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1. Introduction. Throughout this article, we fix an algebraically closed field
k of characteristic zero as the ground field and mean by algebraic groups linear
algebraic groups. Let G be a connected algebraic group and let H be a closed
subgroup of G. We are interested in characterizing those subgroups H for which
the indiction functor ind# is exact, though complete answers have not been yet
obtained. Note that the exactness condition on ind# is equivalent to the condi-
tion that the quotient G/H is affine (cf. [11 Th. (4.3)]). Since G/H is the quo-
tient variety of a quasi-projective variety G/H0 under the natural free action of a
finite group H/H°, G/H is affine if and only if so is G/H°, where H° is the identity
component of H. Therefore, we may and shall assume that H is connected.
Concerning this problem, the following result is well-known.

Theorem 1.1. (cf. [1], [7]) Suppose G is reductive. Then the following
conditions are equivalent:

(1) G/H is affine;
(2) H is reductive
(3) For an arbitrary finite-dimensional rational H-module

My there exists a finite-dimensional rational G-module N such that M is an H-
submodules of N and Mff=NG, where MH(resp. N°) is the set of elements of M
(resp. N) invariant under the H-action (resp. the G-action).

Even when the characteristic of k is positive, the conditions (1) and (2) are
sitll equivalent (cf. [5]). If we drop the equality MH=NG from the condition
(3), it is equivalent to the condition that G/H is quasi-affine (cf. [2]).

Since the reductive case is known by the above theorem, we shall consider
the general case where G is non-reductive. Since the characteristic of k is zero,
G has a "Levi decomposition". Namely, G is a semi-direct product of a reduc-
tive subrgoup L called a Levi factor of G and the unipotent radical U :=RU(G)
of G, where L is uniquely determined up to conjugations by elements of U
(cf. [3]).

Set V:=RU(H). Then Theorem 1.1 can be rephrased as follows.

Theorem 1.2. If G is reductive, G/H is affine if and only if the following
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equivalent conditions are satisfied :

(!') G/V is affine;
(2') V is trivial;
(3') For an arbitrary finite-dimensional rational V -module M, there exists a

finite-dimensional rational G-module N such that M is a V-submidule of N and
MV=NG.

Our purpose of this paper is to consider the relationships among the follow-
ing conditions which generalize the conditions in Theorem (1.2):

(0) F£C7;
(1) G/F is affine;

(II) For an arbitrary finite-dimensional rational F-module M, there ex-
ists a finite -dimensional rational G-module N such that M is a F-submodule

a n = ;

(III) For any element u of £7, the equality

uVu~1ΓιL= e= {e}
holds.

Note that if G is reductive, each of the conditions (0) and (III) coincides
with the condition (2'). Furthermore, the condition (III) implies that V inter-
sects trivially any Levi factor of G. We also note that, by replacing H by its
unipotent radical, we may assume that H is unipotent. Indeed, if G/RU(H) is
affine, then G/H is the quotient of an affine variety GIRU(H) with respect to a

reductive algebraic group #/#„(#), hence G/H is affine (cf. [9; Th. (1.1)]). In
the section 2, we prove the implications (0)=Φ»(I)==>(II)=^(ΠI) and observe that
(I)=t>(0) is false. In the section 3, we shall prove the equivalence of the con-
ditions (I), (II) and (III) when G is a direct product of a Levi factor and the
unipotent radical U. In the section 4, we consider the case where U is com-
mutative. In this case, we may assume that a Levi factor is isomorphic to
GL(U) with U regarded as a vector group. When either dim V=l or V satisfies
additional hypotheses, we can prove the equivalence of the conditions (I), (II)
and (III). In the section 5, we prove two theorems, one of which concerns the
vanishing of the Hochscild cohomology groups and the other does the non-
vanishing "of them. In the final section, we consider the case where, with the
above notations, H is a commutative unipotent group. The exactness of H, i.e.,
that G/H is affine, can be interpreted in terms of derivations on the coordinate
ring K[G] of G associated to the natural ίf-action on G.

Finally, the author expresses his sincere thanks to Professor M. Miyanishi
who gave him useful advice and encouragement.

2. General case. We work in the previous situation posed in the section 1.
We sasume that H is connected. As a preliminary result, we shall prove the
following :
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Lemma 2.1. With the above notations, the following tzΰo conditions are
equivalent :

(1) For an arbitrary finite-dimensional rational Ή-module M, there exists

a finite-dimensional rational G-module N such that M is an H-submodule of N

andMH=NG.
(2) For an arbitrary finite-dimensional rational H-module M, there exists a

finite-dimensional rational G-module N such that M is an H-submodule of N and

Proof. The implication (1)=Φ(2) is obviuos. We prove the other direc-
tion. Let M be an arbitrary finite-dimensional rational H-module. By virtue

of the condition (2), we can take a finite-dimensional rational G-module N
satisfying the condition of (2). By induction on dim N— dim M, we shall show

that there exists a finite-dimensional rational G-module N' such that M is an

tf-submodule of N' and N'G=MH. If dim ΛΓ-dimM=0, i.e., M=N, then
MH=NG obviously. So, we can take ΛΓas N'. If dim N— dim M >0, we write

NG=MH@N^ where the symbol 0 stands for direct sum. If ΛΓ^O, we can take

N as N'. If Λ^ΦO, since Nl Π M=0 and Nλ is a G-submodule of N, we have
M^N:=N/N1 and MH^NG. Moreover, we have dimΛf— dim M< dim N—

dimM. So we can find a finite-dimensional rational G-module N' by the in-
duction hypothesis. Q.E.D.

Next, we shall consider the relationships among the conditions (0)~(ΠI)

given in the section 1 . We have :

Theorem 2.2. The following implications hold.

(0)-» (I) -*(!!).* (Ill)

Proof. (0)=Φ(I) Since G/U—L is affine and l]\V is also affine (cf. [4;

Prop. 2]), G\V is affine by virtue of [1; Cor. 1].

(1)̂ (11) Since V is unipotent and G\V is affine, G splits as a variety

G— (G/F)xF(cf. [4; Prop. 1], [10; Th. 10]). Hence we can regard k[V] as
a subring of k[G] via the comorphism of the second projection. Let M be
an arbitrary finite-dimensional rational J^-module and let {v^ •••, vn} be a k-

basis of M. We can take fl, /s in k[V] so that the following equality holds for

any h£ΞV,

Put

and

,<) in k[V]n
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Condider a rational F-action on k[V] defined by

h a(x) = a(x h) ,

where a^k[V] and h, x^ V.
We claim that M' is a F-submodule of k[V]n and M'— Mn as F-modules.

In fact, define a map φ\ M'->M by 9>(Σ*iι Af M, )=Σ»lι ^W Then φ is clearly
an isomorphism of ^-vector spaces. From the choice of fl, /s, we have

Hence, we obtain

- Σ*lι aki(h)uk .

This implies that φ is F-equivariant.

Let N be a finite-dimensional rational G-module which is generated by Mr

in k[G]n (cf. [6; Prop. (8.6)]). Clearly, N contains M' as a F-submodule and
M'v=kn Π M'S NG. Hence the implication (I)==>(II) follows from Lemma 2.1.

(II)=φ(IΠ) Take an arbitrary u(=U and set L':=uLu~l and K:=L'Γ( V.
Since V\K is affine (cf. [4; Prop. 2]), given any finite-dimensional rational K-
module M, the implication (I)=^(Π) implies that there exists a finite-dimen-
sional rational F-module N' such that M is a ̂ -submidule of N' and MK=N'V.
Furthermore, by the condition (II), we can take a finite-dimensional rational G-
module N such that N' is a F-submodule of N and N'V=NG. The G-module
N is viewed as a finite-diminsional rational L'-module which contains M as
a ^-submodule. Moreover, the inclusion Mκ=N'v=NGζiNL/ holds. Hence
K={e} by virtue of Lemma 2.1 and Theorem 1.1. Q.E.D.

As for the converses of the implications in Theorem 2.2, we can only find
a counter-example to the implication (I)=Φ(0), which is given in the Proposition
2.3 below. We consider a direct product G := 5L(2, k)xGa and a closed sub-
group

Ή((C?>*HΉ.
where Ga is the additive group. We then have:

Proposition 2.3. With the above notations ywe have :
(1) GIH—SL(2, k), whence G\H is affine
(2) RU(H) is not contained in RU(G).

Proof. (1) Let π: G-^G/H be the canonical quotient morphism. It is

enough to show that π'\—?r | SL(2,*) x to) ̂ s bijective, for π' is then birational since
the characteristic of k is zero and π' is biregular by Zariski's Main Theorem.
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But this is clear since 5L(2, k) X {0} is a cross-section of the morphism π.
(2) Since RU(H)=H and RU(G)= {e} X Gβ, the assertion is clear. Q.E.D.

In the subsequent sections, we shall consider to what extent the converses
of the implications in Theorem 2.2 hold if we put additional restrictions.

3. Case G— Z/X U. In this section, we shall show that the conditions (!)< — '
(III) are equivalent if G is a direct product as algebraic groups of its Levi factor
L and its unipotent radical U.

Theorem 3.1. If G—Lx U, the conditions (I)^>(IΠ) are equivalent.

Proof. It is enough to show the implication (IΠ)=^(I) in view of Theorem
2.2. Let f:=p2\v: V-*U, where p2: Lx U-^U denotes the second projection,
and let K:=Imf. By the condition (III), /is injective. So, we can define a
homomorphism^: K-+L by g:=pι\v f~l, where p^.Lx U-+L denotes the first
projection. Since the natural morphism £7-» U/K is a trivial principal J^-bundle
(of. [4; Prop. 1], [10; Th. 10]), we have U—(U/K)xK by choosing a cross-
section σ: U/K-+U to the natural morphism U^>U/K. We assume σ[e] = e,
where [e] is the class of the identity e in U/K. Our assertion follows from the
next claim:

Claim. G\V—Lx( U/K) .

Proof. Let π:G^>G/V be the natural quotient morphism. Noting that
G^=zLx(U/K)xK, we have only to show that the restriction πr of π onto
Lx(U/K)x{e} is an isomorphism. For this purpose, as in Proposition 2.3,
it is enough to show that π' is a bijection.

Injectivίty of π': This can be easily shown if one notes that V is ex-
pressed as

Surjectίvity of π': Choosing /€ΞL, u€=U and x€=K arbitrarily, we have
*(/, M, *)=*((/, [K], a).^*)-1, Wι *-1))=*(&(*r1, M, *)elm*'. Hence π' is
surjective. Q.E.D.

REMARK. The implication (I)=^(0) does not hold even if G is a direct
product of L and U. In fact, in the counter-example in the section 1, the
given Levi decomposition of G is a direct product.

4. Case U is commutative. In this section, we consider a special case
where the unipotent radical U of G is commutative, i.e., U is a vector space.
We often identify elements of U with column vectors of length dim U. First
of all, we reduce the problem to the following special case. Let Gu:=a semi-
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direct product of GL( U) and U, whose multiplication is defined by (A, u) (B, v) : =
(AB, B^u+v), where A, B<=GL(U) and u,v(=U. Write G= L U as a semi-
direct product of a Levi factor L and U and define a homomorphism of
algebraic groups φ\ G-+Gσ by

where

We consider new conditions (I)^(III) which are stated as:

(I) GV/<p(F) is affine;

(II) For an arbitrary finite-dimensional rational <p(F)-module M, there

exists a finite-dimensional rational G^-module N such that M is a φ(V)-sub-
module of ΛΓ and MW>=7V%

(III) For any element u of t/, we have uφ(V)u~1ΠGL(U)={e}.

The conditions (I)~(III) and (Ϊ)^(III) are related to each other as follows.

Theorem 4.1. (1) Among the conditions (I), (I), •• ,(III) and (III), ιae
have the following implications'.

(I) « (I) =Φ (Π) a**/ (IΓ) ==> (III) => (III) .

(2) IfVΓ\L= {e} , we have further implications (Π)=Φ(Π) and (IΪI)=Φ(III).

Proof. (1) (I)=^(). Consider the isomorphisms Gu/φ(G) — (
(φ(G)IU)—GL(U)/φ(L). Since L is reductive, φ(L) is reductive, too. Hence
GL(U)lφ(L) is affine by virtue of [9; Th. 1.1]. Hence GΌlφ(G) is affine.
On the other hand, consider the isomorphisms φ(G)/φ(V)—G/(V Kerφ)—
Kerφ\(GIV). Here, note that GjV is affine by the condition (I) and that
Ker^> is a reductive algebraic group as it is a normal subgroup of the reductive
algebraic group L. Hence by [9; Th. (1.1)], Keΐφ\(G/V) is affine, hence so is

φ(G)lφ(V). Therefore Gυ\φ(V) is affine (cf. [1 Cor. 1]). (I)-*(I). It is clear
that φ(G)/φ(V) is a closed subset of Gσlφ(V). So φ(G)/φ(V) is affine because

Gulφ(V) is affine by the condition (I). Hence G/(V Keϊφ)—φ(G)/φ(V) is

affine. On the other hand, F Ker^/F^^Ker^ is affine. Therefore G/V is

affine (cf. [1 Cor. 1]). (Ϊ)^(II). This follows from Theorem 2.2. (II)^(IΠ).

We have already proved this in Theorem 2.2. (III)=Φ(III). By the definition
of φ, we have φ~\GL(U))=L and φ(uVu~l)=uφ(V)u~1 for any u^ U. Hence,
for any we C7, we have

GL(U)Γ}uφ(V)u~} =

= φ(φ-\GL(

~l)= {e} .
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(2) (II)=Φ(II). Since Ker^cL, the condition V f ] L = {e} implies that
φlv' V-*φ(V) is an isomorphism. Hence the sets {finite-dimensional rational
F-module} and {finite-dimensional rational 99(F)-module} are obviously in
one-to-one correspondence. Let M be a finite-dimensional rational V-
module. Then M is thought of as a finite-dimensional rational φ(V)-module.
Hence we can take a finite-dimensional rational G^-module ΛΓ which satisfies the

requirements set in the condition (II). We can regard this N as a rational
G-module through φ. Then M is clearly a F-submodule of ΛΓ with respect to
this G-module structure on N and Mv=Mφ(V)=NGσζiNG. Hence our asser-

tion follows from Lemma 2.1. (III)=>(III).
Consider the equalities:

{e} = GL(U)nuφ(V)u-1

= GL(U)Γ(φ(uVu~1)

= φ(LΓiuVu-1).

Hence we have an inclusion L Π uVu'1^ Ker^>. Now we can finish as
L Π uVu'1^ w(Ker φ Π V)u~l= {e} . Q.E.D.

Making use of Theorem 4.1, we can prove the equivalence of the condi-
tions (I);— '(III) under some special situations.

Theorem 4.2. // dim V= 1, the conditions (I)~(III) are equivalent.

Theorem 4.3. If V satisfies the following two conditions, thrte conditions
(I)~(ΠI) are equivalent:

(i) φ(V) is commutative]
(ii) There exists an element of lΏtφ(V) which has the minimal polynomial of

degree equal to dim U.

By virtue of Theorem 2.2 and Theorem 4.1, it is enough to show the im-

plication (III)s=^(I), assuming that the condition (III) holds.

Proof of Theorem 4.2. Put V :=φ(V), where^F)— F because V Π L= {e} ,
and take an element v'=(A, u)^ V'\{e}, where A^GL(U) and u&U. Put
U f : = ϊm(A-1— E), where elements of GL(U) acts on U from the left, U being
identified with the space of column vectors of length dim U.

Claim. The element u is not contained in U'.

Proof. Assuming the contrary, write u= A~~lu' — u' with u'^U. Then we
have

u'-l(A, u)u' - (E, -u') (A, u) (E, u')
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Thus we obtain a non-trivial element of u'~lV'u' Γ\GL(U). This is a con-

tradiction to the condition (III).

Take a basis {̂ , •••,£„} of U' and extend this basis to a basis {̂ , ••-,£«,

en+v ••-, £n+m} of Z7. If we write M=Σ?-ι*^f> the above claim implies that

fo+ι> •"> <W*)=H°» "•> 0). Suppose cn+<'ΦO. Put E7" := SpanΛ(^, — , en, en+»
•••, 0Λ+ί, •••, en+m), where £M+ί is deleted. It is easy to see that U" satisfies the
following three conditions:

(1) U" is F'-stable, where V acts on U by conjugation;

Note that V is a unipotent group of dimension 1. Hence the condition
(1) is ascertained by the following computation for the nonzero element v' of

V and*, el/":

e Im (A~l-E)+ U" = U" .

(2) Oe t/";
(3) The multiplication morphism in Gυ induces an isomorphism U"x
)^Uy where p2: GL(U)X U-> U is the second projection, which is not

necessarily a group homomorphism.
Hence our assertion follows from the next lemma.

Lemma 4.4. The notations and assumptions being as above, vie assume the
following conditions:

(i) 7nL={*};

(ii) There exists an irreducible closed subvarίety W of U such that
(a) W is pl(V)-stάble) where pι(V) acts on U by conjugation',

(b) e^W\
(c) the multiplication morphism of G induces an isomorphism Wxp2(V)2^U.

Then G/V is affine. (Note here that We don't have to assume that U is commuta-

tive.}

Proof. Let π: G-+GJV be the canonical quotient morphism. Noting that

G=zL X Wxp2( V] as varieties, let π' be the restriction of π onto L X Wx {e} . It

is enough to show that π':LxW-*G/V is bijective. Put V2:=p2(V) and

τ : =pλ . (p2 1 γγ
l

 : V2-*L. We identify G with L X Wx V2 as a variety.

Injectivity of π'. Assume π(x, y, e)— π(x',y', e) with x,x'^L and y,y'^W.
Then (x',y', e)— (x,y, e) (τ(v), e, v) for v^V2. The right hand side can be

written as

(xτ(v), τ(vYlyτ(v), v) .

By comparison of both sides, we obtain v=e and r(v)— e by the definition of r.

Hence (x',y'> e)=(x, y, e). Thus π' is injective.
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Surjectivity of π'. It is enough to show π(x,y, z)^Imπ' for arbitrarily chosen

x&L, y^W and z^V2. Since V={(τ(z), e, #)|#eF2}, we can take an
element #'e F2 such that (τ(z), e, z)~1=(r(^/)y e, #'), where (τ(#), e, z)"1 lies in V

because V is a group. From the equation (e, e, e)=(τ(z)y e, #) (τ(s'), £,#')=

(τ(*)τ(*')> *> τ(zΎlzτ(z')z'\ we have τ(x'Ylxτ(z')z'=e. Hence,

(x, y, *) •(!•(*'), *> *') = M*')> Φ

Therefore we obtain π(x,y, #)— τr(#τ(#'), τ(z'Ylyτ(z'}> e)^π(Lχ W)=Imπ'.
Q.E.D.

Corollary 4.5. In the same situation as in Lemma 4A, where zϋe don't have
to assume that U is commutative, G/ V is affine provided p2(V)=U and VΓ\L={e}.

Proof. We can take {e} as W in Lemma 4.4. Q.E.D.

Proof of Theorem 4.3. Put V':=φ(V). For any element x of V, there
is a unique homomorphism 6: Ga-+V of algebraic groups such that 6(1) = x

(cf. [6; p. 96]). We use the notation x* with t^k to denote £(£). By the con-

dition (ii), we can choose an element v' of V such that the minimal polymomial
of Intϋ' acting on U has degree equal to dim U. Let V1 be the one-dimen-
sional closed subgroup {(vfy\t^k}> which is generated by v'. Since V is

commutative, there exist one-dimensional connected closed subgroups V2 •••,¥„

such that

F'~ F X F a X — xF,, where

Let ϋ, be a generator of F, for each !</<>. We choose ϋ' as u le Write

Vi=(θi9 v") with v'i^GL(U) and ϋί'e E7. The conditions (i) and (ii) enable us
to write v'Γ1, •••, v'r~

l as E+N, E+N2, •••, E+Nr^ Ufa k) after a suitable change
of bases of Z7, where Λ^ is a nilpotent matrix of the following form

1

0 0.

Furthermore, since V is commutative, we conclude by a straightforward com-
putation that Ni has the following form

ΛΓ -1 with

Write ϋJ/=/(ttiί), •••, up) as a column vector and let

kt : = max {k \ uV> Φ 0} and j{ : = min {; 1 4° Φ 0} .

If ki=kj(i<j)y replacing Vj by a suitable element of the form v^v} with p,
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and Vj by the closure of <e;?̂ >, the group generated by v\vq

h we may as-
sume that k19 •••, kr are different from each other.

Claim, v" does not belong to Im-ΛΓ,- for l<i<r.

Proof. Assuming the contrary, take u^ U so that v/

i

/=Niu. It is easy to

see that e Φ u~lvju e ιΓ * F,M Π GL( U)^u~lV'uΓ( GL( U) . This contradicts the con-

dition (III).
By the above claim, we obtain &,•+,// >w+l and kλ=n9 in particular. After

a suitable permutation of the indices {2, -- ,r}, if necessary, we may assume
n=k1>k2> > >kr.

Put

A, = 0

and write the second factor of v\ as a column vector *(t/(ι°(s), •••, u(n\s)}. Then
it is easy to check that u^(s) is a polynomial in s of degree 1, for k=k{. Hence,
for any u^U, there is a unique (s19 •• ,sr)^kn such that

This implies that π \ GL(u)xw' GL(U)xW-+GulV is bijective, where π: Gυ-+Gυ\V
is the canonical quotient morhism. Therefore Gυ\V is affine.

5. Some results on Hochschild cohomology groups.

In this section, we consider the Hochschild cohomology groups of an alge-
braic group G with coefficients in a rational G-module. We shall prove two
theorems, one of which concerns the vanishing of the Hochschild cohomology
groups, and the other does the non-vanishing of them.

Theorem 5.1. Let G be an algebraic group and let V be a rational G-module.
Then zΰe have :

(1) If V is finite-dimensional y so is H*(G, V) for every i.

(2) H'(G, V)=0for every z>dim RU(G).

Proof. Since H^G, indlim Fλ)=indlim/jΓ'(G, F"λ), we may assume V is
finite-dimensional. Consider the following exact sequence of algebraic groups.

1 - RU(G) ->G^G>:= G/RU(G) - 1 ,

where Rtt(G) is the unipotent radical of G. This gives a spectral sequence (cf.

' H9(RU(G), V)) ^ Hp+*(G, V) .

Since G' is fully reducible, HomG (&, ?) is an exact functor. Hence we have:
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Hp(G\ H\RU(G), V)) = 0 for every p>0 .

So, we have:

Hq(G, V) = H\G', H\RU(G\ V)) = Hq(Ru(G\ V)G/ .

By these arguments, we are reduced to the case where G is unipotent. In this
case, the proof proceeds by indiction on dim G.

Case 1. If dimG=0, the assertions are trivial.
Case 2. If dimG=l, we show the assertion by the induction on dim V.

If dimF=l, we have H*(G, V)=Q(q>2), =k (q = Q, 1) by [12; p. 71]. If
dim F>1, we have FGΦO, by Lie-Kolchin's Theorem. Look at the following
exact sequence of rational G-modules,

If V=VG, we have Hq(G, V} = Hq(G,k)n where n=dimV, and we are done.
So, we may assume V Φ VG. Then by the above exact sequence , we have an
exact sequence

H\G, VG) -> Hq(G, V) -> Hq(G, V/VG) ,

and the indiction hypothesis completes the proof.
Case 3. If dim G>1, G has a normal subgriup H different from {e} and G.

Condider the following exact sequence and the associated spectral sequence:

Hp(GIH, Hq(H, F)) ̂  Hp+\G, V) .

The induction hypothesis implies dimHp+q(G, V)<o°. We prove the second
assertion. If p+q>dim G, we have p>dim G/H or ̂ >dim H. By the indiction
hypothesis, we have HP(G/H, Hq(H, V))=Q. Hence HP+\G} F)=0. Q.E.D.

For the next teorem, we need the following:

Lemma 5.2. Lei V be a finite-dimensional Ga-module. Then vΰe have

dim H\Ga) V) = the number of Ga-ίndecomposable components of V.

Proof. Since H\Ga) V}= Σ. li H*(Ga, V{)9 where each V{ is an inde-
composable component of V, we may assume V is indecomposable. We argue by
induction on dim V. If n:— dim V=l, the assertion follows [12; p. 71]. Assume
dim V>\. Choosing a suitable coordinate of Ga and a suitable &-basis e19 •••, en

of V, we may also assume

and x el = eλ

for every x^Ga. Put W: = Spank(ev •••, en^). It is easy to check that W is
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an indecomposable rational Gβ-module. We consider the cohomology exact
sequence :

0 -> WG* -̂  VG* -* (V/W)G* -> H\Gaί W)

- H\Ga, V) -* H\Ga, V/W)

The last equality follows from Theorem 5.1. Our induction hypothesis implies
dim H\Ga, W)=\. From the result of the case n= 1, we have dim H\Ga> V/W)
= 1. From the result of the case n=l, we have dimH\Ga, V/W)=l. Fur-
thermore, it is clear that WG°, VGa and (V/W)Ga has the same dimension 1.
Hence we have dim if ̂ G,, V)=l. Q.E.D.

Theorem 5.3. Let G be a unipotent algbraic group and let V be a non-zero,
finite-dimensional rational G-module. Then zϋe have Hr(G, V) =f= 0, where r= dim G,

Proof. We use the induction on r. If r— 1, we know that dimJϊr(G, V) is
the number of G-indecomposable components of V by Lemma 5.2. Hence
Hr(G, F")ΦO. If r>l, we can find a normal closed subgroup H of G such that
if Φ {tf}> G. Consider a spectral sequence:

H*(G/H, Hq(H, V)) ^ H*+<(G, V) .

By virtue of Theorem 5.1, we have:

H'(G, V) = HS(G/H, H\H, V)) ,

where s :=dimG/H and t := dim H. The induction hypothesis insures us that
H'(H, F)ΦO. Furthermore, Theorem 5.1 implies that dimH'(H, F)<oo. So,
the induction hypothesis implies that Hr(G, V) is a non-zero, finite-dimensional
vector space. Q.E.D.

6. Unipotent exact subgroups in terms of derivations.

In this section, we shall give an interpretation of commutative unipotent ex-
act subgroups (cf. [11 p. 6]) of an algebraic group in terms of derivations.

Theorem 6.1. Let G be an algebraic group and let H be a commutative,
unipotent, closed subgroup of G. Then the following conditions are equivalent :

(1) H is exact in G, i.e., G/H is affine;
(2) H\H,k[G\) = 0;
(3) Let Xly ,Xn be a k-basis of the Lie algebra L(H) of H. For any

n-tuplef=(fί)^k[G]n such that Xi(fj)=Xj(fi) for any pair (i,j), there exists an
element f of k[G] such that X^f) =/,( 1 < i < n) .

Proof. The equivalence of (1) and (2) follows from [11; Remark (2.5)bj.
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We shall rewrite the condition (2) in terms of X19 •••, Xn. Let a :—(al9 •••, ctn)
be a row vector whose entries are elements of k[xl9 •••, xn,y19 •••, yn]. Let I=(iί9

•••,/„) be a multi-index with integers as entries. The symbol a1 denotes

We also denote by the symbol ρx: k[G]-^>k[G] the right translation by an
element x of H, ρx(f)(g)=f(gx) (cf. [6; p.62]). We often identify H with a k-
vector space consisting of row vectors of size n by choosing a suitable coordinate-

system.
Consider the Hochschild complex of a rational /f-module k[G] :

δ° δ1

0 -> k[G] -* *[G] fo, -, xn] -*

where

It suffices to show the following lemma.

Lemma 6.2. Let Z be the set

) far any

let e(i) be the n-ple row vector with 1 in the i-ih entry and 0 elsewhere. Then the

mapping Φ:Ker81->ZJ defined by Σ///#7 *-»(/,(!), •••,/,(»)), is well-defined and it
gives rise to an isomorphism of k-vector spaces.

Proof. We divide our proof into the subsequent several steps:

(i) For any f&k[G]9 write p,(/H2//[/>7. Then we have f[e(i)]=Xi(f)

(ii) For any /€=*[(?], we have (/[/]) \J\=(f+fΓ)f[I+J\9 where (^J) =

l C(λϊ(λf λ)) if I=VW> -' ''(*» mdJ=(i(^ -'̂ ))
(iϋ) Suppose Sj/j^^Ker δ1. Then we have:

+κ (if/ΦO) and /β = 0 .

(iv) For any £ and j(\<i,j<ri)y we have Xj(fe(i^)=Xi(fe(j)}. Hence the
map Φ is well-defined.

(v) φ is bijective.

Proof of (i). Put x=0 in the equality ρx(f)= 2//[/]^7. Then we get /=
po(f)=f[0]. Next, let μ:GxG-*G be the multiplication and write μ*(/)=

Σifigi. Write ^,-ltf^Σ^'V. For every g^G, we have:
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where λ^ stands for the left-translation by the element £ of Ga (cf. [6; p. 62]),

and (9/9#, )e is the evalutaion at £ after applying 9/9#f .

Hence we have: X i ( f ) = ^Σfja
(

e

J

(})fj. On the other hand, we have: f[e(ί)] =

ΣX&Λ SO,

Proof of (ii). By the definition, we have p-(/) = Σ//[/]α/(for a ^H).

Hence we have pβ pβ>(/)=Pp(Σ//[/]α/)=S/Pp(/W)α/=2/.Jr (/[/]) [^]α7/?* for
α, /Seff.

On the other hand, we have ρΛ+β(f)= Σ//[/](#+/3)J. Since α: and /3 are
chosen arbitrarily, comparing the above equalities, we can verify the assertion.

Proof of (iii). We have 81(

Comparing the coefficients of xκyI

> we have// [-/£] = ί j )//+#. We also have

Σjr/o[^]«jr=0, by comparing the coefficients of A Hence /0=/0[0]=0.

Proof of (iv). We get the following two equalities by virtue of (i) and (iii):

and

The both sides of these equalities are equal to f0\e(i)-\-e(j)'] by virtue of (ϋ).

Proof of (v). First of all, we prove that Φ is injective. Suppose Φ(ΣIfIx
I)=

(/I>(1)]> " ,/[*(»)])=0. By (iv), we have/0-0. If !=&, -, /n)Φθ, say *>0,
we get the following equality by virtue of (iv) :

Hence //=0. These arguments imply that Σ///#/==0. So, Φ is injective.

Finally, we prove that Φ is surjective. For any (/(ί))eZ, we define the
following elements of k[G] by

/o:=0,

where ij is the j'-th entry of /, which is assumed to be non-zero. We must verify
that the above definition is independent of the choice of j. For this purpose, it
suffices to check that the following equality holds whenever ipiq

We may assume p<q By virtue of the above (i) and (ii), we can rewrite the
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both sides as follows:

the left side = (f(p)[e(q)]) [I-e(p)-c(q)]

and

the right side = (/

Since Xq(f(p))=Xp(f(q)), we obtain the required equality.
Next we compute :

The coefficient of yff is/0[/]=0 since /0=0. If the jf>-th entry ip of / is non-
zero, the coefficient of xκyr is :

/ip X X

= 0 (by(ii)).

Hence δ1(Σ///Λ?/)=0. It is clear that Φ(Σ///*/)=(/(0) So, Φ is bijective.
Q.E.D.
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