ěσ, and with the inverse
images of the log structure of Ěσ.

Recall that for a complex analytic space X and a subset S of X , the strong topology
of S in X is the strongest topology on S such that for every complex analytic space Y
and for every morphism λ : Y → X of complex analytic spaces such that λ(Y ) ⊂ S, the
map λ : Y → S is continuous. It is stronger than the topology on S as a subspace of X .

Let

E♯
σ := Eσ ∩ Ě♯

σ, Ẽ♯
σ := Ẽσ ∩ Ě♯

σ,

endowed with the topologies as the subspaces of Eσ and Ẽσ, respectively. Using the
additive presentation of |toric|σ in 4.2.3, we can identify E♯

σ (resp. Ẽ♯
σ) with the set of

(class (τ, b), F ) ∈ |toric|σ × Ď = Ě♯
σ such that (τ, exp(ib)F ) generates a nilpotent orbit

(resp. such that NF p ⊂ F p−1 for all N ∈ τ and p ∈ Z).

4.2.6. We show that as a topological space, E♯
σ does not depend on Γ. Write Eσ, E

♯
σ and

P (σ) (4.2.1) for Γ as EΓ(σ), E
♯
Γ(σ) and P (Γ(σ)), respectively, to express the dependence

on Γ(σ).
Assume that Γ1 and Γ2 are strongly compatible with Σ. Then Γ1 ∩ Γ2 is strongly

compatible with Σ. We show that E(Γ1∩Γ2)(σ) → EΓj(σ) are homeomorphisms for j = 1, 2.

Replacing Γ1 ∩ Γ2 by Γ1, we may assume Γ1 ⊂ Γ2. Write ĚΓj(σ) as Zj, EΓj(σ) as Yj ,

and E♯
Γj(σ)

as Y ♯
j (j = 1, 2). Since P (Γ2(σ)) ⊂ P (Γ1(σ)), and C[P (Γ1(σ))] is a finitely

generated C[P (Γ2(σ)])-module, the map toricΓ1(σ) → toricΓ2(σ) is proper and surjective
and hence the map Z1 → Z2 is proper and surjective.

We prove that for the map Y1 → Y2, the topology of the latter is the image of the
topology of the latter. Let U be a subset of Y2 and assume that the inverse image U ′ of U
in Y1 is open. We prove that U is open. Let S be an analytic space over C and assume that
we have a morphism S → Z2 whose image is contained in Y2. Our task is to prove that
the inverse image of U in S is open. Let S ′ be the fiber product of S → Z2 ← Z1 in the
category of analytic spaces over C. Since the set Y1 is the fiber product of Y2 → Z2 ← Z1,
the image of S ′ → Z1 is contained in Y1. Hence the inverse image of U ′ in S ′, which is
the inverse image of U in S ′, is open. Since S ′ → S is proper surjective, this proves that
the inverse image of U in S is open.

Since Y ♯
j is closed in Yj, this tells that for the bijection Y ♯

1 → Y ♯
2 , the topology of the

latter is the image of the topology of the former. Hence the last map is a homeomorphism.

4.2.7. For σ ∈ Σ, consider the map

ϕσ : Eσ → Γ \DΣ ; (q, F ) 7→ class (τ, Z)

with Z = exp(τC) exp(a)F , where τ and a ∈ σC are such that q = e(a)0τ . We endow
Γ \DΣ with a structure of a locally ringed space over C and with a log structure as follows.
The topology of Γ \DΣ is the strongest topology for which the maps ϕσ are continuous
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for all σ ∈ Σ. The structure sheaf of Γ \DΣ consists of functions whose pullbacks to Eσ
belong to the structure sheaf of Eσ for all σ ∈ Σ. The log structure of Γ \DΣ is the
subsheaf of the structure sheaf of Γ \DΣ consisting of functions whose pullbacks to Eσ
belong to the log structure of Eσ for all σ ∈ Σ.

4.2.8. In this topology of Γ \DΣ, if (σ, Z) ∈ DΣ and if F ∈ Z and N1, . . . , Nn ∈ σ
generate the cone σ, class (σ, Z) ∈ Γ \DΣ is the limit of class (exp(

∑n
j=1 zjNj)F ) ∈ Γ \D

where zj ∈ C and Im(zj) tends to ∞ for 1 ≤ j ≤ n.

4.2.9. Here we do not need Γ.
For σ ∈ Σ, consider the surjective map

ϕ♯σ : E♯
σ → D♯

σ ; (class (τ, b), F ) 7→ class (τ, Z)

with Z = exp(iτR) exp(ib)F .
We define the topology of D♯

Σ as the strongest topology such that the composite
E♯
σ → D♯

σ → D♯
Σ also denoted by ϕ♯σ are continuous for all σ ∈ Σ.

4.2.10. In this topology, if (σ, Z) ∈ D♯
Σ and if F ∈ Z and N1, . . . , Nn ∈ σ generate the

cone σ, (σ, Z) is the limit of exp(
∑n

j=1 iyjNj)F ∈ D where yj ∈ R>0 and yj → ∞ for
1 ≤ j ≤ n.

4.2.11. Assume that (Σ,Γ) is strongly compatible.
Since

E♯
σ

ϕ♯
σ−→ D♯

Σ

↓ ↓
Eσ

ϕσ−→ Γ \DΣ

is commutative, we have that the map D♯
Σ → Γ \DΣ is continuous.

4.2.12. For an fs log analytic space X , by a strong subspace of X , we mean a subset of
X endowed with the strong topology in X (4.2.5), with the inverse image of the sheaf of
holomorphic functions on X , and with the inverse image of the log structure of X .

For example, Eσ is a strong subspace of Ěσ.
Let B(log) be the category of locally ringed spaces endowed with a log structure which

are locally isomorphic to a strong subspace of an fs log analytic space. See [24] 3.2.4 and
[21] Part III 1.1.4.

Both Eσ and Ẽσ are objects of B(log).
An object of B(log) is a log manifold if it is locally isomorphic to an open set of

a strong subspace S of a log smooth fs log analytic space X satisfying the following
condition: There is a finite family of log differential forms (ωj)j on X such that S = {x ∈
X | ωj(x) = 0 for all j}. Here ωj(x) denotes the pullback of ωj to the log point x (it is
not the germ of ωj at x). See [24] 3.5.7 and [21] Part III 1.1.5.

Later we will show that Eσ, Ẽσ, and Γ \DΣ for a strongly compatible (Σ,Γ) with Γ
being a neat semi-arithmetic subgroup of G′(Q) (1.5.7), are log manifolds. See Theorem
4.5.7 and Theorem 4.6.1 (4). We will also show that for such Γ, the quotient space Γ \D♯

Σ

is identified with the space (Γ \DΣ)
log (Theorem 4.6.1 (5)).
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4.3 The space of ratios

We review the space of ratios S[:], and discuss DΣ,[:] and D
♯
Σ,[:] which are modified versions

of DΣ and D♯
Σ, respectively.

4.3.1. This is a review of [21] Part IV 4.2. Let S be a locally ringed space over E = R
or C with an fs log structure MS satisfying the following conditions (i) and (ii).

(i) For every s ∈ S, the natural homomorphism E → OS,s/ms is an isomorphism.
Here, we denote by ms the maximal ideal of OS,s.

(ii) For every open set U of S and for every f ∈ O(U), the map U → E ; s 7→ f(s) is
continuous. Here f(s) is the image of f in OS,s/ms = E.

Then we have a topological space S[:] over S, called the space of ratios, defined as
follows.

4.3.2. For a sharp fs monoid S, let R(S) be the set of all maps r : (S × S)r {(1, 1)} →
[0,∞] satisfying the following conditions (i)–(iii).

(i) r(g, f) = r(f, g)−1.
(ii) r(f, g)r(g, h) = r(f, h) if {r(f, g), r(g, h)} 6= {0,∞}.
(iii) r(fg, h) = r(f, h) + r(g, h).

4.3.3. Let σ be the cone Hom (S,Radd
≥0 ), where Radd

≥0 denotes the additive monoid R≥0.
Then R(S) is identified with the set of equivalence classes of (σj , Nj)1≤j≤n, where n ≥ 0,
σj are faces of σ such that {0} = σ0 ( σ1 ( · · · ( σn = σ, and Nj is an element of the
interior of σj . The equivalence relation is that (σj , Nj)1≤j≤n ∼ (σ′

j , N
′
j)1≤j≤n′ if and only if

n = n′, σ′
j = σj for all j, and for each j, there is a cj > 0 such that N ′

j ≡ cjNj mod σj−1,R.
Such a class ((σj , Nj)j) is identified with r ∈ R(S) defined as follows. For (f, g) ∈ S ×

S r {(1, 1)}, take the biggest j such that σj−1 kills f and g. Then r(f, g) = Nj(f)/Nj(g).

Remark 4.3.4. There is an error in a related part 4.1.6 in [21] Part IV. In the definition
of the map R′(S)→ R(S), “∞” in (2) and “0” in (3) should be interchanged.

4.3.5. Let S be as in 4.3.1. We define the set S[:] as the set of (s, r) with s ∈ S and
r ∈ R((MS/O×

S )s).

4.3.6. We define the topology of S[:] as the weakest topology for which the following
conditions (1) and (2) are satisfied.

(1) The map S[:] → S ; (s, r) 7→ s is continuous.
(2) Let U be an open set of S, let f, g ∈ MS(U), and assume that |f(s)| < 1 and

|g(s)| < 1 for all s ∈ U . Here f(s) is the value at s of the image of f in OU and g(s)
is defined similarly. Let Ũ be the inverse image of U in S[:]. Then the following map

rf,g : Ũ → [0,∞] is continuous.
Let s ∈ U . If f, g ∈ O×

S,s, then rf,g(s, r) := log(|f(s)|)/ log(|g(s)|). Otherwise,

rf,g(s, r) = r(f̄(s), ḡ(s)), where f̄(s) is the image of f in (MS/O×
S )s and ḡ(s) is defined

similarly.

4.3.7. Assume that we are given a chart S → MS. Let Φ be a set of faces of S which is
totally ordered for the inclusion relation and which contains S. Let S[:](Φ) be the subset
of S[:] consisting of all (s, r) such that if class((σj , Nj)1≤j≤n) corresponds to r as in 4.3.3,
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the annihilator of σj in S, which is a face of S, belongs to Φ for every 1 ≤ j ≤ n. Here
the annihilator of σj in S means the subset of S consisting of all elements which are sent

to 0 by S → (MS/O×
S )s

h→ R≥0 for all h ∈ σj .
Then S[:](Φ) for all above Φ forms an open covering of S[:] (ibid. Part IV 4.2.11).
For a geometric meaning of S[:](Φ), see ibid. Part IV 4.2.11–4.2.19 in the general case,

and ibid. Part IV 4.2.20–4.2.22 in the case S = |∆|n with |∆| := {t ∈ R | 0 ≤ t < 1}.

4.3.8. Let |toric|σ,[:] ⊂ toricσ,[:] be the inverse image of |toric|σ under the map toricσ,[:] →
toricσ. We have a projection toricσ,[:] → |toric|σ,[:]. This is a unique continuous map which
is compatible with the projection toricσ → |toric|σ.

4.3.9. We give an additive presentation of |toric|σ,[:].
We can identify |toric|σ,[:] with the set of equivalence classes of ((σj , Nj)1≤j≤n, b), where

n ≥ 0, σj are faces of σ such that {0} ( σ1 ( · · · ( σn (here σn need not coincide with
σ), Nj is an element of the interior of σj , and b ∈ σR. The equivalence relation is that
((σj , Nj)1≤j≤n, b) and ((σ′

j , N
′
j)1≤j≤n′, b′) are equivalent if and only if n′ = n, σ′

j = σj ,
N ′
j ≡ cjNj mod σj−1,R for some cj ∈ R>0 (1 ≤ j ≤ n), and b′ ≡ b mod σn,R. Here σ0

denotes {0}.
The projection |toric|σ,[:] → |toric|σ is understood as class ((σj, Nj), b) 7→ class (σn, b).

4.3.10. Let x = class ((σj , Nj)1≤j≤n, b) ∈ |toric|σ,[:]. By a good base for x, we mean a
family of elements (Ns)s∈S of σn satisfying the following conditions (i) and (ii).

(i) The index set S is the disjoint union of some subsets Sj (1 ≤ j ≤ n), and the
following holds for each j (1 ≤ j ≤ n). Let S≤j :=

⊔

k≤j Sk ⊂ S. Then Ns ∈ σj if s ∈ S≤j ,
and (Ns)s∈S≤j

is a base of the R-vector space σj,R.
(ii) There are as ∈ R>0 (s ∈ Sj) such that Nj ≡

∑

s∈Sj
asNs mod σj−1,R for 1 ≤ j ≤ n.

This is a [:]-version of good base discussed in [24] 6.3.

Proposition 4.3.11. A good base for x exists.

Proof. For each j, take a simplicial subcone of the cone (σj +σj−1,R)/σj−1,R consisting of
the interior points except the origin and including the class of Nj . Take a base (N s)s∈Sj

of this cone and lift N s (s ∈ Sj) to an element Ns of σj for each j. Then these Ns’s form
a good base.

4.3.12. We describe the topology of |toric|σ,[:] by using the additive presentation 4.3.9.
Let n ≥ 0, let {0} ( σ1 ( · · · ( σn be faces of σ, and let (Ns)s∈S be a finite family of

elements of σn satisfying the condition (i) in 4.3.10.
Fix an R-subspace B of σR such that σR = σn,R ⊕ B.
Let U be the subset of |toric|σ,[:] consisting of classes of ((σ′

k, Nk)1≤k≤n′, b) satisfying
the following conditions. There is an injective increasing map θ : {1, . . . , n′} → {1, . . . , n}
such that σ′

k = σθ(k) for 1 ≤ k ≤ n′. For 1 ≤ k ≤ n′, if we write Nk ≡
∑

s ysNs mod σ′
k−1,R,

where s ranges over all elements of S belonging to Sj for some j such that θ(k − 1) <
j ≤ θ(k), then ys ∈ R>0. (In the case k = 1, θ(k − 1) means 0.) If we write b ≡
b′ +

∑

s ysNs mod σ′
n′,R, where b

′ ∈ B and s ranges over all elements of S belonging to Sj
for some j such that θ(n′) < j, then ys ∈ R>0.

Then U is an open set of |toric|σ,[:].
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For each j, choose an element cj of Sj . Let T be the complement of {cj | 1 ≤ j ≤ n}
in S. Then we have a homeomorphism

U ≃ Rn
≥0 ×RT

>0 × B

defined as follows. Let x′ = class ((σ′
k, Nk)1≤k≤n′, b) ∈ U , and let θ, ys (s ∈ S), b′ ∈ B be

as above. Then the image of x′ in Rn
≥0 ×RT

>0 × B is ((tj)1≤j≤n, (ys/ycj)s∈T , b
′), where tj

are as follows.
If j is in the image of θ, then tj = 0.
If j is not in the image of θ and j < θ(n′), then tj = ycj+1

/ycj .
If θ(n′) < j, then tj = 1/ycj .

Note that if (Ns)s∈S is a good base for x = class ((σj , Nj)1≤j≤n, b) ∈ |toric|σ,[:], x
belongs to the above U and hence U is an open neighborhood of x.

4.3.13. Let the notation be as in 4.2.1. Let

Ě♯
σ,[:] := |toric|σ,[:] × Ď ⊂ Ěσ,[:] = toricσ,[:] × Ď.

Let

E♯
σ,[:] := Eσ,[:] ∩ Ě♯

σ,[:], Ẽ♯
σ,[:] := Ẽσ,[:] ∩ Ě♯

σ,[:].

We endow E♯
σ,[:] and Ẽ

♯
σ,[:] with the topologies as the subspaces of Eσ,[:] and Ẽσ,[:], respec-

tively. These coincide with the topologies defined via the projections Eσ,[:] → E♯
σ,[:] and

Ẽσ,[:] → Ẽ♯
σ,[:], respectively.

4.3.14. We show that as topological spaces, |toric|σ,[:] and E♯
σ,[:] are independent of the

choice of Γ.
We describe the proof for E♯

σ,[:]. The proof for |toric|σ,[:] is similar. In fact, assume

that Γj (j = 1, 2) are strongly compatible with Σ and assume Γ1 ⊂ Γ2. Since E♯
Γj(σ),[:]

is

identifies with (E♯
Γj(σ)

)[:] (the [:]-space of E♯
Γj(σ)

which is endowed with the inverse image

of the log structure of EΓj(σ), E
♯
Γj(σ),[:]

is proper over E♯
Γj(σ)

. Since E♯
Γ1(σ)

→ E♯
Γ2(σ)

is

a homeomorphism (4.2.6), the map E♯
Γ1(σ),[:]

→ E♯
Γ2(σ),[:]

is proper continuous and it is
bijective. Hence it is a homeomorphism.

4.3.15. Let DΣ,[:] (resp. D
♯
Σ,[:]) be the set of (σ, Z, class ((σj , Nj)1≤j≤n)), where σ ∈ Σ,

(σ, Z) ∈ DΣ (resp. (σ, Z) ∈ D♯
Σ), n ≥ 0, σj are faces of σ such that {0} ( σ1 (

· · · ( σn = σ, and Nj is an element of the interior of σj . The notation class is for the
equivalence relation that (σj , Nj)1≤j≤n ∼ (σ′

j , N
′
j)1≤j≤n′ if and only if n′ = n, σ′

j = σj , and
N ′
j ≡ ajNj mod σj−1,R for some aj ∈ R>0 (1 ≤ j ≤ n).
We have canonical maps

DΣ,[:] → DΣ, D♯
Σ,[:] → D♯

Σ

by sending the class of (σ, Z, class ((σj , Nj)1≤j≤n)) to (σ, Z).
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4.3.16. Assume that (Σ,Γ) strongly compatible. We define a topology of Γ \DΣ,[:].
For σ ∈ Σ, by 4.3.3, Eσ is identified with the set of triples (q, class ((σj , Nj)1≤j≤n), F ),

where q ∈ toricσ and writing q as e(a)0τ , n ≥ 0, σj are faces of τ such that {0} ( σ1 (

· · · ( σn = τ , and Nj is an element of the interior of σj . The equivalence relation is
defined in the same way as in 4.3.3.

For σ ∈ Σ, consider the map

ϕσ,[:] : Eσ,[:] → Γ \DΣ,[:] ; (q, class (σj , Nj)1≤j≤n, F ) 7→ class (τ, Z, class (σj , Nj)1≤j≤n)

with q = e(a)0τ and Z = exp(τC) exp(a)F .
We endow Γ \DΣ,[:] with the strongest topology for which the maps ϕσ,[:] are continuous

for all σ ∈ Σ.
In this topology, if (σ, Z, class ((σj , Nj)1≤j≤n)) ∈ DΣ,[:] and if F ∈ Z, then class (σ, Z, (σj , Nj)1≤j≤n) ∈

Γ \DΣ is the limit of class (exp(
∑n

j=1 zjÑj)F ) ∈ Γ \D where zj ∈ C, Im(zj) → ∞ for
1 ≤ j ≤ n and Im(zj)/Im(zj+1)→∞ for 1 ≤ j ≤ n− 1.

4.3.17. Here we do not need Γ.
For σ ∈ Σ, we have a map

ϕ♯σ,[:] : E
♯
σ,[:] → D♯

Σ,[:] ; (class ((σj, Nj)1≤j≤n), b, F ) 7→ (σn, exp(iσn,R+ib)F, class ((σj, Nj)1≤j≤n)).

We define the topology of D♯
Σ,[:] as the strongest topology for which the maps ϕ♯σ,[:] :

E♯
σ,[:] → D♯

Σ,[:] are continuous for all σ ∈ Σ.

In this topology, if x = (σ, Z, class ((σj , Nj)1≤j≤n)) ∈ D♯
Σ,[:] and if F ∈ Z and Ñj , then

x is the limit of exp(
∑n

j=1 iyjNj)F ∈ D where yj ∈ R>0, yj/yj+1 → ∞ for 1 ≤ j ≤ n
(yn+1 := 1).

4.3.18. The maps Γ \DΣ,[:] → Γ \DΣ and D♯
Σ,[:] → D♯

Σ are continuous.

4.4 Valuative spaces, II

4.4.1. Let E and S be as in 4.3.1.
We recall that there are two kinds of valuative spaces Sval(E) and Sval(|·|) associated to

S ([21] Part IV 3.1.3).
In the case where S is an object of B′

R(log), Sval in Section 3.10 is identified, as a
topological space, with the topological space Sval(|·|). On the other hand, Sval for an
object S of B(log) (4.2.12) defined in [24] 3.6.18, 3.6.23 is a locally ringed space over C
with log structure, and it is Sval(C).

These two kinds of Sval played important roles in our previous works [24] and [21].
Our rule of the notation Sval in [24] and [21] and in this paper is that if S is an object

of B(log), then Sval means Sval(C), but otherwise, Sval means Sval(|·|).

We also consider, for a weak fan Σ, the maps DΣ,val → DΣ,[:] and D
♯
Σ,val → D♯

Σ,[:].

4.4.2. Let E and S be as in 4.3.1.
As a set, let Sval(|·|) (resp. Sval(E)) be the set of triples (s, V, h), where s ∈ S, V

is a submonoid of (MS/O×
S )

gp
s such that (Mgp

S /O×
S )s = V ∪ V −1, (MS/O×

S )s ⊂ V and
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V × ∩ (MS/O×
S )s = {1} (here V × denotes the subgroup V ∩ V −1 of (Mgp

S /O×
S )s), and h

is a homomorphism from {f ∈ Mgp
S,s | f mod O×

S,s ∈ V ×} to R>0 (resp. E×) such that

h(u) = |u(s)| (resp. h(u) = u(s)) for all u ∈ O×
S,s.

The topologies of Sval(|·|) and Sval(E) are defined to be the weakest topology having the
following properties (i) and (ii).

(i) The projection (s, V, h) 7→ s to S is continuous.
(ii) Let U be an open set of S and let f ∈ MS(U). Then the subset W = {(s, V, h) ∈

Sval(|·|) (resp. Sval(E)) | s ∈ U, f mod O×
S,s ∈ V } of Sval(|·|) (resp. Sval(E)) is open, and the

map W → R≥0 (resp. W → E), which sends (s, V, h) to h(f) if f mod O×
S,s ∈ V × and to

0 otherwise, is continuous.
For an object S of B(log), Sval(E) has a structure of a locally ringed space with log

structure given in [24] 3.6.23.
For the understandings of these val spaces using inverse limits for blowing ups along

the log structure, see [21] Part IV Section 3.1.

4.4.3. For a sharp fs monoid S, we recall the set V (S) and the canonical map V (S) →
R(S) from [21] Part IV 4.1.7, 4.1.8. Let R(S) be as in 4.3.2 and let V (S) be the set of all
valuative submonoids V of Sgp such that V ⊃ S and V × ∩S = {1}. We have a surjective
map

V (S)→ R(S)
sending V ∈ V (S) to the element rV of R(S) which is the map S ×S r {(1, 1)} → [0,∞]
defined by

rV (f, g) = sup{a/b | (a, b) ∈ N2 r {(0, 0)}, f b/ga ∈ V }
= inf{a/b | (a, b) ∈ N2 r {(0, 0)}, ga/f b ∈ V }.

4.4.4. We have proper surjective continuous maps Sval(E) → Sval(|·|) → S[:] → S. Here the
second arrow is defined by 4.4.3.

4.4.5. Define

toricσ,val := (toricσ)val(C) ⊃ |toric|σ,val := (|toric|σ)val(|·|),

Eσ,val := (Eσ)val(C) ⊃ E♯
σ,val := (E♯

σ)val(|·|).

Then E♯
σval is identified with the inverse image of |toric|σ,val under Eσ,val → toricσ,val. We

have the projections

toricσ,val → |toric|σ,val, Eσ,val → E♯
σ,val.

4.4.6. The topological spaces |toric|σ,val and E♯
σ,val are independent of Γ. The proofs are

similar to the proof for E♯
σ,[:] given in 4.3.14.

4.4.7. Let Σ be a weak fan. We define sets DΣ,val and D
♯
Σ,val.

For σ ∈ Σ, let Q(σ) be the set of all rational linear maps σR → R, and let P̃ (σ) be
the set of all elements h of Q(σ) such that h(σ) ⊂ R≥0.
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Let DΣ,val (resp. D♯
Σ,val) be the set of quadruple (σ, Z, V, Z ′), where (σ, Z) ∈ DΣ

(resp. D♯
Σ), V is a submonoid of Q(σ) such that Q(σ) = V ∪ (−V ), P̃ (σ) ⊂ V , and

V ∩ (−V )∩ P̃ (σ) = {0}, and if A ⊂ σR ∩ Lie (G′) denotes the annihilator of V ∩ (−V ) in
the perfect pairing σR ∩Lie (G′)×Q(σ)→ Q of Q-vector spaces, Z ′ is an exp(AC) (resp.
exp(iAR))-orbit in Z.

The canonical maps DΣ,val → DΣ, D
♯
Σ,val → D♯

Σ are given by (σ, Z, V, Z ′) 7→ (σ, Z).

The shapes of the definitions of DΣ,val and D♯
Σ,val seem to be slightly different from

those in [24], [21] Part III, but are the same. We hope the presentations of the present
definitions are better.

4.4.8. We have canonical maps of sets

DΣ,val → DΣ,[:], D♯
Σ,val → D♯

Σ,[:]

sending (σ, Z, V, Z ′) to (σ, Z, class ((σj , Nj)j)), where V 7→ rV ↔ class ((σj , Nj)j) by 4.4.3
and 4.3.3.

4.4.9. Assume that (Σ,Γ) is strongly compatible.
The structure of Γ \DΣ,val as a locally ringed space with log structure is defined by

using ϕσ,val : Eσ,val → Γ \DΣ,val (σ ∈ Σ) analogously as 4.2.7.

4.4.10. Here we do not need Γ.
The topology of D♯

Σ,val is defined by using ϕ♯σ,val : E
♯
σ,val → D♯

Σ,val (σ ∈ Σ) analogously
as 4.3.17.

4.4.11. The continuity of Γ \DΣ,val → Γ \DΣ,[:] and the continuity of D♯
Σ,val → D♯

Σ,[:] are

clear because the topologies of the val spaces are defined by using Eσ,val, E
♯
σ,val, and the

topologies of [:]-spaces are defined by Eσ,[:] and E
♯
σ,[:], and Eσ,val → Eσ,[:] and E

♯
σ,val → E♯

σ,[:]

are continuous.

4.5 Nilpotent orbits and SL(2)-orbits

In this section we prove the continuity of the CKS map (Theorem 4.5.5), which is the
most important bridge in the fundamental diagram. We prove this together with that Eσ
is open in Ẽσ (Theorem 4.5.6), which implies that Eσ is a log manifold (Theorem 4.5.7).

Note that there are mistakes in the corresponding parts [24] and [21] Part III, which
are corrected in [21] Part IV Appendix in a rather complicated way and, unfortunately,
the correction itself contains several errors. So in this section 4.5, we present the whole
structure of the corrected (and improved) proof in the present context. For more precise
explanations about the mistakes and errors in the previous works, see Remark 4.5.31 at
the end of this section.

4.5.1. In order to define the map ψ in Theorem 4.5.5 below as a map of sets, we explain
how to associate an SL(2)-orbit to a nilpotent orbit in 4.5.1–4.5.3. This construction is
a generalization of [21] Part II 2.4.6 based on the SL(2)-orbit theorem in many variables
for MHS ([20]). The pure case of the construction is essentially due to Cattani, Kaplan
and Schmid ([10]).
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Let (N1, . . . , Nn, F ) generate a nilpotent orbit (4.1.3). We give the associated triple
(ρ, ϕ, Z), where (ρ, ϕ) is an SL(2)-orbit in n variables for (Gred, h0) and Z ⊂ D such that
(p, Z) ∈ DSL(2) for p = class (ρ, ϕ) ∈ Dred,SL(2).

For 0 ≤ j ≤ n, we denote by W (j) the functor

V 7→ (V,M(N1,V + · · ·+Nj,V ,W (V )))

from Rep(G) to the category of finite-dimensional Q-vector spaces endowed with an in-
creasing filtration on its realification. Here Nj,V denotes the image of Nj in EndR(VR)
for each j and M(N1,V + · · · + Nj,V ,W (V )) is the relative monodromy filtration of
N1,V + · · ·+Nj,V with respect to W (V ). In particular, W (0) = W .

The functor (W (n), F ) : V 7→ (V,W (n)(V ), F (V )) is a G-MHS. Let (W (n), F̂(n)) be
the R-split G-MHS defined by the canonical splitting of W (n) associated to the G-MHS
(W (n), F ) (1.3.5). Then (W (n−1), exp(iNn)F̂(n)) is a G-MHS. Let (W (n−1), F̂(n−1)) be the
associated R-split G-MHS defined by the canonical splitting of W (n−1) associated to the
G-MHS (W (n−1), exp(iNn)F̂(n)). Then (W (n−2), exp(iNn−1)F̂(n−1)) is a G-MHS. . . . . In

this way, we obtain inductively an R-split G-MHS (W (j), F̂(j)) for 0 ≤ j ≤ n. We have

F̂(j) ∈ Ď.
We define r ∈ D as follows. If all Nj are 0, let r = F . If Nj 6= 0 for some j, let k be

the smallest such j (1 ≤ j ≤ n), and let r = exp(iNk)F̂(k). (Note that we have used the
symbol r1 in [21] Part II 2.4.6 instead of r here. Thus the notation here is not compatible
with that in [20] Theorem 0.5 and in [21] Part II 2.4. See the remark after [21] Part II
Theorem 2.4.2.)

4.5.2. Now assume that G is reductive. Then there is a unique homomorphism τ :
Gn
m,R → GR whose j-th component τj gives the R-splitting of W (j) associated to the

R-split G-MHS (W (j), F̂(j)). This τj also gives splBS
W (j)(r) for 1 ≤ j ≤ n. Let τ ⋆ : Gn

m,R →
G′

R ⊂ GR be the homomorphism defined by τ ⋆(t) = τ(t)k0(
∏n

j=1 tj)
−1.

Consider the direct sum decomposition of Lie (G′
R) by the adjoint action of Gn

m,R on

it via τ ⋆. For 1 ≤ j ≤ n, let N̂j be the component of Nj in this direct sum decomposition
on which the s-th factors of Gn

m for 1 ≤ s < j act trivially. Then there is a unique

homomorphism ρ : SL(2)nR → GR such that τ ⋆j (t) = ρ(g1, . . . , gn), where gs =

(

1/t 0
0 t

)

for 1 ≤ s ≤ j and gs = 1 for j < s ≤ n and such that the induced map Lie (ρ) :

sl(2,R)n → Lie (GR) sends the j-th

(

0 1
0 0

)

to N̂j for 1 ≤ j ≤ n. There is a unique

holomorphic map ϕ : P1(C)n → D such that ϕ(gz) = ρ(g)ϕ(z) for all g ∈ SL(2,C)n and
for all z ∈ P1(C)n and such that ϕ(i) = r. This holomorphic map ϕ is also characterized
by the properties ϕ(gz) = ρ(g)ϕ(z) for all g ∈ SL(2,C)n and for all z ∈ P1(C)n and
ϕ(0) = F̂(n). It satisfies ϕ({0}j × {i}n−j) = F̂(j) for 0 ≤ j ≤ n.

We call this (ρ, ϕ) the SL(2)-orbit associated to (N1, . . . , Nn, F ).
See [10] 4.20 for the above facts.

4.5.3. Now G is not necessarily assumed to be reductive. Let p = class (ρ, ϕ) ∈ Dred,SL(2).
We define x = (p, Z) ∈ DSL(2) as follows. If Nj 6= 0 for some j and if grW (Nk) = 0 for
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k = min{j | Nj 6= 0}, let x be the unique B-orbit lying over p such that r ∈ Z. Otherwise,
let x be the unique A-orbit lying over p such that r ∈ Z.

This x = (p, Z) is called the element of DSL(2) associated to (N1, . . . , Nn, F ).

The rank of p, the family of weight filtrations (W
(k)
x )1≤k≤r (resp. (W

(k)
x )0≤k≤r) associ-

ated x, and the homomorphism τx = (τx,j)1≤j≤r (resp. (τx,k)0≤k≤r) associated to x in the
case where x is an A (resp. B)-orbit (3.3.2) are described as follows.

(1) Let W (j) (0 ≤ j ≤ n) be as in 4.5.1 and let {j | 1 ≤ j ≤ n,W (j) 6= W (j−1)} =
{s(1), . . . , s(r)} with 1 ≤ s(1) < · · · < s(r) ≤ n. Then r is the rank of p. We have

W
(k)
x = W (s(k)) for 1 ≤ k ≤ r. In the case where x is a B-orbit, W

(0)
x =W .

(2) Let τj : Gm,R → GR (0 ≤ j ≤ n) be the homomorphism corresponding to the

splitting of W (j) given by F̂(j) in 4.5.1. Then τx,k = τs(k) for 1 ≤ k ≤ r. In the case where
x is a B-orbit, τx,0 = τ0.

Let s(r+1) := n+1. Then τj = τx,k if 1 ≤ k ≤ r and s(k) ≤ j < s(k+1), and τj = τ0
if 0 ≤ j < s(1). Hence we have:

Assume N1 6= 0 in the case n ≥ 1. Then for (tj)1≤j≤n ∈ Gn
m,R, we have

τ(t) = τx(t
′)

(τ(t) :=
∏n

j=1 τj(tj), t
′ ∈ G

{1,...,r}
m,R if x is an A-orbit, t′ ∈ G

{0,...,r}
m,R if x is a B-orbit), where

t′ is defined as follows. For 1 ≤ k ≤ r, t′k =
∏

s(k)≤j<s(k+1) tj . In the case where x is a

B-orbit, t′0 =
∏

1≤j<s(1) tj .

Lemma 4.5.4. There is a unique map ψ : D♯
Σ,[:] → DSL(2) which sends (σ, Z, class ((σj , Nj)1≤j≤n))

to the element of DSL(2) associated to (N1, . . . , Nn, F ) for F ∈ Z in 4.5.3.

This is proved similarly to [21] Part IV 4.5.9.

Theorem 4.5.5. The map ψ : D♯
Σ,[:] → DI

SL(2) is continuous.

This map is the unique continuous extension of the identity map of D. We call this
map ψ the CKS map respecting the work of Cattani, Kaplan and Schmid on their SL(2)-
orbit theorem in many variables in pure case in [10]. This is the most important map in
the fundamental diagram.

For the proof of Theorem 4.5.5, we use the following theorem.

Theorem 4.5.6. Let σ ∈ Σ. For the topologies in 4.2.5, Eσ is open in Ẽσ.

We will prove Theorem 4.5.6 in Proposition 4.5.8–4.5.17.
From Theorem 4.5.6, we obtain

Theorem 4.5.7. Let σ ∈ Σ. Then Ẽσ (4.2.5) and Eσ are log manifolds.

Proof. For Ẽσ, the argument of the proof of [24] Proposition 3.5.10 for the pure standard
case also works for the present case (see also [21] Part III 4.1.1).

The result for Eσ follows from this by Theorem 4.5.6.

We start to prove Theorem 4.5.6. The following Proposition 4.5.8 is a G-MHS version
of [24] Proposition 7.1.1.
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Proposition 4.5.8. Let Σ be a weak fan and let σ ∈ Σ. Let Ã(σ) be the closed analytic
subset of Ď defined by Ã(σ) = {F ∈ Ď | N(F pVC) ⊂ F p−1VC for all N ∈ σ, V ∈
Rep(G), p ∈ Z}, and let A(σ) be the subset of Ď consisting of all elements F such that
(σ, exp(σC)F ) is a nilpotent orbit. Then A(σ) is an open set of Ã(σ) in the strong topology
of Ã(σ) in Ď (4.2.5).

Proof. Assume F ∈ A(σ) and assume that a directed family Fλ ∈ Ã(σ) converges to
F . We prove that Fλ ∈ A(σ) for λ sufficiently large. Let H ∈ D. Take a faithful
representation V ∈ Rep(G) and take R-polarizations 〈·, ·〉w of H(grWw V ) which are sta-
ble under G′. By 3.4.13 (2), for λ sufficiently large, the annihilator of F p

λ (gr
W
w V ) with

respect to 〈·, ·〉w is Fw+1−p(grWw V ). Take a finite set N1, . . . , Nn of generators of the
cone σ. The proof of [24] Proposition 7.1.1 shows that if λ is sufficiently large, then
exp(

∑n
j=1 zjNj)Fλ(gr

W
w V ) ∈ G(R)H(grWw V ) for every w if Im(zj) are sufficiently large.

By 1.4.7, Fλ ∈ A(σ) for λ sufficiently large.

4.5.9. The proof of Theorem 4.5.6 consists of complicated inductions. To clarify the idea,
we explain here the proof when the cone σ is of rank one.

By the canonical isomorphisms Γ(σ) ≃ N and P (σ) ≃ N, we have canonical isomor-
phisms toricσ ≃ C, |toric|σ ≃ R≥0. We identify Ěσ with C × Ď and Ě♯

σ with R≥0 × Ď.
Since Eσ is the inverse image of E♯

σ under | · | : Ěσ → Ě♯
σ, it is sufficient to prove that E♯

σ

is open in Ẽ♯
σ.

Assume that (qλ, Fλ) ∈ Ẽ♯
σ converges to (0, F ) ∈ E♯

σ. We prove that (qλ, Fλ) ∈ E♯
σ

for sufficiently large λ. Taking subsequences, we divide it into two cases: the case where
qλ = 0 for all λ and the case qλ 6= 0 for all λ.

Assume qλ = 0. This is the case Proposition 4.5.8 for rank (σ) = 1.
Assume qλ 6= 0. Let qλ = e−2πyλ . We have to see that, for any sufficiently large λ,

exp(iyλN)Fλ ∈ D (which means (qλ, Fλ) ∈ Eσ by definition 4.2.5). Here N ∈ σ is such
that exp(N) corresponds 1 ∈ N via Γ(σ) ≃ N.

First, applying [24] Proposition 3.1.6 to S := Ẽσ ⊂ X := Ěσ = C × Ď, s = (0, F ),
sλ = (qλ, Fλ), and A := {0} × Ď, we find F ∗

λ ∈ Ď which is very near to Fλ such that
(0, F ∗

λ ) ∈ Ẽσ and F ∗
λ converges to F . For the precise meaning of “very near” here, see the

condition (i) in Lemma 4.5.13.
By Proposition 4.5.8 again, we may assume that

(1) (N,F ∗
λ) generates a nilpotent orbit.

Next, let τ : Gm,R → GR be the homomorphism corresponding to the splitting of

W (1) := M(N,W ) given by F̂(1) in 4.5.3, and let τλ = τ(1/
√
yλ). By (1), (W (1), F ∗

λ ) is a
G-MHS. Together with the fact that τλ splits W (1), we have

(2) τ−1
λ F ∗

λ → F̂(1).
From this, we have
(3) τ−1

λ exp(iyλN)F ∗
λ = exp(iN)τ−1

λ F ∗
λ → exp(iN)F̂(1).

Since Fλ and F ∗
λ are very near, we have τ−1

λ exp(iyλN)Fλ → exp(iN)F̂(1) ∈ D. Since
D is open in Ď, we conclude

(4) exp(iyλN)Fλ ∈ D for sufficiently large λ.

4.5.10. Note that a large part of the following 4.5.10–4.5.17 is a copy from [21] Part
IV Appendix (after some modifications explained in Remark 4.5.31). For example, the
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statement of Proposition 4.5.14 is almost identical to that of [21] Part IV Proposition
A.1.7.

To prove Theorem 4.5.6, since Ẽσ,val → Ẽσ is proper and surjective, and Eσ,val ⊂ Ẽσ,val
is the inverse image of Eσ ⊂ Ẽσ, it is sufficient to prove that Eσ,val is open in Ẽσ,val. Since

we have the continuous projection Ẽσ,val → Ẽ♯
σ,val for which Eσ,val is the inverse image of

E♯
σ,val, it is sufficient to prove that E♯

σ,val is open in Ẽ♯
σ,val.

Assume that a directed system wλ = (qλ, F
′
λ) ∈ Ẽ♯

σ,val (λ ∈ L, where L is a directed

ordered set) converges in Ẽ♯
σ,val to w = (q, F ′) ∈ E♯

σ,val. We prove that wλ ∈ E♯
σ,val for any

sufficiently large λ.

4.5.11. We fix notation.
Let w[:] = (t, F ′) (resp. wλ,[:] = (tλ, F

′
λ)) be the image w (resp. wλ) in Ě

♯
σ,[:] = |toric|σ,[:]×

Ď (t, tλ ∈ |toric|σ,[:], F ′, F ′
λ ∈ Ď).

We use the additive presentation of |toric|σ,[:] in 4.3.9. Let n and σn be as those in
there for the point t. Take an R-subspace B of σR such that σR = σn,R⊕B. Take a good
base (Ns)s∈S for t and let Sj ⊂ S be as in the definition of a good base (4.3.10). Write
t = (class ((σj , Nj)1≤j≤n), b), where Nj is an interior point of σj and b ∈ B. Let as ∈ R>0

such that Nj ≡
∑

s∈Sj
asNs mod σj−1,R for all 1 ≤ j ≤ n.

Let F = exp(ib)F ′. Then ((Ns)s∈S, F ) generates a nilpotent orbit. We have also the
B-component bλ ∈ B of tλ. Let Fλ = exp(ibλ)F

′
λ. Then Fλ converges to F in Ď.

Take an open neighborhood V of b in BC such that the map toricσn × V → toricσ
induced by the canonical map toricσn × BC → toricσ is an open immersion. We may
assume bλ ∈ V ∩ B.

Let σ′ ⊂ σ be the cone generated by Ns (s ∈ S). Replacing Ns byNs/r for some integer
r > 0, we may assume that log Γ(σ′) ⊂ ⊕

s∈S NNs ⊂
⊕

s∈S ZNs. We have the injective

homomorphism Γ(σ′)
⊂→ NS. For s ∈ S we have the s-component Γ(σ′) → N, which is

an element qs of P (σ′), regarded as a holomorphic function on Spec(C[P (σ′)])an × V =
toricσ′ × V .

We use the description of the topology of |toric|σ,[:] in 4.3.12 associated to the good
base (Ns)s∈S for t. We use the notation there. Let U be the open neighborhood of t. We
may assume that all tλ belong to U .

Since wλ → w and since |toric|σ′,val × B is open in |toric|σ,val, we may assume that all
wλ belong to the open set Ẽσ′,val × V of Ẽσ,val.

Note that we have cj ∈ Sj and T as in 4.3.12. In the case qs(wλ) 6= 0, yλ,s ∈ R>0

is defined by |qs(wλ)| = exp(−2πyλ,s). If s ∈ Sj and qs(wλ) 6= 0, then qs′(wλ) 6= 0 for
any s′ ∈ Sj′ with j′ ≥ j, and in the case s 6= cj , yλ,s/yλ,cj gives the s-component of tλ in
U ≃ Rn

≥0 ×RT
≥0 × B → RT

≥0. If s ∈ Sj and if the set I = {λ | qs(wλ) 6= 0} is cofinal in
the directed index set, then for s′ ∈ Sj′ with j′ > j (resp. for s′ ∈ Sj) and for λ ∈ I, we
have yλ,s′/yλ,s → 0 (resp. yλ,s′/yλ,s → as′/as).

Let xSL(2) ∈ DSL(2) be the element associated to (N1, . . . , Nn, F ) in 4.5.3. We have
a homomorphism τ : Gn

m → GR as in (2) in 4.5.3. In the following, τj denotes its j-th
component.

4.5.12. We may assume that there exists an integer m such that 1 ≤ m ≤ n+1 and such
that qs(xλ) = 0 for any λ and s ∈ S≤m−1 and qs(xλ) 6= 0 for any λ and s ∈ S≥m :=

⊔

k≥m Sk
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(S≤0 and S≥n+1 are defined as the empty set).
For m ≤ j ≤ n, let

eλ,≥j = exp(
∑

s∈S≥j

iyλ,sNs) ∈ GC,

τλ,j = τj

(
√

yλ,cj+1
/yλ,cj

)

∈ GR, τλ,≥j =
n
∏

k=j

τλ,k ∈ GR

(yλ,cn+1 denotes 1). Let F̂(j) (1 ≤ j ≤ n) be as in 4.5.1 associated to (N1, . . . , Nn, F ).

Lemma 4.5.13. Let the situation and the notation be as above. Let d be a local metric
on Ď that is compatible with the analytic structure. Let m ≤ j ≤ n and let e ≥ 0. Then
for any sufficiently large λ, there exist F ∗

λ ∈ Ď satisfying the following (i) and (ii).

(i) yeλ,sd(Fλ, F
∗
λ )→ 0 (∀s ∈ Sj).

(ii) (Ns, F
∗
λ ) satisfies Griffiths transversality for any s ∈ S≤j.

Proof. We apply [24] Proposition 3.1.6 to the following situation: S := Ẽσ′ × V ⊂ X :=
Ěσ′ × V = toricσ′ × V × Ď (4.2.5), where σ′ and V are as in 4.5.11, and A is the closed
analytic subspace of X defined by qs = 0 for s ∈ S≤j.

Consider the images of wλ = (qλ, F
′
λ) and w = (q, F ′) of 4.5.10 inX and S, respectively,

and let Fλ, F , and yλ,s be as in 4.5.11.
Take a metric on a neighborhood of the image of w in X as the direct sum of a local

metric on toricσ′ × V and the local metric d on Ď. Then we get Lemma 4.5.13.

The next is a key proposition of this section.

Proposition 4.5.14. Let the situation and the assumption be as above. Then the fol-
lowing assertions (Aj) (m − 1 ≤ j ≤ n), (Bj) (m ≤ j ≤ n), (Cj) (m ≤ j ≤ n) are
true.

(Aj) (resp. (Bj), resp. (Cj)) for m ≤ j ≤ n: Let e ≥ 1. Then for any sufficiently large

λ, there are F
(j)
λ ∈ Ď satisfying the following (1)–(3).

(1) yeλ,cjd(Fλ, F
(j)
λ )→ 0.

(2) ((Ns)s∈S≤j
, eλ,≥j+1F

(j)
λ ) generates a nilpotent orbit.

(3) τ−1
λ,≥j+1eλ,≥j+1F

(j)
λ → exp(iNj+1)F̂(j+1).

(resp. (3) τ−1
λ,≥jeλ,≥j+1F

(j)
λ → F̂(j).

resp. (3) τ−1
λ,≥jeλ,≥jF

(j)
λ → exp(iNj)F̂(j).)

Here (An) is formulated by understanding Nn+1 = 0 and F̂(n+1) = F .

(Am−1): For any sufficiently large λ, we have the following (2) and (3).
(2) ((Ns)s∈S≤m−1

, eλ,≥mFλ) generates a nilpotent orbit.

(3) τ−1
λ,≥meλ,≥mFλ → exp(iNm)F̂(m).

Remark 4.5.15. The case n = 1 was treated in 4.5.9. The case n = m = 1 is the case
qλ 6= 0 for all λ in 4.5.9. The case n = 1 and m = 2 is the case qλ = 0 for all λ in 4.5.9.
In the case n = m = 1, the course of the arguments about (1), (2), (3), (4) in 4.5.9 is
understood as (1) = (A1)⇒ (2) = (B1)⇒ (3) = (C1)⇒ (4) = (A0).
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4.5.16. We prove Proposition 4.5.14 by using the downward induction of the form
(Aj) ⇒ (Bj) ⇒ (Cj) ⇒ (Aj−1). (Here m ≤ j ≤ n.)
(Bj) ⇒ (Cj) is clear.

We prove (Aj) ⇒ (Bj). By (2), for any sufficiently large λ, (W (j), eλ,≥j+1F
(j)
λ ) is a

mixed Hodge structure, where W (j) denotes the relative monodromy filtration of N1 +
· · ·+Nj with respect to W . Since τλ,j splits W

(j), we have (Bj).
We prove (Cj+1) ⇒ (Aj) if m− 1 ≤ j < n and (An).

Let e ≥ 1. If m ≤ j ≤ n (resp. j = m−1), then, by Lemma 4.5.13, there are F
(j)
λ ∈ Ď

satisfying (1) and (resp. F
(j)
λ := Fλ satisfies) the condition

(2′) (Ns, F
(j)
λ ) satisfies Griffiths transversality for any s ∈ S≤j .

When m − 1 ≤ j < n, by (Cj+1), there are F
(j+1)
λ ∈ Ď satisfying (resp. when j = n,

F
(j+1)
λ = Fλ satisfies) the following.

(1′′) yeλ,cj+1
d(Fλ, F

(j+1)
λ )→ 0.

(3′′) τ−1
λ,≥j+1eλ,≥j+1F

(j+1)
λ → exp(iNj+1)F̂(j+1). (Recall F̂(n+1) means F .)

By (1′′) and (3′′), we have

(4) τ−1
λ,≥j+1eλ,≥j+1Fλ → exp(iNj+1)F̂(j+1).

By (4) and by (1), we have

(5) τ−1
λ,≥j+1eλ,≥j+1F

(j)
λ → exp(iNj+1)F̂(j+1).

For the left-hand side of (5), by (2′), (Ns, τ
−1
λ,≥j+1eλ,≥j+1F

(j)
λ ) satisfies Griffiths transver-

sality for any s ∈ S≤j. On the other hand, concerning the right-hand side of (5),

((Ns)s∈S≤j
, exp(iNj+1)F̂(j+1)) generates a nilpotent orbit. Hence (5) and Proposition 4.5.8

show that ((Ns)s∈S≤j
, τ−1
λ,≥j+1eλ,≥j+1F

(j)
λ ) generates a nilpotent orbit for any sufficiently

large λ. This proves that ((Ns)s∈S≤j
, eλ,≥j+1F

(j)
λ ) generates a nilpotent orbit for any suf-

ficiently large λ. By this and by (1) and (5), we have (Aj).

4.5.17. By (Am−1) (2) of Proposition 4.5.14, wλ belongs to E♯
σ,val if λ is sufficiently large.

This proves that E♯
σ,val is open in Ẽ♯

σ,val, and hence proves that Eσ is open in Ẽσ
(4.5.10). The proof of Theorem 4.5.6 is completed.

4.5.18. We next prove Theorem 4.5.5 (the continuity of the CKS map) in 4.5.19–4.5.30.
The outline of the proof of Theorem 4.5.5 is as follows. By using the properties of

regular spaces reviewed in 4.5.19 applied to the spaces DI
SL(2)(Φ), it becomes enough

to discuss the convergence of ordinary points to a boundary point (we do not need to
discuss the convergence of boundary points to a boundary point). We reduce the proof of
Theorem 4.5.5 to the three convergences in Proposition 4.5.22. These three convergences
are proved in 4.5.24, 4.5.25, and 4.5.26–4.5.30, respectively. The structure of these proofs
is essentially the same as that in [24], [21] Parts III and IV.

4.5.19. Concerning regular spaces, we first recall two facts.
[24] Definition 6.4.6 ([9], Ch. 1, §8, no. 4, Definition 2). A topological space X is called

regular if it is Hausdorff and satisfies the following axiom: Given any closed subset F of
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X and any point x /∈ F , there is a neighborhood of x and a neighborhood of F which are
disjoint.

([9], Ch. 1, §8, no. 5, Theorem 1.) Let X be a topological space, A a dense subset of
X , f : A→ Y a map from A into a regular space Y . A necessary and sufficient condition
for f to extend to a continuous map f : X → Y is that, for each x ∈ X , f(y) tends to a
limit in Y when y tends to x while remaining in A. The continuous extension f̄ of f to
X is then unique.

4.5.20. To prove that ψ : D♯
Σ,[:] → DI

SL(2) is continuous, it is sufficient to prove that the
composition

E♯
σ,val → E♯

σ,[:] → D♯
Σ,[:]

ψ→ DI
SL(2)

is continuous for each σ ∈ Σ.
Let the notation and the assumption be as in 4.5.10 and 4.5.11. Assume further that

all wλ belong to E♯
σ,val. Then it is enough to show that the image of wλ in D

I
SL(2) converges

to the image of w in DI
SL(2).

If (σ, Z) ∈ DΣ, the relative monodromy filtration M(N ′,W ) exists for any N ′ ∈ σ,
and M(N ′,W ) depends only on the face σ′ of σ such that N ′ is in an interior point of σ′.
We will denote M(N ′,W ) as W (σ′).

Recall that the image of w ∈ E♯
σ,val in DΣ,[:] is (σ, Z, class ((σj , Nj)1≤j≤n)). Since Nj is

in the interior of σj for each j, N1 + · · ·+ Nj is in the interior of σj , and hence W (j) in
4.5.1 for (N1, . . . , Nn, F ) coincides with W (σj).

Hence if wλ ∈ E♯
σ,val is near to w, the W (σj) of wλ are contained in the set Φ of

W (σj) (1 ≤ j ≤ n), and hence the image of wλ in DSL(2) is contained in DSL(2)(Φ). Since
DSL(2)(Φ) is regular by Proposition 3.4.10, we can use the above regular point method,
and hence in the proof of the fact that the image of wλ in DI

SL(2) converges to the image

of w in DI
SL(2), we may assume that wλ ∈ |torus|σ ×D.

4.5.21. To state Proposition 4.5.22 on three kinds of convergences, which are used to
prove the continuity of the CKS map, we recall that we are in the following situation. We
keep the notation in 4.5.11 and assume wλ ∈ |torus|σ ×D. So the |torus|σ-component of
wλ is written as (

∑

s∈S yλ,sNs) + bλ.
For each 1 ≤ j ≤ n, we have cj ∈ Sj and we have Nj ≡

∑

s∈Sj
asNs mod σj−1,R.

Note that (N1, · · · , Nn, F ) generates a nilpotent orbit. Let r ∈ D be the point associ-
ated to (N1, . . . , Nn, F ) in 4.5.1.

By 4.5.19, for the proof of Theorem 4.5.5, it is sufficient to prove that exp(
∑

s∈S iyλ,sNs)Fλ
converges to the class in DI

SL(2) of the SL(2)-orbit associated to (N1, . . . , Nn, F ). As will
be explained in 4.5.23 below, this is reduced to the following proposition.

Proposition 4.5.22. We have the following convergences (1)–(3) as λ→∞.

(1) τ

(

√

yλ,c1
yλ,c2

, . . . ,
√

yλ,cn
yλ,cn+1

)

exp(
∑

s∈S iyλ,sNs)Fλ → r in D, where yλ,cn+1 = 1.

(2) splW
(

exp(
∑

s∈S iyλ,sNs)Fλ
)

→ splW (r) in spl(W ).

(3) (exp(
∑

s∈S iyλ,sNs)Fλ)red converges to the class in Dred,SL(2) of the SL(2)-orbit as-
sociated to (N1, . . . , Nn, F ).
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4.5.23. We explain that this Proposition 4.5.22 shows that xλ := exp(
∑

s∈S iyλ,sNs)Fλ
converges to the class xSL(2) in D

I
SL(2) of the SL(2)-orbit associated to (N1, . . . , Nn, F ) and

hence proves Theorem 4.5.5.
By (2) and (3) of Proposition 4.5.22 and by Proposition 3.4.5 and Proposition 3.4.9,

for the proof of xλ → xSL(2), it is sufficient to prove the following (1) and (2). Let
p = xSL(2),red ∈ Dred,SL(2).

(1) Let β be a distance to Φ(p)-boundary. Then if xSL(2) is an A-orbit (resp. B-orbit),
Ad(τp(β(xλ)))

−1δ(xλ) converges to Ad(τp(β(r)))
−1δ(r) (resp. 0◦Ad(τp(β(r)))−1δ(r)) in L.

(2) Let β be a distance to Φ(xSL(2))-boundary. Then τxSL(2)(β(xλ))
−1xλ converges to

τxSL(2)(β(r))
−1r in D.

We prove that these (1) and (2) follow from (1) of Proposition 4.5.22.

Let tλ =
(
√

yλ,c2
yλ,c1

, . . . ,
√

yλ,cn+1

yλ,cn

)

∈ Rn
>0. We have τ(tλ) = τxSL(2)

(t′λ), where t′λ ∈

R
Φ(xSL(2))

>0 is as in 4.5.3 (2). Since tλ converges to 0 in Rn
≥0, t

′
λ converges to 0 in R

Φ(xSL(2))

≥0 .
By (1) of Proposition 4.5.22, we have

(∗) xλ = τxSL(2)(t
′
λ)uλr, uλ ∈ G(R)Gu(C), uλ → 1.

If xSL(2) is a B-orbit, since r ∈ Dnspl, uλr ∈ Dnspl if λ is sufficiently large and hence by
(∗), xλ ∈ Dnspl if λ is sufficiently large.

We prove (1). By applying β to (∗)red, we obtain that if xSL(2) is an A-orbit (resp. B-
orbit), Ad(τp(β(xλ,red)))

−1δ(xλ) is equal to τp(β(uλrred))
−1δ(uλr) (resp. t

′
λ,0◦Ad(τp(β(uλrred)))−1δ(uλr))

and this converges to Ad(τp(β(rred)))
−1δ(r) (resp. 0 ◦ Ad(τp(β(rred)))−1δ(r)).

We prove (2). By applying β to (∗), we have τxSL(2)
(β(xλ))

−1xλ = τxSL(2)(β(uλr))
−1uλr,

and this converges to τxSL(2)(β(r))
−1r.

4.5.24. We start to prove Proposition 4.5.22.
Proposition 4.5.22 (1) follows from (A0) of the case m = 1 of Proposition 4.5.14.
We prepare the proofs of Proposition 4.5.22 (2) and (3).
For 1 ≤ j ≤ n, let Ďj be the subset of Ď consisting of all F ′ ∈ Ď such that

((Ns)s∈S≤j
, F ′) generates a nilpotent orbit. We have F ∈ Ďn, Fλ ∈ Ď, and we know

from 4.5.11, Proposition 4.5.14 and Theorem 4.5.6 that the following five conditions are
satisfied.

(1) Fλ converges to F in Ď.

(2) yλ,s →∞ for any s ∈ S.
(3) If 1 ≤ j < n, s ∈ S≤j and t ∈ S≥j+1, then

yλ,s
yλ,t
→∞.

(4) If 1 ≤ j ≤ n and s, t ∈ Sj , then yλ,s
yλ,t
→ as

at
.

(5) For 1 ≤ j ≤ n and e ≥ 0, there exist F ∗
λ ∈ Ď (λ ∈ L) satisfying the following

conditions (5.1) and (5.2).
(5.1) exp

(
∑

t∈S≥j+1
iyλ,tNt

)

F ∗
λ ∈ Ďj (λ : sufficiently large),

(5.2) yeλ,sd(Fλ, F
∗
λ )→ 0 (∀s ∈ Sj).

Here d is a metric on a neighborhood of F in Ď which is compatible with the analytic
topology of Ď.
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4.5.25. Proof of Proposition 4.5.22 (2). (This is almost a copy from [21] Part III 3.3.7.)
We prove the following assertion (Aj) by downward induction on j. (Note that (A0)

is what we want to prove.)

(Aj) : Proposition 4.5.22 (2) is true in the case where exp
(
∑

t∈S≥j+1
iyλ,tNt

)

Fλ ∈ Ďj

for all λ. Here Ďj for 1 ≤ j ≤ n are defined in 4.5.24, and Ď0 := D.

Proof. Let 0 ≤ j ≤ n.

Let xλ = exp(
∑

s∈S iyλ,sNs)Fλ, τλ,>j =
∏

j<k≤n τk

(

√

yλ,ck
yλ,ck+1

)

, and xλ,j = τλ,>jxλ.

Then, by [20] 10.3, we have

xλ,j = τλ,>jxλ = exp
(

∑

s∈S≤j

i
yλ,s

yλ,cj+1
Ns

)

Uλ,j,

where Uλ,j := τλ,>j exp
(

∑

t∈S≥j+1

iyλ,tNt

)

Fλ.

Assume exp
(
∑

t∈S≥j+1
iyλ,tNt

)

Fλ ∈ Ďj . Then (N ′
1, . . . , N

′
j, Uλ,j) generates a nilpotent

orbit, where N ′
k =

∑

s∈Sk

yλ,s
yλ,ck

Ns (1 ≤ k ≤ j). Let sλ be the associated limit splitting.

By [20] Theorem 0.5 (2) and ibid. Proposition 10.8 (1), there is a convergent power series
uλ whose values are in G(R), whose constant term is 1 and whose coefficients depend
on Uλ,j and yλ,s/yλ,ck (1 ≤ k ≤ j, s ∈ Sk) real analytically such that splW (xλ,j) =

uλ

(

yλ,c2
yλ,c1

, . . . ,
yλ,cj+1

yλ,cj

)

sλ. Since sλ also depends real analytically on Uλ,j , we have

(1) splW (xλ,j) converges to splW (r).

This already showed (An).
Next, assume j < n and assume that (Aj+1) is true. We prove that (Aj) is true.
Choose a sufficiently big e > 0 depending on τj+1, . . . , τn.
Take F ∗

λ as in 4.5.24 (5). Define x∗λ and x∗λ,j similarly as xλ and xλ,j , respectively.
Then we have

(2) splW (x∗λ,j) converges to splW (r), and yeλ,cj+1
d(splW (xλ,j), splW (x∗λ,j))→ 0.

By downward induction hypothesis on j, we have

(3) splW (x∗λ) = τ−1
λ,>jsplW (x∗λ,j)τλ,>j(gr

W ) converges to splW (r).

By (1)–(3), we have splW (xλ) = τ−1
λ,>jsplW (xλ,j)τλ,>j(gr

W ) also converges to splW (r).

We next prove (3) of Proposition 4.5.22. We assume that G is reductive in 4.5.26–
4.5.30.

4.5.26. (Cf. [24] 6.2.1.) Let Nj ∈ gR (1 ≤ j ≤ n) be mutually commuting nilpotent
elements, let F ∈ Ď, and assume that (N1, . . . Nn, F ) generates a nilpotent orbit. Let
(ρ, ϕ) be the associated SL(2)-orbit in n variables and let r = ϕ(i) as in 4.5.21. Then,
from [24] 6.1.5 (recall that G is reductive now), we see that there are ch ∈ g−R, kh ∈ g+R
(h ∈ Nn), where g± = g±,r are the (±1)-eigen subspaces of gR under the Cartan involution

associated toKr, respectively, such that
∑

h∈Nn ch
∏n

j=1 t
h(j)
j and

∑

h∈Nn kh
∏n

j=1 t
h(j)
j (tj ∈
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C) converge when |tj | are sufficiently small, that c0 = k0 = 0 and that, for yj/yj+1 ≫ 0
(1 ≤ j ≤ n, yn+1 = 1),

τ

(
√

y1
y2
, . . . ,

√

yn
yn+1

)

exp
(

∑

1≤j≤n

iyjNj

)

F(1)

= exp
(

∑

h∈Nn

ch

n
∏

j=1

(yj/yj+1)
−h(j)/2

)

· exp
(

∑

h∈Nn

kh

n
∏

j=1

(yj/yj+1)
−h(j)/2

)

· r.

Note that these ch (h ∈ Nn) are uniquely determined (whereas the kh are not).

Proposition 4.5.27. (Cf. [24] Proposition 6.2.2.) We use the notation in 4.5.26. For
v ∈ gR and e ∈ Zn, let v(e) be the component of v on which Ad(τ(t)) (t = (tj)1≤j≤n ∈
Gn
m,R) acts as

∏n
j=1 t

e(j)
j . We denote |e| = (|e(j)|)1≤j≤n. Let h ∈ Nn r {0}, e ∈ Zn.

Then, ch(e) = 0 unless |e| < h for the product order in Nn, i.e., |e(j)| ≤ h(j)
(1 ≤ j ≤ n) and |e| 6= h.

Proof. This proposition is proved in the same way as [24] 6.2.4–6.2.6.

4.5.28. The following arguments are almost copied from the proof [24] 6.4.4 of [24] Propo-
sition 6.4.1.

We prove the following assertion (Cj) by a downward induction on j. Let 0 ≤ j ≤ n,
and let Ď0 := D (this is the correction of a typo “Ď0 := Ď” in [24] 6.4.4).

(Cj) Assume that exp
(
∑

t∈S≥j+1
iyλ,tNt

)

Fλ ∈ Ďj for any λ. Then, for a sufficiently

large λ, we have

τ

(
√

yλ,c1
yλ,c2

, . . . ,

√

yλ,cn
yλ,cn+1

)

exp
(
∑

s∈S iyλ,sNs

)

Fλ

= exp
(

∑

h∈Nj bλ,h
∏

1≤k≤j

√

yλ,ck
yλ,ck+1

−h(k))

kλ · r,

where bλ,h ∈ g−R (g−R denotes the (−1)-eigenspace of gR under the Cartan involution

associated to Kr), kλ ∈ Kr, and
∑

h∈Nj bλ,h
∏

1≤k≤j x
h(k)
k (xk ∈ C) absolutely converges

when |xk| (1 ≤ k ≤ j) are sufficiently small, which satisfy the following three conditions.
Here ycn+1 := 1.

(1) kλ → 1.

(2) |(Ad ◦ τk)1≤k≤j-weight of bλ,h| ≤ h for the product order in Nj.

(3) For each h ∈ Nj, Ad
(

∏

k≥j+1 τk

(

√

yλ,ck
yλ,ck+1

))ν

(bλ,h) converges for ν = 0,±1. More-

over, if h = 0 then it converges to 0.

Note that by the local structure theorem of DSL(2) in the reductive group case (Theo-
rem 3.4.15), Proposition 4.5.22 (3) is equivalent to (C0).
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Lemma 4.5.29. (Cf. [24] Lemma 6.4.3.) Let the notation be as above. Fix j such that
1 ≤ j ≤ n, and assume that exp

(
∑

t∈S≥j+1
iyλ,tNt

)

Fλ ∈ Ďj for any λ. Put

Nλ,k :=
∑

s∈Sk

yλ,s
yλ,ck

Ns (1 ≤ k ≤ j),

Uλ :=
(

∏

l≥j+1 τl

(

√

yλ,cl
yλ,cl+1

))

exp
(
∑

t∈S≥j+1
iyλ,tNt

)

Fλ.

For each λ, let (ρλ, ϕλ) be the SL(2)-orbit in j variables associated to ((Nλ,k)1≤k≤j, Uλ),
and let rλ := ϕλ(i). Then, rλ converges to r.

The proof of [24] Lemma 6.4.3 also works for this Lemma 4.5.29, which uses the impor-
tant fact that an SL(2)-orbit moves real analytically if the monodromy weight filtration
is constant ([10], see also [24] 6.1.6).

4.5.30. We prove (Cj). By [20] 10.3, we have

τ

(
√

yλ,c1
yλ,c2

, . . . ,

√

yλ,cn
yλ,cn+1

)

exp
(
∑

s∈S iyλ,sNs

)

Fλ

=
(

∏

k≤j τk

(

√

yλ,ck
yλ,ck+1

))

exp
(
∑

s∈S≤j
i

yλ,s
yλ,cj+1

Ns

)

Uλ

=
(

∏

k≤j τk

(

√

yλ,ck
yλ,ck+1

))

exp
(
∑

k≤j i
yλ,ck
yλ,cj+1

Nλ,k

)

Uλ.

Then, by 4.5.26 at rλ (see Lemma 4.5.29 for rλ),

τ

(
√

yλ,c1
yλ,c2

, . . . ,

√

yλ,cn
yλ,cn+1

)

exp(
∑

s∈S iyλ,sNs)Fλ

=
(

∏

k≤j τk

(

√

yλ,ck
yλ,ck+1

))(

∏

k≤j τλ,k

(

√

yλ,ck
yλ,ck+1

))−1

fλk1,λ · rλ, where

fλ := exp
(

∑

h∈Nj aλ,h
∏

k≤j

√

yλ,ck
yλ,ck+1

−h(k))

, aλ,h ∈ g
−,rλ
R ,

k1,λ ∈ Krλ , k1,λ → 1.

Here g
−,rλ
R denotes the (−1)-eigenspace of gR under the Cartan involution associated to

the maximal compact subgroup Krλ of GR.

Claim 1. We can write

rλ = gλk2,λ · r, τλ,k = Int(gλ) ◦ τk,
gλ ∈ (G◦)W (1),...,W (j),R, k2,λ ∈ Kr, gλ → 1, k2,λ → 1.

This claim is proved as exactly in the same way as in [24]. We obtain a proof of this
claim from the corresponding proof in [24] by replacing “ρ̃λ,k, ρ̃k” by τλ,k, τk, respectively,
and by replacing “Lemma 6.4.3” by Lemma 4.5.29. The key point of the proof is the
fact that τλ,k and τλ are the Borel–Serre liftings at rλ and r, respectively, of the com-
mon homomorphism Gm → P/Pu, where P is a Q-parabolic subgroup of G containing
(G◦)W (1),...,W (j),R.

80



Classifying spaces of degenerating mixed Hodge structures, V

By Claim 1, we have

τ

(
√

yλ,c1
yλ,c2

, . . . ,

√

yλ,cn
yλ,cn+1

)

exp
(
∑

s∈S iyλ,sNs

)

Fλ(4)

= Int
(

∏

k≤j τk

(

√

yλ,ck
yλ,ck+1

))

(gλ) Int(gλ)
−1(fλ) Int(gλ)

−1(k1,λ)k2,λ · r.

Here Int(gλ)
−1(k1,λ) ∈ Kr and, concerning aλ,h ∈ g

−,rλ
R in the definition of fλ, we have

Ad(gλ)
−1(aλ,h) ∈ g−R = g

−,r
R . Furthermore, if we write

gλ = exp
(
∑

h∈Nj gλ,−h
)

, gλ,−h ∈ Lie (GW (1),...,W (j),R),(5)

((Ad ◦ τk)1≤k≤j-weight of gλ,−h) = −h, gλ,−h → 0,

we have

Int
(

∏

k≤j τk

(

√

yλ,ck
yλ,ck+1

))

(gλ) = exp
(

∑

h∈Nj gλ,−h
∏

k≤j

√

yλ,ck
yλ,ck+1

−h(k))

.(6)

By Proposition 4.5.27,

|(Ad ◦ τk)1≤k≤j-weight of Ad(gλ)−1(aλ,h)| < h.(7)

From (4)–(7), we obtain

τ

(
√

yλ,c1
yλ,c2

, . . . ,

√

yλ,cn
yλ,cn+1

)

exp
(
∑

s∈S iyλ,sNs

)

Fλ(8)

= exp
(

∑

h∈Nj bλ,h
∏

k≤j

√

yλ,ck
yλ,ck+1

−h(k))

kλ · r, where

kλ := Int(gλ)
−1(k1,λ)k2,λ ∈ Kr, kλ → 1,

bλ,h ∈ g−R, bλ,h converges for each h, bλ,h(±h)→ 0,

|(Ad ◦ τk)1≤k≤j-weight of bλ,h| ≤ h.

Here bλ,h(±h) denotes the parts of bλ,h of weight ±h with respect to (Ad ◦ τk)1≤k≤j.
In the case j = n, (8) already completes the proof of (Cj).
If 0 ≤ j < n, it remains to prove (3) of (Cj). This is shown by downward induction

on j, as we have mentioned. First we show the following.

Claim 2. To prove (Cj) (3), we may assume exp
(
∑

t∈S≥j+1
iyλ,tNt

)

Fλ ∈ Ďj+1 for any

λ.

The following is a simplification of the proof of the generalization of [24] 6.4.4 Claim
2 by an observation that we can take y∗λ,t = yλ,t there, so that the condition ibid. (11)
holds trivially.

We prove Claim 2. By the condition (5) of 4.5.24 for j + 1, there exist e ≥ 0, F ∗
λ ∈ Ď

satisfying the following (9)–(12).

(9) exp
(
∑

t∈S≥j+1
iyλ,tNt

)

F ∗
λ ∈ Ďj+1.

(10) y2eλ,cj+1
d(Fλ, F

∗
λ )→ 0.
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(11) Let αλ =
(

∏

k≥j+1 τk

(

√

yλ,ck
yλ,ck+1

))

exp
(
∑

t∈S≥j+1
iyλ,tNt

)

. (Note Uλ = αλFλ.) Then,

y−eλ,cj+1
Ad(αλ)→ 0

in the space of linear endomorphisms of gC.

(12) Let βλ =
∏

k≥j+1 τk

(

√

yλ,ck
yλ,ck+1

)

. Then,

y−eλ,cj+1
Ad(βλ)

ν → 0 for ν = 0,±1

in the space of linear endomorphisms of gC.

Define b∗λ,h (h ∈ Nj) just as bλ,h by replacing Fλ by F ∗
λ . To prove Claim 2, it is

sufficient to prove

Ad(βλ)
ν(bλ,h)−Ad(βλ)

ν(b∗λ,h)→ 0 for ν = 0,±1.

The left-hand side of this is equal to

y−eλ,cj+1
Ad(βλ)

ν(yeλ,cj+1
(bλ,h − b∗λ,h)).

Hence, by (12), it is sufficient to prove

yeλ,cj+1
(bλ,h − b∗λ,h)→ 0.

Since bλ,h is a real analytic function in ((Nλ,k)1≤k≤j, Uλ) ([24], 6.1.6), it is sufficient to
prove that

yeλ,cj+1
d(Uλ, U

∗
λ)→ 0,(13)

where U∗
λ = αλF

∗
λ . By (10), we can write

Fλ = exp(xλ)F
∗
λ with xλ ∈ gC, y2eλ,cj+1

xλ → 0.

We have
Uλ = αλFλ = exp(Ad(αλ)(xλ))U

∗
λ .

By (11) and by

yeλ,cj+1
Ad(αλ)(xλ) = (y−eλ,cj+1

Ad(αλ))(y
2e
λ,cj+1

xλ)→ 0,

we obtain (13). Thus Claim 2 is proved.

By Claim 2, we assume exp
(
∑

t∈S≥j+1
iyλ,tNt

)

Fλ ∈ Ďj+1 for any λ. Then, by 4.5.26

at r, we have elements bλ,h′ for h
′ ∈ Nj+1 and we have, for h ∈ Nj ,

bλ,h =
∑∞

k=0 bλ,(h,k)
√

yλ,cj+1

yλ,cj+2

−k

.(14)

Using (8), applied to bλ,(h,k) replacing j by j + 1, we have
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(15) |(Ad ◦ τj+1)-weight of bλ,(h,k)| ≤ k. If h = 0, the parts of bλ,(h,k) of (Ad ◦ τj+1)-weight
±k converge to 0.

By the hypothesis of induction,

(16) Ad
(

∏

k≥j+2 τk

(

√

yλ,ck
yλ,ck+1

))ν

(bλ,(h,k)) converges for ν = 0,±1.

By (14)–(16), we have (3) of (Cj).

The proof of Proposition 4.5.22 (3) is completed.

Remark 4.5.31. As mentioned at the top of this section, [24] and [21] Part III contain
some mistakes which are corrected as in [21] Part IV Appendix. But still the corrections
contain some errors. We review the outline of the mistakes of [24] in (1) below, and
explain the errors of [21] Part IV Appendix in (2) below.

(1) The essence of the errors are in 6.4.12 and 7.1.2 (3) of [24], called the errors (1) and
(2) in [21] Part IV A.1.1, respectively. Both errors base on a misuse of [24] Proposition
3.1.6: In both situations, the authors thought that they could show the existence of real
numbers y∗λ,t satisfying some conditions including the convergence

yeλ,s|yλ,t − y∗λ,t| → 0,

where e is a fixed nonnegative integer. But, [24] Proposition 3.1.6 (applied in the way
explained there) gives only those satisfying

yeλ,s(qλ,t − q∗λ,t)→ 0,

which is not enough.
We use [24] Proposition 3.1.6 correctly in 4.5.9 and Lemma 4.5.13 in the present paper.

Then, we generalize (and correct, see (2) below) in this section (Section 4.5) an alternative
argument [21] Part IV A.1.3–A.1.9 explained in [21] Part IV A.1.2, which shows that, as
is said in [21] Part IV A.1.11, in fact we can take just yλ,s, yλ,t as y

∗
λ,s, y

∗
λ,t satisfying all

conditions, that is, the stronger statement including yeλ,s|yλ,t − y∗λ,t| = 0.
(2) The correction in [21] Part IV Appendix contains several errors including some

critical typos. For example,
1. In A.1.2, “problem (1)” and “problem (2)” should be interchanged.
2. In A.1.5, the definition of N1,...,Nm−1 is missing.
3. In the last line of A.1.5, X should be replaced by some log blowing-up of Ěσ and

S should be the corresponding subspace coming from Ẽσ (not Eσ; the tilde was missed).
4. In A.1.8, line 3 : (An) does not follow from Lemma A.1.6 if m − 1 = n because,

then, Lemma A.1.6 is an empty statement.
5. In A.1.8, line 4: j ≤ n should be j < n.
6. In A.1.10 and A.3.4, all “m = 0” should be “m = 1.”
7. In A.3.4, all “A.1.6” should be “A.1.7.”

The proof given in this section (Section 4.5), in particular, in Proposition 4.5.14 and
Theorem 4.5.6, corrects and generalizes, in the present context, that in [21] Part IV
A.1.3–A.1.9.
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4.6 Properties of the spaces of nilpotent orbits

The aim of this Section 4.6 is to prove the following theorem.

Theorem 4.6.1. Let Σ be a weak fan in Lie (G′) (4.1.7) and let Γ be a semi-arithmetic
subgroup (1.5.7) of G′(Q).

In (1) and (2) below, we assume that Γ is compatible with Σ. In (3)–(5) below, we
assume that Γ is strongly compatible with Σ.

(1) Let X be one of D♯
Σ, D

♯
Σ,[:], D

♯
Σ,val. Then the action of Γ on X is proper, and the

quotient space Γ \X is Hausdorff.
(2) Let X be as in (1). Assume that Γ is torsion-free. Then the action of Γ on X is

free, and the projection X → Γ \X is a local homeomorphism.
(3) The quotient space Γ \DΣ is Hausdorff.
(4) Assume that Γ is neat. Then Γ \DΣ is a log manifold (4.2.12). In particular, it be-

longs to B(log). For each σ ∈ Σ, the map Γ(σ)gp \Dσ → Γ \DΣ is locally an isomorphism
of log manifolds.

(5) Assume that Γ is neat. Then there is a homeomorphism

(Γ \DΣ)
log ≃ Γ \D♯

Σ

over Γ \DΣ.

See 4.1.9 for the compatibility and the strong compatibility of Γ and Σ.

Remark 4.6.2. In Theorem 4.6.1, we can use a semi-arithmetic subgroup of G(Q) (not
of G′(Q)) in the following situation (1) and also in the following situation (2).

(1) If either G is semisimple or the condition (1) in Lemma 1.5.3 is satisfied, Theorem
4.6.1 holds for a semi-arithmetic subgroup Γ of G(Q). In fact, Γ∩G′(Q) is of finite index
in Γ (see Proposition 1.5.13 for the latter case). Hence by 2.3.6 (5), we can replace Γ by
the semi-arithmetic subgroup Γ ∩G′(Q) of G′(Q).

(2) Assume thatG is reductive. Then Theorem 4.6.1 remains true for a semi-arithmetic
subgroup of G(Q) if we make the following modifications (∗) and (∗∗) below. Let Γ be
the image of Γ in (G/Z)(Q), where Z denotes the center of G.

(∗) In (2) (resp. (4) and (5)), the torsion free (resp. neat) property is assumed for Γ,
not for Γ.

(∗∗) In (1) (resp. (2)), the proper action (resp. free action) is stated for Γ, not for Γ.
For the proof, see 4.10.18.

Remark 4.6.3. In [25] Theorem 6.1 and in its proof, the conclusions of Theorem 4.6.1
except the parts on X = D♯

Σ,[:], D
♯
Σ,val in (1) and (2) for the Mumford–Tate domain D (and

its extensions) associated to a polarized pure Hodge structure H are proved with G being
the (semisimple) Mumford–Tate group associated to H (which is isomorphic to M/Z in
1.6.6), Γ being an arithmetic subgroup of G(Q) which is in the connected component of
G(R) containing 1, and Σ being a fan in Lie (G) which is strongly compatible with Γ.
The proof in [25] is a reduction to the case ([24] 4.1.1 Theorem A) of the extended period
domains of classical period domains for pure Hodge structures. Our proof of Theorem
4.6.1 bases on our studies of the space of Borel–Serre orbits, the space of SL(2)-orbits, and
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the CKS map, which were not considered in [25], and provides alternative proofs of their
results. (Minor remarks: Precisely, their D and its extensions are connected components
of our period domain D(G, h̄0), where h̄0 : SC/R → GR is the homomorphism associated
to H , and its extensions, respectively, and their results are deduced from Theorem 4.6.1.
Conversely, under the above assumption, their method can treat Γ \D(M,h0) (h0 is as
in 1.6.6) and its extensions (which are open and closed subspaces of Γ \D(G, h̄0) and its
extensions, as is seen by the latter half of 4.10). See 4.10.19 for some details. Additionally,
their Γ is assumed to be neat, though it is easy to reduce the non-neat case to this case.)

4.6.4. The relation of this theorem (Theorem 4.6.1) with the results and their proofs in
the former parts is as follows.

The above (3), (4), and (5) of Theorem 4.6.1 is the G-MHS versions of Theorem 2.5.5,
Theorem 2.5.2 plus Theorem 2.5.4, and Theorem 2.5.6, respectively, of [21] Part III for
the extended period domains of classical period domains (which are the mixed Hodge
structure versions of (v), (ii) plus (iv), and (vi), respectively, of [24] 4.1.1 Theorem A for
pure Hodge structures). In the case of the extended period domains of classical period
domains, these (3)–(5) of Theorem 4.6.1 are proved in Section 4 of [21] Part III.

In there, also are proved the portion of (1) where X = D♯
Σ, D

♯
Σ,val and the portion of

(2) where X = D♯
Σ, D

♯
Σ,val and Γ is neat. The space X = D♯

Σ,[:] was not considered in [21]

Part III, and the portion of (1) where X = D♯
Σ,[:] and the portion of (2) where X = D♯

Σ,[:]

and Γ is neat follow from [21] Part IV Theorem 6.1.1.
Most of this Section 4.6 is devoted to the proof of Theorem 4.6.1 which is completed

in 4.6.26. Almost descriptions in the proof in this section are some abridged versions of
arguments in [21] Part III Section 4 etc. We describe the main steps in the proof, but
often omit the details if the arguments are the same as those in [21] Part III Section 4
etc.

We start to explain the proof of Theorem 4.6.1.
Let Σ be a weak fan.

Proposition 4.6.5. Let σ, σ′ ∈ Σ. Let

wλ = (yλ, Fλ) ∈ {(y, F ) ∈ σR × Ď | exp(iy)F ∈ D} = (|torus|σ × Ď) ∩ E♯
σ

and

w′
λ = (y′λ, F

′
λ) ∈ {(y, F ) ∈ σ′

R × Ď | exp(iy)F ∈ D} = (|torus|σ′ × Ď) ∩ E♯
σ′

be directed families with the same index set. Let ∗ be [:] or val. Assume that wλ converges
to α in E♯

σ,∗, w
′
λ converges to α′ in E♯

σ′,∗, and exp(iyλ)Fλ = exp(iy′λ)F
′
λ in D for all λ.

Then:
(1) The images of α and α′ in D♯

Σ,∗ coincide.
(2) yλ − y′λ converges in Lie (G′

R).

Proof. In the case ∗ = val, this is a G-MHS version of [21] Part III Proposition 4.2.3. The
proof of the latter works for the proof of Proposition 4.6.5 for ∗ = val and also for ∗ = [:].
A key point of the proof is the continuity of the CKS map D♯

Σ,∗ → DI
SL(2).
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4.6.6. Let σ ∈ Σ. We consider the continuous actions of iσR(⊂ σC) on E
♯
σ, E

♯
σ,[:], E

♯
σ,val.

For a ∈ σR, ia sends the class of (τ, b, F ) in E♯
σ (resp. ((σj, Nj)j, b, F ) in E♯

σ,[:], resp.

(τ, V, b, F ) in E♯
σ,val) in the additive presentation to the class of (τ, b + a, exp(−ia)F )

(resp. ((σj, Nj)j, b+ a, exp(−ia)F ), resp. (τ, V, b+ a, exp(−ia)F )).
It may seem strange that we regard the above action as an action of ia (a ∈ σR), not

of a, but we do so because, in the situation 4.6.15 below, this action of iσR on E♯
σ will be

compatible with the action of σC(⊃ iσR) on Eσ.
We have iσR \E♯

σ = D♯
σ, iσR \E♯

σ,[:] = D♯
σ,[:], and iσR \E

♯
σ,val = D♯

σ,val.

Proposition 4.6.7. Let σ ∈ Σ. Then E♯
σ → D♯

σ, E
♯
σ,[:] → D♯

σ,[:], and E
♯
σ,val → D♯

σ,val are
iσR-torsors in the category of topological spaces.

To prove Proposition 4.6.7, we use the following Lemma 4.6.8 and Lemma 4.6.9.

Lemma 4.6.8. Let H be a topological group, X a topological space, and assume that we
have a continuous action H ×X → X. Assume the following (i)–(iii).

(i) This action is free set-theoretically.
(ii) This action is proper topologically.
(iii) For each point x ∈ X, there exist a subset S of X which contains x and an open

neighborhood U of 1 in H such that U × S → X, (h, s) 7→ hs, induces a homeomorphism
from U × S onto an open set of X.

Then X → H \X is an H-torsor in the category of topological spaces.

See [24] Lemma 7.3.3 for the proof.

Lemma 4.6.9. Assume that a Hausdorff topological group H acts on a Hausdorff topolog-
ical space X continuously and freely. Let X ′ be a dense subset of X. Then, the following
two conditions (i) and (ii) are equivalent.

(i) The action of H on X is proper.
(ii) Let (hλ, xλ)λ be a directed family of elements of H×X ′ such that (xλ)λ and (hλxλ)λ

converge in X. Then (hλ)λ converges in H.

See [24] Lemma 7.2.7 for the proof.

4.6.10. We prove Proposition 4.6.7. We check that the actions of iσR on E♯
σ, E

♯
σ,[:], E

♯
σ,val

satisfy the conditions (i), (ii), (iii) of Lemma 4.6.8, in Claim 1, Claim 2, Claim 3 below,
respectively, which completes the proof.

Claim 1. The actions of iσR on E♯
σ, E

♯
σ,[:], E

♯
σ,val are free.

Proof of Claim 1. This is a G-MHS version of [21] Part III Proposition 4.2.2 (ii). The
proof of the latter works for the proof of Claim 1.

Claim 2. The actions of iσR on E♯
σ, E

♯
σ,[:], E

♯
σ,val are proper.

Proof of Claim 2. For E♯
σ,[:] and E♯

σ,val, this follows from (2) of Proposition 4.6.5 by

Lemma 4.6.9. The result for E♯
σ follows from this by 2.3.6 (3.2).

Finally we have to check
Claim 3. For X = E♯

σ, E
♯
σ,[:], E

♯
σ,val and for each x = (q, F ′) ∈ X , there are a subspace

S of X passing through x and an open neighborhood U of 0 in iσR such that the induced
map U × S → X is an open immersion.
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Proof of Claim 3. The construction of S at the end of the proof of [21] Part III
Proposition 4.4.3 works here.

Proposition 4.6.11. Let σ ∈ Σ. Then the inclusion maps D♯
σ → D♯

Σ, D
♯
σ,[:] → D♯

Σ,[:], and

D♯
σ,val → D♯

Σ,val are continuous open maps.

Proof. This is a G-MHS version of [21] Part III Theorem 4.3.1. The proof of the latter
works for the proof of Proposition 4.6.11.

Proposition 4.6.12. The canonical continuous surjections D♯
Σ,val → D♯

Σ,[:] and D
♯
Σ,[:] →

D♯
Σ are proper.

Proof. This is a G-MHS version of [21] Part III Proposition 4.3.2, Part IV 4.4.3, and
Part IV 4.4.6. By Proposition 4.6.7 and Proposition 4.6.11, this is reduced to the fact
that the maps E♯

σ,val → E♯
σ,[:] and E♯

σ,[:] → E♯
σ are proper, and hence to the fact that

|toric|σ,val → |toric|σ,[:] and |toric|σ,[:] → |toric|σ are proper.

Proposition 4.6.13. The spaces D♯
Σ, D

♯
Σ,[:], and D

♯
Σ,val are Hausdorff. (This is the case

Γ = {1} of (1) of Theorem 4.6.1.)

Proof. Let ∗ be [:] or val. By Proposition 4.6.12 and by the case H = {1} of (3.2) of 2.3.6,
the Hausdorffness of D♯

Σ follows from that of D♯
Σ,∗.

To see that D♯
Σ,∗ is Hausdorff, by Proposition 4.6.11, it is enough to show the following.

(1) Let σ, σ′ ∈ Σ and let β ∈ D♯
σ,∗ and β ′ ∈ D♯

σ′,∗. Assume that xλ ∈ D converges to

β in D♯
σ,∗ and to β ′ in D♯

σ′,∗. Then β = β ′ in D♯
Σ,∗.

We prove (1). By Proposition 4.6.7, there exist an open neighborhood U of β in D♯
σ,∗

(resp. U ′ of β ′ in D♯
σ′,∗) and a continuous section sσ : U → E♯

σ,∗ (resp. sσ′ : U
′ → E♯

σ′,∗)

of the projection E♯
σ,∗ → D♯

σ,∗ (resp. E♯
σ′,∗ → D♯

σ′,∗). Let wλ = sσ(xλ), w
′
λ = sσ′(xλ),

α = sσ(β), and α′ = sσ′(β
′). Then we can apply Proposition 4.6.5 (1) and conclude

β = β ′.

4.6.14. We prove (1) and (2) of Theorem 4.6.1. Let Γ be a semi-arithmetic subgroup
of G′(Q) which is compatible (4.1.9) with Σ. Under this assumption, the action of Γ on
DI

SL(2) is proper by Theorem 3.11.1. Together with Theorem 4.5.5 and the fact that D♯
Σ,[:]

is Hausdorff by Proposition 4.6.13, we see that the action of Γ on D♯
Σ,[:] is proper (2.3.6

(3.1)). Hence, again by Proposition 4.6.13 and 2.3.6 (3.1), the action of Γ on D♯
Σ,val is

proper. Since D♯
Σ,[:] → D♯

Σ is proper and surjective, the action of Γ on D♯
Σ is also proper

(2.3.6 (3.2)). By 2.3.6 (1), the quotient spaces by these proper actions are Hausdorff.
Thus we proved (1) of Theorem 4.6.1.

We prove (2) of Theorem 4.6.1. Assume that Γ is torsion-free. Then the action of Γ
on D♯

Σ is free. In fact, by using a neat subgroup of Γ of finite index, this is reduced to the
case where Γ is neat. Then it becomes the G-MHS version of [21] Part III Theorem 4.3.5
(i) whose proof also works in the present situation. By 2.3.6 (2), we have the stated local
homeomorphism.
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In 4.6.15–4.6.26, we assume that Γ is a semi-arithmetic subgroup of G′(Q) and is
strongly compatible with Σ.

4.6.15. Let σ ∈ Σ. We consider the action

σC × Eσ → Eσ; (a, (q, F )) 7→ (e(a)q, exp(−a)F )

of σC on Eσ, where a ∈ σC, q ∈ toricσ, F ∈ Ď and (q, F ) ∈ Eσ. This is an action in
the category of log manifolds (we endow σC with the trivial log structure). This action is
compatible with the action of iσR on E♯

σ in 4.6.6. We have σC \Eσ = Γ(σ)gp \Dσ.

The following Proposition 4.6.16 and Proposition 4.6.17 are proved together.

Proposition 4.6.16. In the category of locally ringed spaces over C with log structures,
Eσ → Γ(σ)gp \Dσ is a σC-torsor.

Proposition 4.6.17. The space Γ(σ)gp \Dσ is a log manifold.

Lemma 4.6.18. Let H be a complex analytic group, X a log manifold, and assume that
we have an action H ×X → X in the category of log manifolds (we regard H as having
the trivial log structure). Assume the following (i)–(iii).

(i) This action is free set-theoretically.
(ii) This action is proper topologically.
(iii) For each point x ∈ X, there exist a log manifold S and a morphism ι : S → X of

log manifolds whose image contains x and an open neighborhood U of 1 in H such that
U × S → X, (h, s) → hι(s), induces an isomorphism of log manifolds from U × S onto
an open set of X.

Then:
(1) The quotient topological space H \X has a unique structure of a log manifold such

that, for an open set V of H \X, OH \X(V ) (resp. MH \X(V )) is the set of all functions
on V whose pullbacks to the inverse image V ′ of V in X belong to OX(V ′) (resp.MX(V

′)).
(Here M∗ denotes the log structure of ∗.)

(2) X → H \X is an H-torsor in the category of log manifolds.

See [24] Lemma 7.3.3 for the proof.

4.6.19. We prove Proposition 4.6.16 and Proposition 4.6.17. By Lemma 4.6.18, it is
sufficient to prove the following Claim 1–Claim 3. We prove these claims one by one,
which completes the proofs.

Claim 1. The action of σC on Eσ is free.
Proof of Claim 1. This is a G-MHS version of [21] Part III 4.2.2 (i) whose proof also

works as a proof in the present situation.
Claim 2. The action of σC on Eσ is proper.
Proof of Claim 2. This is a G-MHS version of [21] Part III 4.4.2 whose proof also

works as a proof in the present situation. (The properness of the action of iσR on E♯
σ in

Claim 2 in 4.6.10 is used in the proof through the projection Eσ → E♯
σ.)

Claim 3. For each point x ∈ Eσ, there exist a log manifold S and a morphism
ι : S → Eσ of log manifolds whose image contains x and an open neighborhood U of 0 in
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σC such that U × S → Eσ, (h, s)→ hι(s), induces an isomorphism of log manifolds from
U × S onto an open set of Eσ.

Proof of Claim 3. The construction of S at the end of the proof of [21] Part III 4.4.3
works here.

4.6.20. We have the special case (Γ(σ)gp \Dσ)
log ≃ Γ(σ)gp \D♯

σ of (5) of Theorem 4.6.1
as follows.

The map Eσ → Γ(σ)gp \Dσ induces a continuous map (Eσ)
log → (Γ(σ)gp \Dσ)

log. On
the other hand, the map |toric|σ = Hom (P (σ),Rmult

≥0 )→ (toricσ)
log = Hom (P (σ),Rmult

≥0 ×
S1) (P (σ) is as in 4.2.1 and S1 = {u ∈ C× | |u| = 1}) induces a continuous map
E♯
σ → (Eσ)

log. The composition E♯
σ → (Eσ)

log → (Γ(σ)gp \Dσ)
log induces Γ(σ)gp \D♯

σ →
(Γ(σ)gp \Dσ)

log. The last map is a homeomorphism by Proposition 4.6.16 as in [21] Part
III 4.4.4.

Proposition 4.6.21. Assume that Γ is neat. Let x = (σ, Z) ∈ DΣ, γ ∈ Γ, and assume
γx = x. Then γ ∈ Γ(σ)gp.

Proof. This is a G-MHS version of [21] Part III 4.3.5 (ii), and the proof of the latter works
for the proof of Proposition 4.6.21.

Lemma 4.6.22. Let X be a topological space with a continuous action of a discrete group
Γ, let Y be a set with an action of Γ, and let f : X → Y be a Γ-equivariant surjective
map. Let Γ0 be a subgroup of Γ. We introduce the quotient topologies of X on Γ0 \Y and
on Γ \Y . Let V be an open set of Γ0 \Y and let U be the inverse image of V in Γ0 \X.
We assume moreover the three conditions (i)–(iii) below. Then, the map V → Γ \Y is a
local homeomorphism.

(i) X → Γ \X is a local homeomorphism and Γ \X is Hausdorff.
(ii) The map U → V is proper.
(iii) If x ∈ X and γ ∈ Γ, and if the images of γx and x in Γ0 \ Y are contained in V

and they coincide, then γ ∈ Γ0.

Proof. This is [24] Lemma 7.4.7.

4.6.23. Assume that Γ is neat. We prove that the map Γ(σ)gp \Dσ → Γ \DΣ is a local
homeomorphism.

We use Lemma 4.6.22 for X = D♯
Σ, Y = DΣ, Γ = Γ, Γ0 = Γ(σ)gp, V = Γ(σ)gp \Dσ and

U = Γ(σ)gp \D♯
σ. The (1) and (2) of Theorem 4.6.1 show that the condition (i) in Lemma

4.6.22 is satisfied. By 4.6.20, the condition (ii) in Lemma 4.6.22 is satisfied. Proposition
4.6.21 shows that the condition (iii) in Lemma 4.6.22 is satisfied.

4.6.24. We obtain (4) of Theorem 4.6.1 by Proposition 4.6.17 and by 4.6.23.
We obtain (5) of Theorem 4.6.1 by 4.6.20 and by 4.6.23.

Proposition 4.6.25. The map Γ \D♯
Σ → Γ \DΣ is proper and surjective.

Proof. Replacing Γ by its neat subgroup of finite index, we may assume that Γ is neat.
Then this follows from (5) of Theorem 4.6.1.
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4.6.26. By Proposition 4.6.25 and by (1) of Theorem 4.6.1, we obtain (3) of Theorem
4.6.1.

The proof of Theorem 4.6.1 is completed.

Proposition 4.6.27. Let the assumption be as in (4) of Theorem 4.6.1. Then we have
canonical homeomorphisms

(Γ \DΣ)[:] ≃ Γ \DΣ,[:], (Γ \DΣ)val ≃ Γ \DΣ,val,

((Γ \DΣ)
log)[:] ≃ Γ \D♯

Σ,[:], and ((Γ \DΣ)
log)val ≃ Γ \D♯

Σ,val.

Here topologies of the spaces on the right hand side of these homeomorphisms are as in
4.3.16, 4.4.9, and (1) of Theorem 4.6.1.

Proof. This follows from (4) and (5) of Theorem 4.6.1.

Remark 4.6.28. The conclusion of Proposition 4.6.27 holds if G is reductive, Γ is a
semi-arithmetic subgroup of G(Q), and if the image of Γ in (G/Z)(Q) is neat, where Z
is the center of G. See 4.10.18 for the proof.

4.7 Valuative spaces, III

The spaces S[:] of ratios are endowed with new log structures and the associated valuative
spaces S[val] are extensively studied in [21] Part IV Section 4. In this section, we review

this subject and obtain a space D♯
Σ,[val] over D

♯
Σ,[:].

4.7.1. Let E, S and MS be as in 4.3.1. Let S[:] be the topological space defined in 4.3.5
and 4.3.6.

We review the definition of the new log structure on S[:] ([21] Part IV 4.3.3). We endow
S[:] with the sheaf OS[:]

of all R-valued continuous functions. Assume that we are given a
chart S → MS with S being a sharp fs monoid such that |f(s)| < 1 for any f ∈ S r {1}
and any s ∈ S. Let Φ = {S(j) | 0 ≤ j ≤ n} with S = S(0) ) S(1) ) · · · ) S(n) be as
in 4.3.7. Take qj ∈ S(j−1) r S(j) for 1 ≤ j ≤ n. We consider the log structure on S[:](Φ)
(4.3.7) associated to a chart

Nn → OS[:]
; m 7→ (

n−1
∏

j=1

r(qj+1, qj)
m(j)/2) · (−1/ log(|qn|))m(n)/2.

These log structures on S[:](Φ) are glued to an fs log structure Mnew
S[:]
→ OS[:]

on S[:] which

is independent of any choices.
We denote by S[val] the valuative space (S[:])val associated to S[:] endowed with this new

log structure. We have a proper and surjective map S[val] → S[:] ([21] Part IV Corollary
3.1.10).

4.7.2. Let Σ be a weak fan in Lie (G′). Let σ ∈ Σ.
There is a log structure on E♯

σ which is the inverse image of that of Eσ but it depends
on Γ (precisely speaking, on Γ(σ)gp).
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We define the new log structure Mnew =Mnew
D♯

Σ,[:]

of D♯
Σ,[:] by using the new log structure

Mnew
S[:]
→ OS[:]

for S = E♯
σ in 4.7.1 as follows.

Let U be an open set of D♯
Σ,[:]. An R-valued continuous function on U belongs to the

new log structure of D♯
Σ,[:] if its pullback on E♯

σ,[:] belongs to the new log structure of E♯
σ,[:]

for all σ ∈ Σ.
Locally on D♯

Σ,[:], for σ ∈ Σ, for an open set U of D♯
σ,[:], and for a continuous section

s : U → E♯
σ,[:] of E

♯
σ,[:] → D♯

σ,[:] given on U , the restriction of this new log structure to U

coincides with the inverse image of the new log structure of E♯
σ,[:] by s.

Hence the new log structure Mnew on D♯
Σ,[:] is an fs log structure which is independent

of the choice of Γ. Denote byD♯
Σ,[val] the valuative space associated to the new log structure

Mnew of D♯
Σ,[:].

4.7.3. Consider the log structure of DI
SL(2) which is defined in Proposition 3.4.10 by using

distance to the boundary. Similarly as in [21] Part IV 4.5.12, we can prove that the
continuous map D♯

Σ,[:] → DI
SL(2) (Theorem 4.5.5) respects these log structures. (In [21]

Part IV 4.5.12, the reference 4.3.3 is a little ambiguous. The precise meaning is as above.)
Thus the map D♯

Σ,[:] → DI
SL(2) induces the continuous map D♯

Σ,[val] → DI
SL(2),val of

associated valuative spaces (cf. [21] Part IV 4.5.13).

Proposition 4.7.4. Let the notation and the assumption be as in (1) and (2) of Theorem
4.6.1. Then the conclusions of (1) and (2) of Theorem 4.6.1 and their variants in Remark
4.6.2 are true also for X = D♯

Σ,[val].

Proof. This follows from the corresponding results for X = D♯
Σ,[:] because the map

D♯
Σ,[val] → D♯

Σ,[:] is separated.

4.8 Mild degeneration

We consider the G-MHS version of [21] Part IV Section 5.1 in which we studied mild
degenerations.

4.8.1. We define the mild part Dmild
Σ of DΣ as the part of points (σ, Z) which satisfy the

following condition.
(C) For each N in the cone σ, there is an R-splitting of W (which can depend on N)

that is compatible with N .
For the other spaces of nilpotent orbits D♯

Σ, DΣ,[:], D
♯
Σ,[:], DΣ,val, and so on, we define

their mild parts D♯,mild
Σ , Dmild

Σ,[:] , D
♯,mild
Σ,[:] , Dmild

Σ,val, and so on as the inverse images of Dmild
Σ .

4.8.2. Let D⋄
SL(2) be the subset of D

⋆,mild
SL(2) ×L consisting of all elements (p, Z, δ) ((p, Z) ∈

D⋆,mild
SL(2) with p ∈ Dred,SL(2) and Z ⊂ D (3.2.2), δ ∈ L = W−2Lie (Gu,R)) satisfying the

following conditions (i) and (ii).
(i) Let n be the rank of p, and let 0 := (0, ..., 0) ∈ Zn. Then the Ad(τ ⋆p )-weights of δ

are ≤ 0.
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(ii) For every x ∈ Z, δW (x) coincides with the component of δ of Ad(τ ⋆p )-weight 0.

We define the structure of D⋄
SL(2) as an object of B′

R(log) by the embedding D⋄
SL(2)

⊂→
D⋆,mild

SL(2) × L.
We regard D as a subspace of D⋄

SL(2) via the embedding x 7→ (x, δW (x)).

This is the G-MHS version of [21] Part IV 5.1.8, 5.1.9.

Proposition 4.8.3. The canonical map D⋆
SL(2) → Dred,SL(2) × spl(W ) induces a bijection

from D⋄
SL(2) to the subset of Dred,SL(2) × spl(W ) × L consisting of (p, s, δ) satisfying the

following conditions (i) and (ii).
(i) The Ad(τ ⋆p )-weights of δ are ≤ 0.
(ii) Let (ρ, ϕ) be an SL(2)-orbit for Gred which represents p. Then the component of δ

of Ad(τ ⋆p )-weight 0 is of Hodge type (≤ −1,≤ −1) with respect to ϕ(i).

This is a G-MHS version of [21] Part IV Proposition 5.1.11 and is proved in the same
way.

Theorem 4.8.4. The identity map of D extends uniquely to a continuous map D♯,mild
Σ,[:] →

D⋄
SL(2). The last map is compatible with the new log structure of D♯,mild

Σ,[:] and the log
structure of D⋄

SL(2), and induces a continuous map between the associated valuative spaces

D♯,mild
Σ,[val] → D⋄

SL(2),val.

This is a G-MHS version of [21] Part IV Theorem 5.1.10 and is proved in the same
way.

4.8.5. For mild degenerations, we can replace the upper right part of the fundamental
diagram in Introduction by the following commutative diagram (maps respect structures
of the spaces) which contain the space D⋄

SL(2) and its associated valuative space D⋄
SL(2),val.

D♯,mild
Σ,[val]

ψ→ D⋄
SL(2),val → D⋆,mild

SL(2),val

η⋆→
⊂

Dmild
BS,val

↓ ↓ ↓ ↓
D♯,mild

Σ,[:]

ψ→ D⋄
SL(2) → D⋆,mild

SL(2) Dmild
BS

↓ ↓
Γ \Dmild

Σ ← D♯,mild
Σ DSL(2)

Proposition 4.8.6. The conclusions of Theorem 3.11.1 and their variants in 3.11.4 and
Proposition 3.11.5 are true also for X = D⋄

SL(2).

Proof. This follows from the corresponding results for X = D⋆
SL(2) because the map

D⋄
SL(2) → D⋆

SL(2) is continuous and D
⋄
SL(2) is Hausdorff.

4.9 The fundamental diagram in examples

We explain what our fundamental diagram tells in special examples.
In particular, by using the fundamental diagram, we give a complement to the work

of Goresky and Tai [15] on the relation of the toroidal compactification and the reductive
Borel–Serre compactification (see 4.9.4).
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In 4.9.1, 4.9.3, 4.9.4, 4.9.5, we consider cases in which G is reductive. For a reductive
G, the main part of the fundamental diagram in Introduction becomes

D♯
Σ,[val]

ψ→ DSL(2),val
η→ DBS,val

↓ ↓ ↓
D♯

Σ,[:]

ψ→ DSL(2) DBS

↓
Γ \DΣ ← D♯

Σ

,

and we consider this part.

4.9.1. Example. Let G = GL(2) and h : SC/R → G be the standard one (cf. 1.6.5).
Then D = D(G, h) is the complex analytic manifold H± = {τ | Im(τ) 6= 0} = CrR

on which G(R) = GL(2,R) acts naturally.
We describe the space DBS of Borel–Serre orbits. Let

P =

(

∗ ∗
0 ∗

)

⊂ GL(2)Q = G.

All parabolic subgroups of G other than G are conjugate to P under G(Q), and hence
the whole DBS can be understood as the union of the following picture of the open set
DBS(P ). Let P1 := P ∩G′. For iy ∈ D (y ∈ R×), the Borel–Serre lifting of SP1 = P1/P1,u

is the group of matrices

(

a 0
0 b

)

such that ab = 1. The adjoint action of this matrix on
(

0 1
0 0

)

∈ Lie (P1,u) is the multiplication by ab−1, and hence the fundamental root sends

this matrix to a−1b. Hence the isomorphism AP ≃ R>0 given by the fundamental root

sends r ∈ R>0 to the matrix

(

1/
√
r 0

0
√
r

)

. Hence the Borel–Serre action of r ∈ R>0 ≃
AP sends x+ iy to x+ ir−1y. From this, we have a commutative diagram of spaces

D ≃ R×R>0 × {±1}
∩ ∩

DBS(P ) ≃ R×R≥0 × {±1},

in which the upper horizontal arrow sends x+ iy (x ∈ R, y ∈ R×) to (x, 1/|y|, sgn(y)) and
the lower isomorphism preserves the structure of real analytic manifolds with corners. We
have DBS,val = DBS.

Next we describe the space DSL(2) of SL(2)-orbits. Let W ′ ∈ W(G) be the filtration
associated to the homomorphism

α : Gm → G ; t 7→
(

1/t 0
0 t

)

,

and let Φ = {W ′}. Since DSL(2) =
⋃

g∈G(Q) gDSL(2)(Φ), the whole DSL(2) can be un-

derstood as the union of the following picture of the open set DSL(2)(Φ). We have the
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distance β : D → R>0 to Φ-boundary defined as x + iy 7→ 1/
√

|y|. Then the injective
real analytic map

να,β : DSL(2)(Φ)
⊂→ R≥0 ×D × spl(W ′)

in Proposition 3.4.4 sends x+ iy (x ∈ R, y ∈ R×) to (1/
√

|y|, x|y|−1+ i · sgn(y), x), where
we identify spl(W ′) with R by sending x ∈ R to

(

1 x
0 1

)

· s with s ∈ spl(W ′) given by

α. The closure of να,β(D) in the target space is C = {(r, z, x) | z = xr2 ± i}. Since D
is dense in DSL(2)(Φ), να,β induces an injective map DSL(2)(Φ) → C. Let p ∈ DSL(2)(Φ)

be the class of the SL(2)-orbit in 3.1.2. Then να,β sends

(

ǫ x
0 1

)

· p ∈ DSL(2)(Φ) for

ǫ ∈ {±1} to (0, iǫ, x). This proves the surjectivity of DSL(2)(Φ) → C and hence we have

an isomorphism DSL(2)(Φ)
∼→ C of objects B′

R(log). From this, we have a commutative
diagram of spaces

D ≃ R×R>0 × {±1}
∩ ∩

DSL(2)(Φ) ≃ R×R≥0 × {±1},

in which the upper horizontal arrow sends x+ iy (x ∈ R, y ∈ R×) to (x, 1/
√

|y|, sgn(y))
and the lower isomorphism preserves the real analytic structure and the log structure with
sign. The image of p ∈ DSL(2)(Φ) under the lower horizontal arrow is (0, 0, 1). We have
DSL(2),val = DSL(2).

By Theorem 3.8.2, the identity map of D extends uniquely to a morphism DSL(2) →
DBS in B′

R(log). This induces DSL(2)(Φ) → DBS(P ) for which the following diagram is
commutative.

DSL(2)(Φ)
∼→ R×R≥0 × {±1}

↓ ↓
DBS(P )

∼→ R×R≥0 × {±1}

Here the right vertical arrow is (x, r, ǫ) 7→ (x, r2, ǫ). Thus the map DSL(2) → DBS is a
homeomorphism, but their real analytic structures are slightly different.

Next we describe the spaces of nilpotent orbits for the fan Σ consisting of all cones
R≥0N with N ∈ Lie (G′) = sl(2,Q) such that N2 = 0 as a (2, 2)-matrix. Then for
a congruence subgroup Γ of SL(2,Z), Γ \DΣ is a compactified modular curve. We have
D♯

Σ,[val] = D♯
Σ,[:] = D♯

Σ, and the CKS map induces a homeomorphism D♯
Σ = D♯

Σ,[:]

∼→ DSL(2).
Define σ, τ ∈ Σ by

σ := R≥0N, τ := R≥0(−N) with N =

(

0 1
0 0

)

.

The CKS map induces a homeomorphism D♯
σ ∪ D♯

τ
∼→ DSL(2)(Φ). For a ∈ R, this map

sends the nilpotent i-orbit (σ, a + iR) ∈ D♯
σ (resp. (τ, a + iR) ∈ D♯

τ ) to the element of
DSL(2)(Φ) corresponding to the element (a, 0, 1) (resp. (a, 0,−1)) of R×R≥0×{±1}. Here
a+ iR is regarded as a subset of Ď by identifying Ď with P1(C) ⊃ a+ iR.

The part about DBS and DSL(2) as topological spaces in this 4.9.1 is essentially de-
scribed in [23] 6.2.
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4.9.2. Example. Let G =

(

Gm Ga

0 1

)

and let h : SC/R → Gred,R = Gm,R be the

homomorphism which induces SC/R(R) = C× → Gred(R) : z 7→ z−1z̄−1 (z ∈ C×). Let
x ∈ D = D(G, h) be the point defined by the homomorphism SC/R → GR which induces

SC/R(R) = C× → G(R) =

(

R× R
0 1

)

; z 7→
(

z−1z̄−1 0
0 1

)

(z ∈ C×).

Then we have an isomorphism of complex analytic manifolds

C
∼→ D ; c 7→

(

1 c
0 1

)

· x.

Let p be the unique element of Dred. The real analytic isomorphism D
∼→ spl(W )×L(p)

in Proposition 1.3.6 sends c = a + ib ∈ C = D (a, b ∈ R) to (s(a), δ(b)), where

s(a) =

(

1 a
0 1

)

splW (x), δ(b) =

(

0 b
0 0

)

∈ W−2Lie (GR) = grW−2Lie (GR).

Let P be the unique parabolic subgroup of Gred, that is, Gred itself. Since AP = {1},
BP = R>0. By 2.4.4, the Borel–Serre action of t ∈ BP on D = C sends c = a + ib
(a, b ∈ R) to a+ it−2b. As topological spaces with sheaves of real analytic spaces and with
log structures with sign, all the spaces DBS, DBS,val, D

⋆
SL(2), D

⋆
SL(2),val, D

II
SL(2), D

II
SL(2),val,

DI
SL(2), D

I
SL(2),val coincide with the real analytic manifold with corners R × [−∞,∞] ⊃

R × R ≃ D, where R × R ≃ D sends (a, b) ∈ R × R to a + ib ∈ C = D. For a ∈ R,
(a,∞) ∈ R × [−∞,∞] corresponds to the element (p, a + iR>0) of DSL(2) and to the
element (P, a + iR>0) of DBS, and (a,−∞) ∈ R × [−∞,∞] corresponds to the element
(p, a+ iR<0) of DSL(2) and to the element (P, a+ iR<0) of DBS.

Define

σ := R≥0N, τ := R≥0(−N) with N =

(

0 1
0 0

)

∈ Lie (G′),

Σ := {{0}, σ, τ}, Γ :=

(

1 Z
0 1

)

.

Then Γ and Σ are strongly compatible. We have isomorphisms of complex analytic man-
ifolds

Γ \D ≃ C×, Γ \DΣ ≃ P1(C),

where the class of c ∈ C = D in Γ \D is identified with exp(2πic) ∈ C×. The point
0 ∈ P1(C) corresponds to the class of the nilpotent orbit (σ,C) and the point∞ ∈ P1(C)
corresponds to the class of the nilpotent orbit (τ,C). We have D♯

Σ,[val] = D♯
Σ,[:] = D♯

Σ,

and the CKS map induces a homeomorphism D♯
Σ = D♯

Σ,[:]

∼→ DI
SL(2). For a ∈ R, this

map sends the nilpotent i-orbit (σ, a + iR) ∈ D♯
σ to the element of DSL(2) corresponding

to (a,∞) ∈ R × [−∞,∞], and the nilpotent i-orbit (τ, a + iR) ∈ D♯
τ to the element of

DSL(2) corresponding to (a,−∞) ∈ R× [−∞,∞]. Here a+ iR is regarded as a subset of
Ď = D = C.
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4.9.3. Example. We omit the details in this 4.9.3.
Let G = GL(2) × GL(2) and let h : SC/R → GL(2)R × GL(2)R be the diagonal

embedding of the homomorphism in 4.9.1. This h is R-polarizable. We have

D = H± × H±.

Let Σ be the fan consisting of all cones of the form R≥0N1 × R≥0N2 ⊂ Lie (G′
R) =

sl(2,R) × sl(2,R), where Nj is an element of the j-th sl(2,Q) in Lie (G′) such that
N2
j = 0 as a (2, 2)-matrix (j = 1, 2). Then in the category of topological spaces, the

fundamental diagram presents

D♯
Σ,[val]

∼→ DSL(2),val
∼→ DBS,val

↓ ↓
D♯

Σ,[:]

∼→ DSL(2) ↓
↓ ց
D♯

Σ
∼−→ DBS.

Furthermore, D♯
Σ is canonically isomorphic to the product of two copies ofD♯

Σ of 4.9.1, and
DBS is canonically isomorphic to the product of two copies of DBS of 4.9.1 (see Proposition
4.10.6).

The proper surjective map D♯
Σ,[:] → D♯

Σ is not injective as the following property of
the convergences show, and hence the map DSL(2) → DBS is not injective.

Consider the point p = (iy1, iy2) ∈ H × H ⊂ D (y1, y2 ∈ R>0). In the following (1),
(2), (3), we give examples of the convergence of p in D♯

Σ, D
♯
Σ,[:], and D

♯
Σ,[val], respectively,

to show how the topologies of these three spaces are different.
(1) If yj → ∞ for j = 1, 2, p converges to the class of the nilpotent i-orbit (σ, Z),

where σ = R≥0N1 × R≥0N2 with Nj the matrix

(

0 1
0 0

)

in the j-th sl(2,Q) in Lie (G′)

(j = 1, 2) and Z is the exp(iσR) orbit which passes (i, i) ∈ D.
(2) If y1, y2 → ∞ and y1/y2 → ∞, then p converges in D♯

Σ,[:] to a point a, and if

y1, y2 → ∞ and y1/y2 → 1, then p converges in D♯
Σ,[:] to a point b, and a 6= b. These

a, b ∈ D♯
Σ,[:] lie over the above class of (σ, Z) in D♯

Σ.

(3) If y2 →∞ and y1/y
2
2 →∞, then p converges in D♯

Σ,[val] to a point c, and if y2 →∞
and y1/y

3
2 →∞, p converges in D♯

Σ,[:] to a point d, and c 6= d. These c, d ∈ D♯
Σ,[val] lie over

the point a ∈ D♯
Σ,[:].

4.9.4. Shimura varieties.
Assume that G is reductive and that h0 : SC/R → GR satisfies the condition that the

Hodge type of Lie (GR) via h0 is in {(1,−1), (0, 0), (−1, 1)} (as in 3.8.1).
Then for an arithmetic subgroup (that is, a subgroup satisfying the condition (A) in

1.5.7) Γ of G′(Q), there is a fan Σ which is strongly compatible with Γ such that Γ \DΣ

is compact. This compact space is called a Mumford (or toroidal) compactification of
Γ \D.

As in Theorem 3.8.2, we have a morphism DSL(2) → DBS which extends the identity

morphism of D. We can prove DSL(2),val
∼→ DBS,val, but we do not give the proof here.
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As an application of the fundamental diagram, we have the following complement
to the work [15] of Goresky and Tai on the relation of toroidal compactifications and
reductive Borel–Serre compactification.

The reductive Borel–Serre space, which we denote by D♭
BS here, is defined to be the

quotient of DBS by the following equivalence relation. For p1 = (P1, Z1), p2 = (P2, Z2) ∈
DBS, p1 ∼ p2 if and only if P1 = P2 and P1,uZ1 = P2,uZ2, where (·)u denotes the unipo-
tent radical. The quotient Γ \D♭

BS is compact, and is called the reductive Borel–Serre
compactification of Γ \D.

Let Γ be a neat arithmetic subgroup of G′(Q) and let Σ be strongly compactible with
Γ such that Γ \DΣ is compact.

Then concerning the relation of the compactifications Γ \DΣ and Γ \D♭
BS of Γ \D,

Goresky and Tai obtained the following result. The identity map of Γ \D extends to
a “continuous map modulo homotopy” from Γ \DΣ → Γ \D♭

BS if we replace Σ by a
sufficiently finer subdivision. Precisely speaking, if we replace Σ by a sufficiently finer
subdivision, there are a compact topological space T which contains Γ \D as a dense
open subspace, and continuous surjective maps f : T → Γ \DΣ and g : T → Γ \D♭

BS such
that f is a homotopy equivalence and such that f and g induce the identity map of Γ \D.

We have the following result. The map Γ \DΣ,[:] → Γ \DΣ is proper surjective and
a weak homotopy equivalence, and we have the continuous surjective map Γ \DΣ,[:] →
Γ \D♭

BS induced by the continuous maps D♯
Σ,[:] → DSL(2) → DBS by passing to the quo-

tients. That is, compared to [15], we do not need a subdivision of Σ here and we present
a standard space Γ \DΣ,[:] which connects Γ \DΣ and Γ \D♭

BS. This gives an alternative
proof for the existence of the canonical maps Hm(Γ \D♭

BS, A) → Hm(Γ \DΣ, A) with A
being an abelian group for any m, A being a group for m = 1, and A being a set for
m = 0, obtained by Goresky–Tai. We plan to discuss the details in a forthcoming paper.

4.9.5. An example of D = D(G, h) with G reductive for which the identity map of D
does not extend to a continuous map DSL(2) → DBS is given in 4.10.10 basing on [23] and
[24].

Remark 4.9.6. The spaces D♯
Σ,val and D♯

Σ,[:] in the fundamental diagram play similar

roles in our work. The former appears in [24] and in [21] Part II, Part III and so on of
our series of papers, and the latter appears in [21] Part IV and in this part. Both have
canonical proper continuous maps to D♯

Σ and also continuous maps (the CKS maps) to
DSL(2). In this Part V , we are using D♯

Σ,[:] (and the related space Γ \DΣ,[:]) more than

D♯
Σ,val (and the related space Γ \DΣ,val). The advantages of the space D♯

Σ,[:] and Γ \DΣ,[:]

are:
(1) The space D♯

Σ,[:] naturally produces the space D♯
Σ,[val] from which we can go to

DI
SL(2),val (and in the case G is reductive, to DBS,val and DBS).

(2) The definition of the CKS map by using D♯
Σ,[:] is simpler and more natural than

that by using D♯
Σ,val. The convergences of ratios such as yj/yj+1 → aj (aj ∈ R>0),

yj/yj+1 →∞ appear in SL(2)-orbit theorem and these are the convergences in the space

of ratios, and so the relation to the SL(2)-orbit theorem of D♯
Σ,[:] seems stronger than that

of D♯
Σ,val.
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(3) The spaces D♯
Σ,[:] and Γ \DΣ,[:] have the application described in 4.9.4.

On the other hand, the space Γ \DΣ,val has the sheaf of holomorphic functions which
the space Γ \DΣ,[:] does not have.

4.10 Functoriality in G

4.10.1. Assume that we are given a homomorphism f : G1 → G2. We describe how we
can relate the period domains and extended period domains for G1 and those for G2.

We have to introduce some conditions for this functoriality.
We assume f(G1,u) ⊂ G2,u and hence f induces fred : G1,red → G2,red. We assume

that we are given h1 : SC/R → G1,red,R as in 1.2.13, and we further assume that the
induced homomorphism h2 := fred ◦ h1 : SC/R → G2,red,R satisfies the condition that the

composition Gm,R → SC/R
h2−→ G2,red,R is central.

Then we have holomorphic maps

D(G1, h1)→ D(G2, h2), D(G1,red, h1)→ D(G2,red, h2).

In 4.10.2–4.10.4, we further assume that h1 and h2 are R-polarizable.

4.10.2. We first consider the spaces of Borel–Serre orbits.
Assume the the following condition (i) is satisfied.

(i) The map Lie (G′
1)→ Lie (G′

2) is surjective.

Here as usual, (−)′ denote the commutator groups. Then we have a morphism of real
analytic manifolds with corners

D(G1, h1)
mild
BS → D(G2, h2)

mild
BS ; (P1, Z1) 7→ (P2, Z2),

where P1 is a parabolic subgroup of G1,red, Z1 is an AP1-orbit in D(G1, h1), P2 is the
algebraic subgroup of G2 generated by the image of P1 and the center of G◦

2, which is a
parabolic subgroup of G2, and Z2 is the unique AP2-orbit in D(G2, h2) which contains the
image of Z1.

Assume that the above condition (i) and the following condition (ii) is satisfied.

(ii) The map Lie (G1,u)→ Lie (G2,u) is injective.

Then we have a morphism of real analytic manifolds with corners

D(G1, h1)BS → D(G2, h2)BS ; (P1, Z1) 7→ (P2, Z2),

where P1 and P2 are as above, Z2 is as above if Z1 is an AP1-orbit, and in the case where
Z1 is a BP1-orbit, Z2 is the unique BP2-orbit which contains the image of Z1.

Here in the case where Z1 is a BP1-orbit, the image of Z1 in D(G2, h2) does not meet
D(G2, h2)spl by the injectivity of Lie (G1,u)→ Lie (G2,u).

4.10.3. Next we consider the spaces of SL(2)-orbits.
In the caseG1 andG2 are reductive, we have a morphismD(G1, h1)SL(2) → D(G2, h2)SL(2)

of locally ringed spaces with log structures with sign, which sends the class of an SL(2)-
orbit (ρ1, ϕ1) (ρ1 : SL(2)

n
R → GR, ϕ1 : H

n → D(G2, h2)) to the class of (ρ2, ϕ2), where ρ2
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is the composition SL(2)nR
ρ1→ G1,R → G2,R and ϕ2 is the composition Hn → D(G1, h1)→

D(G2, h2).
In general, we have morphisms

D(G1, h1)
A
SL(2) → D(G2, h2)

A
SL(2) (for the structures I, II),

D(G1, h1)
⋆,mild
SL(2) → D(G2, h2)

⋆,mild
SL(2) ,

where (−)A denotes the part consisting of A-orbits, which sends (p1, Z1) to (p2, Z2) (p1 ∈
D(G1, h1)red,SL(2), Z1 is an A-orbit in D(G1, h1), p2 is the image of p1 in D(G2, h2)red,SL(2)
and Z2 is the unique A-orbit in D(G2, h2) containing the image of Z1).

If Lie (G1,u)→ Lie (G2,u) is injective, we have morphisms

D(G1, h1)SL(2) → D(G2, h2)SL(2) (for the structures I, II),

D(G1, h1)
⋆
SL(2) → D(G2, h2)

⋆
SL(2),

which sends (p1, Z1) to (p2, Z2) (p1 ∈ D(G1, h1)red,SL(2), p2 is the image of p1 inD(G2, h2)red,SL(2),
either Z1 is an A-orbit in D(G1, h1) and Z2 is the unique A-orbit in D(G2, h2) containing
the image of Z1, or Z1 is a B-orbit in D(G1, h1) and Z2 is the unique B-orbit in D(G2, h2)
containing the image of Z1).

4.10.4. Lastly, we consider the spaces of nilpotent orbits.
Assume that we are given Σ1 for G1. Assume that the images of elements of Σ1 in

Lie (G′
2,R) form a weak fan Σ2 in Lie (G′

2). (For example, this is satisfied if Lie (G′
1) →

Lie (G′
2) is injective.) Then we have a map

D(G1, h1)Σ1 → D(G2, h2)Σ2 ,

a continuous map

D(G1, h1)
♯
Σ1,∗
→ D(G2, h2)

♯
Σ2,∗

for ∗ = [:], val, [val],

and a morphism of log manifolds

Γ1 \D(G1, h1)Σ1 → Γ2 \D(G2, h2)Σ2,

where Γj ⊂ G′
j(Q) (j = 1, 2) are neat semi-arithmetic subgroups such that Γj is strongly

compatible with Σj and the image of Γ1 in G2(Q) is contained in Γ2.

Proposition 4.10.5. Let G1 and G2 be linear algebraic groups over Q and let hj : SC/R →
Gj,R (j = 1, 2) be homomorphisms as in 1.2.13. Let h = (h1, h2) : SC/R → (G1 × G2)R.
Then h satisfies the condition as in 1.2.13. The morphisms D(G1 × G2, h) → D(Gj, hj)
associated to the projections G1 ×G2 → Gj (j = 1, 2) induce an isomorphism

D(G1 ×G2, h)
∼→ D(G1, h1)×D(G2, h2).

Proof. In the case where G1 and G2 are reductive, this is proved as

D(G1 ×G2, h) = {(G1 ×G2)(R)-conjugate of h}

99



Classifying spaces of degenerating mixed Hodge structures, V

=

2
∏

j=1

{Gj(R)-conjugate of hj} = D(G1, h1)×D(G2, h2).

The general case is reduced to the reductive case by Proposition 1.3.6 using (G1 ×
G2)u(R) = G1,u(R) × G2,u(R) (this proves that spl(W ) for G1 × G2 is the product of
spl(W ) for Gj) and L(p) = L(p1) × L(p2) for pj ∈ D(Gj, hj)red and p = (p1, p2) ∈
D(G1 ×G2, h)red.

Proposition 4.10.6. Let the notation be as in Proposition 4.10.5 and assume that hj
(j = 1, 2) are R-polarizable.

Then h is R-polarizable and we have:
(1) The canonical maps D(G1 × G2, h)

mild
BS → D(Gj, hj)

mild
BS (j = 1, 2) induce an iso-

morphism of real analytic manifolds with corners

D(G1 ×G2, h)
mild
BS

∼→ D(G1, h1)
mild
BS ×D(G2, h2)

mild
BS .

In particular, if G1 and G2 are reductive, we have

D(G1 ×G2, h)BS
∼→ D(G1, h1)BS ×D(G2, h2)BS.

(2) Assume that Σj for Gj are given (j = 1, 2). Let Σ = {σ1 × σ2 | σi ∈ Σi}. Then

D(G1 ×G2, h)
♯
Σ1×Σ2

∼→ D(G1, h1)
♯
Σ1
×D(G2, h2)

♯
Σ2

as topological spaces, and for neat semi-arithmetic subgroups Γj of G′
j(Q) which are

strongly compatible with Σj (j = 1, 2), we have an isomorphism of log manifolds

(Γ1 × Γ2) \D(G1 ×G2, h)Σ
∼→ Γ1 \D(G1, h1)Σ1 × Γ2 \D(G2, h2)Σ2.

Proof. (1) Parabolic subgroups of G1 ×G2 are P1 × P2 for parabolic subgroups Pj of Gj .
(This fact is deduced from the surjectivity of the map Hom (Gm,G)→ {parabolic subgroups of G}
in 3.3.7 and from Hom(Gm, G1 × G2) = Hom (Gm, G1) × Hom (Gm, G2).) We have
AP1×P2 = AP1 × AP2. Hence the converse map is given by ((P1, Z1), (P2, Z2)) 7→ (P1 ×
P2, Z1 × Z2).

(2) The converse map is given by ((σ1, Z1), (σ2, Z2)) 7→ (σ1 × σ2, Z1 × Z2).

Remark 4.10.7. On the other hand, even if G is reductive, D(G1 ×G2, h)SL(2) need not
be the product of D(Gj, hj)SL(2) (j = 1, 2) as examples in 4.9.1 and 4.9.3 show.

In 4.10.8–4.10.10, we give examples of G1 → G2 whose associated morphisms of spaces
of Borel–Serre orbits do not exist, looking at examples of convergence and divergence in
the extended period domains.

4.10.8. Example. Let (G1, h1) be the (G, h) of 4.9.2 and let G1 = G × G, h1 = (h, h) :
SC/R → G × G, let G2 = G, let G1 → G2 be the second projection. Then the induced
morphism D(G1, h1) → D(G2, h2) is understood as C2 → C ; (c1, c2) 7→ c2. This
morphism does not extend to a continuous map D(G1, h1)BS → D(G2, h2)BS. Note that
in this case, Lie (G1,u)→ Lie (G2,u) is not injective. Let P1 = G1,red, the unique parabolic
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subgroup of G1,red. For θ ∈ R, let Z(θ) be the BP1-orbit {(ir cos(θ), ir sin(θ) | r ∈ R>0}
in C2 = D(G1, h1). Then when θ → 0 and r →∞, (ir cos(θ), ir sin(θ)) ∈ C2 = D(G1, h1)
converges to (P1, Z(0)) ∈ D(G1, h1)BS, but the image ir sin(θ) ∈ C = D(G2, h2) does not
converge in D(G2, h2)BS.

The point is that for finite dimensional graded R-vector spaces V1 and V2 of weigh
≤ −1 and for a linear map f : V1 → V2 which is compatible with the gradings, the
following three conditions are equivalent. (i) Either f is injective or V2 = 0. (ii) f extends
to a continuous map V 1 → V 2. If these conditions are satisfied, f extends to a morphism
V 1 → V 2 of real analytic manifolds with corners uniquely.

4.10.9. Example. Let G1 = GL(2) × GL(2), G2 = GSp(4), and let f : G1 → G2 be
the natural embedding. Let h1 : SC/R → G1,R be as in 4.9.3 and let h2 : SC/R → G2,R

be f ◦ h1. Then both h1 and h2 are R-polarizable. We show that the canonical map
D(G1, h1)→ D(G2, h2), which we also denote by f , does not extend to a continuous map
D(G1, h1)BS → D(G2, h2)BS.

In fact, we have:
(1) When y1, y2 →∞, (iy1, iy2) ∈ H± × H± = D(G1, h1) converges in D(G1, h1)BS.
On the other hand, the identity map of D(G2, h2) extends to a homeomorphism

D(G2, h2)SL(2)
∼→ D(G2, h2)BS ([23] Theorem 6.7). We have

(2) When y2, y1/y2 →∞, f(iy1, iy2) converges in D(G2, h2)SL(2) to a point a, and when
y1, y2/y1 →∞, f(iy1, iy2) converges in D(G2, h2) to a point b, and a 6= b.

Hence in D(G2, h2)BS, f(iy1, iy2) for y1, y2 → ∞ with y1/y2 → ∞ and that with
y2/y1 →∞ have different limits.

4.10.10. Example. Let G1 = GL(2)×GL(2), G2 = GSp(6), and let f : G1 → G2 be the
homomorphism (g1, g2) 7→ g1 ⊗ Sym2(g2). Let h1 : SC/R → G1,R be as in 4.9.3 and let
h2 : SC/R → G2,R be f ◦ h1. Both h1 and h2 are R-polarizable.

We explain the following (1) and (2).
(1) The canonical map D(G1, h1) → D(G2, h2), which we also denote by f , does not

extend to a continuous map D(G1, h1)BS → D(G2, h2)BS.
(2) The identity map ofD(G2, h2) does not extend to a continuous mapD(G2, h2)SL(2) →

D(G2, h2)BS.
These (1) and (2) follow from (3)–(6) below. Note that D(G1, h1) = H± × H±.
(3) When y1, y2 →∞, (iy1, iy2) converges in D(G1, h1)BS.
(4) When y2, y2/y1 →∞, f(iy1, iy2) converges in D(G2, h2)SL(2).
Let P and Q be the parabolic subgroup of G2 associated to the following homomor-

phisms µ : Gm → G2 and ν : Gm → G2, respectively.

µ(t) := f
(

(

t−3 0
0 t3

)

,

(

t−1 0
0 t

)

)

, ν(t) := f
(

(

t−3 0
0 t3

)

,

(

t−2 0
0 t2

)

)

.

Then P 6= Q because the adjoint action ofGm on Lie (G2) defined by µ (resp. ν) multiplies

N = f
(

(

0 1
0 0

)

,

(

0 0
1 0

)

)

by t−2 (resp. t2).
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(5) When y → ∞, f(iy3, iy) converges in D(G2, h2)BS to a point whose associated
parabolic subgroup of G2 is P .

(6) When y → ∞, f(iy3, iy2) converges in D(G2, h2)BS to a point whose associated
parabolic subgroup of G2 is Q.

(These (5) and (6) are essentially contained in [23] Proposition 6.10 and also in [24]
Section 12.4.)

In the rest of this Section 4.10, we assume that G is reductive and let Z be the center
of G. We consider the case G1 = G and G2 = G/Z. We assume that h0 : SC/R → GR is
R-polarizable. We will see that the extended period domains for G are understood from
those of the semisimple group G/Z.

Lemma 4.10.11. Let h̄0 be the homomorphism SC/R → (G/Z)R induced by h0 : SC/R →
GR. Then h̄0 is R-polarizable.

Proof. This is because Lie ((G/Z)′) = Lie (G′) and hence Ad(h̄0(i)) on Lie ((G/Z)′R) is a
Cartan involution.

Proposition 4.10.12. The complex analytic manifold D(G, h0) is an open and closed
submanifold of the complex analytic manifold D(G/Z, h̄0).

Proof. We have a canonical morphism D(G, h0)→ D(G/Z, h̄0) of complex analytic man-
ifolds. Hence, to prove Proposition 4.10.12, it is sufficient to prove that via this map,
D(G, h0) is an open and closed real analytic submanifold of D(G/Z, h̄0).

We first prove

Claim. Let g ∈ G(C). Then Int(g)(h0) = h0 in Hom (SC/R,C, GC) if and only if
Int(g)(h̄0) = h̄0 in Hom (SC/R,C, (G/Z)C). Here Int(g) denotes the inner-automorphism
given by g.

Proof of Claim. Assume Int(g)(h̄0) = h̄0. Then there is a homomorphism z :
SC/R,C → ZC such that Int(g)(h0(s)) = z(s)h0(s) for all s ∈ SC/R,C. Since z(s) =
Int(g)(h0(s))h0(s)

−1 belongs to the commutator subgroup G′
C of GC and G′

C ∩ ZC is fi-
nite, the image of z : SC/R.C → ZC is finite. Since SC/R,C is connected, z is the trivial
homomorphism. Claim is proved.

Let N = {g ∈ G(C) | Int(g)(h0) = h0} = {g ∈ G(C) | Int(g)(h̄0) = h̄0} and let
N̄ = N/Z(C). Since G(R)/Z(R) is an open and closed real analytic submanifold of
(G/Z)(R), D(G, h0) = G(R)/(G(R) ∩ N) = (G(R)/Z(R))/((G(R)/Z(R)) ∩ N̄) is an
open and closed real analytic submanifold of (G/Z)(R)/((G/Z)(R) ∩ N̄) = D(G/Z, h̄0)
as a real analytic manifold.

4.10.13. Example. The map D(G, h0) → D(G/Z, h̄0) for a reductive G need not be
bijective. Let (Z/4Z)(1) be the algebraic group of 4-th roots of 1 over R and let G be the
semi-direct product of SC/R and Z/4Z(1) in which SC/R is the normal subgroup and the
action of the generator of Z/4Z(1) on SC/R via the inner-automorphism is z 7→ z−1. Let
h0 : SC/R → G be the inclusion map. Then G(R) = C× × {±1} (here {±1} ⊂ Z/4Z(1))
and D(G, h0) is a one-point set. On the other hand, G/Z is the semi-direct product of
SC/R/{±1} and Z/4Z(1)/{±1} ≃ {±1} in which SC/R/{±1} is normal and the generator
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of Z/4Z(1)/{±1} acts on it via the inner-automorphism by z 7→ z−1. Hence D(G/Z, h̄0)
consists of two points.

Both Ď(G, h0) and Ď(G/Z, h̄0) consist of two points.

Proposition 4.10.14. As a real analytic manifold with corners, D(G, h0)BS is canonically
isomorphic to an open and closed subspace of D(G/Z, h̄0)BS.

Proof. By Proposition 4.10.12, we have that Y := D(G/Z, h̄0) is the disjoint union Y1
∐

Y2
of open closed subspaces Y1 and Y2 of Y such that the map X := D(G, h0)→ D(G/Z, h̄0)
induces an isomorphism X

∼→ Y1. As is easily seen, YBS is the disjoint union YBS,1

∐

YBS,2,
where YBS,j (j = 1, 2) is the open and closed subset of YBS consisting of all elements
(P, Z) such that Z ⊂ Yj. The morphism X → Y induces a morphism XBS → YBS and
this induces a morphismXBS → YBS,1. We show that the last morphism is an isomorphism.

We have a bijection P 7→ P/Z from the set of all parabolic subgroups of G to that
of G/Z. It is sufficient to prove that we have an isomorphism XBS(P )

∼→ YBS,1(P/Z) :=
YBS,1 ∩ YBS(P/Z). Since AP

∼→ AP/Z and ĀP
∼→ ĀP/Z , we have

XBS(P ) = D(G, h0)×AP ĀP
∼→ Y1 ×AP/Z ĀP/Z = YBS,1(P/Z).

Proposition 4.10.15. As a locally ringed space with log structure with sign, D(G, h0)SL(2)
(resp. D(G, h0)BS,val, resp. D(G, h0)SL(2),val) is canonically isomorphic to an open and
closed subspace of D(G/Z, h̄0)SL(2) (resp. D(G/Z, h̄0)BS,val, resp. D(G/Z, h̄0)SL(2),val).

Proof. We use the notation in the proof of Proposition 4.10.14.
The case of DSL(2) is proved as follows. As is easily seen, YSL(2) is the disjoint union

of YSL(2),1
∐

YSL(2),2, where YSL(2),j (j = 1, 2) is the open and closed subspace of YSL(2)
consisting of all elements whose torus orbits are contained in Yj. The map XSL(2) → YSL(2)
induces a morphism XSL(2) → YSL(2),1. We show that the last morphism is an isomorphism.
We use

Claim. For any field E ⊃ Q, the map Hom (SL(2)nE , GE) → Hom (SL(2)nE, (G/Z)E)
is a bijection.

We prove Claim. We first prove the injectivity. Assume that h1, h2 ∈ Hom (SL(2)nE, GE)
have the same image in Hom (SL(2)nE, (G/Z)E). Then there is a homomorphism a :
SL(2)nE → ZE such that h2 = ah1. But a is trivial because SL(2)n = [SL(2)n, SL(2)n].
Next we prove the surjectivity. Let h ∈ Hom (SL(2)nE, (G/Z)E). Then the image of h
is contained in the commutator subgroup G′

E/(G
′ ∩ Z)E of (G/Z)E, where G

′ = [G,G].
Since G′ → G′/(G′ ∩ Z) is an isogeny and since SL(2)n is simply connected, this homo-
morphism SL(2)nE → G′

E/(G
′ ∩ Z)E comes from a homomorphism SL(2)nE → G′

E . Claim
is proved.

By Claim and by using the description of the set of SL(2)-orbits in (ii) or (iii) in Lemma
3.1.3, we see that the map XSL(2) → YSL(2),1 is bijective. It remains to compare the real
analytic structures and the log structures with sign. By using the local descriptions
Proposition 3.4.4 of these structures, it is sufficient to prove that the canonical map
from space spl(W ′) in Proposition 3.4.4 for (G, h0) to the corresponding space spl(W̄ ′)
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for (G/Z, h̄0) is an isomorphism of real analytic manifolds. This map is identified with
the map GR,W ′,u → GR,W̄ ′,u and is identified with the isomorphism Lie (GR,W ′,u)

∼→
Lie (GR,W̄ ′,u). This completes the proof for DSL(2).

The proof for DBS,val (resp. DSL(2),val) is similar to that for DBS (Proposition 4.10.14)
(resp. for DSL(2)).

Proposition 4.10.16. Let Σ be a weak fan in Lie (G′). ThenD(G, h0)
♯
Σ (resp.D(G, h0)

♯
Σ,[:],

D(G, h0)
♯
Σ,val, D(G, h0)

♯
Σ,[val]) is canonically homeomorphic to an open and closed subset

of D(G/Z, h̄0)
♯
Σ (resp. D(G/Z, h0)

♯
Σ,[:], D(G/Z, h0)

♯
Σ,val, D(G/Z, h0)

♯
Σ,[val]).

Here we denote the image of Σ under the isomorphism Lie (G′
R)

∼→ Lie ((G/Z)′R) by
the same letter Σ.

Proof. We use the notation in the proof of Proposition 4.10.15.
For j = 1, 2, let Y ♯

Σ,[:],j be the inverse image of YSL(2),[:],j under the CKS map Y ♯
Σ,[:] →

YSL(2). Then Y ♯
Σ,[:] is the disjoint union of an open and closed subsets Y ♯

Σ,[:],1 and Y ♯
Σ,[:].,2.

Since the map Y ♯
Σ,[:] → Y ♯

Σ is proper and all fibers of this map are connected, Y ♯
Σ is the

disjoint union of the open and closed subsets Y ♯
Σ,1 and Y ♯

Σ,2, where Y
♯
Σ,j (j = 1, 2) denotes

the image of Y ♯
Σ,[:],j in Y

♯
Σ. The set Y ♯

Σ,j is the subset of Y ♯
Σ consisting of nilpotent i-orbits

(σ, Z) such that there is an F ∈ Z having the property that if N1, . . . , Nn generate
σ, then exp(

∑n
k=1 iykNk)F ∈ Yj if yk ≥ 0 for all k. From this description, we see

that the map X♯
Σ → Y ♯

Σ,1 is bijective. The coincidence of the topologies can be seen

by the fact that for each σ ∈ Σ, both X♯
σ and Y ♯

σ,1 have the quotient topologies of the
topology of {(q, F ) ∈ |toric|σ ×X | (q, F ) belongs to Eσ of (G, h0)} ≃ {(q, F ) ∈ |toric|σ ×
Y1 | (q, F ) belongs to Eσ of (G/Z, h̄0)} (this fact follows from Proposition 4.6.7). This
proves Proposition 4.10.16 for D♯

Σ. The proofs for D
♯
Σ,[:], D

♯
Σ,val and D

♯
Σ,[val] are similar.

Proposition 4.10.17. Let Σ be a weak fan in Lie (G′), and let Γ be a semi-arithmetic
subgroup of G(Q) which is strongly compatible with Σ and such that the image Γ of Γ
in (G/Z)(Q) is neat. Then as a locally ringed space with log structure, Γ \D(G, h0)Σ is
canonically isomorphic to an open and closed subspace of Γ \D(G/Z, h̄0)Σ.

Proof. We use the notation in the proof of Proposition 4.10.16. For j = 1, 2, let YΣ,j
be the subset of YΣ consisting of nilpotent orbits (σ, Z) such that for some F ∈ Z, if
Nk (1 ≤ k ≤ n) generate σ, then exp(

∑n
k=1 zkNk)F ∈ Yj if Im(zk) ≥ 0 for all k. By

the similar descriptions of Y ♯
Σ,j for j = 1, 2 in the proof of Proposition 4.10.16, we have

that YΣ is the disjoint union of YΣ,j for j = 1, 2. From the bijectivity of X♯
Σ → Y ♯

Σ,1, we

obtain the bijectivity of XΣ → YΣ,1. Hence the map Γ \XΣ → Γ \YΣ,1 is bijective. The
coincidence of the sheaf of rings of holomorphic functions and the coincidence of the log
structure can be seen by the following facts (i) and (ii) concerning both Γ(σ)gp \Xσ and
Γ(σ)gp \ Yσ,1 for σ ∈ Σ.

(i) A subset U is open if and only if for any fs log analytic space S and for any morphism
S → toricσ ×X ≃ toricσ × Y1 whose image is contained in {(q, F ) ∈ toricσ ×X | (q, F ) ∈
Eσ of (G, h0)} ≃ {(q, F ) ∈ toricσ × Y1 | (q, F ) ∈ Eσ of (G/Z, h̄0)}, the inverse image of U
in S is open.
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(ii) For an open set U and for a function f : U → C, f belongs to O(U) (resp. M(U))
if and only if for any S and S → toricσ × X ≃ toricσ × Y1 as in (i) such that OS is a
sheaf of reduced rings (i.e., rings without non-zero nilpotent elements), the pullback of f
on the inverse image of U in S belongs to OS(U) (resp. MS(U)).

These (i) and (ii) follow from Proposition 4.6.16.

4.10.18. We prove Proposition 2.6.6, Proposition 3.11.5, (2) of Remark 4.6.2, and Remark
4.6.28. If Γ is a semi-arithmetic subgroup of G(Q), the image Γ of Γ in (G/Z)(Q) is a
semi-arithmetic subgroup, and Γ ∩ (G/Z)′(Q) is of finite index in Γ. By 2.3.6 (5) and by
Propositions 4.10.14, 4.10.15, 4.10.16, 4.10.17, we can replace G by G/Z and replace Γ
by the semi-arithmetic subgroup Γ ∩ (G/Z)′(Q) of (G/Z)′(Q). Thus Proposition 2.6.6,
Proposition 3.11.5, (2) of Remark 4.6.2, and Remark 4.6.28 are reduced to Theorem 2.6.1,
Theorem 3.11.1, Theorem 4.6.1, and Proposition 4.6.27, respectively.

4.10.19. We describe some details of the relation of this paper with the work [25] ex-
plained in Remark 4.6.3.

Let H , M , h0 : SC/R → MR, h̄0 : SC/R → (M/Z)R be as in 1.6.6. Let Γ be a
neat arithmetic subgroup of (M/Z)(Q) which is contained in the connected component of
(M/Z)(R) containing 1 and let Σ be a fan in Lie ((M/Z)′) = Lie (M ′) which is strongly
compatible with Γ. Then Γ acts on D(M,h0) and on D(M,h0)Σ. The work [25] shows
that Γ \D(M,h0)Σ is a logarithmic manifold. The method in [25] is to use the inclusion
map D(M,h0)→ D(Λ) (Λ is as in 1.6.6) and to use the work [24] on the toroidal partial
compactification for D(Λ).

This result can be deduced also from Theorem 4.6.1 for G = M/Z as follows. Take
a neat semi-arithmetic subgroup Γ1 of M ′(Q) whose image Γ2 in (M/Z)(Q) is a normal
subgroup of Γ of finite index. Then by Proposition 4.10.17, Γ1 \D(M,h0)Σ is an open
and closed subspace of Γ2 \D(M/Z, h̄0)Σ. By taking the quotients by Γ/Γ2, we have that
Γ \D(M,h0)Σ is an open and closed subspace of Γ \D(M/Z, h̄0)Σ, which is a logarithmic
manifold by Theorem 4.6.1 and by the part of Remark 4.6.2 (1) for semisimple algebraic
groups, and hence is a logarithmic manifold.

4.11 G-log mixed Hodge structures

We consider the G-MHS version of the notion log mixed Hodge structure.
In this Section 4.11, Γ denotes a semi-arithmetic subgroup (1.5.7) of G(Q).

4.11.1. Let S be an object of the category B(log) (4.2.12). Recall that the topological
space S log is endowed with a proper surjective continuous map τ : S log → S and a sheaf
of rings Olog

S over τ−1(OS). A log Q-mixed Hodge structure on S is a triple (HQ,W,HO),
where HQ is a locally constant sheaf on S log of finite-dimensional Q-vector spaces, W is
an increasing filtration on HQ, HO is a vector bundle on S endowed with an isomorphism

Olog
S ⊗QHQ ≃ Olog

S ⊗τ−1(OS) τ
−1(HO) and with a decreasing filtration F , satisfying certain

conditions (see [21] Part III 1.3). We denote by LMH(S) the category of log Q-mixed
Hodge structures over S.

A G-log mixed Hodge structure (G-LMH, for short) over S is an exact ⊗-functor from
Rep(G) to LMH(S).
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A G-LMH on S with a Γ-level structure is a G-LMH H over S endowed with a global
section of the quotient sheaf Γ \ I, where I is the following sheaf on S log. For an open set
U of S log, I(U) is the set of all isomorphisms HQ|U ∼→ id of ⊗-functors from Rep(G) to
the category of local systems of Q-modules over U .

4.11.2. Let Σ be a weak fan in Lie (G′) which is strongly compatible with Γ (4.1.9). A
G-LMH H over S with a Γ-level structure λ is said to be of type (h0,Σ) if for any s ∈ S,
any t ∈ slog, and any ⊗-isomorphism λ̃t : HQ,t ≃ id which belongs to λt, there is a σ ∈ Σ
satisfying the following (i) and (ii).

(i) The logarithm of the action of Hom ((MS/O×
S )s,N) ⊂ π1(s

log) on HQ,t is contained,
via λ̃t, in σ ⊂ Lie (GR).

(ii) Let a : Olog
S,t → C be a ring homomorphism which induces the evaluation OS,s → C

at s and consider the element F : V 7→ λ̃ta(H(V )) of Y (1.4.1). Then this element belongs
to Ď and (σ, F ) generates a nilpotent orbit (4.1.3).

Remark 4.11.3. The definition of the type (h0,Σ) in [22] 4.2.2 should be modified as
above because “the smallest cone satisfying (i)” in the condition (ii) there may not be
well-defined when Σ is not a fan.

4.11.4. If (H, λ) is a G-LMH with a Γ-level structure of type (h0,Σ), we have a map
S → Γ \DΣ, called the period map associated to (H, λ), which sends s ∈ S to the class of
the nilpotent orbit (σ, Z) ∈ DΣ. Here σ is the smallest cone of Σ satisfying (i) and (ii) in
4.11.2, which exists by a variant of [21] Part III Lemma 2.2.4 (see also Appendix of this
paper), and Z is the associated exp(σC)-orbit obtained in (ii) in 4.11.2.

4.11.5. Let S be an object of B(log). Let S◦ be the underlying locally ringed space over
C of S with the trivial log structure. By a G-MHS on S with a Γ-level structure, we mean
a G-LMH on S◦ with a Γ-level structure. By a G-MHS on S with a Γ-level structure of
type h0, we mean a G-LMH on S◦ with a Γ-level structure of type (h0,Σ), where Σ is the
fan consisting of the one cone {0}.

4.12 Moduli of G-log mixed Hodge structures and period maps

We show that Γ \DΣ is a moduli space of G-LMH.
In this Section 4.12, let Γ be a subgroup of G(Q), and assume that either one of the

following two conditions is satisfied.
(i) Γ is a neat semi-arithmetic subgroup (2.6.3, 1.5.7) of G′(Q).
(ii) G is reductive, Γ is a semi-arithmetic subgroup of G(Q), and the image of Γ in

(G/Z)(Q) is neat, where Z is the center of G.
Note first the following.

Proposition 4.12.1. The complex analytic manifold Γ \D represents the functor

S 7→ {isomorphism class of G-MHS on S with a Γ-level structure of type h0}

from B(log) to the category of sets.

The main result here is the following.
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Theorem 4.12.2. Let Σ be as in 4.11.2. Then Γ \DΣ represents the functor

S 7→ {isomorphism class of G-LMH on S with a Γ-level structure of type (h0,Σ)}.

from B(log) to the category of sets.

4.12.3. The proof of Theorem 4.12.2 is similar to the proof of [21] Part III Theorem 2.6.6.
The first part of the proof is to understand the functor which Eσ represents. Then

take the quotient Γ(σ) \Dσ of Eσ by σC.

4.12.4. There is a variant of Theorem 4.12.2 for G-LMH with adelic level structure.
Let G1 be a closed algebraic subgroup of G and let K be an open compact subgroup

of G1(A
∞
Q ), where A∞

Q is the adele ring of Q without the ∞-component. We show that
under certain assumptions, the space

G1(Q) \(D ×G1(A
∞
Q )/K)

is a moduli space of G-MHS with K-level structure and its toroidal partial compactifica-
tion is a moduli space of G-LMH with K-level structure.

For each g ∈ G1(A
∞
Q )/K, let Γ(g) = G1(Q)∩ g̃Kg̃−1, where g̃ denotes a lifting of g to

G1(A
∞
Q ). Then Γ(g) is an arithmetic subgroup of G1(Q). We have Γ(γg) = γΓ(g)γ−1 for

γ ∈ G1(Q) and g ∈ G1(A
∞
Q )/K.

Let R be a representative of G1(Q) \G1(A
∞
Q )/K in G1(A

∞
Q )/K.

We assume that for every g ∈ G1(A
∞
Q )/K (equivalently, for each g ∈ R), the subgroup

of Γ(g) of G(Q) is neat and satisfies either one of the conditions (i) and (ii) at the
beginning of Section 4.12.

We also assume that for each g ∈ R, we are given a weak fan Σ(g) in Lie (G′) which
is strongly compatible with Γ(g). For each g ∈ G1(A

∞
Q )/K, define Σ(g) := Ad(γ)Σ(g0),

where g = γg0 with γ ∈ G1(Q) and g0 ∈ R (then Σ(g) is independent of the choices of
such γ and g0). We have Σ(γg) = Ad(γ)Σ(g) for all γ ∈ G1(Q) and g ∈ G1(A

∞
Q )/K.

Then we have a log manifold

G1(Q) \
∐

g∈G1(A∞)/K

DΣ(g) = G1(Q) \(
⋃

g∈G1(A∞
Q
)/K

DΣ(g) × {g})/K =
∐

g∈R

Γ(g) \DΣ(g)

(here the action of γ ∈ G1(Q) sends an element (x, g) of
∐

g∈G1(A∞)/K DΣ(g) with x ∈ DΣ(g)

and g ∈ G1(A
∞
Q )/K to the element (γx, γg)). This log manifold contains

G1(Q) \(D ×G1(A
∞
Q )/K) =

∐

g∈R

Γ(g) \D

as an open set.
By Theorem 4.12.2, this log manifold represents the functor

S 7→ {isomorphism class of G-LMH on S with a K-level structure of type (h0,Σ)}

and the above open set represents the functor

S 7→ {isomorphism class of G-MHS on S with a K-level structure of type h0}.
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Here Σ denotes the family (Σ(g))g. A K-level structure on a G-LMH (or its special case
G-MHS) H on S means a global section of the quotient sheaf K \J1, where J1 is the
following sheaf on S log. Let J be the following sheaf on S log. For an open set U of S log,
J (U) is the set of all isomorphisms HQ|U⊗QA∞

Q

∼→ id⊗QA∞
Q of ⊗-functors from Rep(G)

to the category of sheaves of A∞
Q -modules over U . Then G1(A

∞
Q ) acts on J and we have

a canonical injective morphism I → J for I as in 4.11.1. Let J1 = G1(A
∞
Q )I ⊂ J . For a

G-LMH (resp. G-MHS) H on S with a K-level structure, we say that H is of type (h0,Σ)
if for each s ∈ S, if the K-level structure at the point of S log lying over s ∈ S is g−1λ
with g ∈ G1(A

∞
Q ) and λ ∈ I, then H with the Γ(g)-level structure λ is of type (h0,Σ(g))

(resp. h0). The period morphism from S to this log manifold (resp. the above open set)
associated to H with this K-level structure of type (h0,Σ) (resp. h0) is as follows. On
an open neighborhood of s, taking the above g in R, it is the period map from S to
Γ(g) \DΣ(g) (resp. Γ(g) \D) associated to (H, λ).

Next we consider extensions of the associated period maps in Theorem 4.12.5 and
Theorem 4.12.6.

Theorem 4.12.5. Let S be a connected, log smooth, fs log analytic space, and let U be
the open subspace of S consisting of all points of S at which the log structure of S is
trivial. Let (H, λ) be a G-MHS on U with a Γ-level structure of type h0 (4.11.5). Let
ϕ : U → Γ \D be the associated period map. Assume that (H, λ) extends to a G-LMH on
S with a Γ-level structure (4.11.1). Then:

(1) For any point s ∈ S, there exist an open neighborhood V of s, a log modification
V ′ of V ([24] 3.6.12), a subgroup Γ1 of Γ, and a fan (we do not need a weak fan here) Σ
in Lie (G′) which is strongly compatible with Γ1 such that the period map ϕ|U∩V lifts to a
morphism U ∩ V → Γ1 \D which extends uniquely to a morphism V ′ → Γ1 \DΣ of log
manifolds. Furthermore, we can take a commutative group Γ1.

U ⊃ U ∩ V ⊂ V ′

ϕ





y





y





y

Γ \D ←−−− Γ1 \D ⊂ Γ1 \DΣ.

(2) Assume that SrU is a smooth divisor. Then we can take V = V ′ = S and Γ1 = Γ
in (1). That is, we have a commutative diagram

U ⊂ S

ϕ





y





y

Γ \D ⊂ Γ \DΣ.

(3) Assume that Γ is commutative. Then we can take Γ1 = Γ in (1).

(4) Assume that Γ is commutative and that the following condition (i) is satisfied.

(i) There is a finite family (Sj)1≤j≤n of connected locally closed analytic subspaces of
S such that S =

⋃n
j=1 Sj as a set and such that, for each j, the inverse image of the sheaf

MS/O×
S on Sj is locally constant.

Then we can take Γ1 = Γ and V = S in (1).
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This is the G-MHS version of [21] Part III Theorem 7.5.1 in mixed Hodge case and of
[24] Theorem 4.3.1 in pure Hodge case. The proof goes exactly in the same way as in the
pure case treated in [24].

Theorem 4.12.6. Let the notation S, U , (H, λ) and the assumptions be as in Theorem
4.12.5. Let ϕ : U → Γ \D be the associated period map. Let S log

[:] = S log ×S S[:] and let

S log
[val] = S log ×S S[val], and regard U as open sets of these spaces. Then:

(1) The map ϕ : U → Γ \D extends uniquely to continuous maps

S log
[:] → Γ \DI

SL(2), S log
[val] → Γ \DI

SL(2),val.

(2) Assume that the complement S rU of U is a smooth divisor on S. Then the map
ϕ : U → Γ \D extends uniquely to a continuous map

S log → Γ \D⋆
SL(2),val

and hence extends uniquely to a continuous map S log → Γ \DBS,val and to S log → Γ \DBS.

This is the G-MHS version of [21] Part IV Theorem 6.3.1. The proof goes exactly in
the same way as there. In the proof of loc. cit., there are typos, i.e., the two S[:] in the

middle of the proof should be changed to S log
[:] .

4.13 Infinitesimal study

In this section, we consider the logarithmic tangent bundle of the moduli space of G-LMH.
We will prove

Proposition 4.13.1. Let Z = Γ \DΣ be as in Theorem 4.12.2 and let (Huniv, λ) be the
universal object on Z. Let θZ be the logarithmic tangent bundle of Z (i.e., the OZ-dual of
the sheaf ω1

Z of differential forms with log poles). Then, we have a canonical isomorphism
of OZ-modules

θZ ≃ Huniv(Lie (G))O/F
0Huniv(Lie (G))O.

This is an analogue of [24] Proposition 4.4.3 and proved in a similar way as below.

4.13.2. In 4.13.2–4.13.12, let S be an object of B(log) and assume that S is log smooth
(this means that S is locally a strong subspace (4.2.12) of a log smooth fs log analytic
space).

Let H be a G-LMH on S. We will construct a commutative diagram of OS-modules

θS
∼→ θ̃S

↓ ↓
H(Lie (G))O/F

0 ∼→ E(H)
∼→ Ẽ(H)

whose horizontal arrows are isomorphisms. Here θS is the logarithmic tangent bundle of
S and the sheaves θ̃S , E(H) and Ẽ(H) are defined below.

Furthermore, in the case S = Γ \DΣ, we will show that the right vertical arrow is an
isomorphism. This will give the isomorphism in Proposition 4.13.1.
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4.13.3. Define the sheaf θ̃S as follows.
Let U be an open set of S, and let Ũ = U [T ]/(T 2) = (U,OU [T ]/(T 2)). Then θ̃S(U) is

the set of all morphisms Ũ → S which extend the inclusion morphism U → S.
We have a canonical isomorphism θS

∼→ θ̃S.

4.13.4. We define the sheaf E(H).
A section of E(H) is a collection of anOS-homomorphism δp,V : F pH(V )O → H(V )O/F

p

for p ∈ Z and V ∈ Rep(G) satisfying the following conditions (i)–(iii).
(i) Functoriality in V . For a morphism V1 → V2 in Rep(G), the square

F pH(V1)O → H(V1)O/F
p

↓ ↓
F pH(V2)O → H(V2)O/F

p

is commutative.
(ii) The diagram

F p+1H(V )O
δp+1,V−→ H(V )O/F

p+1

↓ ↓
F pH(V )O

δp,V−→ H(V )O/F
p

is commutative for every p.
(iii) For V1, V2 ∈ Rep(G) and for p, q ∈ Z, the following diagram is commutative.

F pH(V1)O ⊗ F qH(V2)O → (H(V1)O/F
p ⊗ F qH(V2)O)⊕ (F pH(V1)O ⊗H(V2)O/F

q)
↓ ↓

F p+qH(V1 ⊗ V2)O → H(V1 ⊗ V2)O/F p+q

Here the vertical arrows are the evident ones. The upper horizontal row is x ⊗ y 7→
(δp,V1(x)⊗ y, x⊗ δq,V2(y)). The lower horizontal arrow is δp+q,V1⊗V2.

A section of E(H) on an open set U of S is defined in the same way by replacing S by
U .

We have the evident homomorphism H(Lie (G))O/F
0 → E(H).

4.13.5. We define the sheaf Ẽ(H).
Let U be an open set of S, and let Ũ be as in 4.13.3. Then Ẽ(H)(U) is the set of all

isomorphism classes of G-LMH H̃ on Ũ whose pullbacks to U coincide with the restriction
of H to U .

4.13.6. We define the map θS → E(H).
Note that for V ∈ Rep(G), H(V )O = τ∗(Olog

S ⊗QH(V )Q). Then, d⊗ 1H(V )C : Olog
S ⊗C

H(V )C → ω1,log
S ⊗C H(V )C induces a connection

∇ : H(V )O → ω1
S ⊗OS

H(V )O.

We define a map

θS →
⊕

p

Hom(F pH(V )O, H(V )O/F
p)
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by assigning δ ∈ θS the element of
⊕

pHom(F pH(V )O, H(V )O/F
p) induced by the com-

posite map

H(V )O
∇−→ ω1

S ⊗OS
H(V )O

δ−→ H(V )O.

Note that this map is not OS-linear but that it induces an OS-linear map F pH(V )O →
H(V )O/F

p. Thus, we have a homomorphism of OS-modules

θS → E(H).

4.13.7. We have a map θ̃S → Ẽ(H) which sends a morphism f : Ũ → S to the class of
f ∗H .

4.13.8. We have a canonical isomorphism E(H)→ Ẽ(H) defied as follows.
Let (δp,V )p,V be a section of E(H) on U . Define the corresponding G-LMH H̃ on Ũ

as follows. We identify the topological spaces U log and (Ũ)log. We define H̃(V )Q with
the weight filtration and the level structure as the same as the restriction of H(V )Q
to U log. Since Olog

Ũ
= OŨ ⊗OU

Olog
U , H̃(V )O = τ∗(Olog

Ũ
⊗ H̃(V )Q) is identified with

OŨ ⊗OU
H(V )O|U . We define the p-th Hodge filter on H̃(V )O as the OŨ -submodule of

H̃O = OŨ ⊗OU
H(V )O|U generated by x+ Ty, where x ∈ F pH(V )O|U and y ∈ H(V )O|U

such that y mod F pH(V )O|U coincides with δp,V (x). It is easy to see that this E(H) →
Ẽ(H) is an isomorphism.

4.13.9. The diagram
θS

∼→ θ̃S
↓ ↓
E(H)

∼→ Ẽ(H)

is commutative.

4.13.10. By Tannaka duality (see below), H(Lie (G))O is identified with the collection of
δV ∈ EndOS

(H(V )O) for V ∈ Rep(G) satisfying the following conditions (i) and (ii).

(i) It is functorial in V . That is, for a morphism h : V1 → V2 in Rep(G), we have
h ◦ δV1 = δV2 ◦ h.

(ii) For all V1, V2 ∈ Rep(G), δV1⊗V2 coincides with δV1 ⊗ 1 + 1⊗ δV2 .
Here Tannaka duality is used as follows. By [30], locally on S, the functors Rep(G) ∋

V 7→ OS ⊗Q V and Rep(G) ∋ V 7→ H(V )O are isomorphic as ⊗-functors. By this and by
the Tannaka duality ([30]) applied to the functor Rep(G) ∋ V 7→ OS[T ]/(T 2) ⊗Q V , we
have the above understanding of H(Lie (G))O.

Lemma 4.13.11. The map H(Lie (G))O/F
0H(Lie (G))O → E(H) is an isomorphism.

Proof. By [30] Ch. IV 2.4, the⊗-functors with filtrations V 7→ H(V )O and V 7→ grF (H(V )O)
are isomorphic locally on S. Hence we may assume that they are isomorphic. Fix an
isomorphism. Then via it, H(Lie (G))O/F

0 is identified with
⊕

p<0 grpF (H(Lie (G))O)
and E(H) is identified with the sheaf of collections δV : grF (H(V )) → grF (H(V ))
(V ∈ Rep(G)) satisfying the following conditions (i)–(iii).

(i) V 7→ δV is functorial in V .
(ii) δV1⊗V2 = δV1 ⊗ 1 + 1⊗ δV2 for all V1, V2 ∈ Rep(G).
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(iii) Image(δV ) ⊂
⊕

p<0 grpF (H(V )O).
By 4.13.10, the sheaf of those (δV )V satisfying (i) and (ii) (not necessarily satisfying (iii))
is isomorphic to grF (H(Lie (G))O). This proves Lemma 4.13.11.

4.13.12. If S = Γ \DΣ and H = Huniv, θ̃S → Ẽ(S) is an isomorphism because S is the
moduli space.

Consequently, we have θS
∼→ E(H) ≃ H(Lie (G))O/F

0. This completes the proof of
Proposition 4.13.1.

4.13.13. Let Z = Γ \DΣ be as in Proposition 4.13.1. We define θ1Z = gr−1
F Huniv(Lie (G))O.

4.13.14. Let Z = Γ \DΣ be as above. Let S be a logarithmically smooth object of B(log),
let (H, λ) be a G-LMH on S of type (h0,Σ), and let ϕ : S → Z be the corresponding
period map. Then H is the pullback of Huniv on Z by ϕ, and the map θS → E(H) ≃
H(Lie (G))O/F

0 is identified with the canonical map θS → ϕ∗(θZ) and gr−1
F (H(Lie (G))O)

is identified with ϕ∗(θ1Z).
The connection of H(V )O satisfies the Griffiths transversality for every V ∈ Rep(G)

if and only if the map θS → ϕ∗θZ factors through ϕ∗θ1Z .

4.14 Generalizations, I

In this section and the next, we give two generalizations of the theory in this paper.

4.14.1. Let E be a subfield of R. We have the following generalization whose case E = Q
is the theory explained so far, as far as Γ is not involved.

Let G be a linear algebraic group over E. Assume that we are given a homomorphism
h0 : SC/R → Gred ⊗E R of algebraic groups over R such that the composition Gm,R →
SC/R → Gred ⊗E R comes from a homomorphism k0 : Gm,E → Gred whose image is

contained in the center of Gred such that for some (and hence for every) lifting k̃0 :
Gm,E → G of k0, the adjoint action of Gm,E on Lie (Gu) via k̃0 is of weights ≤ −1. Let
RepE(G) be the category of finite-dimensional representations of G over E. Note that
every V ∈ RepE(G) has a G-stable weight filtration W•V .

LetD = D(G, h0) be the set of isomorphism classes of exact⊗-functorsH : RepE(G)→
EMHS over E which keeps the underlying E-vector spaces and their weight filtrations
satisfying the following condition. The homomorphism SC/R → Gred ⊗E R associated to
the restriction of H to RepE(Gred) is Gred(R)-conjugate to h0.

By the method of Section 1.4, D is regarded as a complex analytic manifold.

4.14.2. Define DBS in the same way as in Section 2 except that for a parabolic subgroup
P of Gred (defined over E), SP is defined this time to be the maximal E-split torus in
the center of Pred and AP := Hom (X(SP )

+,Rmult
>0 ). (X(SP )

+ is defined in the same way
as in 2.4.2.) We have the Borel–Serre action of AP on D and the Borel–Serre action of
R>0 × AP on Dnspl.

Thus DBS is defined to be the set of all pairs (P, Z), where P is a parabolic subgroup
of Gred and Z is either an AP -orbit in D or a BP -orbit in Dnspl for the Borel–Serre action.

By the method of Section 2.5, DBS is regarded as a real analytic manifold with corners.
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4.14.3. Define the objects D⋆
SL(2), D

I
SL(2), and DII

SL(2) of B′
R(log) in the same way as in

Section 3 except that we change the condition of the rationality of the weight filtrations
W

(j)
• to the E-rationality.

4.14.4. We define the topological spaces D♯
Σ, D

♯
Σ,[:] and D

♯
Σ,[val] as explained in Section 4

except that the rationality of cones in Σ are replaced by E-rationality.

4.14.5. We have the following fundamental diagram (without Γ):

D♯
Σ,[val] → DSL(2),val ← D⋆

SL(2),val → DBS,val

↓ ↓ ↓ ↓
D♯

Σ ← D♯
Σ,[:] → DSL(2) D⋆

SL(2) DBS,

where the arrows respect the structures (the structure of D⋆
SL(2) as an object of B′

R(log),

etc.) of these spaces.
These extended period domains are Hausdorff spaces.

4.14.6. Assume that G = G ⊗Q E for a linear algebraic group G over Q and that k0 :
Gm,E → Gred comes from Gm → Gred. Then D is the same as the period domain D(G, h0)
for G, and the above extended period domains contain the ones for G.

4.14.7. In this generalization, however, we can not have a nice theory of the quotients
by Γ.

We show an example in which G = G ⊗Q E, where G is a reductive algebraic group
over Q, Γ is a semi-arithmetic subgroup of G′(Q), and Γ \DBS, Γ \DSL(2), and Γ \DΣ for
some E-rational fan Σ which is strongly compatible with Γ, are not Hausdorff.

Let L be a totally real field of degree > 2 and let E be a subfield ofR which contains all
conjugates of L. Let G := ResL/Q(GL(2)L), G := G⊗Q E =

∏n
j=1 ν

∗
j (GL(2)L) = GL(2)nE ,

where n = [L : Q] and ν1, . . . , νn are all the different field homomorphisms L → E.
Let h0 : SC/R → G ⊗k R = GL(2)nR be the homomorphism z 7→ (〈z〉, . . . , 〈z〉) (1.6.5).
Then D is canonically isomorphic to Hn, the n-fold product of the upper half plane, and
G(Q) = GL(2, L) acts on it via (ν1, . . . , νn).

Let Γ be a subgroup of SL(2, OL) of finite index. We show that the quotient spaces
Γ \DBS, Γ \DSL(2), and Γ \DΣ are not Hausdorff, where Σ is the set of all nilpotent cones
in Lie (GR) = gl(2,R)n of the form

⊕n
j=1RNj with Nj a nilpotent (2, 2)-matrix over E.

First we show that Γ \DBS is not Hausdorff. For z ∈ H, let pBS(z) ∈ DBS be the
limit of (iy1, . . . , iyn−1, z) ∈ D = Hn, where yj ∈ R>0 and yj → ∞. That is, pBS(z)
is the AP -orbit containing (i, . . . , i, z), where P is the E-parabolic subgroup

∏n
j=1 Pj of

G = GL(2)nE with Pj =

(

∗ ∗
0 ∗

)

⊂ GL(2)E for 1 ≤ j ≤ n − 1 and Pn = GL(2)E. Let

S = {pBS(ia) | a ∈ R>0}. Then the diagonal matrix (u, u−1) with u ∈ O×
L in SL(2, L)

acts on S as (i∞, . . . , i∞, ia) 7→ (i∞, . . . , i∞, iaνn(u)2). But {νn(γ)2 | γ ∈ Γ1} \R>0 for
a subgroup Γ1 of O×

L of finite index is not Hausdorff.
Next we show that Γ \DSL(2) is not Hausdorff. For z ∈ H, let pSL(2)(z) be the limit

point of (iy1, . . . , iyn−1, z), where yj ∈ R>0, yj/yj+1 → ∞ (1 ≤ j ≤ n − 1) with yn := 1.
That is, pSL(2)(z) is the class of (ρ, r), where ρ : SL(2)n−1

R → GR = GL(2)nR is the
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homomorphism (gq, . . . , gn−1) 7→ (g1, . . . , gn−1, 1) and r = (i, . . . , i, z). Let S be the set
{pSL(2)(ia) | a ∈ R>0}. The rest of the proof is similar to the above.

Lastly, we show that Γ \DΣ is not Hausdorff. For z ∈ H, let pΣ(z) ∈ Γ \DΣ be the
limit point of (z1, . . . , zn−1, z) mod Γ, where zj ∈ H and Im(zj) → ∞. That is, pSL(2)(z)
is the class mod Γ of the nilpotent orbit (σ, Z), where σ = σ1 × · · · × σn ⊂ gl(2,R)n with

σj =

(

0 ∗
0 0

)

for 1 ≤ j ≤ n − 1 and σn = {0} and Z is the exp(σC)-orbit in Ď which

contains Hn−1 × {z}. Let S = {pΣ(z) | z ∈ H}. The rest of the proof is similar to the
above (we use the fact that for a subgroup Γ1 of O×

L of finite index, {νn(γ)2 | γ ∈ Γ1} \H
is not Hausdorff).

4.15 Generalizations, II

Here we give a generalization which contains partial toroidal compactifications of higher
Albanese manifolds treated in [22]. This generalization is used in [19] for applications to
number theory.

4.15.1. Let G be a normal algebraic subgroup of G and let Q = G/G. We fix an element b
of D(G, h0). Let D(G, h0,G, b) ⊂ D(G, h0) be the inverse image in D(G, h0) of the image

of b in D(Q, h0,Q), where h0,Q denotes the composite homomorphism SC/R
h0→ Gred,R →

Qred,R.

Proposition 4.15.2. The morphism D(G, h0)→ D(Q, h0,Q) is smooth.

This follows from the surjectivity of the map of tangent spaces.

Corollary 4.15.3. D(G, h0,G, b) is smooth.

4.15.4. We consider the quotient space Γ \D(G, h0,G, b) and its toroidal partial com-
pactification for a neat semi-arithmetic subgroup Γ of G ′(Q).

4.15.5. Example 1. A higher Albanese manifold is regarded as an example of Γ \D(G, h0,G, b)
as is explained in [22].

4.15.6. Example 2. Let H0 be a Z-MHS, that is, a Q-MHS endowed with a Z-lattice
H0,Z in H0,Q. Assume that we have a polarization pw : grWw H0 ⊗ grWw H0 → Q(−w) in the
sense of Deligne for each w ∈ Z. Then for G, G, h0 and b as below, Γ \D(G, h0,G, b) is
identified with

(∗) the set of all isomorphism classes of Z-MHSH endowed with isomorphisms grWw H ≃
grWw H0 of Z-HS for all w.

Let

G = {(g, t) ∈ Aut(H0,Q,W )×Gm | pw(gx⊗gy) = twpw(x, y) for all w ∈ Z, x, y ∈ grWw H0,Q},

G = Gu,

and hence
Q = G/G = Gred =
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{(g, t) ∈
(

∏

w

Aut(grWw H0,Q)
)

×Gm | pw(gwx⊗gwy) = twpw(x⊗y) for all w ∈ Z, x, y ∈ grWw H0,Q}.

Then we have h0 : SC/R → Gred,R = QR and b ∈ D(G, h0) corresponding to H0 as
follows. We have the homomorphism h0 which is associated to the Hodge structure
grWH0. Then the condition (1) in Lemma 1.5.3 is satisfied. Let C0 (resp. C0,red) be
the smallest full subcategory of QMHS (resp. QHS) which contains H0 and Q(1) (resp.
grWH0 and Q(1)) and which is stable under taking ⊕, ⊗, duals and subquotients. Let
T0 be the Tannakian group of C0 associated to the fiber functor H 7→ HQ. Then T0,red is
identified with the Tannakian group of C0,red associated to the fiber functor H 7→ HQ. We
have a homomorphism SC/R → T0,red,R associated to grWH0, which we denote also by h0.
We have a canonical homomorphism T0 → G and this induces a morphism D(T0, h0) →
D(G, h0). We have the canonical element of D(T0, h0) which sends V ∈ Rep(T0) to the
corresponding QMHS. Let b be the image of this canonical element under D(T0, h0) →
D(G, h0).

Let
Γ = {g ∈ Aut(H0,Z,W ) | grWw (g) = 1 for all w ∈ Z}.

We prove that Γ \D(G, h0,G, b) is identified with the above set (∗). For an element
H ∈ D(G, h0,G, b), H(V ) for V = H0,Q ∈ Rep(G) with the Z-lattice H0,Z gives an
element of the set (∗). This gives a map Γ \D(G, h0,G, b) → (∗). Conversely let H
be a ZMHS with grWw H ≃ grWw H0 for all w. Let C be the smallest full subcategory of
QMHS which contains H and Q(1) and which is stable under taking ⊕, ⊗, duals and
subquotients. Let T be the Tannakian group of C associated to the fiber functorH ′ 7→ H ′

Q.
We have Tred = T0,red and we have a canonical element D(T , h0). We have a canonical
homomorphism T → G, and the image of this canonical element in D(G, h0) belongs to
D(G, h0,G, b). This gives the converse map (∗)→ Γ \D(G, h0,G, b).

4.15.7. Toroidal partial compactifications of Γ \D(G, h0,G, b) are obtained by using a
weak fan Σ in Lie (G) which is strongly compatible with Γ such that σ ⊂ Lie (GR) for
all σ ∈ Σ. In fact, for such a Σ, the map D(G, h0) → D(Q, h0,Q) induces a morphism
Γ \D(G, h0)Σ → D(Q, h0,Q) of log manifolds. Let D(G, h0,G, b)Σ be the inverse image of
bQ ∈ D(Q, h0,Q) in D(G, h0)Σ. The fiber Γ \D(G, h0,G, b)Σ of bQ in Γ \D(G, h0)Σ is our
toroidal partial compactification of Γ \D(G, h0,G, b).

Proposition 4.15.8. The space Γ \D(G, b0,G, b)Σ is a log manifold which represents
the following functor on B(log): It sends S ∈ B(log) to the set of all morphisms S →
D(G, h0)Σ such that the composition S → D(G, h0)Σ → D(Q, (h0)Q) is the constant
function bQ.

Proof. Let X = Γ \D(G, h0)Σ, Y = D(Q, bQ), and let x ∈ X . Then the proof of Claim
3 in 4.6.19 shows that there are an open neighborhood U of x in X , a log smooth fs
log analytic space Z over C, and log differential forms ω1, . . . , ωn on Z such that the
morphism U → Y factors as U → Z → Y satisfying the following conditions (i) and (ii).
Let Z ′ = {z ∈ Z | ωj(z) = 0 for 1 ≤ j ≤ n}. Here ωj(z) denotes the log differential form
on the log point z obtained from ωj (4.2.12).

(i) U is isomorphic over Z to an open subspace of Z ′ for the strong topology of Z ′ in
Z.
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(ii) The morphism Z → Y is log smooth.
Hence the fiber Zb of bQ in Z is log smooth, and the fiber of bQ in U is an open

subspace (for the strong topology) of {z ∈ Zb | ωj(z) = 0 for 1 ≤ j ≤ n} and hence is a
log manifold.

4.15.9. In Example 1 in 4.15.5, Γ \D(G, h0,G, b)Σ is the toroidal partial compactification
of the higher Albanese manifold discussed in [22] Section 5.

4.15.10. In Example 2 in 4.15.6, Γ \D(G, h0,G, b)Σ represents the functor on B(log)
which sends S ∈ B(log) to the set of all isomorphism classes of Z-LMH H of type (h0,Σ)
on S endowed with isomorphisms grWw H ≃ grWw H0 of Z-LMH for all w ∈ Z (this tells that
grWw H are constant Z-HS for all w). See [21] Part III Section 5 for a more general moduli
space of Z-LMH on S with given graded quotients for the weight filtration.

4.15.11. On this toroidal partial compactification Γ \D(G, h0,G, b)Σ, Huniv(Lie (G))O/F 0

is the log tangent bundle (this is a generalization of Proposition 4.13.1).

A Appendix

Here we give a complement to [21] Part III.
In the proof of (2) ⇒ (2)′′ in [21] Part III Lemma 2.2.4, it is stated that “(σ0, F )

generates a nilpotent orbit because both (τ, F ) and (σ, F ) generate nilpotent orbits.” It
turns to be valid, though not trivial, and follows from the following proposition.

Proposition A.1. Let Λ = (H0,W, (〈·, ·〉w)w, (hp,q)p,q) be as in [21] Part III 2.1.1. Let
σ be a nilpotent cone, let σ0 be its face, let N be an interior of σ0, and let F ∈ Ď.
Assume that both (σ, F ) and (N,F ) generate nilpotent orbits. Then (σ0, F ) also generates
a nilpotent orbit.

First, the admissibility and the Griffiths transversality for (σ0, F ) follow from those
for (σ, F ). Thus the problem is reduced to the following proposition by forgetting σ.
(Notation is changed.)

Proposition A.2. Let σ be an admissible nilpotent cone, let N0 be an interior of σ, and
let F ∈ Ď such that F satisfies the Griffiths transversality with respect to σ. Assume that
(N0, F ) generates a nilpotent orbit. Then (σ, F ) also generates a nilpotent orbit.

Remark A.2.1. The proof below shows that the assumption of admissibility is weakened
to that the weight filtration with respect to an interior is constant. (Cf. the first and the
second lines of [10] p.505.)

We prove Proposition A.2. Let N1, . . . , Nn generate σ. Then the conclusion is equiv-
alent to that exp(

∑

iyjNj)F ∈ D for any yj ≫ 0. Since this condition can be checked on
each grWw , we can reduce to the pure case. In the rest of this proof, we assume that we
are in the situation of pure weight k.

Let M be the weight filtration of one (and hence for any) interior of σ. By Remark in
Part III 1.3.2 (which is seen by [10] (4.66)), the conclusion of Proposition A.2 is equivalent
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to that (H0, 〈·, ·〉0,M [−k], F ) is a mixed Hodge structure polarized in the sense of [10]
(2.26) by any interior N of σ. By the assumption that (N0, F ) generates a nilpotent orbit,
(H0,M [−k], F ) is at least a mixed Hodge structure. Hence for an interior N , the condition
for N is equivalent to that for any l ≥ 0, the primitive part Pk+l := Ker (N l+1 : grMk+l →
grMk−l−2) for N is a Hodge structure polarized by SN := 〈·, N l·〉0. Note here that by the
assumption, each grMw is already a Hodge structure, and by Griffiths transversality, any
interior N is a homomorphism of Hodge structures so that the primitive part Pk+l for
any N is a Hodge structure (of weight k + l) whose Hodge numbers are independent of
N (determined by those for grM).

Consider the Hodge decomposition of the Hodge structure on Pk+l for N and denote
its (p, q)-component by P p,q

N . Since the dimension of P p,q
N is constant with respect to N

(as noted in the above) and the pair of the subspace P p,q
N of (grMk+l)C and the induced

Hermitian form Sp,qN by SN(·, ·) on P p,q
N varies continuously with respect to N , if we prove

that Sp,qN is always nondegenerate, the positivity for one N inherits to all N .
We prove the nondegeneracy. Assume that Sp,qN degenerates for some N, p, q. Then

there is a nonzero vector v ∈ P p,q
N such that SN(·, v) is zero on P p,q

N . Since the Hodge
components are orthogonal with respect to SN(·, ·), SN(·, v) is zero on the whole Pk+l for
this N . Further, consider the decomposition of grMk+l into the images of primitive parts
of weights ≥ k + l. Then this decomposition is orthogonal with respect to SN = 〈·, N l·〉0
([32] Lemma (6.4)). Hence 〈·, N lv〉0 is zero on grMk+l,C. Since Mk+l is the orthogonal

complement toMk−l−1 (the same lemma of ibid.), N lv = 0 in grMk−l,C and v = 0 in grMk+l,C,
a contradiction.

Correction to [21] Part IV

There are some typos in the proof of Theorem 6.1.1 in [21] Part IV. Here we give correc-
tions to them.

In the line 3 of the proof of loc. cit., DΣ,[val] → DΣ,[:] → Γ \DΣ should be changed to

D♯
Σ,[val] → D♯

Σ,[:] → D♯
Σ.

In the lines 4, 5 of the proof of loc. cit., DΣ,[val], DΣ,[:], and Γ \DΣ should be changed

to D♯
Σ,[val], D

♯
Σ,[:], and D

♯
Σ, respectively.

There are some typos in the proof of Theorem 6.1.3 in [21] Part IV.
In the line 2, DI

SL(2) should be Γ \DI
SL(2).

In the lines 4, 5, S[:] should be S log
[:] .

Correction to [22]

Here we give a correction to [22] 6.1.2. The construction there does not necessarily give
an MHS on Lie (GΓ).

Change the part

We define the weight filtration on Lie (GΓ) (resp. the Hodge filtration on Lie (GΓ)C) as
the image of that of Lie (GΓr) (resp. Lie (GΓr)C) (2.2.4, 2.3). This gives a structure of an
MHS on Lie (GΓ) which is independent of the choice of r.
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into

Hereafter we assume that Lie (GΓ) has an MHS which is a quotient of MHS on Lie (GΓr)
induced from the canonical variation of MHS in 2.2.4. Note that this MHS on Lie (GΓ) is
independent of the choice of r.

List of notation

Period domains
D = D(G, h0) 1.1.4, 1.2.13
Dred 1.3.3
Ď 1.4.1

Extended period domains
DBS 2.4.5
DSL(2) 3.1.10 (case of reductive groups), 3.2.1 (general case)
Structures of DSL(2): D

I
SL(2) 3.4.10, DII

SL(2) 3.4.7
D⋆

SL(2) 3.2.1

D⋆,W
SL(2) 3.7.1

D⋆,+
SL(2) 3.9.1

DBS,val, D
⋆
SL(2),val, D

I
SL(2),val, D

II
SL(2),val 3.10.2

DΣ, D
♯
Σ 4.1.8

DΣ,[:], D
♯
Σ,[:] 4.3.15

DΣ,val, D
♯
Σ,val 4.4.7

D♯
Σ,[val] 4.7.2

D⋄
SL(2) 4.8.2

Categories
B′
R(log) 3.4.1
B(log) 4.2.12
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