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0. Introduction

In the previous paper (Hasegawa [7])V, we have reformulated some aspects
of Lévy’s infinite dimensional potential theory (cf. Lévy [1]) in terms of our
infinite dimensional Brownian motion B=({, B(¢), P*) on an infinite dimensional
sequence space E. There we have noticed that in the finite dimensional
space R” such objects as the Laplacian and the volume-element are determined
in terms of the standard Riemannian metric ds%, and called this fact the mutual
compatibility in the finite dimensional potential theory. Then it induaces
various linkages among the objects in R", e.g., Green-Stokes’ formula describes
the one among the Laplacian, normal derivatives, the volume-element and surface-
elements.

We have constructed our infinite dimensional potential theory by a limiting
procedure of the finite dimensional one. Then the above-mentioned mutual
linkages should be inherited by the corresponding objects in our infinite dimen-
sional potential theory. Further these objects and linkages should be described
by the limiting procedure. In fact the semi-norm |[|+||l. on E, the standard
Gaussian white noise p on the unit sphere S..= {x€ E; ||x||..=1} and the infinite
dimensional Laplacian A., have been constructed from the Riemannian metrics
ds? on R", the uniform probability measures u,_, on the unit spheres S, =
{x=(xy, -+, x,)ER"; &} +++-+x5=n} of R" and the Laplacians A, on R", respec-
tively, by this procedure, (see I, §§1.1, §81.2 and also Hida and Nomoto [8]).
Moreover we have introduced the Dirichlet solution f(x) on the unit ball D=
{x€E; ||x||.<1} for 2 boundary function () on the unit sphere S., and
obtained the following linkage among the objects, f(x), Y(&), ||*||«, w, (see I,
Th. 3.1):

(0.1) flx) = st Y@+ V1 —[x][Z-E)u(dE), xED...

The purpose of this paper is now to construct the Dirichlet solution f(x)

1) Without special mentions we shall use the terminologies in Hasegawa [7], which will be
simply quoted as I.
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together with the description of the linkage (0.1) by the limiting procedure.
First, by dualizing a result of Hida and Nomoto [8], we shall obtain orthogonal
projections p,; LS, p)—L*S,, n,). Second we shall define projections ,;
E—R""! as follows:

1E21S

X =
{1261 ]+1

(xl) ttty ‘:xn+1) R

for x=(xy, ***, ¥pp1, *)EE, ||#[|.>0, ||x]|,+:1>0. Then, for each element
e LX(S.., n) we have

0.2) lim (p,¥) () = V()  in LS w),

(see Theorem 1.4). Next, for a tame boundary function & L*(S.., u) we denote
by f.(x) the Dirichlet solution on the ball D, ;= {x=(x, ***, &,4,) ER**; x4
+x2,1<n-+1} for the boundary function p,4» on S,. Then we have the follow-
ing

Construction Theorem.

(0.3) Lim f, () = /()

for x€ D, such that lim ||x||,=||x||. >0, provided <) assumes some integrability con-
”’D}

dition, (see Theorem 2.8).

Now we notice the mutual singularity of harmonic measures ®= {u,;
xeD.}, p(d0)=p({EES.; x+V1—||x||2E€dL}), (see I, Th. 3.3). Hence,
the above-mentioned Construction Theorem, which corresponds with the
orthogonal projections {p,; n>1} defined in association with only one harmonic
measure p,=p, cannot be extended to general boundary functions (). In
this stage we therefore cannot help restricting the boundary functions ) to
the tame ones. In spite of this restriction, peculiar phenomena can Le seen in
the Dirichlet solution f(x). Actually, our infinite dimensional Laplacian A,
acts on f(x) in the form:

1 0 0?
(0’4) Awfz_'_f_i_E—zf, r = ”x”m,
r Or ¥ 0xj

which is of different feature from the finite dimensional Laplacians.

Our proof of this theorem will heavily owe to uniform asymptotic esti-
mates of the Gegenbauer polynomials Cy(x/\/2v) as k, v— oo, (see Propositions
3.1, 3.2).
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1. Projectively consistent construction of the multiple Wiener
integrals

1.1. Projectively consistent construction of the standard Gaussian white noise.
In this subsection we shall reformulate Hida and Nomoto’s results [8] in
a slightly different manner from theirs.
First we introduce to the (IV+1)-dimensional Euclidean space RV*! the norm

YN41t
1 N+1 2 1/2
(1.1) 7y (%) = <N—+—1 Ex,,) for x= (%), **, Xy4) ERV*,
and set
(1.2) Sy = {x€R " ry . (x) =1} .

DrrFINITION 1.  An open subset Sy

(1-3) gzv = {f = (&, -, §N+1)ESN; £,#0 or £,<0f

of the sphere Sy is called the N-dimensional unit pre-sphere.

The polar expression of points E=(&,, -+, £ NH)ESO N:

N
£ =+VN+1 _1;[15in 0;

(1.4) x
Ekz \/N+lCOS ek—-IHSIH 01’7 (k:2) "'7N);
i=k

v+1= V/N-+1cos Oy
induces a homeomorphism of S, onto a set ITy:
(1.5) Iy = {8, -+, Oy); 0<0, <27, 0<0;<m, 1=2, -+-, N},
and {6, ---, 6y} are called the Euler angles on S n- Then the restriction uy of
the rotation-invariant probability measure on Sy to the measurable space (S}, S N)
can be expressed as follows:

(L6)  paldly, -, d0y) = "DEDID T (sin 0,a6,--d6,

27[(N+1)/2

where Sy denotes the topological g-algebra of Sy. Then the family {(:S‘N, S
wy); N>1} constitutes a topological stochastic family in the sense of S. Bochner
[4] with the aid of projections 7y 4, (N>N) defined by:

: —MET :
(1-7) TN M5 Sy2& = (51, 0y Ener) —)«/m(&’ ) §M+1)ESM,

or, equivalently in terms of the Euler angles (6,, -:-, 8y) of the point &:
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(1.8) ”N,M; HNB(el, cccy 0N)-_)(01’ oty GM)EHM.
Now we set the following

DEerFINITION 2. A measurable subset ,S:w
(19 Sa={Ey -+ Ew )SE im CIE — 1, £40 or £<0)

of the infinite dimensional unit sphere S.= {xEE}; ||x||.=1} is called the infinite
dimensional unit pre-sphere.

We denote by S.. the restriction of the o-algebra S.., (see I, Def. 4) on the
unit sphere S.. to the unit pre-sphere S..

DerFINITION 3. We define a measurable projection 7N, (N>1) of the
unit pre-sphere S.. onto the N-dimensional unit pre-sphere Sy as follows:

(1‘10) wyE = ||E|| (El} T §N+1) for &= (El) s Enen "’)Eéw ’

(see I, (1.4) for ||+]| y+1). .
Since 7yE=ny u(wyE) for EES., for a pair of integers N, M, (N>M>1),
we can define an Euler angle 6,(§), (k>1) on S., as follows:

04(&) = 0¥ (=yE),  (R<N),

where {67, ---, 08} denote the Euler angles on Sy. Then the functions

{04(8); k=>1} are &..-measurable. Conversely for a point E=(&,, -+, &,, ~)ES.
with the Euler angles {6,; n>1}, we have

£ = lim \/k+f1sin@,sin g, --- sin 6, ,
(1.11) . , ,
g, =lim\/E+1cosf,  sinf, -sinf,, (n=2).

kg

Hence we have the following equality:
(1.12) S = (0,3 n=>1).

The standard Gaussian white noise x which is defined as the distribution on
S.. of a sequence of mutually independent Gaussian random variables subject
to N(0, 1), (see I, Def. 6) can be regarded as a probability measure on the mea-

surable space (Sm, SM)
Now we are in position to state the following

Proposition 1.1 (cf. Hida and Nomoto [8]).
1) U n;‘(ée’,,) generates the o-algebra S...
n=1
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2)

(1.13) pn(A) =z (A))  for elements AES, .

3)

(1.14) (T A)) = pn(A), (n>m)  for elements AES,.

Proof. The first assertion is immediate by the equality (1.12), and the
third one comes from the formulas (1.6), (1.8). Put z,(4)=p(z;'(4)) for
measurable subsets 4 of S,. Then by (1.10) and the definition of u, we can
see the rotation-invariance of the probability measure Z, on S,. Hence we
have the second assertion. (Q.E.D.)

1.2. Projectively consistent construction of the multiple Wiener integrals
Lz(S ) /‘)-
In this subsection, we shall dualize Proposition 1.1. To begin with, for
integers j, k, m, (=2, m=>k>0) we put

(1.15) D; um(0) = A, ; ,Cl(cos 0) (sin O)F .

Here v=*k+-(j—1)/2, n=m —k, and C, denotes the Gegenbauer polynomial and
the positive constant 4; , ,, is chosen so as to hold

Sﬂ Dj .m(0) (sin )’~'df = Sﬁ (sin 6)'d0 .
0 0

For a sequence K=(k,, k,, :-*, k,) of integers, (0< |k, | <k,<---<k,), we intro-

duce a function E%(4,, ---, 6,) on II,, as follows:
(1.16) B0y, -+, 0,) = eik191j1:];Dj'lkj_1|.kj(0j) ,

which can be regarded as a function on the unit pre-sphere S, through the
polar expression (1.4). Then we have a C.O.N.S. {E%; K} in the complex
Hilbert space 4,=L*S,, u,), which is called the canonical basis in 4,, (cf.
Vilenkin [12], p. 468).

Here we pause to prepare a representation-theoretic proposition concern-
ing the rotation group SO(n+1). We denote by L**! the quasi-regular repre-
sentation of SO(n-+1) on 4, and introduce the following subspaces 4, ,,
o por (P=9) of H,:

1.17) 4, , = [Ek; K= (k, -, k), 0< | k| <---<k,
(1.18) A, , .= [Ek; K= (ky, =, k), O<|Ry| <<k,

Il

pl, (»>2),

I
<

N
3}"

I
=,
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Here the bracket [ ] denotes the closed linear hull of vectors in the bracket.
In the usual manner we identify the elements of the group SO(#n) with the ones
of the subgroup H, of SO(n+1):

(1.19) H, = {heSO(n+1); he,\; = e,41}

where €,.,=(0, -+, 0, Vn4-1)ES,. On the other hand, the subspaces %, , are
the eigenspaces of the spherical Laplacian A, on S,. Therefore it is reasonable
to require the orthogonal projection p; H,—H,_,, (n>3) to satisfy the following
conditions:

(C1: Eigenspaces-preserving property)

(120) p(ﬂn,p) = L417;—1,1; ’ (P>0) ’
(C2: Commutativity of the representations of the group SO(n))
(1.21) L*(h)p = pL**\(h) for heH,cSO(n+1),

under the identification of £O(n) and H,.
Then we have the following

Proposition 1.2. The orthogonal projection p; H,—>H,_,, (n=>3) satisfying
the conditions (C1), (C2) is identical with the following one, up to multiplication
constant :

For an index K=(k,, -, k,), (0< | k| <+ <k,),

Ef,L § Ry =k,
1.22 Be=1,
(1.22) PEK {0 if k., *k,,
where K”_I:(kly R kﬂ—l)‘

Proof. Because of the irreducibility of the representation L**! of SO(n-1)
on each subspace 4, ,, (p=>0) and the unitary equivalence'of the two representa-
tions {H,, L**, 9, , } and {SO(n),L", I, .}, (p=9), (see Vilenkin [12], p.
451), we obtain this proposition with the aid of Shur’s lemma. (Q.E.D.)

According to Proposition 1.2 we have therefore the following

DerINITION 4. We define an orthogonal projection p, ,, (x >m>2) of
the Hilbert space %, onto the another space 4, as follows: For an index K=
(kh ty kn) (0< |k1' <k2<'"<kn))

El"ém if kmzkm+1:"'=kn9

1.23 . = .
( ) Pr,m=x {O otherwise,

where K,,=(ky, ***, k).
Thus the projective system {4, p, ,} has been defined. Now we shall
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construct a C.O.N.S. in the complex Hilbert space (H=L*S«, p), ||+]|) accord-
ing to the canonical bases of the Hilbert spaces J,. First for an infinite se-
quence K of integers

(1.24) K = (ky, -, kyy ), (0<|Ry| <+ <k,=Fk, 4=+, with an integer p),

we define a homogeneous harmonic polynomial E(x,, -+, ¥,4,) of degree |K| on
R?*1 a5 follows:

—-1Kl
(1.25) Eel®) = Z0,00 - O TRty

Here K,=(k,, -+, k,), |K|=k, for the integer p, {6,, -+, 0,} denote the Euler
angles of the point x=(xy, **+, ¥,1,) ER?*, and r=ux,.,/cos 0,=(xi+ - +x5.1)"
We denote by the same notation Ej the lift-up of the function Ex on R?*! to the
space K

(1.26) Ex(x) = Eg(x1, *+, Xp11) for x = (x;, =, ¥p4r, ") EE.

ReEmMARK. The functions Eg(x) are harmonic on the space E in our sense,
(see I, Proposition 3.8).

Proposition 1.3 (cf. Hida and Nomoto [8]). The family {Ex; K&K}
constitues a C.O.N.S. of the Hilbert space i, where K is the family of infinite
sequences of the above-mentioned type.

Proof. First we put
(1.27) Z, &) = \/nf1sin b, -sind,,

where {0,, -+, 8,, ---} are the Euler angles of £=(§&,, -+, &,, )ESN Then, by
Proposition 1.1 and (1.6) we have

(1.28) E[z:,p(g)]_,Zkfz.W as n—oco, (p=1,k>1),
and by (1.11) we have

(129)  Z,,() > 7= (E+tBa)®  as noo, as (u).

Now we notice the following expression of Ek_ for the subindex K,=(k,, -+, k,)
of K, (1.24), (n> p):

(1.30)

o o o gra/DFDRZTE JT(K [+t DR2)
Eh(mE) = B0 2 0N (K [ +(p+12) V T((n+ D12 ((n-+ 12 ™

“Z3(E) -
Consequently the family {E} (7,£)Ek;(7,£);n} for any pair of K, K'EX is
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uniformly integrable, (the bar denotes the complex conjugate). Therefore the
system {Ey; K} is orthonormal in 4. Since the family {E%; K} constitutes a
C.O.N.S. of the Hilbert space J{,, we can see the completeness of the system
{Ex; K€K} in the Hilbert space 4. (Q.E.D.)

DErFINITION 5. The restriction of the function E to the unit sphere S is
is called the infinite dimensional spherical harmonics of degree [K| on the unit

sphere S...
Now we are in position to obtain the following

DeFINITION 6. We denote by p,, (>2) the following orthogonal projec-
tion of the Hilbert space H=L*(S.., u) onto the Hilbert space J,=L*S,, p,):

Ek if kn = kn+l = kn+2 =
1.31 wEx = *
( ) Pu=x { 0 otherwise,
where K=(ky, -+, k,, **), (0< | k| <+ <k, <), and K, = (ky, ***, k).
Then, dualizing Proposition 1.1, we have the following

Theorem 1.4.
1) For an element f Y, it holds that

(1.32) lim (p,f) (zf) = f8)  in L.

2) Let {f,€H,; n>2} be a projectively consistent sequence, that is, p, ,f,=fm
(n>m). Then there exists a unique function f& 9 such that p,f=f,, (n=2), if
and only if {||f.|l,; n=2} is bounded, where ||+||, denotes the norm of 9,.

Proof. The first assertion can be obtained in a quite similar manner to the
proof of Proposition 1.3. To see the second assertion, we put

(1.33) I, = [Bx; KEK,], (the closed linear hull),

where K,= {K=(ky, -+, ky ) E K; 0< |ky| < oo <kyy <ky=FRypy= -}
Moreover we define an isometric inclusion g, of ¥, into K as follows:
b.Ek =By, where we put K'=(k, -, k,, Ry, k,, --+) for K=(ky, -+, k,),
(0< |k | <k,<:*<k,). Now we assume the boundedness of the set {||f,ll,;
n>2} for the projectively consistent sequence {f,; #n=>2} and set §,f,=g,E 4.
Then, from the projective consistency of the sequence {f,;n>2} we obtain
h,,:g,,—g,,,leﬁ,,, (n>3) and the boundedness of the set {g,;7n>2}. Since
{.ﬂ%’} are mutually orthogonal subspaces, we have an element ngl,,i{‘i goin A,

and p,g.=f,, for p,gn=f,, (n<m). (Q.E.D)

REMARK. p,f, (n>2) is real for a real function f& Y.
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Finally we have the following
Proposition 1.5.

(1.34) [

i

x> |K|=k]=[Hg; |K|=k], k>0,
where Hy denote Fourier-Hermite polynomials, (see I, Def. 7).

Proof. It is easy to see that the function Ey, (1.26) is included in the
domain of the infinitesimal generator 4 of the contraction semi-group {7;; t>0},

(see I, (2.22)) and

+1 2
(120 €)= 5 & (s —Erp) Bt = £
1.0 —_
— —1rlee a0 - - B ae.

Hence {Ej; |K|=~k} are eigenfunctions of the eigenvalue —£k/2. Therefore
the uniqueness of eigenspaces of a self-adjoint operator gives the assertion
(1.34) with the aid of Proposition 1.3 and Proposition 2.4 in I. (Q.E.D))

2. Finite dimensional construction of the Dirichlet solutions on
the infinite dimensional unit ball

2.1. Finite dimensional construction of the Dirichlet solutions for the boundary
functions Ej.

In this subsection we shall construct the Dirichlet solution on the unit
ball D= {xEE};||x||. <1} for the boundary function Ey according to ‘la méthode
du passage du fini a I'infini”.

In §§1.2 we have introduced the condition (C1: Eigenspaces-preserving
property) concerning the orthogonal projection p; H,—>H,.,. Here we shall
give a condition connected with the Dirichlet problems, which induces the
condition (C1). We denote by ® 3 the Dirichlet solution on an (7-}1)-dimen-
sional unit ball D, ;= {x&R"*';r,,,(x)<<1} for a boundary function Y€ ,=
LZ(Sm ll/n)'

We are now ready to set the following

DEerFINITION 7. An orthogonal projection p; H,—H,_;, (n=>3) is said to
be Poisson kernel-preserving, if the following holds:

21 (@) = (®uulp¥)), for r€[0,1), VEA,,
where (@), () = (O ) (rE) for £€S,, p=HU,.

Then we have the following
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Proposition 2.1. If the orthogonal projection p; H,—H, ,, (n=>3) is
surjective and Poisson kernel-preserving, it holds that

(C1) p( Iy ) = Hprp for p=0,1,2, .

Now, we notice that the Dirichlet solution on the unit ball D, for the
boundary function Ey is just identical with Eg(x) on D.. We shall construct
this solution Ey by the finite dimensional Dirichlet solutions. First we modify
the projections z,; S.—S,.

DEFINITION 8.

2.2) T R P
%541

for x=(w,, -+, ¥4, --*) € E such that ||x||. >0, ||x|],+1>0.

Then we notice 7,,,(z,x)=||%||.. and the Euler angles of z,» and the ones
of x agree with each other. We are now ready to state the finite dimensional
construction theorem in the case of the spherical harmonics Ek.

Theorem 2.2. Let f,(x) be the Dirichlet solution on the (n-+1)-dimensional
unit ball D, ,, for the boundary function p,Ex, (n>2). Then it holds that

(2.3) lim f,(7,x) = Eg(x)
ﬁfm
at points x=(%xy, ***, Xy11, ---)Ebm:
(24 D., = {xr&D.; lim lixll, = |||l >0} .

Proof. Noticing (1.4), (1.30), (2.2), we have the following formula for
sufficiently large n:

Fim) = B (0, -, 0, /D@22 TR +@+12)
’ "NT(RT++D2) Y Tt 1)/2) (e + 1)/2)

><(Hxllm L Xpy )'K'
[1#][,+1 cos 0;:

Hence by Stirling’s formula we have the assertion (2.3). (Q.E.D))
Consequently we have the following

Corollary 2.3. For a polynomial \y(x,, -+, x,) on R?, we set
25) VO =VE, E)  for E=(E -, Ep)ES..
Then it holds that
@6)  lmfEa)=f@)  for x=(5 5D,
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where f, and f denote the Dirichlet solution on D, ., for the boundary function p,r,
(n>=2), and the one on D for the boundary function r, respectively.

2.2. Finite dimensional construction of the Dirichlet solutions for general tame
boundary functions.

In this subsection, we shall extend Theorem 2.2 to the case of more general
tame boundary functions.

Let (L% [I+]]) be the Hilbert space consisting of functions Jx(u), u=/(u,, -+, u,),
(p=1) on R? such that

@ = e (—pjen .

Here we set w=ui+---+uj, du=du,---du, for u=(u,, ---,u,)ER?, and in the
sequel we shall use these abbreviations without confusion. Take a real func-
tion (i, --+, #,)€-L? and denote by y~(&) the lift-up of + to the unit sphere
S.:

28)  WE) =W, E)  for E=(E, &, )ESa.

Now we shall show that p,Jr& 9, has a continuous version on §,, (n>2).
First we have to show the following addition formula.

Lemma 2.4. For vectors &£ =(&,, -, E,11), £=(Cy 5 Eo) ES,y (2>2),
it holds that

—n .T_Zk—l“n—l v E-C
(29) DE@-EBO=""""c(5h).

Here E'§=§1§1+'"+§n+ltn+l» V:(ﬂ—l)/z and IKI:kn fOT K:(kly '"1kn))
(0< lkll <'°<kn)°

Proof. Since {E%; K} constitutes a C.O.N.S. in ¥,, and the Dirichlet
solutions on D,,, for the boundary functions E}() are given by r'¥'-Ex(£),
re[0, 1), €S, we have the following equality:

5 k —in N—TH7 2. A 2 E'g -
(210) 3 3 EX(E)-ERE) = (1—7) (1~|—r 2rn+1> .

On the other hand, the generating function (see Vilenkin [12], p.492) of the
Gegenbauer polynomials gives

Comparing the coefficients of 7* in these power series, we have therefore the
asked formula (2.9). (Q.E.D))
By using this proposition, we have the following
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Proposition 2.5. The function pr < L*(S,, p,), (n>2) has a continuous
version on the sphere S,,.

Proof. In the space L*S,, p,), (n+1=p) Proposition 1.3 gives

S TV () EP(—W[2) 5

e pa@=1 2 [F0Ew TGTED dwEre),
Ke X,

where an(kl; RS kn) for K=(k19 **%y km "')EJC,
JC,,, = {K= (kl’ "t km’ "')E'JC; 0< |k1| <"'<km = km+1 :'"} ’ (7’121)

and 4= (u,, -+, ,) for u=(u,, -, 4,,;) ER*'. By (1.25) and Lemma 2.4, we
have therefore the following

(2.13) A (E) = D),

k=0

where
(2.14) YE(E) = S \P(ﬁ)C'k(u) |u|* exp (—u[2)(27) ™ 2du,

2% +n—1 F((n+1)/2)2”‘cv( Eeu )
n—1 T(k+(n+1)/2) " *\|u|vVn+1/ .

On the other hand, we have

2.15)  Cyu) =

2k+n—1 |T(n+1)2)2* T(nt+k—1)
n—1 Y T(k+@m+1)2) T(k+1)[(n—1)’

|Cy(u)| <d, =

and the power series g(2)= >d,2* (2; complex numbers) is an entire func-
k=0

tion of order 2, (cf. Boas [3], pp. 8, 9), that is, for any positive number &, there
exists a positive constant M, such that

|g(2) | S M@+l for all complex numbers =z .

Hence by the Schwarz inequality the series (2.13) converges uniformly and
absolutely on the sphere S,. Therefore p,Jr&9, has a continuous version
on S,. Also in the case of p>n-1, this proposition can be proved in a quite
similar way to the case of n+1>p. (Q.E.D.)

Proposition 2.6. It holds that in the space L*(S,, w,), (1+n=p):

ix Pkt n—1 [TE DDE (1
(2'16) |1§,, W(PnHI{)(E) = un— ].—‘(kn—}—(n~{—l)/2) [2] Ck(m)
for E = (El) R Ep) % gn+1)ESm (y:(n—l)/Z).

Here K!=F,!-k,!, |K|=hk+--+k, for K=(ky, -, k), (k;>0, j>1), and 1*=
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tiretfs, toE=tE -+ tE, for t=(t;, -, 1,), and Hy denote Fourier-Hermite
polynomials (see I, (2.23), (2.25)).

Proof. Since the function Eg(x) is a tame homogeneous harmonic func-
tion in our sense (see I, Prop. 3.8), the density formula (see I, (3.9)) gives

2.17) [ exp (sF-e —Pp2) BLBudE) = s¥'E(D),
where s&(—o0, 400), F=(t,, -+, t,,0,0,0, ).

Then by Proposition 1.3 and the generating function of the Hermite polynomials
(see I, (2.24)), we have the following in the space 4:

t¥ I~ =N
(2.18) =, i d Hy(§) = 23 Ex(t)-Ex(E).

Hence, applying the orthogonal projection p, to the both sides of (2.18), and
next using Lemma 2.4, we have the asked formula (2.16), (Q.E.D.)
Now we give another expansion of r in L?:

(2.19) F) = D), = (u, -, u)ER?,
where
(2.20) ) = 3 o HOHx(w), K= (-, k),

and denote by v, the lift-up of v, to S..:
(2.21) &) = w1 &) for E= (&), 0y Ep ) ES.

Then, we have the following

Proposition 2.7. Denoting by f% the Dirichlet solution on D, ,, for the boun-
dary function pr,E H,, we have:

) fitm) = ) R |, He

pain2 Xt
(t+iu)?/2 k v
XS 2] Ck(llxll.,+,vn+1|zl>d’

Jor x=(xy, -+, x,, ~)ED., such that ||x||.>0, [|x|[,+,>0, where £=(x, -+, x,)
for the point x and (t-+iu)’ = (t,4-u)*+ - —(t,+iu,)’ for t=(t, -+, t,), u=
(4, =+, u,) ER?,

Proof. First the integral representation of the Hermite polynomials and
the formula (2.18) give the following in 4, (n-+1=>p):
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—u2/2 A Y —
@23)  pan® = [#0 wydu [ SV m () ().
(2=)? |KT=*
Ke A,
Observing the Dirichlet solution on D,,, for the boundary function E% on S, is
given by r'*'Ex(£) at rE€D, ., r€[0, 1), EES,, we have therefore the asked
formula (2.22) with the aid of Lemma (2.4). (Q.E.D.)

We are now in position to state our Construction Theorem of the Dirichlet
solutions for the tame boundary functions .

Theorem 2.8 (Construction Theorem). Let the real function J(u) < L?
satisfy an additional condition

(2.24) S () | du< oo .
Then it holds that
(2.25) lim f,(m,x) = f(x) ~ for points xeb.,.

Here f, and f denote the Dirichlet solution on the ball D, ., for the continuous boun-
dary function p,r on the sphere S, and the one on the ball D.. for the tame boundary
function +r on the unit sphere S. respectively:

(2.26) fl®) = 2fix)  on Dy, n>2,
227)  fx) = [ ) exp [—(—2FI2(1 KN (2r(1 — 112

Jor x=(%y, -++, %,y ") E Do and u=(w,, ---, u,)ER?, (see I, Prop. 3.5).

RemarRk. We have y{”=p,J, (k=>0) by Proposition 1.5. Hence Proposi-
tion 2.5 shows that the right-hand side of (2.26) converges uniformly and ab-
solutely on the closed ball D, *

The proof of this theorem will break down into several parts.

3. Proof of Construction Theorem

3.1. Uniform asymptotic estimates of the Gegenbauer polynomials.

In this subsection, we shall show several estimates of the Gegenbauer polyno-
mials C}(x/\/2v) as k, v—co. In the course of these estimations the method in
Iwano’s paper [10] on asymptotic solutions of ordinary differential equations is
very instructive to us.

Now, observing that (x,, --+, x,)/%||, are bounded for sufficiently large # and
a fixed point x=(%,, -, &,, -)ED., we consider the following function y(z) in
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the complex domain D,= {z€C; | 2| <R}, (R>0, fixed, v/2v>R) of the com-
plex plane C:

Gl )= (1 ";%)(Wmcz (‘\722‘—;)

where we use the principal branch of the logarithmic function. Then we
have the following ordinary differential equation:

0 1
(3.2) Y'(2) = (q(z) 0) Y(?),
where
6y v =),
and
R e ]

First we shall obtain estimates in the
Case 1 (“Tail part”: vk is bounded).
We introduce two parameters A, p defined by:

(3.5) w=vlk, A=0v"
and two functions o(p), 7(2, A, 1) as follows:

(3.6) o(p) = V({1[2) s

_ (4p)2e® | BN+ 8042202 —82)
37 o n p) = AFBE .
7 rEMm =yt 42—y

Using these functions, we set

(3.8) Pl=((1) 1/(2,,,))'(,-(1,, —1ico),

1 0\ a2/ 1 1
3.9 A =i @_( )
(3-9) : ’“’(0 —1)+2w —1 —1).

Then the equaton (3.2) turns out to be
(3.10) A Y{(2) = Ay(2)Y(?),
where
(3.11) Y(2) = Py(2)Y ().

Next we set
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(3.12) PFG f)

with the aid of the solutions ¢(2), §(2) of the following non-linear differential
equations

(13)  Mag'(s) = 2iogls) + 2 (14

G14) (@) = —2ivg(s) — T (14 g(=)).

20

Then the equation (3.10) turns out easily to be

(3.15) AYi(2) = Ay(2)Yy(2) .
Here

(3.16) Y (2) = Py(2)Y(2),

a(z) O )
3.17 Ay(z) =

e am=("0 )

(3.18) a,(2) = io+irn\*(14-4(2))/(20) ,

(3.19) ay(2) = —iw—ir\}(1+¢(2))/(20) .
Now we have to show the existence of solutions of the equations (3.13), (3.14) and
the invertibility of the matrix P,(2). First we seek the formal solution

g2\, p)= qu(z, w)*AF of the equation (3.13). Then we have ¢,=0, ¢,=0
and B

(3.20) @z, W)= —nlz, wEe),
where

B21)  nls w) = (1+u) a1 —)2,
and we set another function 7,(2, A, 1) so as to hold

(3.22) (2, N, p) = 14(2, p)+ri(2, A, p) 2.

Next, for the sake of simple application of Schauder-Tychonoff’s fixed point
theorem (cf. Dunford and Schwartz [5], p. 456), we shall seek a solution
¢(2, \, ) of the equation (3.13) holomorphic in the three variables (2, A, ) in a
suitable complex domain. We denote by 3 the open lozenge in the z-plane
with four vertexes aW= —ia, a®=b, a®=ia, a® = —b, (a>0, b=a-tanv,
0<y<(=/2)) and included in the domain D,, and set

(3.23) A= {(n, p)ECHO<IN|<N, 0<|pn]<po,
larg M | <oy, larg p| <@},
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(0<aty, Bo<<(m[2), Nos 1o>0). Now, in order to solve the equation (3.13) on
3 X A by the method of constant variation, we put

(B24)  q(r)—g(2)* N = v(2) =u(z) exp (D(?)) ,
where
(3.25) D(2) = Ziw(z—a®M)[(Ap), (3, N, n)ESXA.

Then the equation (3.13) turns out to be

(3.26)  npw'(s) = gz, w(z)-exp (D)) exp (—D(2)) ,

where
(3.27) gz, v) = —Ah(2)Fin (1 +gAD)v(2) o+irne?(2)/(20) ,
4 ; 2 3N 2 2 2 4
3.28 h— T AN T ToA T ThA _rorlx}
( ) 4m2+w {4w2 320 2 + 4¢? 320t

Now we introduce the following complete locally convex topological vector
space X with the uniform convergence topology on compact subsets of =X A:

(3.29) X = {w(z, N, p); w(2, A, p) is holomorphic in XA},
and denote by & the following non-empty convex compact subset of X:
(330)  F = {weX; |w(z \, u)| <K-eFPEA NP on IxA},
(K>0),

(see Hormander [9], p. 26). Next we define a mapping S from &F to X as
follows:

B3 (Sw)(zw A 1) = S";) %g(z, w(3)- 2@ PO
@ rp

Here we can choose the positive constant K so as to hold S(¥)C<. Indeed,
first we notice for some positive constant M,

(332) gz w-e?)| SMINY(IN|+lwl+]2])  on ExA,

and also the following

" exp (— Re — Dwpl(exp (—Re D(2(5))) —1)
(3.33) Soe p (— Re D(2(2)))dt e o 6 ,

where 2(t) = aW -t | (—y<p<v, s>0),

_ 1. |p|sin B P _ _
0 = 2tan <(1/2)—}—|/1,|COSB> a—pB, (a=argn, B=argu).

Hence we have the following estimate for we S
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MQA+K|M K2 INP) | 37,—ReD(2) _
(3.34) [(Sw) ()| < 2| cos (4 —0) Ix|3(e 1),

which shows the existence of the asked positive constant K. Moreover we
can easily see the continuity of the mapping S. Therefore Schauder-Tychonoff’s
fixed point theorem shows the existence of a solution w(z, A, p)EF of the
equation (3.26). Thus we obtain the following solution of the equation (3.13):

(3.35) q(z, N, p) = @2, )N +ov(2, N, 1),
lo(z, N, ) <K]|A|® on 3XA.

It is easily seen that the function

(3.36) 4(z, \, p) = q(Z, X, B)

on XA is a solution of the equation (3.14), (2 denotes the complex conjugate
of ). Therefore it holds that

(3.37)  Yy(3) = B(x)Yx0),

with

B(z) 0
(3.38) B(z):( Ef) bz(z)),

where

bi(2) = exp (S: ‘%j)dz) y b(2)= exp(&j ‘%?dz) .

Now, we set
P1.1(2) Pl,z(z))

(3.39) Py(2)Py(2)B(2)(P(0)Py0)) " = P(2) = (Pz 1(2)  P22(2)

Then we have
(3.40) ¥(2) = P1,1(2)y(0)+p1.2()y"(0)
and
(341 ¥(0)=Ci0), »'(0)=(CH)(0)/v2v.

Noticing the definition (3.1) of the function y(z), we consequently obtain the
following

Proposition 3.1. For given positive numbers R, p, there exist positive
numbers vy, M,, K, for which it holds that

(42  |CUx/VZ)| < \/ké‘zﬁw)((ztzzzw)wze,ﬁkm’ (k: even).
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(343)  |CUxvZe) < M ((2+'7)2”)”’2 kil (k: 0dd),

Vky
Jor (v[R) <y, v>vyand —R<x<R. Here we set

(B44) v =k.

47

Next we shall obtain estimates in the

Case 2 (“Middle part”: k[v is bounded).

In this case we can go ahead in a quite similar way to the case 1.

567

Therefore

we list up only a series of formulas different from the ones in the case 1, and

give them corresponding numbers.

(BS5)  p=(kp)?, A=k".
(3,6)' o(p) = (14+(s*2))".

' _ (24wt | NP8 —427 ottt
3.7 N, ) =
(3.7) (2 % 1) 202 — N2 42 NPy

(3.8)’ Pl(z)=(3 (1))(;, _liw)’

(3.10)’ AY{(z) = A(2)Y\(2).

(13) Ag'(®) = Ziwg(z)+irni(1+q(3)Y/(20)

(1) AF() = —2Zied(®) —ini(1+2()(20).
(3.18)" ay(2) = iw+in}(1+4(2))/(2) .

(3.19) ayf2) = —io—ira’(14-¢(2))/(2w) .

(3.21)" 7z, p) = 2+ pd)p*P4+(2—2H)/4.

(3.25)’ D(2) = 2iew(z —a®)/n .

(3.26)’ Aw'(2) = g(=, w()-exp (D(2)))-exp (—D(2)) .

(3.28)  h= _J_i TN (14 gady+- ”°’”(z+ ) .

(3.31) (Sw) (2o, N, p) = rm = g(z, w(2)-eP®) e PO dz .

lxl(exp( Re D) 1)
o|cos (yr—0)

(3.33)’ So exp (—Re D(a(t)))dt =

9 = l tan‘l<M> —_
2 2+ | w|?cos 28

Then we have the following

Proposition 3.2. For given positive numbers R, p,, there exist posilive

numbers ky, M,, K, for which it holds that



568 Y. Hasecawa
42y’ H M (2+7)2 y>v/2 K /k? .
3.42 Ci(x < 2 2% k: ev ,
( ) | k( /\/Zv)l \/E(Z )< ¥ e ( € en)

G43)  |CUxVZ)| < \/%%(&Ezy)i’)“ oKlt® (k: 0dd) ,

Jor k=k,, (k[v)< pyand —R<x<R.

3.2. Proof of Construction Theorem.
In this subsection, we assume the condition (2.24) for the boundary func-
tion ¢». Now our first assertion is the following

Proposition 3.3 (“Tail part”). For an arbitrarily fixed positive number
Yo, We have

(345)  lim 3} |fi(mx)|=0  for apoint xeD. .
By k>ny,

Proof. Noticing Proposition 3.1 and the expression (2.22) of fi(z,x), we
have only to show the following with the aid of Stirling’s formula:

(3.46) lim > Q\%ﬁi k“"z)/z(]]xllm-effx/"a)k D7) =0.

npoo k>nv,

Here we set v=(n—1)/2 and

(3.47) (D('}’):% for veE[0, o).

Since the function ®(¥) is strictly monotone decreasing:

d _ 2+ oo
(048) L log o) = log <2+ 27) for 7e€(0, o)
and ®(0)=1, the formula (3.46) can be easily seen by observing |[x||.<<1.
(Q.E.D))

Second we show the following

Proposition 3.4 (“Middle part”). For an arbitrarily fixed positive number

Yo, we have
nYo

(3.49) lim Iim kz | fi(z,x)| =0  for a point xED...
kotoe Mpoo k=k

Proof. We can easily prove this proposition in a similar manner to Pro-
position 3.3 with the aid of Proposition 3.2. (Q.E.D).
Now we notice the following Mehler’s formula:

(3.50) s Hy(x)Hx(y) = exp [—((#"+y)s" —25x-)/2) /(1 =",



LEvy’s FuNcTiONAL ANALYSIS 11 569

where —1<s<<1, K=(k,, -+, k), (k;=>0, 1>1), x=(xy, **+, x,), y=(y1, -, ¥,) ER?.
Hence it holds that

1 N s K ;
65N B | FHe e el ()

for - L% and x€D .., and the series of the left-hand side converges absolutely.
On the other hand, we have the following uniform convergence formula

. 1 ar' N

with respect to bounded real numbers x, (k: fixed). Consequently for a fixed
number % and a point x&D.., we have

[ P rererau it ( %)

(3.53)  lim fi(mx) = 2
Fo 1]

1
1K=k (27;)”2
with the aid of Mehler’s formula. Therefore we have
(.54 lim f(m) = lim ky‘j fimx)
%400 npoo k=0

0 3y exp [—(u—2))(2(1—]x]1%))]
= S 7 ®) 2r(1 —|x]|2))"2 u

for x=(x,, -+, %,, )EDN

Thus Construction Theorem has been proved by the asymptotic calculus.
Concluding this paper, we notice the similarity between the limiting procedure
in Construction Theorem and the one in the statistical mechanics, e.g., evalua-
tion of specific free energy, (cf. Berlin and Kac [2], Dyson [6]).
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