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1. Introduction

Let D be an unbounded domain in R? and % a nonnegative solution of the
heat equation on D. We consider the property (U) for D:

(0): #u=0 on 9,D=>u=0 onD,

where 8,D is the parabolic boundary of D. In the case of D=RXx(0, T) or
(0, 00) % (0, T), it is known that the property (U) holds (see [6]).

In this paper, by using a special form of the boundary Harnack principle,
we shall show the following generalization.

Theorem. For T&(— oo, o] and an upper semicontinous function @ on R,
we set
D(p, T) = {(x,1); p($)<t<T} .
If @ is bounded below, then the property (U) holds for D(p, T).

By Theorem we obtain the following

Corollary. Let @, T and D(p, T) be as in Theorem, and assume that ¢
is bounded below. Let u, v be positive solutions of the heat equation on D(gp, T).
If u—v vanishes continuously on 8,D(p, T), then u=v on D(p, T).

On the other hand, for D= {(x, t); mt<x}, the property (U) does not hold
(see Lemma 7, Proposition 2). By using the Appell transformation, we shall
show that this is critical (see Proposition 1).

2. Preliminaries

For a domain D in R? we denote by 8,D the set of (x, ) €3D (the bound-
ary of D) satisfying VN DN (R X (t, 0))==@ for every neighborhood V of (x, #)
and call it the parabolic boundary of D. For X=(x,t)ED, we denote by v}
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the parabolic measure at X with respect to D. The parabolic measure w3 is
supported by 8,D N R X (— oo, t] and for any bounded continuous function f on
8,D, the function [ fdwj of X is the solution of the Dirichlet problem with
boundary value f. A boundary point Y €9,D is said to be regular if for every
bounded continuous function f on 9,D,

lim 5 fdof = f(Y).

XEeD

RemARk 1. We note that every boundary point in 8,D(@, T') is regular,
where @, T and D(p, T) are as in Theorem (see for example [1]).

We say that u is a parabolic function on a domain D if
(0/0t—0%*/0x*)u =0 on D.
Recalling the Perron-Wiener-Brelot method, we have

Lemma 1. Let D be a domain in R* and u a nonnegative parabolic func-
tion on D. If u is continuous on DU 3,D, we have

u(X)ZS udwk
on D,

Let W be the fundamental solution of the heat equation, defined by

Wi(x, t;, s) = (4 (t—s))~2 exp (—%*_lz;) for t>s
=0 for t<s.
We put

G(x: t;y) = W(x» t;y, O)“W(x’ t; —y, O)

and for meR,

K, (x,t;5) = xt——mt W(x, t; ms,s) .
—$

Then the function G(x, ¢; y) of y is the density of the parabolic measure at (x, )
with respect to (0, o) X (0, T) (T'>0). By Lemma 1 we obtain the following

Lemma 2. Let u be a nonnegative parabolic function on D=(0, o) x (0, T')
for T>0. If uis continuous on 8,D U D, then we have

u(x, t)zs: G(x, t;y)u(y,0)dy.

On the other hand, Kaufman and Wu showed in [2] that K,(x, ¢; s) is the
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density at (ms, s) of the parabolic measure at (x, #) with respect to Q,={(x, ?);
mt<x}. More precisely, we have

Lemma 3. Form, T, and T, in R, we set
Q= {(x,2); To<t<T,, mt<x} .
Then for (x,t) EQ,
o§'D = K,(x,t;s)ds

on {(ms, s); To<s<T}.

3. The boundary Harnack principle

For a>0, we denote by 7, the parabolic dilation defined by 7,(x, #)=
(ax, a®). The heat equation is stable for every parabolic dilation. This im-
plies the following

REMARK 2. The parabolic measure ;%3] is equal to the 7,-image of w3.

For Y& R? and r>0, we put

V(Y) = {Y+(x,t); —rP<t<r?, —r+tr-i<a<r},
and
ViY) = V(Y)\{Y+(x,2); »<0, <0} .

Since Y is a regular boundary point of V/(Y), we have the following lemma
(use Remark 2).

Lemma 4. For any €>0, there exists 0<B<1 independent of r such that
oty OVIYN\{Y+(, t); x<0, t<0})<€
for all XeV§,(Y).

To prove our main theorem, the following lemma plays an important role,
which is a special form of the boundary Harnack principle.

Lemma 5. Let @ be a decreasing upper semicontinuous function on [0, o)
satifying @(0)=2 and =>0. Put

D = {(x, t); 0<wx, p(x)<<t<2} .

Then there exists a constant C>0 such that for any nonnegative parabolic function
u on D vanishing continuously on 0,D

u(x, t) <Cu(x, 1)

or every (x,t) with 1<x<<oco, @(x—1)<<1/2 and with p(x)<<t<<1/2.
Y
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Proof. For each x,E(1, o) with (x,—1)<1/2, we set
D, = D {(x, 1); 0<w<sy+2, g+ 1) <t<2} .

First we shall show that for Yy=(y,, @(%+1)) with x,+1<y,<wx,+3/2, there
exists a constant C,>>0 independent of x, and y, such that for »<s<1/4 and
any x€D, \V(Y,),

(1) a))lgxo(Vr( YO) ﬂ ano) S CO w.g;(oYO) (Vr( YO) n 6on) )

where 4,(Yy)=Y,+(r, 2¢%). Put f(x)=w3, (V,(Y,) N0D,,). It suffices to show
that

(2) JX)<Cof(Az,(Y0)), X ED\Vor(Yo)

for every positive integer k with 2*r<<1/4.
By the maximum principle and the Harnack inequality, we have

F(X)<1=C, 022F9 QV U Y,) N { Yo+ (x, ); £<0, x<0})

"p(Yo)
<Cy0f7lihns, 0D: NV (V)
<C f(A,(Yy))
<C GCf(A(Yy),

for some C,, C,>0 independent of r, which shows (2) for k&=0. By Remark
2, we have

fx)<C, C%f(AZr( Yy)) -

By using Lemma 4 for £&=C7?, there exists 0<<B<1 such that for any Y &
oV, (Y)NoD, and XEV,(Y)ND

%0?

FX)ZC, CEf(Au(Yo) @cry OV A(¥o) 1 {¥+(x, 1); 10, ¥<0F)
<C, C,f(4:,(Yy),

where {:}° denotes the complement of a set {-}. By the Harnack inequality,
there exists C3;>0 such that

F(X)<Cs f(Au(Yo)), XEWV,(Yo)ND,, n Ve Y)
Y €0V, NDy,

so that by the maximum principle,
FX)<Co f(4,(Yo)), XED,\V(Yo)

with Cy=max (C, C,, C;), which shows (2) for k=1. Inductively we have (2)
for every k with 2fr<<1/4.

Similarly we see that for Y,=(y,, t,) 0D, with y,>x+2/3, t,<1/2 and
for r<s<1/4,
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() @b (U{Yo)NOD,)<C ol (U,(Y) N0D,), XED,\U(Y)
with some constant C’'>0, where

U(Y) = {Y+(x,2); —r<t<r? —r<ax<r—tr’'},
and
B,(Y)= Y+(—r,2r%.
From (1), (3) and the Harnack inequality, it follows that with some constant
Cc>0,
o5’ (V(Yo) N0D,)<C s (V(Y,)N0oD,,),
for every Y,=(yo, to) €0D,, with y,<x,+1, $,<1/2 and every (x, t)E D, with
x<x, t<1/2. Since for t<1, »%;!) is absolutely continuous with respect to
w5, we have
03:)<C 0%y on 8D, N[x+1, %+2] X [@(%+1), 1/2]

for every (x, t)ED,, with x<x,, 1<1/2, which proves Lemma 5.

4. The uniqueness of positive parabolic functions
First we show the following plain

Lemma 6. Let @ be a decreasing upper semicontinuous function bounded
below on [a, o) for some aE R, and put

D = {(x, t); a<w, p(x)<t<ep(a)} .

If a nonnegative parabolic function u on D vanishes continuously on 9,D, then
u=0 on D.

Proof. We may assume that a=0, (0)=3 and l1m @(x)=0. It suffices
to show that u(x, 1)=0 if (x, 1)ED.

Let (%, 1)€D be fixed. We choose y,>x,+1 with @(y,—1)<<1/4. For
Y>%,, we put

Iy = A(x1t); x<<y, 0<2<2} .
By the Harnack inequality and Lemma 5, there exists a constant C>0 such that
u(y, )<Cu(y, 1)
for y>y, and (y)<t<<l. Hence we have

uw 1) = [ u(y,2) dofsy,
<Cu(y, 1 oy (0 < [0, 1)
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< Cu(y, 1) oo ({3} x[0, 1])
= Cu(y,1) S:Ko(y-xo, 1;5) ds,

for every y>y, (see Lemma 3). Since Lemma 2 gives

3 1
(" a0 K013 5) dsty<eo,
Y 0
we have
1
#(x, 1)< C lim inf (u(y, 1) S Ky(y—x5,1;8)ds)=0,
y-»oo 0
which shows Lemma 6.
Now we shall prove our main theorem.

Theorem. For T&(—oo, o] and an upper semicontinuous function @
bounded below on R, we set

D(p, T) = {(»,1); p(x)<t<T} .
Let u be continuous on D(@, T) U 8,D(p, T') and nonnegative parabolic on D(p, T).
If u=0on 0,D(p, T), then u=0 on D(p, T).
Proof. Put
V(%) = min (sup @(y), sup @()) -

Then clearly @ <+r. We can easily check that the upper semicontinuity of Jr
follows from that of @. Furthermore there exists a&[— oo, oo] such that «J is
increasing on (—oo, @) and decreasing on (@, ). From the definition of +, it
follows that for a nonnegative parabolic function # on D(p, T') vanishing con-
tinuousy continuously on 3,D(@, T'), u(x, £)=0 for every (x, t) with ¢(x)<t<
4r(x). Hence

u=0 on 9,D@{, T).

Then Lemma 6 gives u(x, t)=0 for (x, ) € D(vr, T') with ¢<sup +J», which yields
Theorem.

Proof of Corollary. Let u, v be positive parabolic functions on D(p, T)
such that #—wv vanishes continuously on 8,D (e, T'). Then for any £€>0 and
T"<T, we can find an upper semicontinuous function @, such that 3,D(e., T")
CD(@, T) and that

lu—v| <€ on D(p, T'’\D(p., T").

Lemma 1 gives
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u(X)——s 4 dakp, 1120 for XED(p, T'),
so that by Theorem we have
w(X) = S wdokw, vy for XED(ge T")
(see Remark 1). The similar equality holds for v. Therefore for X € D(g,, T"),
|w(X)—o(X)| < lu—0| dofe, <t
which shows Corollary.

5. Application

In this section, by using the Appell transformation, we shall give some ap-
plication of our theorem.
For (x, t)€ R X (— o0, 0), we define
T(%, 8) = (—t7 %, —t77)
and
Au(x,t) = W(x,t;0,0) u(t'x, —t7),

for a function # on a domain D in RX(—o0,0). The Appell transformation
gives a one-to-one correspondence of the parabolic functions on D to the para-
bolic functions on (D).

By using the Appell transformation, we have

Lemma 7. For aE(—oo, oo] and an upper semicontinuous function +r on
(— oo, a), we set ‘

Q) = {(x, t); t<<a, Y(t)<x} .
If lim sup & yo(—t7')<oo, then the property (U) does not kold.
130
This and our main theorem imply the following

Proposition 1. Let b, (t)=(—1)* and Q(y,) be as in Lemma 7. If a>1,
the property (U) holds for Q(+r,) but if a <1, then the property (U) does not hold.

ExampLE. Let y(t)=—t log log log (—?) on (—oo, —e¢°). Then the prop-
erty (U) holds for Q(«r).

Finally we consider an integral representation of positive parabolic func-
tions on Q,={(x, t); mt < x}.

Proposition 2. For every positive parabolic function u on Q,, there exist
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positive Borel measures u, v and a constant C >0 such that
u(x, 1) — j“’ K%, 13 5) dM(s)+S” JLCATENEZS
—00 -m/2
+C(x—mt) exp (m*t/4—mx[2) ,
where k(x, t; N)=exp (\%t+ax)—exp (A+m)*t—(N+m) x). The measures u, v
and the constant C are uniquely determined.

This is a modification of the following proposition by the Appell transfor-
mation. Kaufman and Wu [2] and Mair [3] obtained the integral representa-
tion for m=0.

Proposition 3 (see [6]). For every positive parabolic function u on (0, o)X
(0, o), there exist unique positive measures u, v on R such that

u(x, 1) = j“m Ko(, £; ) d,,(s)+5: G(x, t;y) dv(y) .
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