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1. Introduction

Let D be an unbounded domain in R2 and u a nonnegative solution of the
heat equation on Z). We consider the property (U) for Z):

(U): u = Q on QpD^>u==0 onZ>,

where dpD is the parabolic boundary of D. In the case of D=Rχ(Q, T) or
(0, oo)χ(0, T), it is known that the property (U) holds (see [6]).

In this paper, by using a special form of the boundary Harnack principle,
we shall show the following generalization.

Theorem. For Γe(— oo, oo] and an upper semicontinous function φ on R,
we set

If φ is bounded below, then the property (U) holds for D(φ, T).

By Theorem we obtain the following

Corollary. Let φ, T and D(φ, T) be as in Theorem, and assume that φ
is bounded below. Let u, v be positive solutions of the heat equation on D(φ, T).
Ifu—v vanishes continuously on dpD(φ, T), then u=v on D(φ, T).

On the other hand, for D= {(#, t)\ mt<x}9 the property (U) does not hold
(see Lemma 7, Proposition 2). By using the Appell transformation, we shall
show that this is critical (see Proposition 1).

2. Preliminaries

For a domain D in R2 we denote by dpD the set of (x, t)^dD (the bound-
ary of D) satisfying VΠDΓ\(Rx(t, °°))Φ0 for every neighborhood V of (x, t)
and call it the parabolic boundary of D. For X=(x, i)^D, we denote by ω£
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the parabolic measure at X with respect to D. The parabolic measure ω^ is
supported by QpDΓ\Rx(— °°, t] and for any bounded continuous function/on
9PD, the function ffdωo of X is the solution of the Dirichlet problem with
boundary value/. A boundary point Y^QPD is said to be regular if for every
bounded continuous function/on dpD,

lim
X+Y

xe/>

REMARK 1. We note that every boundary point in dpD(φ, T) is regular,

where φ, T and D(φ, T) are as in Theorem (see for example [1]).

We say that u is a parabolic function on a domain D if

(d/dt—Q2/dxz) u = 0 on D .

Recalling the Perron-Wiener-Brelot method, we have

Lemma 1. Let D be a domain in R2 and u a nonnegative parabolic func-
tion on D. If u is continuous on D U 9PD, we have

u(X)>\udω$

onD.

Let W be the fundamental solution of the heat equation, defined by

for t>s

= 0 for

We put

G(x, t y) = W(x, t y, ΰ)-W(x, t; -y, 0)

and for m^R,

KJx, ί; s) = °^iart W(x, t\ ms, s ) .
t—s

Then the function G(x, t\y) of y is the density of the parabolic measure at (x, t)
with respect to (0, <*>)x(0, T) (Γ>0). By Lemma 1 we obtain the following

Lemma 2. Let u be a nonnegative parabolic function on D=(Q, oo)x(0, T)
for T>0. If u is continuous ondpD\J D, then we have

u(x,t)>ΓG(x,t ,y)u(yyQ)dy.
Jo

On the other hand, Kaufman and Wu showed in [2] that Km(x, ΐ , s ) is the
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density at (ms,s) of the parabolic measure at (x, t) with respect to Ωm={(x, t),
mt<x}. More precisely, we have

Lemma 3. For m, TQ and Tλ in R, we set

Ω, = {(x, ί); T0<t<Tl9 mt<x} .

Then for (x,

on (ms,s); 0

3. The boundary Harnack principle

For α>0, we denote by TΛ the parabolic dilation defined by TΛ(X, t) =
(ax, a2t). The heat equation is stable for every parabolic dilation. This im-
plies the following

REMARK 2. The parabolic measure ωί*[̂  is equal to the τΛ-image of ω£.

For Y<=R2 and r>0, we put

and

V'r(Y) = V,(Y)\{Y+(x, t); *<0,

Since Y is a regular boundary point of V'r(Y}, we have the following lemma
(use Remark 2).

Lemma 4. For any 6>Q, there exists 0</3<1 independent of r such that

ω£j(r> (QV'r(Y)\tY+(x, 0; *<0, t<0})<6

forallX<=ΞV'βr(Y).

To prove our main theorem, the following lemma plays an important role,
which is a special form of the boundary Harnack principle.

Lemma 5. Let φ be a decreasing upper semicontinuous function on [0, oo)
satifying φ(Q)—2 and φ>Q. Put

D = {(x, ί); 00, φ(x)<t<2} .

Then there exists a constant OO such that for any nonnegative parabolic function
u on D vanishing continuously on dpD

u(x,t)<Cu(x, 1)

for every (x, t) with l<x<°°, φ(x—l)<l/2 and with φ(x)<t<\β.
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Proof. For each #0e(l, oo) with φ(xQ— l)<l/2, we set

DXQ =

First we shall show that for Y0= (y0, <p(#0+l)) with #0+l<yo<*O+3/2, there
exists a constant C0>0 independent of x0 and y0 such that for r<s<ί/4 and

(1) «,5,β(F,( FO) Π 8Z>,β) <C0 ω^/°> (F,( F.) ΓΊ 8Z),β) ,

where A(F0) = Y0+(r, 2r2). Put/(*)=α>ί,β(FΓ(F0) Π 8Z),β). It suffices to show
that

(2) /W<C0/(Λv(F0)), *eZ>,β\FΛ(Fβ)

for every positive integer ^ with 2*r<l/4.
By the maximum principle and the Harnack inequality, we have

ί(F0) Π {Fo+(^, ί)ί

for some C1; C2>0 independent of r, which shows (2) for k=0. By Remark
2, we have

By using Lemma 4 for £=Cr1, there exists 0</3<1 such that for any

9 F* ( FO) Π 8 0,β and * e Fβr( F) Π D,0,

^y, (9F,'(F0) Π {F+(*, ί);

where { }c denotes the complement of a set {•}. By the Harnack inequality,
there exists C3>0 such that

n vβr(γγ ,
Y^

so that by the maximum principle,

with C0=max(C1 C2, C3), which shows (2) for k=\. Inductively we have (2)
for every k with 2*r<l/4.

Similarly we see that for YQ=(y0ί t0)^dDXQ with j0>jc0+2/3, tQ<l/2 and
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(3) a>L0(ur(Y0) n dDj<c'ωB

Df™(ur(Y0) n

with some constant C">0, where

U,(Y) = {Y+(x,t) , -

and

B,(Y)=Y+(-r,2r*).

From (1), (3) and the Harnack inequality, it follows that with some constant
C>0,

«&0'> (vr(Y0) n 9DXQ)<c «fo;D (j7 (F0) n dDXQ) ,

for every F0=(>Ό> ^o)^9^0

 with Jo^^o+l, ^o^l/2 and everY (x> Oe£)^0

 with

Λ?<Λ?O, ί<l/2. Since for ί<l, ω^^ is absolutely continuous with respect to
ω(^υ, we have

on 9Z),0 Π [*0+1, *o+2] X [<?>K+1), 1/2]

for every (#, t)^DXQ with Λ?<Λ:O, ΐ<l/2, which proves Lemma 5.

4. The uniqueness of positive parabolic functions

First we show the following plain

Lemma 6. Let φ be a decreasing upper semίcontinuoui function bounded
below on [a, o°)for some a^.Ry and put

D = {(x, t)\ a<x, φ(x)<t<φ(ά)} .

If a nonnegattve parabolic function u on D vanishes continuously on dpD, then
u= 0 on D.

Proof. We may assume that α=0, φ(Q) = 3 and lim φ(x)— 0. It suffices

to show that u(x, l)=Q if (x, l)eZ).

Let (x0, l)^D be fixed. We choose yQ>x0+l with φ(j0~~l)<l/4 For

y>y0, we put

Jy= {(x1t)',x<yjϋ<t<2} .

By the Harnack inequality and Lemma 5, there exists a constant C>0 such that

u(y,t)<Cu(y,l)

for y>ya and φ(y)<t< 1. Hence we have
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= Cu(y,l)(1K0(y~x0,l;s)ds,
Jo

for every j>>y0 (see Lemma 3). Since Lemma 2 gives

I u(y, 1) I KQ(y—XQ, 1 s) dsdy<oo ,
Jyo Jo

we have

U(XQ, l)<^Clim inf (u(y, 1) I KQ(y—XQ, 1 s) ds) = 0 ,

which shows Lemma 6.

Now we shall prove our main theorem.

Theorem. For T^(— oo, oo] and an upper semίcontinuous function φ

bounded below on Rf we set

D(<p, T) = {(x, ί)\ ψ(x)<t<T\ .

Let u be continuous on D(φ, T) U dpD(φ, T) and nonnegative parabolic on D(φt T).
Ifu=0 on dpD(φ, T), then u=Q on D(φ> T).

Proof. Put

ψ (#) = mjn (sup φ(y), sup φ(y)).
y<>x y>x

Then clearly φ<,^. We can easily check that the upper semicontinuity of ψ

follows from that of φ. Furthermore there exists <ze[— oo, oo] such that ψ is
increasing on (— oo, a) and decreasing on (#, oo). From the definition of i/r, it
follows that for a nonnegative parabolic function u on D(φ, T) vanishing con-
tinuousy continuously on dpD(φ, Γ), u(x, ΐ)=0 for every (x, t) with φ(x)<st<
Λfr(x). Hence

u = 0 on dpD(ψ, T).

Then Lemma 6 gives u(x, t)=0 for (xy t)^D(ty, T) with £<suρ i/r, which yields
Theorem.

Proof of Corollary. Let u, v be positive parabolic functions on D(φ, T)
such that u—v vanishes continuously on dpD(φ, T). Then for any £>0 and
T"<T, we can find an upper semicontinuous function <pe such that dpD(φe, T')
CLD(φ, T) and that

\u-v\<6 on D(φ,T')\D(φe,T').

Lemma 1 gives
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φ,tT')>Q for XeD(φ9,T
f),

so that by Theorem we have

u(X) = ( u έ/ω5(φfpT/) for X(ΞD(φΐ, 7")

(see Remark 1). The similar equality holds for v. Therefore for X^D(φSJ T'),

\u(X)-v(X)\<:\ \u-v\ dωx

D(φt^<ε,

which shows Corollary.

5. Application

In this section, by using the Appell transformation, we shall give some ap-
plication of our theorem.

For (x, t) eΛ x (— oo, 0), we define

r(x,t) = (-rlx,-t->)

and

Au(x, t) = W(x, t 0, 0) u(fl x, -Γ1) ,

for a function u on a domain D in /2x(— oo, 0). The Appell transformation
gives a one-to-one correspondence of the parabolic functions on D to the para-
bolic functions on r(D).

By using the Appell transformation, we have

Lemma 7. For #e(— oo, oo] and an upper semicontinuous function ψ> on
(—00, a), we set

//" lim sup ί Λ/T(— ί""1)<oo> ί̂ /ί ̂  property (U) rfo^ί woί Ao/rf.
/^o

This and our main theorem imply the following

Proposition 1. Let ^Λ(t)=(—t)et> and Ω(ι/rΛ) be as in Lemma 7. If
the property (U) holds for Ω(ψ>Λ) but if a <\, then the property (U) does not hold.

EXAMPLE. Let ψ(i)=—t log log log (— t) on (— oo , — e

e). Then the prop-

erty (U) holds for

Finally we consider an integral representation of positive parabolic func-
tions on Ωm= {(x, t) mt < x} .

Proposition 2. For every positive parabolic function u on Ω,m, there exist
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positive Borel measures μ, v and a constant C>0 such that

u(x, t) = Γ Km(x, t\ s) dμ(s)+ Γ k(x, t\
J-°° J-m/2

+ C(x—mt) exp (nftfi—mxβ),

where k(x, t\ λ)=exp (\2t-{-\x)—exp ((λ+m)2t—(λ+m) x). The measures μ, v

and the constant C are uniquely determined.

This is a modification of the following proposition by the Appell transfor-

mation. Kaufman and Wu [2] and Mair [3] obtained the integral representa-

tion for m=0.

Proposition 3 (see [6]). For every positive parabolic function u on (0, oo)χ

(0, oo), there exist unique positive measures μ,v on R such that

u(x9t)= Γ Kι(x,t;s)dμ(s)+\~ G(x9 t\y)dv(y).
J-oo Jo
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