

Title	Correction to : "A note on Azumaya's theorem"
Author(s)	Sugano, Kozo
Citation	Osaka Journal of Mathematics. 1968, 5(1), p. 153–153
Version Type	VoR
URL	https://doi.org/10.18910/8482
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Sugano, K. Osaka, J. Math. 5 (1968), 153

CORRECTION TO

"A NOTE ON AZUMAYA'S THEOREM"

Kozo SUGANO

This Journal, Vol. 4 (1967), 157–160 (Received February 28, 1968)

 $e_{\alpha}\Lambda$ in the seventh line from bottom on Page 158 should be read $e_{\alpha}r(N)$. To complete the proof of Proposition 1, the following should be added to the end of the proof of Proposition 1.

Nextly we will show that if Λ is a left self cogenerator ring the left socle of Λ contains the right socle of Λ . Let S_I (resp. S_r) denote the left (resp. right) socle of Λ . Let $x \in \Lambda$ such that $x\Lambda$ is a minimal right ideal, and I be a maximal right ideal of Λ which contains l(x). Then Λ/I is isomorphic to some $I_{\beta} = \Lambda y_{\beta}$, and we have a homomorphism $\Lambda x \to \Lambda y_{\beta}$ which maps x to y_{β} . Then the same argument as the proof of Lemma 3 shows that $y_{\beta}\Lambda \subseteq x\Lambda$. Since $x\Lambda$ is minimal, $y_{\beta}\Lambda = x\Lambda$, and $x = y_{\beta}z$ for some $z \in \Lambda$. Then Λx is minimal, since it is a homomorphic image of Λy_{β} which is a minimal left ideal. Hence $x \in S_I$, and we see $S_r \subseteq S_I$.

Since $r(N) \supseteq S_i$, $r(N) \supseteq S_r$. Then Λ is an essential extension of r(N) as right ideal, since Λ is an essential extension of S_r by Lemma 3. Consequently $e_{\alpha}\Lambda$ is an essential extension of $e_{\alpha}r(N)$, and we see $e_{\alpha}\Lambda$ is an essential extension of $x_{\alpha}\Lambda$.