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1 Introduction

Legged robots have the potential to transform society by
traversing remote or dangerous areas or by performing te-
dious locomotor tasks. Much like humans, legged robots
need to compensate and adjust for unintended disturbances
through active balancing to maintain stability. Both human
and robot balancing have been primarily grouped into dis-
crete strategies: ankle, hip, toe and stepping [1,2]. The ankle
strategy uses ankle torques to position the center of pressure
(CoP). The hip strategy uses upper body dynamics to gen-
erate angular momentum about the center of mass (CoM).
The toe strategy uses vertical CoM dynamics to modulate
the ground reaction force. Here we focus on standing bal-
ance strategies without stepping.

These three balancing strategies can be approximated
by reduced order models. The linear inverted pendulum
(LIP) model consists of a point mass supported by a mass-
less leg [3], leading to a linear system that can be controlled
through CoP positioning, modelling the ankle strategy. The
hip strategy can be modeled with the linear inverted pendu-
lum plus flywheel (LIPPFW) model which adds a flywheel
with inertial properties to the LIP model [4]. The toe strat-
egy can be captured by the variable height inverted pendu-
lum (VHIP) model where the vertical CoM dynamics allow
for regulation of the ground reaction force magnitude [5]. In
this study, we aimed to elucidate the relative contributions of
these three balancing strategies, both separately and within
an unified model, by comparing the performance of the re-
duced order models in a zero step push recovery simulation.

2 Methods

To evaluate push recovery performance, we used trajec-
tory optimization with the reduced order models to deter-
mine the optimal control strategy.

2.1 Reduced Order Models
The unified model, which we term the variable height

inverted pendulum model plus flywheel (VHIPPFW) model,
includes LIP, flywheel, and vertical dynamics. Its sagittal
dynamics and flywheel dynamics are given by Eq. (1) and
(2) respectively.

ẍ =
g+ z̈

z
(x− xc)−

τ

mz
(1)

Iθ̈ = τ (2)

where x is the horizontal CoM position, g is gravitational
acceleration, z is the vertical CoM position, xc is the CoP
position, τ is the flywheel torque, m is the mass, θ is the
flywheel angle, and I is the flywheel inertia. We defined X =
[x,θ ,z, ẋ, θ̇ , ż]T and U = [xc,τ, z̈]T as the state and control
input vectors, respectively. When z̈ is zero, τ is zero, or
both are zero, the unified model reduces to the LIPPFW [6],
VHIP [5], and LIP models [3], respectively.

2.2 Trajectory Optimization
Trajectory optimization was used to determine the set

of controls that minimize the deviation from the rest state
and the total cost of control. The optimal trajectory was
computed using a trapezoidal direct collocation method [7]
and minimized an objective function J that was designed to
equally penalize the state X’s deviation from the rest state
X0 and equally penalize the control cost. We used weighting
matrices to normalize the state position and control compo-
nents to their respective upper bounds and each state veloc-
ity component by the maximum velocity experienced during
the largest recoverable disturbance. The objective function
is given by Eq. (3),

J =
N

∑
i

X̃T
i QX̃i +UT

i RUi, (3)

where X̃i = Xi − X0, Q = diag(x−2
cmax ,θ

−2
max,(zmax −

z0)
−2,0.42−2,2.3−2,0.44−2) and R = diag(U−2

max) are
the weighing matrices, and N is the number of knot points.
For our simulation, we used N = 40.

2.3 Push Recovery Simulation
We applied pushes to the four reduced order models with

mass of m = 80 kg and flywheel inertia of I = 10 kg-m2

(state and control bounds in Tab. 1). The push disturbance
was modeled as a constant horizontal force applied at the
CoM for a duration of 0.1 s. The simulation started with the
model at rest at a height of 1 m with the CoM centered over
the base of support. A range of push force magnitudes were



Figure 1: Maximum capture point ξmax of the four balanc-
ing models during push recovery.

applied to the individual models with increased resolution as
each model approached their recovery limits. Push recovery
performance was evaluated by the maximum capture point
ξmax experienced. The capture point is given by Eq. (4),

ξ = x+ω
−1ẋ, (4)

where ω2 = g/z. As one metric of stability [6], ξ represents
the CoP location for the LIP model’s passive dynamics to
bring the system back to rest [4]. Increased values of ξ in-
dicate larger excursions of CoM position and velocity.

Table 1: Model state and control bounds.

Symbol Description Rest Min Max
θ flywheel angle(rad) 0 −π

6
π

4
z CoM height (m) 1 0.9 1.1
xc CoP position (m) 0 -0.15 0.15
τ flywheel torque (Nm) 0 -80 80
z̈ vertical acceleration (m/s2) 0 -3 3

3 Results

The maximum push force that each model can recover
from was 436 N (LIP), 462 N (VHIP), 549 N (LIPPFW), and
570 N (VHIPPFW). For a given push ξmax was the smallest
in VHIPPFW followed by LIPPFW, VHIP and LIP (Fig 1)
making VHIPPFW the most stable. There were two ξmax
trends, one between the LIP and VHIP and the other be-
tween the LIPPFW and VHIPPFW, and each trend separated
when the push forces approached each model’s respective
stability limits.

To identify the relative contributions of each strategy
during push recovery, we compared the normalized cost of
each control component in the unified VHIPPFW model as a
percentage of the total normalized cost. We found that ankle
control was the dominant strategy with xc control account-
ing for greater than 96.0% of the total control cost for pushes
less than 300 N (Fig 2). For pushes greater than 400 N, the
ankle strategy dropped while the hip increased in compen-
sation. As pushes exceed 520 N, the hip strategy started to
decrease while the toe began to increase. At the recovery
limit of 570 N, the hip and toe strategies accounted for 26.6
and 14.5 % of the total control cost respectively.

Figure 2: Percent contribution of each control strategy us-
ing normalized control cost of the VHIPPFW model.

4 Discussion

We simulated push recovery on four reduced order mod-
els that embodied different biological balancing strategies
using trajectory optimization. We found that the ankle strat-
egy is preferred while hip and toe strategies are applied in a
hierarchical manner, only being employed when the former
strategy approaches its limits. The unified model parallels
the preference in human balance strategies from ankle to hip
with increasing applied perturbation magnitudes [2].

The scope of our study is currently limited to consid-
ering one push profile (duration, direction) and one set of
bounds for the state and control. However, parameters used
in our simulation were chosen to approximate a humanoid
biped to deliver insights on the effectiveness of each bal-
ancing strategy if they were to be implemented as a uni-
fied strategy in hardware. Thus, we believe that the over-
all relative performance among the four models would still
hold with varied push profiles. The combination of human-
like balance strategies, modelled with reduced order mod-
els, naturally reveal human-like preferences to push recov-
ery, yielding promising directions for robust balance control
for legged robots.
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