

| Title        | Uniqueness of positive solutions of the heat equation    |
|--------------|----------------------------------------------------------|
| Author(s)    | Nishio, Masaharu                                         |
| Citation     | Osaka Journal of Mathematics. 1992, 29(3), p.<br>531–538 |
| Version Type | VoR                                                      |
| URL          | https://doi.org/10.18910/8491                            |
| rights       |                                                          |
| Note         |                                                          |

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Nishio, M. Osaka J. Math. 29 (1992), 531-538

# UNIQUENESS OF POSITIVE SOLUTIONS OF THE HEAT EQUATION

Dedicated to Professor Masanori Kishi on his 60th birthday

MASAHARU NISHIO

(Received July 5, 1991)

## 1. Introduction

Let D be an unbounded domain in  $\mathbb{R}^2$  and u a nonnegative solution of the heat equation on D. We consider the property (U) for D:

(U):  $u = 0 \text{ on } \partial_{v} D \Rightarrow u = 0 \text{ on } D$ ,

where  $\partial_{p}D$  is the parabolic boundary of *D*. In the case of  $D = \mathbf{R} \times (0, T)$  or  $(0, \infty) \times (0, T)$ , it is known that the property (U) holds (see [6]).

In this paper, by using a special form of the boundary Harnack principle, we shall show the following generalization.

**Theorem.** For  $T \in (-\infty, \infty]$  and an upper semicontinous function  $\varphi$  on  $\mathbf{R}$ , we set

$$D(\varphi, T) = \{(x, t); \varphi(x) < t < T\}$$
.

If  $\varphi$  is bounded below, then the property (U) holds for  $D(\varphi, T)$ .

By Theorem we obtain the following

**Corollary.** Let  $\varphi$ , T and  $D(\varphi, T)$  be as in Theorem, and assume that  $\varphi$  is bounded below. Let u, v be positive solutions of the heat equation on  $D(\varphi, T)$ . If u-v vanishes continuously on  $\partial_{\varphi}D(\varphi, T)$ , then u=v on  $D(\varphi, T)$ .

On the other hand, for  $D = \{(x, t); mt < x\}$ , the property (U) does not hold (see Lemma 7, Proposition 2). By using the Appell transformation, we shall show that this is critical (see Proposition 1).

### 2. Preliminaries

For a domain D in  $\mathbb{R}^2$  we denote by  $\partial_p D$  the set of  $(x, t) \in \partial D$  (the boundary of D) satisfying  $V \cap D \cap (\mathbb{R} \times (t, \infty)) \neq \emptyset$  for every neighborhood V of (x, t) and call it the parabolic boundary of D. For  $X=(x, t) \in D$ , we denote by  $\omega_p^X$ 

the parabolic measure at X with respect to D. The parabolic measure  $\omega_D^X$  is supported by  $\partial_p D \cap \mathbf{R} \times (-\infty, t]$  and for any bounded continuous function f on  $\partial_p D$ , the function  $\int f d\omega_D^X$  of X is the solution of the Dirichlet problem with boundary value f. A boundary point  $Y \in \partial_p D$  is said to be regular if for every bounded continuous function f on  $\partial_p D$ ,

$$\lim_{\substack{X \to Y \\ X \in D}} \int f d\omega_D^X = f(Y) \, .$$

REMARK 1. We note that every boundary point in  $\partial_{p} D(\varphi, T)$  is regular, where  $\varphi$ , T and  $D(\varphi, T)$  are as in Theorem (see for example [1]).

We say that u is a parabolic function on a domain D if

$$(\partial/\partial t - \partial^2/\partial x^2) u = 0$$
 on  $D$ .

Recalling the Perron-Wiener-Brelot method, we have

**Lemma 1.** Let D be a domain in  $\mathbb{R}^2$  and u a nonnegative parabolic function on D. If u is continuous on  $D \cup \partial_p D$ , we have

$$u(X) \ge \int u d\omega_D^X$$

on D.

Let W be the fundamental solution of the heat equation, defined by

$$W(x, t; y, s) = (4\pi(t-s))^{-1/2} \exp\left(-\frac{(x-y)^2}{4(t-s)}\right) \text{ for } t > s$$
  
= 0 for  $t \le s$ .

We put

$$G(x, t; y) = W(x, t; y, 0) - W(x, t; -y, 0)$$

and for  $m \in \mathbf{R}$ ,

$$K_m(x, t; s) = \frac{x - mt}{t - s} W(x, t; ms, s) .$$

Then the function G(x, t; y) of y is the density of the parabolic measure at (x, t) with respect to  $(0, \infty) \times (0, T)$  (T>0). By Lemma 1 we obtain the following

**Lemma 2.** Let u be a nonnegative parabolic function on  $D=(0, \infty)\times(0, T)$  for T>0. If u is continuous on  $\partial_p D \cup D$ , then we have

$$u(x,t) \geq \int_0^\infty G(x,t;y) u(y,0) \, dy \, .$$

On the other hand, Kaufman and Wu showed in [2] that  $K_m(x, t; s)$  is the

density at (ms, s) of the parabolic measure at (x, t) with respect to  $\Omega_m = \{(x, t); mt < x\}$ . More precisely, we have

**Lemma 3.** For m,  $T_0$  and  $T_1$  in R, we set

$$\Omega = \{(x, t); T_0 < t < T_1, mt < x\}$$
.

Then for  $(x, t) \in \Omega$ ,

$$\omega_{\Omega}^{(x,t)} = K_m(x,t;s) \, ds$$

on  $\{(ms, s); T_0 \le s \le T_1\}$ .

## 3. The boundary Harnack principle

For  $\alpha > 0$ , we denote by  $\tau_{\alpha}$  the parabolic dilation defined by  $\tau_{\alpha}(x, t) = (\alpha x, \alpha^2 t)$ . The heat equation is stable for every parabolic dilation. This implies the following

REMARK 2. The parabolic measure  $\omega_{\tau_{\alpha}(D)}^{\tau_{\alpha}(X)}$  is equal to the  $\tau_{\alpha}$ -image of  $\omega_D^X$ .

For  $Y \in \mathbb{R}^2$  and r > 0, we put

$$V_r(Y) = \{Y+(x,t); -r^2 < t < r^2, -r+tr^{-1} < x < r\}$$

and

$$V'_r(Y) = V_r(Y) \setminus \{Y+(x,t); x \leq 0, t \leq 0\}$$
.

Since Y is a regular boundary point of  $V'_r(Y)$ , we have the following lemma (use Remark 2).

**Lemma 4.** For any  $\varepsilon > 0$ , there exists  $0 < \beta < 1$  independent of r such that

 $\omega_{V_r'(Y)}^X(\partial V_r'(Y) \setminus \{Y + (x, t); x \le 0, t \le 0\}) < \varepsilon$ 

for all  $X \in V'_{\beta r}(Y)$ .

To prove our main theorem, the following lemma plays an important role, which is a special form of the boundary Harnack principle.

**Lemma 5.** Let  $\varphi$  be a decreasing upper semicontinuous function on  $[0, \infty)$  satifying  $\varphi(0)=2$  and  $\varphi \ge 0$ . Put

$$D = \{(x, t); 0 < x, \varphi(x) < t < 2\}.$$

Then there exists a constant C>0 such that for any nonnegative parabolic function u on D vanishing continuously on  $\partial_{p}D$ 

$$u(x, t) \leq C u(x, 1)$$

for every (x, t) with  $1 < x < \infty$ ,  $\varphi(x-1) < 1/2$  and with  $\varphi(x) < t < 1/2$ .

Proof. For each  $x_0 \in (1, \infty)$  with  $\varphi(x_0-1) < 1/2$ , we set

$$D_{x_0} = D \cap \{(x, t); 0 < x < x_0 + 2, \varphi(x_0 + 1) < t < 2\}$$

First we shall show that for  $Y_0 = (y_0, \varphi(x_0+1))$  with  $x_0+1 < y_0 < x_0+3/2$ , there exists a constant  $C_0 > 0$  independent of  $x_0$  and  $y_0$  such that for  $r \le s \le 1/4$  and any  $x \in D_{x_0} \setminus V_s(Y_0)$ ,

(1) 
$$\omega_{D_{x_0}}^X(V_r(Y_0) \cap \partial D_{x_0}) \leq C_0 \omega_{D_{x_0}}^{A_s(Y_0)}(V_r(Y_0) \cap \partial D_{x_0}),$$

where  $A_r(Y_0) = Y_0 + (r, 2r^2)$ . Put  $f(x) = \omega_{D_{x_0}}^X(V_r(Y_0) \cap \partial D_{x_0})$ . It suffices to show that

(2) 
$$f(X) \leq C_0 f(A_{2^k r}(Y_0)), X \in D_{x_0} \setminus V_{2^k r}(Y_0)$$

for every positive integer k with  $2^{k}r < 1/4$ .

By the maximum principle and the Harnack inequality, we have

$$\begin{split} f(X) \leq & 1 = C_1 \, \omega_{V'_r(Y_0)}^{r_r(2(Y_0)} \left( \partial V'_r(Y_0) \cap \{Y_0 + (x, t); \, t \leq 0, \, x \leq 0\} \right) \\ \leq & C_1 \, \omega_{V'_r(Y_0) \cap D_{X_0}}^{r_r(2(Y_0)} \left( \partial D_{x_0} \cap \partial V'_r(Y_0) \right) \\ \leq & C_1 f(A_{r/2}(Y_0)) \\ \leq & C_1 \, C_2 f(A_r(Y_0)) \,, \end{split}$$

for some  $C_1, C_2 > 0$  independent of r, which shows (2) for k=0. By Remark 2, we have

$$f(x) \leq C_1 C_2^2 f(A_{2r}(Y_0))$$
.

By using Lemma 4 for  $\mathcal{E}=C_2^{-1}$ , there exists  $0 < \beta < 1$  such that for any  $Y \in \partial V_{2r}(Y_0) \cap \partial D_{x_0}$  and  $X \in V_{\beta r}(Y) \cap D_{x_0}$ ,

$$f(X) \leq C_1 C_2^2 f(A_{2r}(Y_0)) \omega_{V'_r(Y)}^X (\partial V'_r(Y_0) \cap \{Y + (x, t); t \leq 0, x \leq 0\}^c) \\\leq C_1 C_2 f(A_{2r}(Y_0)),$$

where  $\{\cdot\}^{c}$  denotes the complement of a set  $\{\cdot\}$ . By the Harnack inequality, there exists  $C_{3}>0$  such that

$$f(X) \leq C_3 f(A_{2r}(Y_0)), X \in \partial V_{2r}(Y_0) \cap D_{x_0} \bigcap_{Y \in \partial V_{2r} \cap D_{x_0}} V_{\beta r}(Y)^c,$$

so that by the maximum principle,

$$f(X) \leq C_0 f(A_{2r}(Y_0)), X \in D_{x_0} \setminus V_{2r}(Y_0)$$

with  $C_0 = \max(C_1 C_2, C_3)$ , which shows (2) for k=1. Inductively we have (2) for every k with  $2^k r < 1/4$ .

Similarly we see that for  $Y_0 = (y_0, t_0) \in \partial D_{x_0}$  with  $y_0 \ge x_0 + 2/3$ ,  $t_0 \le 1/2$  and for  $r \le s \le 1/4$ ,

$$(3) \qquad \omega_{D_{x_0}}^{\chi}(U_r(Y_0) \cap \partial D_{x_0}) \leq C' \omega_{D_{x_0}}^{B_s(Y_0)}(U_r(Y_0) \cap \partial D_{x_0}), X \in D_{x_0} \setminus U_s(Y_0)$$

with some constant C' > 0, where

$$U_r(Y) = \{Y + (x, t); -r^2 < t < r^2, -r < x < r - tr^{-1}\},$$

and

$$B_r(Y) = Y + (-r, 2r^2).$$

From (1), (3) and the Harnack inequality, it follows that with some constant C>0,

$$\omega_{Dx_0}^{(x,t)}(V_r(Y_0)\cap\partial D_{x_0}) \leq C \,\omega_{Dx_0}^{(x_0,1)}(V_r(Y_0)\cap\partial D_{x_0})\,,$$

for every  $Y_0 = (y_0, t_0) \in \partial D_{x_0}$  with  $y_0 \le x_0 + 1$ ,  $t_0 \le 1/2$  and every  $(x, t) \in D_{x_0}$  with  $x \le x_0, t \le 1/2$ . Since for  $t < 1, \omega_{D_{x_0}}^{(x,t)}$  is absolutely continuous with respect to  $\omega_{D_{x_0}}^{(x_0,1)}$ , we have

$$\omega_{D_{x_0}}^{(x,t)} \le C \, \omega_{D_{x_0}}^{(x_0,1)} \quad \text{on} \quad \partial D_{x_0} \cap [x_0+1, x_0+2] \times [\varphi(x_0+1), 1/2]$$

for every  $(x, t) \in D_{x_0}$  with  $x \le x_0$ ,  $t \le 1/2$ , which proves Lemma 5.

### 4. The uniqueness of positive parabolic functions

First we show the following plain

**Lemma 6.** Let  $\varphi$  be a decreasing upper semicontinuous function bounded below on  $[a, \infty)$  for some  $a \in \mathbf{R}$ , and put

$$D = \{\!(x,t); a \!<\! x, arphi(x) \!<\! t \!<\! arphi(a)\!\}$$
 .

If a nonnegative parabolic function u on D vanishes continuously on  $\partial_p D$ , then u=0 on D.

Proof. We may assume that a=0,  $\varphi(0)=3$  and  $\lim_{x\to\infty} \varphi(x)=0$ . It suffices to show that u(x, 1)=0 if  $(x, 1)\in D$ .

Let  $(x_0, 1) \in D$  be fixed. We choose  $y_0 > x_0+1$  with  $\varphi(y_0-1) < 1/4$ . For  $y > y_0$ , we put

$$J_y = \{(x, t); x < y, 0 < t < 2\}$$
.

By the Harnack inequality and Lemma 5, there exists a constant C>0 such that

$$u(y,t) \leq Cu(y,1)$$

for  $y > y_0$  and  $\varphi(y) < t < 1$ . Hence we have

$$u(x_0, 1) = \int u(y, t) \, d\omega_{D \cap J_y}^{(x_0, 1)} \\ \leq C \, u(y, 1) \, \omega_{D \cap J_y}^{(x_0, 1)}(\{y\} \times [0, 1])$$

$$\leq C u(y, 1) \omega_{f_y}^{(x_0, 1)}(\{y\} \times [0, 1])$$
  
=  $C u(y, 1) \int_0^1 K_0(y - x_0, 1; s) ds$ ,

for every  $y > y_0$  (see Lemma 3). Since Lemma 2 gives

$$\int_{y_0}^{\infty} u(y, 1) \int_0^1 K_0(y - x_0, 1; s) \, ds \, dy < \infty \, ,$$

we have

$$u(x_0, 1) \leq C \liminf_{y \to \infty} (u(y, 1) \int_0^1 K_0(y - x_0, 1; s) ds) = 0,$$

which shows Lemma 6.

Now we shall prove our main theorem.

**Theorem.** For  $T \in (-\infty, \infty]$  and an upper semicontinuous function  $\varphi$  bounded below on **R**, we set

$$D(\varphi, T) = \{(x, t); \varphi(x) < t < T\}$$
.

Let u be continuous on  $D(\varphi, T) \cup \partial_{\varphi} D(\varphi, T)$  and nonnegative parabolic on  $D(\varphi, T)$ . If u=0 on  $\partial_{\varphi} D(\varphi, T)$ , then u=0 on  $D(\varphi, T)$ .

Proof. Put

$$\psi(x) = \min \left( \sup_{y \leq x} \varphi(y), \sup_{y \geq x} \varphi(y) \right).$$

Then clearly  $\varphi \leq \psi$ . We can easily check that the upper semicontinuity of  $\psi$  follows from that of  $\varphi$ . Furthermore there exists  $a \in [-\infty, \infty]$  such that  $\psi$  is increasing on  $(-\infty, a)$  and decreasing on  $(a, \infty)$ . From the definition of  $\psi$ , it follows that for a nonnegative parabolic function u on  $D(\varphi, T)$  vanishing continuously on  $\partial_{\varphi} D(\varphi, T)$ , u(x, t)=0 for every (x, t) with  $\varphi(x) \leq t < \psi(x)$ . Hence

$$u = 0$$
 on  $\partial_{\nu} D(\psi, T)$ .

Then Lemma 6 gives u(x, t)=0 for  $(x, t)\in D(\psi, T)$  with  $t < \sup \psi$ , which yields Theorem.

Proof of Corollary. Let u, v be positive parabolic functions on  $D(\varphi, T)$ such that u-v vanishes continuously on  $\partial_{\rho}D(\varphi, T)$ . Then for any  $\varepsilon > 0$  and T' < T, we can find an upper semicontinuous function  $\varphi_{\varepsilon}$  such that  $\partial_{\rho}D(\varphi_{\varepsilon}, T') \subset D(\varphi, T)$  and that

$$|u-v| < \varepsilon$$
 on  $D(\varphi, T') \setminus D(\varphi_{\varepsilon}, T')$ .

Lemma 1 gives

UNIQUENESS OF POSITIVE SOLUTIONS

$$u(X) - \int u \, d\omega_{D(\varphi_{\mathfrak{e}},T')}^X \ge 0 \quad \text{for} \quad X \in D(\varphi_{\mathfrak{e}},T'),$$

so that by Theorem we have

$$u(X) = \int u \, d\omega_{D(\varphi_{\mathfrak{e}},T')}^X \quad \text{for} \quad X \in D(\varphi_{\mathfrak{e}},T')$$

(see Remark 1). The similar equality holds for v. Therefore for  $X \in D(\varphi_e, T')$ ,

$$|u(X)-v(X)| \leq \int |u-v| d\omega_{D(\varphi_{\varepsilon,T'})}^X < \varepsilon$$
,

which shows Corollary.

### 5. Application

In this section, by using the Appell transformation, we shall give some application of our theorem.

For  $(x, t) \in \mathbf{R} \times (-\infty, 0)$ , we define

$$\tau(x, t) = (-t^{-1}x, -t^{-1})$$

and

$$Au(x, t) = W(x, t; 0, 0) u(t^{-1} x, -t^{-1})$$

for a function u on a domain D in  $\mathbb{R} \times (-\infty, 0)$ . The Appell transformation gives a one-to-one correspondence of the parabolic functions on D to the parabolic functions on  $\tau(D)$ .

By using the Appell transformation, we have

**Lemma 7.** For  $a \in (-\infty, \infty]$  and an upper semicontinuous function  $\psi$  on  $(-\infty, a)$ , we set

$$\Omega(\psi) = \{(x,t); t < a, \psi(t) < x\}$$

If  $\limsup_{t \to 0} t \psi(-t^{-1}) < \infty$ , then the property (U) does not hold.

This and our main theorem imply the following

**Proposition 1.** Let  $\psi_{\alpha}(t) = (-t)^{\alpha}$  and  $\Omega(\psi_{\alpha})$  be as in Lemma 7. If  $\alpha > 1$ , the property (U) holds for  $\Omega(\psi_{\alpha})$  but if  $\alpha \leq 1$ , then the property (U) does not hold.

EXAMPLE. Let  $\psi(t) = -t \log \log \log (-t)$  on  $(-\infty, -e^{\epsilon})$ . Then the property (U) holds for  $\Omega(\psi)$ .

Finally we consider an integral representation of positive parabolic functions on  $\Omega_m = \{(x, t); mt < x\}$ .

**Proposition 2.** For every positive parabolic function u on  $\Omega_m$ , there exist

positive Borel measures  $\mu$ ,  $\nu$  and a constant  $C \ge 0$  such that

$$u(x,t) = \int_{-\infty}^{\infty} K_m(x,t;s) d\mu(s) + \int_{-m/2}^{\infty} k(x,t;\lambda) d\nu(\lambda) + C(x-mt) \exp(m^2t/4 - mx/2),$$

where  $k(x, t; \lambda) = \exp(\lambda^2 t + \lambda x) - \exp((\lambda + m)^2 t - (\lambda + m)x)$ . The measures  $\mu, \nu$  and the constant C are uniquely determined.

This is a modification of the following proposition by the Appell transformation. Kaufman and Wu [2] and Mair [3] obtained the integral representation for m=0.

**Proposition 3** (see [6]). For every positive parabolic function u on  $(0, \infty) \times (0, \infty)$ , there exist unique positive measures  $\mu$ ,  $\nu$  on  $\mathbf{R}$  such that

$$u(x,t) = \int_{-\infty}^{\infty} K_0(x,t;s) \, d\mu(s) + \int_{0}^{\infty} G(x,t;y) \, d\nu(y) \, .$$

ACKNOWLEDGEMENT. The author is thankful to the referee for his suggestions.

References

- L. Evans and R. Gariepy: Wiener criterion for the heat equation, Arch. Rational Mech. Anal., 78(1982), 293-314.
- [2] R. Kaufman and J.-M. Wu: Parabolic potential theory, J. Differential Equation (2) 43 (1982), 204-234.
- [3] B.A. Mair: Integral representations for postive solutions of the heat equation on some unbounded domains, Illinois J. Math. (1) 30(1986), 175-184.
- [4] J. Moser: A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17(1964), 101-134.
- [5] N.A. Watson: Green functions, potentials and the Dirichlet problem for the heat equation, Proc. London Math. Soc. (3) 33(1976), 251-298.
- [6] D.V. Widder: The heat equation, Academic Press, Orlando, Florida, 1975.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi Osaka 558, Japan