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1 Why build tendon-driven limbs?

Biorobotics has a two-fold goal: (i) to create versatile
bio-inspired robots and (ii) to shed light on the neurome-
chanical properties of animals that grant them their enviable
mechanical performance. In contrast to traditional‘torque
driven’ robotics, the book Fundamentals of Neuromechan-
ics [1] discusses the function of tendon driven robots which
are simultaneously (i) redundant (i.e. n+1 actuators, n.- de-
grees of freedom) and (ii) over-determined (i.e. vertebrate
limbs use sensorized backdriveable linear actuators that re-
sist stretch in a context-dependent way). We emphasize the
construction of tendon-driven robotic limbs to exploit these
neuromechanical properties for robots and advance neuro-
science research. Here we present two examples.

2 Model-1 robotic leg/finger

Model-1 has been used in isolation for locomotion in
hardware ( [2] Figure 1-A,B) and simulation [3], as an en-
semble on a quadrupedal structure (Figure 1-C) and for hand
manipulation [4]. Its design is useful to mimic the mechan-
ical function of musculoskeletal systems who’s movements
depend on muscles contracting and relaxing to allow joints
to flex and extend. As per [1], this design has the minimal
number of actuators (n+1) that, when well-routed, can con-
trol n kinematic degrees-of-freedom (DoFs). This robotic
leg is controllable (i.e, versatile) since it can generate forces
with its foot in all directions in its workspace (i.e., its feasi-
ble force set expands to all directions on the plane of move-
ment, regardless of the posture) (Figure 1-A). We use the
term feasible ”force” set, instead of feasible ”wrench” set,
since this is a representation case of a planar force (f) only
containing fx and fy, no torque components. The feasible
wrench set and space are respectively calculated as follows:

H = [J−T RF0] (1)
w = Ha (2)

Where J is the limb Jacobian, R is the moment arm ma-
trix, F0 is the maximum force matrix that motors (i.e. mus-
cles) can generate. In Equation 2, a is the neural activa-
tion space, this equation helps researchers explore the path
between the neural input a and mechanical output H (De-
tails in [1]). When mounted on a body, model-1 leg is a 2–
DoF mechanism whose joints are distally actuated by three

DC gearless motors pulling on stiff strings (i.e., backdriv-
able motors pulling on artificial tendons). Backdrivability
allows the motors to move because of both: electrical and
mechanical stimulation; the later due to interaction with the
environment or action from other motors. Matching the high
speed and accelerations of gearless backdrivable motors is a
big challenge for control systems, making the position con-
trol of this model not simple, specially when compared to
cases where motors with coupled encoders and reduction
gearheads are used (e.g. servo motors). The bioinspired
properties of this leg help on the production of the hybrid,
intermittent dynamics of locomotion, as shown in [2, 3].

3 Model-2 robotic leg

Instead of having only active actuators, we are currently
focusing on the design of a redundant backdrivable leg that
also incorporates passive parallel and series elastic elements
(e.g., [5–8])(Figure 2). While limb contraction is handled
by a motor, extension happens thanks to a spring which will
also work as a passive element that absorbs/releases energy.
By reducing the number of actuators, processor resources
will be freed for other tasks, like reading a high number
of sensors. In contrast to the design of model-1 (Figure
1) which includes single actuators affecting more than one
joint, model-2 design (Figure 2) has only one joint per actu-
ator. This will enable us to apply and test (i) learning algo-
rithms (e.g., G2P [2]) and/or (ii) control techniques like Hy-
brid Zero Dynamics which consider one actuator per degree
of freedom [9]. For this design, we keep the motors close
to the Center of Mass, keeping inertia low as for model-1
case. This model includes backdriveable Maxon DCX16S-
GPX16 motors in spite of their 21:1 reduction ratio gear-
head. Overall, the geared motors help us reduce motor rpm,
increase torque, and keep backdrivability; all this pointing
to a more stable and stronger robot.

4 Conclusions

Even though the model-1 leg/finger has been success-
fully used for locomotion and grasping experiments, the
model-2 leg opens the possibility of scaling up a tendon-
driven robotic system without greatly compromising weight,
power and computational resources. Besides allowing mo-
tors to work at lower RPM and higher torques, model-2 in-



Figure 1: Model-1 of the robotic backdrivable tendon driven leg: A) Leg render with tendons shown in red, green and blue.
Dotted line shows three different leg positions with red polygons showing the feasible force set of the leg in such positions. B)
Leg performing cyclical movement to propel a treadmill [2]. C) Quadruped.

Figure 2: Model-2 of the robotic backdrivable tendon
driven leg. It includes both: active (i.e. flexion) and pas-
sive (i.e. extension) actuation of the knee join.

cludes elastic passive elements that will help absorb me-
chanical energy intrinsic of the interaction with the envi-
ronment. Both models are backdrivable and tendon driven,
providing researchers with a tool to understand robotic and
biological tendon-driven systems.
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