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Abstract

This manuscript is concerned with long-time dynamics for a laminated beam which consists
of two identical layers of uniform thickness, taking into account that an adhesive of small
thickness is bonding the two surfaces thereby producing an interfacial slip. Using the variable
norm technique of Kato, we prove the global well-posedness of solutions. For asymptotic
behavior, we apply the Energy Method. Assuming the control through a time-varying delay
just on the transverse displacement of the beam, we establish the exponential decay of energy
to the system by using an appropriate Lyapunov functional.

1. Introduction

The dynamics of laminated beams is a relevant research subject due to the high appli-
cability of such materials in the industry. Of particular interest is a mathematical model of
laminated beam (1.1)-(1.3) based on the Timoshenko system proposed by Hansen and Spies
[12, 13] for two-layered beams in which a slip can occur at the interface of contact

(1.1) ouy + G —uy), =0, x€(0,L), t >0,
(1.2) IQ(3Stt =) =G —uy) = D38y — i) =0, x€(0,L), 120,
(1.3) 31,81 + 3G — uy) +460S + 4yoS; —3DS,, =0, x€(0,L), t >0,

where # = u(x,t) denotes the transverse displacement, ¥ = Y(x,t) represents the rotation
angle, S = S(x, ) is proportional to the amount of slip along with the interface at time ¢ and
longitudinal spatial variable x, respectively, o, G, I,, D, 6o, yo are the density of the beams,
the shear stiffness, mass moment of inertia, flexural rigidity, adhesive stiffness and adhesive
damping of the beams. In this model, we have a “glue” layer of negligible thickness that
bonds the two adjoining surfaces and produce the restoring force S;. In [43] was proved that
the frictional damping S; created by the interfacial slip alone is not enough to stabilize this
system exponentially to its equilibrium state. Naturally, the question arises of studying the
action of additional stabilizing mechanisms on this model.

In recent years, the control of Partial Differential Equations with time delay effects has
become an attractive area of research. In fact, time delays so often arise in many physical,
chemical, biological and economical phenomena, see [38] and references therein. Whenever
energy is physically transmitted from one place to another, there is a delay associated with
the transmission, see [37]. Time delay is the property of a physical system by which the
response to an applied force is delayed in its effect, and the central question is that delays
source can destabilize a system that is asymptotically stable in the absence of delays, see [7].
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Problem with delay as internal feedback was considered in [27], where was proved the expo-
nential decay of solution by Energy Method. By semigroup approach in [29] was proved the
well-posedness and exponential stability for a wave equation with frictional damping and
nonlocal time-delayed condition. In [5] was proved the global existence and energy decay
of solutions for a wave equation with non-constant delay and nonlinear weights.

The stability of a Timoshenko beam system with boundary time delays was studied in
[14]. In [42], the authors considered the interior damping and boundary delay. The approach
for boundary varying delay we cite [28]. In [19], the authors obtained the well-posedness
and exponential stability for Timoshenko beam with delay on the frictional damping under
the condition gy > wp, > 0 and 7(f) = 7. In [16] was extended the result of [19] for 7(¢)
a time-varying function. For a transmission problem in the presence of history and delay
terms, under appropriate hypothesis on the relaxation function and the relationship between
the weight of the damping and the weight of the delay, in [22] was proved well-posedness by
using the semigroup theory and a decay result by introducing a suitable Lyapunov functional.
Timoshenko theory was started in 1921 with S. P. Timoshenko [40, 41] and since then,
Timoshenko system has been extensively studied by several authors, with different kinds of
stabilization mechanisms. In [9] was considered a Timoshenko beams with linear time delay
terms 7. In absence of delay, the existence and energy decay of the Timoshenko system has
been extensively studied by several authors, we can cite a few of them [1, 2, 9, 10, 18, 23,
24, 25, 32, 34, 35, 36]. For Timoshenko system with delay we cite [3, 31, 11].

Structures with interfacial slip have gained much in popularity and are known under the
name of laminated beams. They are of considerable importance in engineering, for instance
we cite, [6, 13, 20, 21, 30, 33, 39]. In [4] was considered the following laminated beam with
a single control in form of a frictional damping in the second equation

(] 4) PW + G(lﬁ - wx)x =0,
(1.5) 1,31t = Yur) = DB3Sxx — Yax) = G — wy) + 63, — ¢y) = 0,
(1.6) 31,84 — 3Dsy + 3G — wy) +4ys = 0.

The authors proved that the unique dissipation through the frictional damping is strong
enough to exponentially stabilize the system similar to the full damped Timoshenko sys-
tem.

In [8] was considered the laminated Timoshenko beams with time delay terms 7. Using
the notion of effective rotation angle & = 3s — ¢ in (1.1)-(1.3) with 69 = 0 and yy = 0 and
assuming that the weights of the delay are small, was established the exponential decay of
energy to the system (1.7)-(1.9) by using an appropriate Lyapunov functional,

(L.7) ow; +G3Bs—&—wy) +aw(x,t—1)=0,
(1.8) L&y — Déry — G(3s — & —w,) + méy(x, 1 —7) = 0,
(1.9) Iysi — Dsyx + G(3s — & —wy) + azsi(x,t —71) = 0.

To the best of our knowledge, laminated Timoshenko beams with time-varying delay ()
was not considered previously. We consider the following damped system bellow where the
time-varying delay act in the frictional damping on the transversal vibrations of the beam

(1.10) ouy(x, 1) + GO — u ) (x, 1) + pyu(x, 1) + pou(x, t — (1)) = 0,
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(L11)  L,(38: — i) (x, 1) = G — up)(x, 1) = DBSyx — Ya)(x, 1) + B(3S; — ¥)(x, 1) = 0,
(1.12) 3IySt,(x, 1)+ 3G — uy)(x, 1) + 400S(x, t) + 4yoS:(x,t) — 3DS, . (x,1) = 0.

Our purpose in this paper is the asymptotic behavior of the solution. The plan of the paper
is as follows. First, we present the well-posedness of the problem (1.10)-(1.12). Next, we
use the direct method, see [17], that consists in the use of appropriated multiplies to build a
functional of Lyapunov for the system and our challenge is to prove the exponential stability
of the damped system (1.10)-(1.12) with time-varying delay.

2. The well-posedness

In this section, under the assumption

2.1 M2 < V1 —du

we present a existence result similar to the one obtained in [26] for a simple wave equation.
We introduce as in [28] the following new variable

(2.2) 2(x,p,1) = u(x,t = t()p), x€(0,L), p€[0,1], £>0.
It is straight forward to check that z satisfies
T(I)Zt(x,P, t) + (l - T’(t)p)zp(x’pe t) = 0’

consequently, problem (1.10)-(1.12) is equivalent to

(2.3) Oty + GO — )y + paus + poz(x, 1,1 = 0,
2.4) 1o(3Su =) = GW — ux) = D3Sx = ¥x) + B3S; — ) = 0,
(2.5) 31,8y + 3G — uy) +460S + 4yoS; = 3DS, = 0,
(2.6) 0z (x,p, ) + (1 = T (Dp)zp(x, p, 1) = 0.
The above system is subject to the initial data
2.7 (u(x,0),¥(x,0), S(x,0)) = (uo(x), Yo(x), So(x)),
(2.8) (ur(x, 0), Y1(x, 0), Sy(x, 0)) = (u1(x), Y1 (x), $1(x)),
(2.9) 2(x,p,0) = fo(x, =7(0)p)

and Dirichlet boundary conditions

(2.10) u(0,2) = ¥(0,1) = (0,1 =0,
(2.11) u(L,t) =y(L,t) =S(L,1) =0,

where 7(f) is a time-varying delay satisfying
(2.12) O<to<t®) <71, T@<d<1 and 7€ W>0,T), forall T > 0.
Now, we introduce the vector function
U= (uuné.é.8,5.2)",

where & = 35 — ..
The system (2.3)-(2.11) can be written as
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{ U —-AnU =0,

(2.13) U(x,0) = Up(x),

where the linear operator A(¥) is defined by

u Uy
uy _é [G(3S — & —uy)y + pyuy + oz, 1))
& &

Ao| & |=|  116GS-é-uy+Déa-pE] |,
S s,
S, L [DSw ~ GBS — & —uy) - s - 0]

: _%Zp(%ﬁ, 1)

with energy space
H = [Hy(0, L) x L*(0, L)]* x L*((0, L) x (0, 1))
and
D(A®) = {(t,ur. £,£,8.5,2)" € H: u=2(-,0)in (0, L)},
for t > 0, where
H = [H*(0,L) N Hy(0,L) x H)(0, L)]* x L* ((o, L); Hy(0, 1)).
Note that D(A(?)) is independent of time ¢ > 0, i.e.,
(2.14) D(A(t)) = D(A(0)), forall > 0.

We denote the L*(0, L) inner product by
L
(f.g) = f f(x)g(x)dx for all f,g € L*(0, L) and consequently (f, f) = |IfII*.
0

The space H is a Hilbert space with the norm

NUIE, = olludl* + LIEI + DIEN? + 3DIISI* + 31,1181
L 1
+GlI3S — € — u,ll* + 45|ISI* + f f 2 (x,p) dp dx,
0 0

for U = (u7 ut’ ga ‘ftv S’ St’ Z)T
Our existence and uniqueness result is stated as follows:

Theorem 2.1. For any initial datum Uy € H there exists a unique solution U of problem
(2.13) satisfying
UeC(0,0),H)
for the problem (2.13). Moreover, if Uy € D(A(0)) then
U € C([0, 00); D(A(0))) N C'([0, co); H).

In order to prove Theorem 2.1, we will use the variable norm technique developed by
Kato in [15]. The following Theorem is proved in [15].
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Theorem 2.2. Assume that
(1) D(A(0)) is a dense subset of H;
(2) D(A(1)) = D(A(0)), forall t > 0;
3) for all t € [0,T], A(t) generates a strongly continuous semigroup on H and the
SJamily A = {A(t) : t € [0,T]} is stable with stability constants C and m independent
of t, i.e., the semigroup (S,(s))s>0 generated by A(t) satisfies

IS/()@llze < Ce™lullye, forall u e H,s > 0;

@) A’(1) e LY ([0,T], B(D(A(0)), H)) , where LY ([0, T], B(D(A(0)), H)) , is the space
of equivalent classes of essentially bounded, strongly measurable functions from
[0, T into the set B(D(A(0)), H) of bounded operators from D(A(0)) into H.

Then problem (2.13) has a unique solution
U € C([0,T); D(A(0)) N C'([0,T): H),
for any initial datum in D(A(0)).

Proof of Theorem 2.1. To prove Theorem 2.1, we will follow method used in [26] with
the necessary modification imposed by the nature of our problem.

First, we show that D(A(0)) is dense in H. For, let U = (i, ﬁ,,é, 3,,3‘, 5,27 € H be
orthogonal to all elements of D(.A(0)) with respect to the inner product (-, -)z;:

(2.15)  0=(U, Uy = oy, ity + I(€1 &) + D{Ery Ex) + 3D(S, Sy + 31,(S1, 81
L 1
+GBS =& —uy, 38— & — i) +460¢S, 8) + f f 2(x, p)2(x, p) dp dx,
0 0

forall U = (u,un, &, &. S, S1,2)" € D(A(0)).
We firsttake u = u, = é =46 =5 =S, =0and z € D((0,L)x(0,1)). As the vector
U =(0,0,0,0,0,0,z2)" € D(A(0)) and therefore, from (2.15), we deduce that

L Al
f f z2(x, p)Z2(x, p)dp dx = 0.
0 Jo

Since D ((0, L) x (0, 1)) is dense in L? ((0, L) x (0, 1)), it follows then that Z = 0.
Similarly, let u, € D(0, L), then U = (0, u,,0,0,0,0,0)" € D(.A(0)), which implies from
(2.15) that
(us, 1) = 0,
so, as above, i1; = 0.
Next, let U = (1, 0,0,0,0,0,0)” then we obtain from (2.15) that
<Mx’ ﬁx) =0.

It is obvious that (1,0,0,0,0,0,0)" € D(A(0)) if and only if u € H*(0,L) N Hé(O, L) and
since H>(0,L) N H(l)(O, L) is dense in H(l)(O, L) with respect to the inner product (-, ‘>H5(0,L)’
we get i = 0. By the same ideas as above, we can also show that £ = § = 0. Finally for
&.,8; € DO, L), we get from (2.15)

(¢,é)=0 and (S,5)=0,
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respectively, and by density of D(0, L) in L*(0, L), we obtain &, = §, = 0.
We consequently obtain that

(2.16) D(A(0)) is dense in H.

Now, we show that the operator A(f) generates a Co—semigroup in H for a fixed r. We
define the time-dependent norm on H (which is equivalent to classical norm)

(2.17) NUIIZ = ollugd* + LlI&* + DIE? + 3DIS,I* + 31,1151

L 1
+ GIBS = & = wrll? + 460[ISIP. + £r(r) f f 2(x.p)dpds,
0 0

where ( satisfies

H2 <7< - H2

2.18 ,
=19 V1-d V1-d

thanks to hypothesis (2.1).
We calculate {A()U, U), for a fixed t. Take U = (u, u;, &, &, S, S,,2)7 € D(A(t)), then

AU, U == el = oo(ae, 1, ) = BIEN - 4ollS P
L 1
—_ gfo fo (1 — T’(I)P)Z(x,p)zp(x,p) dp dx.

Observe that

L 1 1 L 1 )
[ [ a-roprpmmdods=5 [ [ a-ropecp2pdods
0o Jo 2Jo Jo dp

’ L 1
_T () f f zz(x, p)dpdx
2 Jo Jo

L
‘s f [ =7 @), 1) - 2(x,0)] dx.
2Jo

Whereupon

(ADOU, UY, = — wllugl* = podz(x, 1), 1) — BlIEN = dyollSIP

, L L
SRl f f 2(x, p) dp dx + - & f (1 =7 (D)2 (x. 1) dx.
2 Jo Jo 2 2 Jo

Due Young’s inequality , we have

palets Do) < «/ﬁ%””’”z + B2 ; ~ e DI,
then
4 H2 ) 2
ADOU, Uy, < — | - 2 = —=— I,
(AU, U) (#1 2~ Syl
V1 -d
- (ga — () - MT) e, DIP

= BIEIP = 4yolISI* + k()U, U,
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where
o V7@
ST
From (2.12) and (2.18) we conclude that
(2.19) (AU, U); — k(t)(U,U),; <0,

which means that operator A@) = A(f) — k(D is dissipative.
Now, we prove the surjectivity of the operator A1 — A(¢) for fixed ¢ > 0 and A > 0. For this

purpose, let F = (fl,fz,f3,f4,f5,f6,f7)T € H,weseek U = (u,u;,&,4,, S, S..2)" € D(A(1))
solution of

(AU-AM)U =F,

that is verifying following system of equations

Au—u; = fi,
Aouy + G(3S — & — uy)x + puy + p2z(-, 1) = 02,
A -&=fi
(2.20) Al — G(3S — & — uy) — D€y + & = Lo fa,
AS =S8, = fs,
3A1,S; = 3DSy, +3G(3S = & — uy) + 4508 + 4y0S; = 31, fs,
Atz + (1 =7 (Dp) z, = (1) f7.

Suppose that we have found u, £ and S with the appropriated regularity. Therefore, for
the first, third and the fifth equations in (2.20) give

u, = Au — fi,
(2.21) &= f
S, =AS — fs.

It is clear that u;, &, S; € H(') (0, L). Furthermore, by (2.2) we can find z as
z2(x,0) = u,(x), for x € (0, L).
Following the same approach [26], we obtain, by using the last equation in (2.20),
2(x,0) = u(x)e” 70D 4 7(r)e” "D j(; ' Frlx, $)e”D ds,
if 7/(¢) = 0, where 9({, t) = A7(¢), and

Pt
2(x, p) = u(x)e”®" + 70 f WA S) s ds,
o 1—=s7(s)

otherwise, where o (¢, 1) = /l:% In(1 — £7(1)).
From (2.21), we obtain

0
(2.22) 2(x,0) = Au(x)e™"P? — fi(x, p)e” "0 + 7(1)e "0 f fr(x, )¢ ds,
0

if 7/(r) = 0, and
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t s (s
7(1) f7(x S)e o(s.0) ds.

0
(2.23) 2(x,p) = (x)e” P — fi(x, p)e” P! + e7E f
o 1—s7(s)

otherwise.
In particular, from (2.22) and (2.22), we have

(2.24) z2(x, 1) = Au(x)N; + N,

where

N e it T =0,
P e, it () #0

and

1
— fi(x, 1)e 0D 4 1(1)e~ 1D f filx, )0 ds, if (1) =0,
0

1

! ,8) .

—fi(x, De” D + e(’(l’t)f we D dgs, if ') # 0.
0 1- ST’(t)

By using (2.20) and (2.21), the functions u, £ and S satisfying the following system

au+ GBS - & —uy), =91,
(2.25) né — D&y — GBS — & —uy) = go,
pS = 3DS +3G(3S — & — uy) = g3,

with
a =0+ u + 4Ny, 7= +8, p =321, +4dy + 46,
g1 = ofi +ofr +uifi —paNa, g2 = Apfz + Lo fa + Bf3
and g3 = 3/llgf5 + 31@f6 + 4’)/0f5

Solving the system (2.25) is equivalent to finding (&, &, S) € [HZ(O, Lyn Hé(O, L)]3 such
that

L L
f [auit — GBS — & — uy)it,] dx = f g1iidx,
OL 0 L
(2.26) f [ngg ~G(3S - &é—u)é + Dgxéx] dx = f g.€ dx,
0 0

L L
f S5 +3DS,8, +3G(3S - & — u)S| dx = f 935 dx,
0 0

for all (7, €,5) € H}(0, Ly*.
Consequently, the equation (2.26) is equivalent to the problem

(2.27) T (w.£.8).(5.85)) = L(.€3),
where the bilinear form

Y : [H)(0,L) x Hy(0, L) x Hy(0,L)]* —» R
and the linear form

L:Hy0,L)x Hy(0,L) x H)(0,L) - R
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are defined by

T((u,f,S),(ﬁ,g,S’)) :afLuﬁdx+GfL(SS—§—ux)(35‘—g—ﬁx) dx+nfL§§dx
0 0

0

L L L
+Df fxgxdxﬂof Sde+3Df S.S.dx
0 0 0

L L L
L(a,E,S) = f glﬁdx+f gzédx+f g3S dx.
0 0 0
It is easy to verify that T is continuous and coercive, and L is continuous. So applying

the Lax-Milgram Theorem, we deduce that for all (ﬁ, é, S') € H(l) (0, L)3 the problem (2.27)
admits a unique solution

and

(u,£,S) € Hy(0, L)’.
Applying the classical elliptic regularity, it follows from (2.26) that
(u,€,8) € H*(0, )",

Therefore, the operator A/ — A(t) is surjective for any 4 > 0 and ¢ > 0. Again as «(¢) > 0,
this prove that

(2.28) Al = A(f) = (A + k(1)) I — A(?) is surjective
forany A > 0 and ¢ > 0.

To complete the proof of (iii), it’s suffices to show that

D s
(2.29) Hsm" ' forall tsel0,T],

where @ = (u, u;,&,&,,S,S:,2)7, c is a positive constant and ||-||; is the norm defined in (2.17).
For all ¢, s € [0, T], we have

D7 — 1@1Ze™" ™ = (1 = &™) ollueI? + LlI&iII* + DIEP + 3DIIS, + 3LIISIP

L 1
+GI3S = & = uslP + 460lISIP) + ¢ (1) = (s)e™ ™) fo fo 2(x,p) dp dx.

=)

It is clear that 1 — e
do this , we have

< 0. Now we will prove 7(¢) — ‘r(s)e%lt_s| < 0 for some ¢ > 0. To

(1) = 7(s) + T (r)(t = ),

where r € (s, 1) which implies

7(1) I’ ()|
— <1 — 5.
T(s) ’ 7(s) =
Using (2.12), we deduce that
7(1)

C RV
=] <en™,

() 7o

which proves (2.29) and therefore (iii) follows.
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Now, as /() = —WT@W_ _ TOVITW" 4op 0 inded on [0, T] for all T > 0 (by (2.12))
20\ 1+ (1P 2e()

and we have

0

0

0
d
— AU = 0 ,
dt 0

0

' (O1(p—7' (O (H)p-1)
B0 <p

with =T OE@We=D ¢ hounded on [0, T] by (2.12). Thus

(1)

(2.30) %A(t) € L7([0, T1, B(D(A(0)), H)),

the space of equivalence classes of essentially bounded, strongly measurable functions from
[0, T'] into B(D(.A(0)), H).

Then, (2.19), (2.28) and (2.29) imply that the family A = {A(x) : t € [0, T} is a stable
family of generators in H{ with stability constants independent of ¢, by Proposition 1.1 from
[15]. Therefore, the assumptions (i) — (iv) of Theorem 2.2 are verified by (2.14), (2.16),
(2.19), (2.28), (2.29) and (2.30), and thus, the problem

0[ = A(t)[],
2.31 ~
230 { 0(0) = Uy
has a unique solution U € C ([0, +o0), 1) and
U € C (10, +00), D(A(0)) N C" ([0, +e0), H),
for Uy € D(A(0)). The requested solution of (2.13) is then given by

U(t) = eh O

because
Ui(0) = k(eh OB (1) + eh 99 7,(p)
= b O ((r) + A1) U(1)
= A(Deh D4 7(p)
= AMU(1)
which concludes the proof. O

3. Exponential stability

In this section we deduce the full energy of the system (2.3)-(2.11) and prove its dissipa-
tive property and assumption (2.1) we show that the solution of problem (2.3)-(2.11) decays
exponentially to the steady state with an exponential decay rate.

For a positive constant  satisfying
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H2 H2
Vi—d Vi—d
we define the energy of the problem (2.3)-(2.11) as follows

(3.1)

<{ <2 -

1
(3.2) E(1) = 5(Q||ut||2 + LIEIP + DIEN + 3DIISII” + 3L,1ISAI?

L pl
3
+ GIBS ~ & - il + 4aolIP) + <57 f f 2(x.p)dpdx.
o Jo
To achieve one of our goals in this section, we have the following proposition:

Lemma 3.1. Let (14,&, S, z) be the solution to the system (2.3)-(2.11). Then the energy
functional, defined by (3.2) satisfies

4a B P S T T
(3.3) T E® < (m 575 m) [
g ’ M2V 1-d
- (50 —T0) - = —
— Bl = dyoliSI?
<0.

) llz(x, 1, DI

Proof. Multiplying (2.3) by u,, (2.4) by &, (2.5) by S, and integrating by parts, we obtain

1d
(B4 5 (el + L& + DIEIP +3DUS.IP + LIS + GIBS — £ = wilf* + 450lISIF)

L
= i llgl* = i f 2(x, 1, Dy dx = BN = 4yollSiI.
0

Now multiplying (2.6) by {z(x, p,t) and integrate the resulting equation over (0, L) x (0, 1)
with respect to p and x, respectively, to obtain

’d

L 1 L 1
(3.5 2= f f 0 (x,p, ) dpdx = = f f (1 = 7 (Dp)z(x, p, Nz,(x, p, 1) dp dx
2dt Jo Jo 0o Jo

, L 1
+§T2(t) fo fo 2(x,p, 1) dpdx
L 1
0
:_g fo fo 5, (1= TP p.0) dp dx

1
:g f (zz(x,O,t)—zz(x,l,t)) dx
0

’ 1
+§T—(t)f 2(x, 1,0 dx.
2 Jo

From (3.2), (3.4) and (3.5), we get

d_ O, o (70 ¢
(3.6) B = (u )||u,||+( -

_° S \y1.2 2
175 > 2)IIZ (e, Ll

L
— BIEIP = 4¥olISIP = w2 f 2(x, 1, Dy dx.
0
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Using Young inequality , we obtain

a B R S T T
TE® < (#1 575 m)uutn
{ ’ H2 VI —d
- (§<1 —T0) - = —

— BIIEIF = 4yollSiI*.

Then, by using (2.12) and (3.1) our conclusion holds. O

) llz(x, 1,1)|12

3.1. Technical lemmas. The main point is to construct a Lyapunov functional L satisfy-
ing
BLE(1) < L(1) < B2E(1),
d
—L(1) < —B3LA(D),
250 = 5L

for all r > 0 and some positive constants 51, 3,,83. To achieve this, first we consider the
followings lemmas.

Lemma 3.2. Let (u,é, S, z) be the solution to the system (2.3) — (2.11) and

S(x, 1) = ‘fox S(r, t)dr.
Defining the functional
(3.7) Li(1) = 1,(S:, S) + %)’OHSHZ +0ou;, S),
we have the following estimate
(3.8) %Lla) < =DIIS:P = dolISI® + dillu|* + ISP + dsllaCx, 1, Dl
Proof. We have that

d
T 1(818) = 1o(Su, S + LIS

4 4
= <[DSxx - G(3S - g —Uy) — 5605 - 5)’0&] ’S> + IQ||S[||2

4 4
= D(S.:,S) — G(3S — € — u,, S) — §5O||S||2 = 37048, S) + LIS P

Performing integration by parts, we have

d

(3.9) 7

4 2 d
1,(S:,S) = =D|IS,|I> = G(3S — £ — u,, Sy — §<so||sn2 - Zyo—

3 dtnsnz + LIS/

Note that

d
EQ(”z, SYy = oluy, Sy + o{us, Sy)

= ([-G(BS = & — u)x — pruy — p22(x, 1, 0], S) + oCur, Sy
= =G((S = & — ux)x, S) = i uy, S) — poz(x, 1,1), ) + 0oCuy, Sy).
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Integrating by parts, we obtain

d
(3.10) EQW” S) = G(3S = & — uy, Sx) — iy, S) — pafz(x, 1,1), S) + o{ur, Sy)
= G<3S - f - ux, S> - l’tl<ut’ S> _/J2<Z(.X, 1’ t)’ S) + Q(ub St>
From (3.7), (3.9) and (3.10) we get

d 4
L= —D|IS,|I* - §5o||5||2 + LIS = w1, SY — padz(x, 1,0), SY + oCuy, ).

Using Young’s inequality, we have

d 4 1 €0
ZLi() <= D|S.IP = =5olISI? + L|IS:I? — |7 NI
7 1(0) < (1Sl 3 ollSII* + LolIS/| +ﬂ1260||141|| +/112I| |

1 € 4 Y
+ oy —|lzCx, LD + o= ISP + Sl + SIS
ﬂzZEOIIZ(x I+ 2SI + Slluell” + SIS

Noting that [|S|I* < |ISII> and [IS|]* < [IS/|[* so we get
d 4 o M2 2 1 o 2
C L) < - DISP = | =60 - (& + 2yeo | 1SIP + (1 — + £
7 1(H) < = DIIS,|| [3 0 (2 2)60}” I /11260 > (o]

Q) 2 1 2
+ I, + = |ISAI” + o — 1L o|e.
(Q 3 JISHP + o5 et Lol

Take € small enough such that

4 M1 ,uz)
dy==0p—|— +— 0
0= 3% (z 2]~
and denoting
1 0 o 1
di=p—+=,dr=1,+= and dz = up—
LT R Ty T ety andd =g
we conclude the lemma. O

Lemma 3.3. Let (u, &, S, z) be the solution to the system (2.3) — (2.11) and

X
Y(x, 1) = - f Y (r, Hdr.
0
Introducing the functional
(3.11) La(t) = oG, w) + 5 ull + 0(u, ¥),
we have for all €) > 0 that there exists a constant C(€,) such that
d
(312) —Lo(1) < ~GIB3S =&~ ud* + Clen) (Il + s, 1OIP) +er (11 + NP + ).
Proof. The derivative of o{u,, u) satisfies
d
0%, 1) = oy, 1) + el
= ([-G(3S — & = o) — g — poz(x, 1,0)] ) + ollu|?

d
= —G((3S — & — uy)y, u) — % Enmﬁ — pa{z(x, 1, 1), 1) + olluf|*.
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Integrating by parts, we have

d d

(3.13)  So(uuy = G(3S — & — g, uy) — 2 Sl = paa(x, 1, 1), 1) + ol
dt 2 dt

Observe that

d
(3.14) EQW“ YY) = ouy, V) + o{us, ¥y)

={[-GBS = & — uo)y — pr1uty — poz(x, 1, 0], V) + oCuy, V')

=-G(BS =& — u), V) — i Cup, V) — poax, 1, 1), W) + oCur, W)

= GBS - & —up, Vo) — i ur, V) — po(z(x, 1,0, ) + ofur, W)

= -GBS - & —ue, ) — pun, V) — pola(x, 1,0, W) + olur, o).
From (3.11), (3.13) and (3.14), we get

d
L0 = ~Gl13S — &€ — I — pa(z(x, 1, 0), ) +olluagl|* — a1 Cuty, ¥y — pra(z(x, 1, 0), ) + (s, ).

Using Young’s inequality the proof is complete. O
Lemma 3.4. Let (u,é,S, z) be the solution to the system (2.3) — (2.11) and

D(x, 1) = — fx &(r,t)dr.
0

Considering the functional

B ar
§||§|| ,

we have for all e, > 0 that there exists a constant C(€,) such that

(3.15) Ls(t) = 1o(&1, &) + Lo(us, @) +

d
(316)  —Ls(0) < ~DIER + LI + Cle) (lull® + Iz, 1.OIP) + & (101 + 11]F) .
Proof. By derivative of 1,(¢;, &) we obtain

d
o€ &) = 1(, &) + LI
= ([G(3S — & — uy) + Déy — PE,€) + LIEIP

d
= G(B3S — €~ ux, &) + D &) = %anz + LolIE .
Integrating by parts and using boundary conditions, we have
3.17 d _ 2 ﬂ d 2 2
(3.17) 77 1o$én:€) = GBS =& = ux), &) = DIEl” = Z g™ + LIl

Now note that
d
EQ(”” D) = ouy, ©) + o{uy, O;)

= ([-G(BS = £ = ), — g — pz(x, 1,0)], @) + our, D7)
= =G((3S = & — ux)x, D) — paCuy, @) — pio(z(x, 1, 1), @) + oCur, Or)
= G<3S - 6 - ux’ (Dx> - ﬂl(ut’ CD> - ﬂ2<Z(X, 1’ t)’ ®> + Q<utv th>
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(3.18) = —G(3S =& —uy, &) — i uy, ) — po(z(x, 1, 1), @) + oy, O;).
From (3.15), (3.17) and (3.18) we obtain

d
EL3(I) = =DIEP + LIEN = i, @) — palz(x, 1,8), DY + o{uy, D).

Using Young’s inequality we concludes the last lemma. O

As in [16], taking into account the last lemma, we introduce the functional

L pl
(3.19) La(r) = {1(0) f f e TP 2(x, p, 1) dp dx.
0 Jo
For this functional we have the following estimate.

Lemma 3.5 ([16]). Let (u,&, S, z) be a solution of (2.3)-(2.11). Then the functional L4(t)
satisfies

d
(3.20) —La(t) < 22La(0) + L.
Now we are in position to show the main result of this work.

Theorem 3.6. The full energy of the system (2.3)-(2.11) decay exponentially, i.e., there
are positive constants C and w such that

E(t) < CE(0)e™, forall t > 0.

Proof. Let us define the Lyapunov functional

4
L) = NE@) + ) Li(0),
i=1

where N is a positive real number. Using the estimates (3.3), (3.8), (3.12), (3.16) and (3.20)
we conclude for €; and ¢, sufficiently small and N big enough that there exists Sy > 0 such
that

(3.21) %[ﬁ(t) < —BoE(f), forall t>0.

On the other hand, from (3.2), (3.7), (3.11), (3.15) and (3.19), we deduce that exists two
positive constants 31, 8, such that

(3.22) BLE(®) < L(t) < BE(t), forall t>0.

Now, combining (3.21) and (3.22), we obtain

(3.23) %E(t) < —B3L(D)

where 53 = S/, and finally, solving the last ODE we obtain for C = 8,/8; and w = S5 that
E(t) < CE(0)e™, forall ¢ > 0.

Thus, the proof of theorem is completed. O
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