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0. Introduction

In the previous paper (Hasegawa [7])υ, we have reformulated some aspects

of Levy's infinite dimensional potential theory (cf. Levy [1]) in terms of our

infinite dimensional Brownian motion B=(£l, B(ί), Px) on an infinite dimensional

sequence space E. There we have noticed that in the finite dimensional

space Rn such objects as the Laplacian and the volume-element are determined

in terms of the standard Riemannian metric ds2

ny and called this fact the mutual

compatibility in the finite dimensional potential theory. Then it induces

various linkages among the objects in Rn, e.g., Green-Stokes' formula describes
the one among the Laplacian, normal derivatives, the volume-element and surface-
elements.

We have constructed our infinite dimensional potential theory by a limiting

procedure of the finite dimensional one. Then the above-mentioned mutual
linkages should be inherited by the corresponding objects in our infinite dimen-

sional potential theory. Further these objects and linkages should be described

by the limiting procedure. In fact the semi-norm || |L on E, the standard
Gaussian white noise μ on the unit sphere 8^= {x^E\ [1^11^=1} and the infinite

dimensional Laplacian Δoo have been constructed from the Riemannian metrics

ds* on Rn, the uniform probability measures μn-\ on the unit spheres *SW_1=
{#— (#!, •••, #M)e/?w; xl-\ ----- \-xl=n} of Rn and the Laplacians Δw on Rn, respec-

tively, by this procedure, (see I, §§1.1, §§1.2 and also Hida and Nomoto [8]).
Moreover we have introduced the Dirichlet solution /(#) on the unit ball ZL—

{x^E\ ||Λ?||OO<!} for a boundary function ψ(ξ) on the unit sphere S^ and

obtained the following linkage among the objects, /(#), ψ(ξ), || |U, μ, (see I,
Th. 3.1):

(O.i) /(*)

The purpose of this paper is now to construct the Dirichlet solution f(x)

1) Without special mentions we shall use the terminologies in Hasegawa [7], which will be
simply quoted as I.
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together with the description of the linkage (0.1) by the limiting procedure.

First, by dualizing a result of Hida and Nomoto [8], we shall obtain orthogonal

projections pn\ L2(S», μ)->L2(Sny μn). Second we shall define projections πn\

E-*Rn+1 as follows:

for x=(xly •••,*«+!, —)&E, IMIoo>0, ||#||κ+1>0. Then, for each element

o, μ) we have

(0.2) Hm(p.ψ) (*.£) = *(£) in L\S^ μ) ,
»too

(see Theorem 1.4). Next, for a tame boundary function -v/reL2(iSf

00, μ) we denote

byfn(x) the Dirichlet solution on the ball Dn+l= {x=(xι, •••, #n+1)ejf?w+1; x\-\ —

+xl+ι<n+l} for the boundary function pΛ ψ on Sn. Then we have the follow-

ing

Construction Theorem.

(0.3) limfn(πnx)=f(x)

for tfeZL such that lim \\x\\n=\\x\\ϋo>09 provided^ assumes some integrability con-
n -j-oo

ditίon, (see Theorem 2.8).

Now we notice the mutual singularity of harmonic measures (P = {μx

), (see I, Th. 3.3). Hence,

the above-mentioned Construction Theorem, which corresponds with the

orthogonal projections {pw; n^l} defined in association with only one harmonic

measure μ0=μ, cannot be extended to general boundary functions -ψ (f). In

this stage we therefore cannot help restricting the boundary functions i/r to

the tame ones. In spite of this restriction, peculiar phenomena can be seen in

the Dirichlet solution f ( x ) . Actually, our infinite dimensional Laplacian Δoo

acts on/(#) in the form:

(0.4) Δoo/ = — •—-/+ Σ - f , r— I I ^ I U ,

which is of different feature from the finite dimensional Laplacians.

Our proof of this theorem will heavily owe to uniform asymptotic esti-

mates of the Gegenbauer polynomials Cl(x/\/2v) as k, ^->oo, (see Propositions

3.1, 3.2).
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1. Projectively consistent construction of the multiple Wiener
integrals

1.1. Projectively consistent construction of the standard Gaussian white noise.
In this subsection we shall reformulate Hida and Nomoto's results [8] in

a slightly different manner from theirs.
First we introduce to the (Λf-f-l)-dimensional Euclidean space RN+l the norm

rN+l

( 1 JV + 1 \l/2
2*5 for * =

and set

(1.2) SN

DEFINITION 1. An open subset SN

(1.3) SN={ξ = (ξl9 . ,ξN+1)tΞSN ,ς1*0 or

of the sphere SN is called the iV-dimensional unit pre-sphere.

The polar expression of points ξ=(ξι>

fl =

(1.4) «
Λ ξk= VN+lcosθ^Tlsmθi, (*=2, , Λ Γ ) ,

f^+1 = Λ/ΛΓ+T cos (9^

induces a homeomorphism of SN onto a set ΠN:

and {#!, •••, 0jv} are called the Euler angles on *SV Then the restriction μN of

the rotation-invariant probability measure on 5^ to the measurable space (SNj SN)
can be expressed as follows:

(1.6) μN(dθ1} -.., dθN) = Γ(^+y Π (sin Θtf-Wϊ dθ,,,

where <SN denotes the topological σ-algebra of SN. Then the family {(SN, <SN,
μN)'y Λ/"> 1} constitutes a topological stochastic family in the sense of S. Bochner
[4] with the aid of projections πN M, (N>N) defined by:

(1.7) πN M\ SN^ξ = (ξl9 ••-, ξN+1) -> V z2-r—ΊΓ&2—(ξu •••, ξM" s i ~r *'' ~i~ &M+ i

or, equivalently in terms of the Euler angles (θly •••, ΘN) of the point ξ:
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(1.8) πNιM; UN3(Θ1, •", ΘN) - (θlt

Now we set the following

DEFINITION 2. A measurable subset S^

(1.9) .= {(?!,-, f J , , - ) e J i r ; l i n i - r j f i = l , &ΦO or

of the infinite dimensional unit sphere 8^= {x^E\ ||ίc||oo=l} is called the infinite
dimensional unit pre-sphere.

We denote by S^ the restriction of the σ-algebra <5oo, (see I, Def. 4) on the

unit sphere S^ to the unit pre-sphere S^.

DEFINITION 3. We define a measurable projection πN, (N^V) of the

unit pre-sphere S^ onto the TV-dimensional unit pre-sphere SN as follows:

(1.10) πNξ= — -1— (&,-.., ξN+1) for ξ = (ξ,, ••; ξN+1, »)e S. ,
l l b l l t f + l

(see I, (1.4) for ||. |U+1).

Since τrMf =τr^ tM(πNξ) for ^^5^ for a pair of integers N, M, (Λ/">M>1),

we can define an Euler angle #£(£), (Λ>1) on S^ as follows:

where {^f, •••, θ^} denote the Euler angles on SN. Then the functions

ί^yfe(f); k^\} are <5oo-measurable. Conversely for a point f— (ξl9 •••, fw, •
with the Euler angles {0n; w>l}, we have

Hence we have the following equality:

(1.12) «S. = σ((9.;»>l).

The standard Gaussian white noise μ which is defined as the distribution on
*SΌo of a sequence of mutually independent Gaussian random variables subject
to Λf(0, 1), (see I, Def. 6) can be regarded as a probability measure on the mea-

surable space (*SΌo, <5oo).
Now we are in position to state the following

Proposition 1.1 (cf. Hida and Nomoto [8]).

1) U πnl(S^) generates the σ-algebra S^
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2)

(1.13) μn(A)=μ(π-l(A)) for elements AtΞ<Sn.

3)

(1.14) μn(τtn^(A)} = μm(A) , (n>m) for elements A<=Sm.

Proof. The first assertion is immediate by the equality (1.12), and the

third one comes from the formulas (1.6), (1.8). Put μn(A)=μ(πήl(A)) for

measurable subsets A of Sn. Then by (1.10) and the definition of μ, we can

see the rotation-invar iance of the probability measure μn on Sn. Hence we

have the second assertion. (Q.E.D.)

1.2. Projectively consistent construction of the multiple Wiener integrals

L\S.t μ).

In this subsection, we shall dualize Proposition 1.1. To begin with, for

integers j, k, my (j^2, m^k^Q) we put

(1.15) DJtktM(θ) - AJtktMCί(coB θ) (sin θ]k .

Here z>=A+(/— 1)/2, n=m—k, and Cl denotes the Gegenbauer polynomial and

the positive constant Aj k f t n is chosen so as to hold

Γ Dj k Jθ) (sin ΘV~ldθ = Γ (sin ΘV'ldθ .
Jo Jo

For a sequence K=(kly k2ί •••,*„) of integers, (0< [ΛJ ^k2*ζ *ζ;kn), we intro-

duce a function Bκ(θί9 •••, θn) on ΐln as follows:

(1.16) Si(θl9

which can be regarded as a function on the unit pre-sphere Sn through the

polar expression (1.4). Then we have a C.O.N.S. {Sκ\K} in the complex

Hubert space Jίn=L2(Sn, μw), which is called the canonical basis in Mn, (cf.

Vilenkin [12], p. 468).

Here we pause to prepare a representation-theoretic proposition concern-

ing the rotation group SO(n-\-\). We denote by Ln+1 the quasi-regular repre-

sentation of SO(n-\-l) on Mn, and introduce the following subspaces Mn^

(1.17)

(1.18)
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Here the bracket [ ] denotes the closed linear hull of vectors in the bracket.
In the usual manner we identify the elements of the group SO(n) with the ones
of the subgroup Hn of SO(n+l):

(1.19) Hn = {h<ΞSO(n+l); hen+1 = en+1} ,

where en+l=(0, •••, 0, \/n + l)^Sn. On the other hand, the subspaces Mn>p are
the eigenspaces of the spherical Laplacian Sw on Sn. Therefore it is reasonable
to require the orthogonal projection p; Mn-*Mn_^ (ra>3) to satisfy the following
conditions :

(Cl: Eigenspaces-preserving property)

(1.20)

(C2: Commutativity of the representations of the group SO(ri))

(1.21) L"(h)p = pLn+\h) for h^HndSO(n+l),

under the identification of SO(n) and Hn.
Then we have the following

Proposition 1.2. The orthogonal projection p; Sin-^<3in-λ, (w>3) satisfying
the conditions (Cl), (C2) is identical with the following one, up to multiplication,
constant:

For an index K=(kl9 ••-, kn), (0< \k,\ < ••• <£n),

(1.22) pB^f**"-1 ^ n~l= n>

where Kn_1=(kly •••, k^).

Proof. Because of the irreducibility of the representation Ln+1 of *SΌ(ra+l)
on each subspace MΛtp, (^>0) and the unitary equivalence Of the two representa-
tions {Hn, L»+\ Mnt'p>q\ and {SO(n), L\ Mn.l>q], (p>q)y (see Vilenkin [12], p.
451), we obtain this proposition with the aid of Shur's lemma. (Q.E.D.)

According to Proposition 1.2 we have therefore the following

DEFINITION 4. We define an orthogonal projection pM w, (n *> nι > 2) of
the Hubert space Mn onto the another space Mm as follows: For an index K=

(ki, —,kΛ) (0<|yfe ;

(1.23) pnm&κ= | Λ10 otherwise,

where Km=(k1, •••, km).
Thus the projective system {Mn, pΛ f W} has been defined. Now we shall
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construct a C.O.N.S. in the complex Hubert space (c4ί=L\Sooy μ), || ||) accord-
ing to the canonical bases of the Hubert spaces Mn. First for an infinite se-
quence K of integers

(1.24) K = (kl9 -Λ, •••), (O^fol^ ^^Vi^ * with an integer^)),

we define a homogeneous harmonic polynomial B#fa, •• ,^/>+ι) of degree \K\ on
Rp+1 as follows:

(1.25) ΞK(X) = SW, -,

Here Kp=(kl9 •••, ̂ ), |J£|=Λj for the integer />, {#!, •••, έ̂ } denote the Euler

angles of the point *=fa, — ,Λί+1)eJ?ί+1, and r=xp+l/cos θp=(x\-\ ----- h*| u)1/2

We denote by the same notation BK the lift-up of the function B# on Rp*1 to the

space E:

(1.26) B*(*) — H#fa, —, Λ?ί+1) for Λ? — fa, — , Λrί+1, — )^J&.

REMARK. The functions H^(JC) are harmonic on the space E in our sense,

(see I, Proposition 3.8).

Proposition 1.3 (cf. Hida and Nomoto [8]). The family {Ξκ\ K<=JC}
constitues a C.O.N.S. of the Hubert space M, where JC is the family of infinite
sequences of the above-mentioned type.

Proof. First we put

(1.27) Zn>p(ξ) = Vτt+ϊ sin.0ί+1-sin θn ,

where {θly •••, θn, •••} are the Euler angles of ξ=(ξl9 •••, ?„, •• )^500. Then, by
Proposition 1.1 and (1.6) we have

(1.28) E[ZUξ)]^2k/2' as n-oo, (p

and by (1.11) we have

(1.29) ZΛ>ί(!)^r = (|H-.+^+1)
1/2 as «->oo, a.s.

Now we notice the following expression of Sκn for the subindex Kn=(kly •••, kn)
of ^,(1.24), («>/>):

(1.30) _

Consequently the family {Ξ,κn(π«ξ) Sκ'J(πnξ) «} for any pair of 1C, K'^JC is
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uniformly integrable, (the bar denotes the complex conjugate). Therefore the
system {B#; K} is orthonormal in M. Since the family {B£; K} constitutes a
C.O.N.S. of the Hubert space Mn, we can see the completeness of the system
{Sκ\ K<ΞJC\ in the Hubert space M. (Q.E.D.)

DEFINITION 5. The restriction of the function Eκ to the unit sphere S^ is
is called the infinite dimensional spherical harmonics of degree \K\ on the unit
sphere *SΌo.

Now we are in position to obtain the following

DEFINITION 6. We denote by ρn, (n^2) the following orthogonal projec-
tion of the Hubert space M=L\Sooy μ) onto the Hubert space Mn=L\Sn, μn):

(Λ .̂  ^ \~κn if kn = kn+1 = kn+2= ••• ,
(1.31) pn&κ = <

10 otherwise,

where K=(kί9 -,*., •••), (0< \k,\ <-<*„<-), *adKu = (kl9 -A).
Then, dualizing Proposition 1.1, we have the following

Theorem 1.4.

1) For an element f^M, it holds that

(1.32) lim(pB/)(^)=/(?) in M.

2) Let {fn e Mn 'yn^2} be a protectively consistent sequence, that is, pn>mfn=fm>
(n>m). Then there exists a unique function f^M such that ρnf— /«, (n^2), if
and only if {||/J|Λ; n^2} is bounded, where || |L denotes the norm of Mn.

Proof. The first assertion can be obtained in a quite similar manner to the
proof of Proposition 1.3. To see the second assertion, we put

(1.33) Mp = [Bjf , K e jζ] , (the closed linear hull),

where JΪp={K=(kly -, kp, -) e= JC; 0 < |^| < - < kp^<kp= kp+l= •••}.
Moreover we define an isometric inclusion ρn of Mn into M as follows:
/5nBt = Bjr/, where we put K' = (kl9 —,kn,kn,kn, •-•) for K=(kl9 — , *w),
(0< I^J <Λ2< <^M). Now we assume the boundedness of the set {||/JL;
w>2} for the projectively consistent sequence {fn\n^2} and set pnfn= gn^M.
Then, from the projective consistency of the sequence {fn\n^2} we obtain

hn—gn—gn-i^&nτ (w>3) and the boundedness of the set {gn;#>2}. Since
{Mλ are mutually orthogonal subspaces, we have an element g^^lim^ in M,

V «|oo

and p .̂=/,, for pngm=fn, (n<m). (Q.E.D.)

REMARK. ρnf, («>2) is real for a real function f^M.
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Finally we have the following

Proposition 1.5.

where Hκ denote Fourier-Hermίte polynomials, (see I, Def. 7).

Proof. It is easy to see that the function B#, (1.26) is included in the
domain of the infinitesimal generator A of the contraction semi-group { Tt ΐ > 0},

(see I, (2.22)) and

:ι,-,f,+ι)

Hence {Ξ#; |ΛΓ |=Λ} are eigenfunctions of the eigenvalue — k/2. Therefore
the uniqueness of eigenspaces of a self-adjoint operator gives the assertion

(1.34) with the aid of Proposition 1.3 and Proposition 2.4 in I. (Q.E.D.)

2. Finite dimensional construction of the Dirichlet solutions on
the infinite dimensional unit ball

2.1. Finite dimensional construction of the Dirichlet solutions for the boundary

functions Sκ.

In this subsection we shall construct the Dirichlet solution on the unit

ballZ)00= {#eZ?;||ff| |oo<l} for the boundary function Ξ# according to "lamethode
du passage du fini a Γinfini".

In §§1.2 we have introduced the condition (Cl: Eigenspaces-preserving

property) concerning the orthogonal projection p\Mn-*Mn-ι. Here we shall
give a condition connected with the Dirichlet problems, which induces the

condition (Cl). We denote by (Pnψ the Dirichlet solution on an (n-\- ̂ -dimen-

sional unit ball Dn+1={x^Rn+1]rn+1(x)<l} for a boundary function ^r^Sin =

L\Sn, μn).

We are now ready to set the following

DEFINITION 7. An orthogonal projection p\Mn-^Mn^, (n>3) is said to

be Poisson kernel-preserving, if the following holds:

(2.1) p((<P.*),) = (<P.-ι(pΨ)), for re[0,l),

where (β»r(?) = (<*» W for ξ e Sk , φ e Mk .

Then we have the following
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Proposition 2.1. If the orthogonal projection ρ\ MΛ-*Mn_l9 (^^>3) is
surjectίve and Poisson kernel-preserving, it holds that

(Cl) p(JlUtt) = Jt._lιt for p = 0, 1, 2, - .

Now, we notice that the Dirichlet solution on the unit ball D^ for the
boundary function &κ is just identical with E#(#) on D^. We shall construct

this solution Eκ by the finite dimensional Dirichlet solutions. First we modify
the projections πn\ S^-^Sn.

DEFINITION 8.

(2.2) πnx =
\W\

for *=(#!, —,xΛ+l, — )eJ£ such that |MU>0, |M|w+ι>0.
Then we notice ΛI+ι(7r«Λ0=:IMU and the Euler angles of πnx and the ones

of x agree with each other. We are now ready to state the finite dimensional
construction theorem in the case of the spherical harmonics Eκ.

Theorem 2.2. Let fn(x) be the Dirichlet solution on the (n-\-\)-dίmensional
unit ball Dn+1fo? the boundary function pnEK> (n^2). Then it holds that

(2.3) limfn(πnx) = Bκ(x)
«t°°

at points x— (xly •• ,Λ?ί+1, •• )eZ>00:

(2.4) Z)TO - {^eDTO; lim \\x\\Λ =

Proof. Noticing (1.4), (1.30), (2.2), we have the following formula for
sufficiently large n:

(πnX) = Bί ,θ θ

" ; ίl ' *
X

Hence by Stirling's formula we have the assertion (2.3). (Q.E.D.)
Consequently we have the following

Corollary 2.3. For a polynomial $r(xly •••, xp) on Rp, we set

(2.5) Ψ(f) = #(eι, •-,£,) for f = (fι,-,fί,

ώ

(2.6) Hm/n(τrnΛ;) = f(x) for x = (xl9 •••, xp,
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where fn and f denote the Dirichlet solution on Dn+1 for the boundary function

), and the one on D^ for the boundary function i/r, respectively.

2.2. Finite dimensional construction of the Dirichlet solutions for general tame
boundary functions.

In this subsection, we shall extend Theorem 2.2 to the case of more general

tame boundary functions.

Let (-Γ2, || ||) be the Hubert space consisting of functions fy(u), u=(ulί •••, up),
(p^l)on Rp such that

(2.7) <fc φ>= I flu) 1 2 exp ( -
jRp

Here we set ιf=u\-\ ----- \-Up, du=du1 dup for u=(ulί •• ,up)^Rp, and in the
sequel we shall use these abbreviations without confusion. Take a real func-
tion ψ(ί/!, •• ,w/>)e_Γ2 and denote by ψ(ξ) the lift-up of ψ to the unit sphere

(2.8) Ψ(f) = ψ(fι,-,^) for f=(f 1,-,f ί,

Now we shall show that ρn^^^ίn has a continuous version on SM, (w
First we have to show the following addition formula.

Lemma 2.4. For vectors ξ = (ξl9-9ξn+1)9 ζ = (ζl9 ; ζn+ι)^Sn, (n>2),
it holds that

(2.9) _

Hete ξ'ζ = ξίζl+ +ξx+lξn+1, » = (»-l)/2 ««J \K\ = k. far K=(k1,-,kn),
(0< I A! I <•»<*.).

Proof. Since {3£; ̂ } constitutes a C.O.N.S. in «#„ and the Dirichlet

solutions on Dn+1 for the boundary functions Έί,κ(ξ) are given by r I A Ί Ξjr(f),
re[0, 1), ξ^Sn, we have the following equality:

(2.10) >* Σ S
n-\-\'

On the other hand, the generating function (see Vilenkin [12], p. 492) of the
Gegenbauer polynomials gives

(2.11) (l-O fl+^Jr- 1

 = f j 2 t H . l

Comparing the coefficients of r* in these power series, we have therefore the
asked formula (2.9). (Q.E.D.)

By using this proposition, we have the following
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Proposition 2.5. The function pnψ e L2(Sn, μM), (n > 2) /idtf a continuous
version on the sphere Sn.

Proof. In the space L2(Sn, μn), (n-{-\^p) Proposition 1.3 gives

(2.12) Mtf) = Σ Σ \ m*κ(u]
tfeJζ,

where Kn=(kl9 •••, &„) for K=(kly •••, &„, « )e JC,

= («!, —, tt#) for «=(«!,—,«„+!) eΛ"+1. By (1.25) and Lemma 2.4, we
have therefore the following

(2.13)

where

(2. 14) ψί">(£) = %ψ)Ck(u) \ u \ k exp ( -

(2 15ϊ Γ ω(2.15) C4(β)

On the other hand, we have

n_ι
00

and the power series g(z)='Σdkz
k

ί (z\ complex numbers) is an entire func-
* = 0

tion of order 2, (cf. Boas [3], pp. 8, 9), that is, for any positive number £, there
exists a positive constant Ms such that

\g(z) \ <Mε£
(2+s)UI for all complex numbers z .

Hence by the Schwarz inequality the series (2.13) converges uniformly and
absolutely on the sphere Sn. Therefore pn-^r£ΞMn has a continuous version
on Sn. Also in the case of _/>>w+l, this proposition can be proved in a quite
similar way to the case of n-\-\ >/>. (Q.E.D.)

Proposition 2.6. It holds that in the space L2(Sn, μn), (1+n^p):

w - n - \

for ξ = (ξl9 -, ξp9 -, ξn+l)*ΞSu, (v=(n

Here K\=k,\-\\, \K\ =kl+ +kpfσr K=(kly -.-, kp), (^>0,;>1), and ίκ
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tfi tpp, t ξ=tlξl-\ ----- \-tpξp for t=(tl9 •••, tp), and Hκ denote Fourier-Hermite

polynomials (see I, (2.23), (2.25)).

Proof. Since the function Sκ(x) is a tame homogeneous harmonic func-

tion in our sense (see I, Prop. 3.8), the density formula (see I, (3.9)) gives

(2.17) ( exp (st ζ-Wβ).Bκ(ξ)μ(dξ) = ί'*Ήκ(?) ,
J SQO

where *GΞ(-oo, +00), t=(tlt -, t,, 0, 0 , 0,

Then by Proposition 1.3 and the generating function of the Hermite polynomials
(see I, (2.24)), we have the following in the space <2l:

Hence, applying the orthogonal projection pn to the both sides of (2.18), and

next using Lemma 2.4, we have the asked formula (2.16), (Q.E.D.)
Now we give another expansion of ψ> in X2\

(2.19) ftfO = Σofo(«), * = K ••',

where

(2.20) $k(u) = t Σ/fc HκyHκ(u) , K = (kί9 -, kp) ,

and denote by ψk the lift-up of ψ Λ to ASΌo :

(2.21) ψA(f) = ψΛ(f1,-,fί) for f = (f1,-,^,-)e5'«.

Then, we have the following

Proposition 2.7. Denoting by fl the Dirichlet solution on Dn+1 for the boun-
unctin GΞ we have:dary function /vψ^GΞc^, we have:

,,22,

/or ^=(^lf — ,Λ?^, --JeZJβo ίz/^A ίAα/ |WU>0, |W|n+1>0, where &=(xι,—9xp)
for the point x and (t -\-iuf = (tl-{-iu^)2-\ ----- \-(tp-\-iup)

2 for t = (tl9 •••, tp), u =

Proof. First the integral representation of the Hermite polynomials and

the formula (2.18) give the following in Mn, (n-\-\>p):
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(2.23)
\K\=k

Observing the Dirichlet solution on Dn+l for the boundary function EK on Sn is
given by r}κ]Sκ(ξ) at rξ^Dn+1> re[0, 1), ξ ̂ Sny we have therefore the asked
formula (2.22) with the aid of Lemma (2.4). (Q.E.D.)

We are now in position to state our Construction Theorem of the Dirichlet
solutions for the tame boundary functions Λ/Γ.

Theorem 2.8 (Construction Theorem). Let the real function fy(u) e X2

satisfy an additional condition

(2.24) J|flii)' |Aι<oo.

Then it holds that

(2.25) limfn(πnx)=f(x) for points x^D^ .

Here fn and f denote the Dirichlet solution on the ball Dn+ιfor the continuous boun-
dary function ρnψ on the sphere Sn and the one on the ball D^ for the tame boundary
function i/r on the unit sphere S^ respectively:

n+l,(2.26) Λ(*) = /!(*) on Dn

(2.27) /(*) = J flu) exp [_(tf_f )»/(2(l -|Mll))]/(2τr(l -\\x\\l)y*du ,

for x=(xίy ~ ,xp, •• )eDββ and u=(u^ ~ ,up)^Rp

y (see I, Prop. 3.5).

REMARK. We have ψ(k^=pnΨk> (Λ>0) by Proposition 1.5. Hence Proposi-
tion 2.5 shows that the right-hand side of (2.26) converges uniformly and ab-

solutely on the closed ball Dn+l'
The proof of this theorem will break down into several parts.

3. Proof of Construction Theorem

3.1. Uniform asymptotic estimates of the Gegenbauer polynomials.
In this subsection, we shall show several estimates of the Gegenbauer polyno-

mials Cl(x/\/2v) as k, z>->oo. In the coarse of these estimations the method in

Iwano's paper [10] on asymptotic solutions of ordinary differential equations is
very instructive to us.

Now, observing that (xly •••, Λ^)/||#||W are bounded for sufficiently large n and
a fixed point x=(xlt •••, xp, •• )eZ)0o, we consider the following function y(z) in
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the complex domain Dl={z^C\ \z\<R\, (Λ>0, fixed, \/2v>R) of the com-
plex plane C:

( J2. \ (2V+i)/4
i-fj c\

where we use the principal branch of the logarithmic function. Then we
have the following ordinary differential equation:

(3-2)

where

(3.3)

and

γ(g) U*)
fy(») ^

Y(z) = (^

0,

1 >

First we shall obtain estimates in the

Case 1 ("Tail part": vjk is bounded).

We introduce two parameters λ, μ defined by:

(3.5) μ=vlk, \=v-1/2,

and two functions ω(μ), r(z, λ, μ) as follows:

(3.6) ω(μ) = V(lβ)+μ ,

07Ϊ rί" λ ^-(3.7) r(.,, λ, μ) -
2(2_χV) 4(2 -

Using these functions, we set

(3.8) Pl=

Then the equaton (3.2) turns out to be

(3.10)

where

(3.11)

Next we set
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(3.12) -G 9
with the aid of the solutions q(z), q(z) of the following non-linear differential
equations

(3.13)

(3.14)

Then the equation (3.10) turns out easily to be

(3.15) \μY'2(z) = A2(z)Y2(z).

Here

(3.16) YM = P2(z)Y2(z) ,

(3.18) «!(*)

(3.19) <%(*) = -ia> -ir\\l +g(*))/(2ω) .

Now we have to show the existence of solutions of the equations (3.13), (3.14) and
the invertibility of the matrix P2(z) First we seek the formal solution

q(z, λ, μ)= Σ?*(#> A6)'^* of the equation (3.13). Then we have j0= 0, ql=0
and

(3.20) ?2(ar, μ) = -

where

(3.21) r0(*, /,) -

and we set another function rfa, λ, μ) so as to hold

(3.22) ψr, λ, ^) - r0(ar, /^)+r1(^, λ, ^) λ2 .

Next, for the sake of simple application of Schauder-TychonofFs fixed point
theorem (cf. Dunford and Schwartz [5], p. 456), we shall seek a solution
q(z, λ, μ) of the equation (3.13) holomorphic in the three variables (z, λ, μ) in a
suitable complex domain. We denote by 2 the open lozenge in the #-plane
with four vertexes a(l)=—ιa, a(2)=b, a(3)=ia, aw = —b, (α>0, b=a tanγ,
0<γ<(ττ/2)) and included in the domain Dl9 and set

(3.23) Λ= {(λ,

|argλ|<α0,
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(0<α0, A)<(τr/2), X0, μ0>0) Now, in order to solve the equation (3.13) on
Σ X Λ by the method of constant variation, we put

(3.24) q(z) -q2(z) - λ2 = v(z) =«?(*) exp (D(z)) ,

where

(3.25) D(z) = 2iω(z-a^)l(\μ) , (ar, λ, μ)eΣ x Λ

Then the equation (3.13) turns out to be

(3.26) \μw'(z) = g(z, w(z) - exp (£>(*))) exp ( -D(z)) ,

where

(3.27) g(z3 v) = -\3h(z)+ir\\l+q2\
2)v(z)/ω+ir\2v2(z)/(2ω) ,

(3 28} h= —r'Qμ + zλ ( r" _yo^2 _ rι . Viλ^ypnλ4!
V ' ^ 4ω2 ω Uω2 32ω4 2 4ω2 32ω4/ -

Now we introduce the following complete locally convex topological vector

space X with the uniform convergence topology on compact subsets of Σ x Λ :

(3.29) X = {w(z, λ, μ); w(z, λ, μ) is holomorphic in ΣxΛ} ,

and denote by 3* the following non-empty convex compact subset of X:

(3.30) &= {w^X\ \w(z, λ, μ)\<K.e~^eD(z) \\\3 on ΣxΛ},

(see Hϋrmander [9], p. 26). Next we define a mapping S from £F to X as

follows:

(3.31) (ΛtOto, λ, /*) = α) -g(z, w(z) eD^)e-^dZ .
J*UJ \μ

Here we can choose the positive constant K so as to hold S(3f)dΞF. Indeed,

first we notice for some positive constant M,

(3.32) \g(zJw>eD)\<M\\\2(\\\ + \w\ + \ w \ 2 ) on

and also the following

(3.33) f exp ( - <R. D(z(t))}dt = I λ^ I (exp ( -̂  Z)(̂ ))) -1)
Jo 2 |ω|cos (ψ— ̂ )

where 5f(ί) = Λcυ_L.ί.^ ((*/2)-ψ) > (_τ<ψ<7ί ,y>0) ,

2 V(l/2)+|μ|cos

Hence we have the following estimate for
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(3.34)

which shows the existence of the asked positive constant K. Moreover we
can easily see the continuity of the mapping S. Therefore Schauder-Tychonoff s

fixed point theorem shows the existence of a solution w(z, λ, μ)e^ °f the
equation (3.26). Thus we obtain the following solution of the equation (3.13):

(3.35) }(*, λ, μ) = J2(

W*,λ, /OK^Iλl 3 on Σ x Λ .

It is easily seen that the function

(3.36) q(zy λ, μ) = q(z, X, -μ)

on Σ x Λ is a solution of the equation (3.14), (z denotes the complex conjugate
of 2). Therefore it holds that

(3.37)

with

<3 38'
where

*(«) = exp ((' ̂ Λ) , )̂ = exp(f ?
\Jo X/Λ / \Jo X

Now, we set

(3.39) P^P^B^P^P^))-1 = P(*) = (f f J f f J) .
VΛ.lW P2,2(Z)/

Then we have

(3.40) X*) = A>MO)+K2(*)/(0)

and

(3.41)

Noticing the definition (3.1) of the function y(z)> we consequently obtain the
following

Proposition 3.1. For given positive numbers R, μ,0, there exist positive
numbers v0, Mly K1for which it holds that

(3.42) |CΪ
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(3.43) I Q * / ^ ) K ^ 3 , (*:odd),

for (vjk) *ζμ0,v^v0 and —R < x < R. Here we set

(3.44) ? = */».

Next we shall obtain estimates in the

Case 2 ("Middle part": k/v is bounded).
In this case we can go ahead in a quite similar way to the case 1. Therefore

we list up only a series of formulas different from the ones in the case 1, and
give them corresponding numbers.

(3.5)' μ = (klvγ'2, \ = k~lf2.

(3,6)'

(3 7Y(3.7)

(W

(3.ιo)'
(3.13)'

(3.14)' λ?'(») = -2ίω?(*)

(3.18)'

(3.19)'

(3.21)'

(3.25)' D(z) = 2ίω(a -β(1))/λ .

(3.26)' λw'(ar) = ,̂ w(») exp(D(«))) exp (-£)(«)) .

(3.28)' A = - Λ. _^
4ω 2ω

(3.31)- (Sto)(«i, λ, .) =

= β V1 M.
\0 I/ \zω — iω/

\
/2

Then we have the following

Proposition 3.2. For ^ew positive numbers R, μQ, there exist positive
numbers kQ, M2, K2for which it holds that
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(3.42)' IC^Λ/Z^K^ (*:even),

(3.43)' I Cϊ(*/ V2Ϊ) I < /2 *Kz/k2 > (*' odd) >

for k^?k0, (&/ι>) <Ao and —R*ζx<R.

3.2. Proof of Construction Theorem.
In this subsection, we assume the condition (2.24) for the boundary func-

tion -ψ*. Now our first assertion is the following

Proposition 3.3 ("Tail part"). For an arbitrarily fixed positive number
70, we have

(3.45) lim Σ \fl(πnx) | = 0 for a point

Proof. Noticing Proposition 3.1 and the expression (2.22) of fnk(πnx), we
have only to show the following with the aid of Stirling's formula:

(3.46) lim Σ (! +j03/4 kθ-wf \\x\\.. g**/vΎ Φ(γ)v/2 = 0 .
*t~ *>»YO V 7 \ /

Here we set v=(n—l)/2 and

(3.47) Φ(γ) - (2+f/)2+γ. for 7er0 oo) .
V ; V ' 2(2+2γ)1+γ L ;

Since the function Φ(γ) is strictly monotone decreasing:

(3.48) UogΦ(7) = l o g 2 + _ for 7^(0, oo)

and φ(0)=l, the formula (3.46) can be easily seen by observing |M|oo<l.
(Q.E.D.)

Second we show the following

Proposition 3.4 ("Middle part"). For an arbitrarily fixed positive number

To, we have
_ »Yo

(3.49) lim lim Σ !/*(*«*) I = 0 for a point x^D^ .
Λ ( ) tOO «t03 k=kQ

Proof. We can easily prove this proposition in a similar manner to Pro-
position 3.3 with the aid of Proposition 3.2. (Q.E.D).

Now we notice the following Mehler's formula:

(3.50) Σ^Hκ(X)Hκ(y) = exp [-
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where -l<s<l, K=(kl9 ••-, kp), (*,><), ι>l), x=(xl9 ••;*,), y=(yι, -,
Hence it holds that

(3 51)

for ΛJ/>e_Γ2 and # eZ)^, and the series of the left-hand side converges absolutely.
On the other hand, we have the following uniform convergence formula

(3.52) lim -J—Cϊf-^ = —Hk(x)
V ' v t~(2ι/)*Λ \V2vJ k\ V '

with respect to bounded real numbers xy (k: fixed). Consequently for a fixed
number k and a point tfEΞZ)^, we have

(3.53) lim/M = £.̂ p J WW-«

with the aid of Mehler's formula. Therefore we have

(3.54) lim /„(*„*) = lim Σ f"t(πjc)
«

Thus Construction Theorem has been proved by the asymptotic calculus.
Concluding this paper, we notice the similarity between the limiting procedure
in Construction Theorem and the one in the statistical mechanics, e.g., evalua-
tion of specific free energy, (cf. Berlin and Kac [2], Dyson [6]).

Acknowledgement

The author would like to express his hearty thanks to Professors Takeyuki
Hida, Kazuhiko Aomoto, Izumi Kubo and Akihiro Tsuchiya for their invalu-
able advices and encouragements.

References

[1] Paul Levy: Problemes concrete d'analyse fonctionnelle, Gauthier-Villars, 1951.

[2] T.H. Berlin and M. Kac: The spherical model of a ferromagnet, Phys. Rev. 86
(1952), 821-835.



570 Y. HASEGAWA

[3] R.P. Boas Jr.: Entire functions, Academic Press, New York, 1954.

[4] S. Bochner: Harmonic analysis and the theory of probability, University of

California Press, Berkeley and Los Angeles, 1960.

[5] N. Dunford and J.T. Schwartz: Linear operators I, Interscience Publisher,

Inc., New York, 1958.

[6] FJ. Dyson: Statistical theory of the energy levels of complex system I, II, III,

J. Math. Pys. 3 (1962), 140-156, 157-165, 166-175.

[7] Y. Hasegawa: Levy's functional analysis in terms of an infinite dimensional

Brownian motion I, Osaka J. Math. 19 (1982), 405-428.

[8] T. Hida and H. Nomoto: Gaussian measure on the protective limit space of

spheres, Proc. Japan Acad. 40 (1964), 301-304.

[9] L. Hδrmander: An Introduction to complex analysis in several variables, D. van

Nostrand Company, INC., Princeton, 1966.

[10] M. Iwano: Asymptotic solutions of a syetem of linear ordinary differential equations

containing two parameters, Funkcial. Ekvac. (Ser. Internac.) 14 (1961), 273-314, (in

Japanese).

[11] Y. Umemura and N. Kono: Infinite dimensional Laplacian and spherical har-

monics, Publ. Res. Inst. Math. Sci. 1 (1966), 163-186.

[12] N. Ya. Vilenkin: Special functions and the theory of group representations, Amer.

Math. Soc., Translations of Math. Monographs, 22, 1968.

Department of Mathematics

Nagoya Institute of Technology

Gokiso, Showa-ku, Nagoya 466,

Japan




