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1. Introduction. Throughout this article, we fix an algebraically closed field
k of characteristic zero as the ground field and mean by algebraic groups linear
algebraic groups. Let G be a connected algebraic group and let H be a closed
subgroup of G. We are interested in characterizing those subgroups H for which
the indiction functor ind§ is exact, though complete answers have not been yet
obtained. Note that the exactness condition on ind§ is equivalent to the condi-
tion that the quotient G/H is affine (cf. [11; Th. (4.3)]). Since G/H is the quo-
tient variety of a quasi-projective variety G/H® under the natural free action of a
finite group H/H®, G/H is affine if and only if so is G/H®, where H° is the identity
component of H. Therefore, we may and shall assume that H is connected.
Concerning this problem, the following result is well-known.

Theorem 1.1. (cf. [1], [7]) Suppose G is reductive. Then the following
conditions are equivalent :

(1) GJH is affine;

(2) H is reductive ;

(3) For an arbitrary finite-dimensional rational H-module
M, there exists a finite-dimensional rational G-module N such that M is an H-
submodules of N and M¥=N¢, where M (resp. N°€) is the set of elements of M
(resp. N) invariant under the H-action (resp. the G-action).

Even when the characteristic of % is positive, the conditions (1) and (2) are
sitll equivalent (cf. [5]). If we drop the equality M#=NF¢ from the condition
(3), it is equivalent to the condition that G/H is quasi-affine (cf. [2]).

Since the reductive case is known by the above theorem, we shall consider
the general case where G is non-reductive. Since the characteristic of & is zero,
G has a “Levi decomposition”. Namely, G is a semi-direct product of a reduc-
tive subrgoup L called 2 Levi factor of G and the unipotent radical U:=R,(G)
of G, where L is uniquely determined up to conjugations by elements of U
(cf. [3]).

Set V:=R,(H). Then Theorem 1.1 can be rephrased as follows.

Theorem 1.2. If G is reductive, G|H is affine if and only if the following



230 M. KorraBasH1

equivalent conditions are satisfied :

(1) G|V is affine;

(2") Vis trivial;

(3') For an arbitrary finite-dimensional rational V-module M, there exists a
Sfinite-dimensional rational G-module N such that M is a V-submidule of N and
MV=N-¢.

Our purpose of this paper is to consider the relationships among the follow-
ing conditions which generalize the conditions in Theorem (1.2):

0) reu;

(I) GJ/V is affine;

(ITI) For an arbitrary finite-dimensional rational V-module M, there ex-
ists a finite-dimensional rational G-module N such that A is a V-submodule
of N and M"=N¢;

(ITIT) For any element u of U, the equality

uVu'NL = {e
holds.

Note that if G is reductive, each of the conditions (0) and (III) coincides
with the condition (2"). Furthermore, the condition (IIT) implies that V" inter-
sects trivially any Levi factor of G. We also note that, by replacing H by its
unipotent radical, we may assume that H is unipotent. Indeed, if G/R,(H) is
affine, then G/H is the quotient of an affine variety G/R,(H) with respect to a
reductive algebraic group H/R,(H), hence G/H is affine (cf. [9; Th. (1.1)]). In
the section 2, we prove the implications (0)=>(I)=(II)=(III) and observe that
(I)=(0) is false. In the section 3, we shall prove the equivalence of the con-
ditions (I), (II) and (III) when G is a direct product of a Levi factor and the
unipotent radical U. In the section 4, we consider the case where U is com-
mutative. In this case, we may assume that a Levi factor is isomorphic to
GL(U) with U regarded as a vector group. When either dim I'=1 or V satisfies
additional hypotheses, we can prove the equivalence of the conditions (I), (IT)
and (III). In the section 5, we prove two theorems, one of which concerns the
vanishing of the Hochscild cohomology groups and the other does the non-
vanishing of them. In the final section, we consider the case where, with the
above notations, H is a commutative unipotent group. The exactness of H, i.e.,
that G/H is affine, can be interpreted in terms of derivations on the coordinate
ring K[G] of G associated to the natural H-action on G.

Finally, the author expresses his sincere thanks to Professor M. Miyanishi
who gave him useful advice and encouragement.

2. General case. We work in the previous situation posed in the section 1.
We sasume that H is connected. As a preliminary result, we shall prove the
following :
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Lemma 2.1. With the above notations, the following two conditions are
equivalent :

(1) For an arbitrary finite-dimensional rational H-module M, there exists
a finite-dimensional rational G-module N such that M is an H-submodule of N
and M¥=N¢.

(2) For an arbitrary finite-dimensional rational H-module M, there exists a
Sfinite-dimensional rational G-module N such that M is an H-submodule of N and
MHAC NE,

Proof. The implication (1)=(2) is obviuos. We prove the other direc-
tion. Let M be an arbitrary finite-dimensional rational H-module. By virtue
of the condition (2), we can take a finite-dimensional rational G-module N
satisfying the condition of (2). By induction on dim N—dim M, we shall show
that there exists a finite-dimensional rational G-module N’ such that M is an
H-submodule of N’ and N'¢=M¥%. If dim N—dim M=0, i.e., M= N, then
M¥=NF¢ obviously. So, we can take Nas N’. If dim N—dim M >0, we write
NC=MZ@N,, where the symbol @ stands for direct sum. If N,=0, we can take
Nas N'. If N,=%0, since NN M=0 and N, is a G-submodule of N, we have
MZN:=N|N, and M¥*<NS. Moreover, we have dim N—dim M<dim N—
dim M. So we can find a finite-dimensional rational G-module N’ by the in-
duction hypothesis. Q.E.D.

Next, we shall consider the relationships among the conditions (0)~/(III)
given in the section 1. We have:

Theorem 2.2. The following implications hold.
(0)= (I) = (II) = (1II)

Proof. (0)=>(I) Since G/U ==L is affine and U|V is also affine (cf. [4;
Prop. 2]), G/V is affine by virtue of [1; Cor. 1].

(I)=(II) Since V is unipotent and G/V is affine, G splits as a variety
G=(G|V)XV (cf. [4; Prop. 1], [10; Th. 10]). Hence we can regard R[V] as
a subring of k[G] via the comorphism of the second projection. Let M be
an arbitrary finite-dimensional rational V-module and let {v,, :--, v,} be a k-
basis of M. We can take g;;’s in k[V'] so that the following equality holds for
any heVl,

h"vj =>4 aij(h)‘vi .
Put
U= (ay, -, an;) ER[VT
and
M':= Span, (u,, **+, u,) in k[V]"
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Condider a rational V-action on k[V] defined by
h-a(x) = a(x-h),

where ack[V] and h, xE V.

We claim that M’ is a V-submodule of k[V']" and M'=Mn as V-modules.
In fact, define a map @: M'—M by (2321 b;u;)=>3:%1 b,v;. Then ¢ is clearly
an isomorphism of k-vector spaces. From the choice of 4;;’s, we have

a;;(xh) = %1 ag(x)ai(h) .
Hence, we obtain
hu; = (h-ay;, +++, h-a,;)
= >u%h akj(h)uk .

This implies that @ is V-equivariant.

Let N be a finite-dimensional rational G-module which is generated by M’
in k[G]" (cf. [6; Prop. (8.6)]). Clearly, N contains M’ as a V-submodule and
M'V=k"NM'SN€. Hence the implication (I)=>(II) follows from Lemma 2.1.

(II)=(I1I) Take an arbitrary u€ U and set L' :=uLu™' and K:=L'NV.
Since V/K is affine (cf. [4; Prop. 2]), given any finite-dimensional rational K-
module M, the implication (I)=(II) implies that there exists a finite-dimen-
sional rational V-module N’ such that M is a K-submidule of N’ and MX=N"".
Furthermore, by the condition (II), we can take a finite-dimensional rational G-
module N such that N’ is a V-submodule of N and N'V=N¢. The G-module
N is viewed as a finite-diminsional rational L’-module which contains M as
a K-submodule. Moreover, the inclusion M¥=N""=N¢Z N* holds. Hence
K={e} by virtue of Lemma 2.1 and Theorem 1.1. Q.E.D.

As for the converses of the implications in Theorem 2.2, we can only find
a counter-example to the implication (I)=>(0), which is given in the Proposition
2.3 below. We consider a direct product G := SL(2, k)X G, and a closed sub-

group #:={(((} ) =) ecis<k)

where G, is the additive group. We then have:

Proposition 2.3. With the above notations ,we have :
(1) GJ/H=SL(2,k), whence G|H is affine;
(2) R,(H) is not contained in R,(G).

Proof. (1) Let z: G—>G/H be the canonical quotient morphism. It is
enough to show that z’":=n |5, @ 18 bijective, for =’ is then birational since
the characteristic of % is zero and =’ is biregular by Zariski’s Main Theorem.



AFFINE HOMOGENEOUS SPACES 233

But this is clear since SL(2, k) X {0} is a cross-section of the morphism 7.
(2) Since R, (H)=H and R,(G)= {e} X G,, the assertion is clear. = Q.E.D.

In the subsequent sections, we shall consider to what extent the converses
of the implications in Theorem 2.2 hold if we put additional restrictions.

3. Case G=LXxU. In this section, we shall show that the conditions (I)~
(IIT) are equivalent if G is a direct product as algebraic groups of its Levi factor
L and its unipotent radical U.

Theorem 3.1. If G=LX U, the conditions (I)~(I1I) are equivalent.

Proof. It is enough to show the implication (III)=(I) in view of Theorem
2.2. Let fi=p,|y: V—U, where p,: LxX U—U denotes the second projection,
and let K:=Imf. By the condition (III), f is injective. So, we can define a
homomorphism g: K—L by g:=p, |y f~', where p,:L X U—L denotes the first
projection. Since the natural morphism U— U/K is a trivial principal K-bundle
(cf. [4; Prop. 1], [10; Th. 10]), we have U=(U/K)X K by choosing a cross-
section o: U/K—U to the natural morphism U—U/K. We assume o[e]=e,
where [e] is the class of the identity e in U/K. Our assertion follows from the
next claim:

Claim. GV = Lx(UJK).

Proof. Let m: G—G/|V be the natural quotient morphism. Noting that
G=Lx(U/K)x K, we have only to show that the restriction z’ of = onto
Lx(U/K)X {e} is an isomorphism. For this purpose, as in Proposition 2.3,
it is enough to show that ' is a bijection.

Injectivity of =': This can be easily shown if one notes that V is ex-
pressed as

V = {(g(x), [e], x) €L x (U/K)x K |x€K}.

Surjectivity of n': Choosing I€L, ucU and x&K arbitrarily, we have
z(l, [u], x)==((l, [u], x)-(g(x)7", [e], x!))=n(lg(x)~", [u], )EIm=’'. Hence n’ is
surjective. Q.E.D.

RemarRk. The implication (I)=>(0) does not hold even if G is a direct
product of L and U. In fact, in the counter-example in the section 1, the
given Levi decomposition of G is a direct product.

4. Case U is commutative. In this section, we consider a special case
where the unipotent radical U of G is commutative, i.e., U is a vector space.
We often identify elements of U with column vectors of length dim U. First
of all, we reduce the problem to the following special case. Let Gy:=a semi-
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direct product of GL(U) and U, whose multiplication is defined by (4, )+ (B, v):=
(AB, B'u+v), where A, B€GL(U) and u,v€U. Write G=L-U as a semi-
direct product of a Levi factor L and U and define a homomorphism of
algebraic groups ¢: G—Gy by

o, u): = ((Intl) |y, u) (Iel,ucU),
where

(Int l)(x) = Ixl"*.

We consider new conditions (T)N(ITI) which are stated as:

(1) Gylp(V) is affine;

(ﬁ) For an arbitrary finite-dimensional rational g(¥V)-module M, there
exists a finite-dimensional rational Gy-module N such that M is a @(V')-sub-
module of N and M*M)=N¢v;

(ITI) For any element u of U, we have up(V)u™*NGL(U)={e}.

The conditions (I)~(III) and (I)~(I1I) are related to each other as follows.

Theorem 4.1. (1) Among the conditions (1), (), -+, (IIT) and (IfI), we
have the following implications:

@) e =) and (1I)= (II1) = (III).
(2) If VN L=1{e}, we have further implications (11)=(11) and (I1I)=>(III).

Proof. (1) (I)=(I). Consider the isomorphisms Gylp(G)=(Gy/U)/
(p(G)|U)=GL(U)/p(L). Since L is reductive, (L) is reductive, too. Hence
GL(U)/p(L) is affine by virtue of [9; Th. 1.1]. Hence Gy/p(G) is affine.
On the other hand, consider the isomorphisms @(G)/@(V)=G/(V :Ker @)=
Kero\(G/V). Here, note that G|V is affine by the condition (I) and that
Ker @ is a reductive algebraic group as it is a normal subgroup of the reductive
algebraic group L. Hence by [9; Th. (1.1)], Ker@\(G/V) is affine, hence so is
@(G)|@(V). Therefore Gy/p(V) is affine (cf. [1; Cor. 1]). (I~)=>(I) It is clear
that @(G)/@(V) is a closed subset of Gy/p(V). So @(G)/p(V) is affine because
Gy/p(V) is affine by the condition (I). Hence G/(V -Ker ) =¢p(G)/p(V) is
affine. On the other hand, V' --Kerg/V =Kerg is affine. Therefore G/V is
affine (cf. [1; Cor. 1]). (I)=>(II). This follows from Theorem 2.2. (I)=(I1I).
We have already proved this in Theorem 2.2. (III)=>(III). By the definition
of @, we have o (GL(U))=L and @(uVu"")=up(V)u"* for any ucU. Hence,
for any u< U, we have

GLU)Nup(V)u™ = GL(U)NpuVu™")
— plp (GLU) NuVu™)
=@ LNuVu™) = {e .
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(2) (IT)=(II). Since Kere C L, the condition ¥ NL={¢ implies that
@ly: V—=@(V) is an isomorphism. Hence the sets {finite-dimensional rational
V-module} and {finite-dimensional rational ¢(V’)-module} are obviously in
one-to-one correspondence. Let M be a finite-dimensional rational V-
module. Then M is thought of as a finite-dimensional rational ¢(¥)-module.
Hence we can take a finite-dimensional rational Gy-module N which satisfies the
requirements set in the condition (II). We can regard this N as a rational
G-module through @. Then M is clearly a V-submodule of N with respect to
this G-module structure on N and MV=M*"'=NC%CNC. Hence our asser-
tion follows from Lemma 2.1. (ﬁI)=>(III).

Consider the equalities:
{e} = GL(U)Nup(Vyu™*
= GL(U)Nepulu™)
= @ (GL(U)) NuVu™)
=oLNuVu™).

Hence we have an inclusion LN uVu 'S Kerp. Now we can finish as
LNuVu'SuKerpN V)u = {e}. Q.E.D.

Making use of Theorem 4.1, we can prove the equivalence of the condi-
tions (I)~(III) under some special situations.

Theorem 4.2. If dim V=1, the conditions (I)~(III) are equivalent.

Theorem 4.3. If V satisfies the following two conditions, three conditions
(I)~(III) are equivalent:

(1) @(V) is commutative;

(ii) There exists an element of Int (V') which has the minimal polynomial of
degree equal to dim U.

By virtue of Theorem 2.2 and Theorem 4.1, it is enough to show the im-
plication (ITI)=>(I), assuming that the condition (III) holds.

Proof of Theorem 4.2. Put V':=¢(V), wherep(V )=V because V' N L= {e},
and take an element v'=(4, v)eV'\{e}, where A=GL(U) and u€U. Put
U':=Im(A™'—E), where elements of GL(U) acts on U from the left, U being
identified with the space of column vectors of length dim U.

Claim. The element « is not contained in U’.

Proof. Assuming the contrary, write u=A4"'u’'—u’ with '€ U. Then we
have
u' YA, uyu' = (E, —u')-(4, u)-(E, u’)
= (4, 0)eGL(U)\{E}.
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Thus we obtain a non-trivial element of #'~'V'u’NGL(U). This is a con-
tradiction to the condition (IIT).

Take a basis {e,, **+, ¢,} of U’ and extend this basis to a basis {e, ---, ¢,,
Cyi1s %y Curmy Of U. If we write u= 3372 ce;, the above claim implies that
(cn+1: ) cn+m)=‘=(0’ ] O) Suppose cniF 0. Put U”:= Spank (€15 ***5 €xs €1y
oy uriy oty €xem), Where e, is deleted. It is easy to see that U” satisfies the
following three conditions:

(1) U” is V'-stable, where V' acts on U by conjugation;

Note that V' is a unipotent group of dimension 1. Hence the condition
(1) is ascertained by the following computation for the nonzero element 2’ of

V' and e, U”:
v'e;v' ™t = (4, u)-(E, ¢)(4, u)™
— (E, (A"'—E) (—Ae;)+¢;)
e Im(A"—E)+U" = U".

(2) oeU”;

(3) The multiplication morphism in Gy induces an isomorphism U” X
(V)3 U, where p,: GL(U)X U— U is the second projection, which is not
necessarily a group homomorphism.

Hence our assertion follows from the next lemma.

Lemma 4.4. The notations and assumptions being as above, we assume the
following conditions:

(i) VNL={e;

(il) There exists an irreducible closed subvariety W of U such that

(a) W is p(V)-stable, where p,(V) acts on U by conjugation;

(b) esW;

(c) the multiplication morphism of G induces an isomorphism WX p,(V)3U.
Then G|V is affine. (Note here that we don’t have to assume that U is commuta-
tive.)

Proof. Let z: G—G/V be the canonical quotient morphism. Noting that
G=L X WXpy(V) as varieties, let ' be the restriction of 7z onto LX Wx {e}. It
is enough to show that z': LXW — G|V is bijective. Put V,:=p,(V) and
Ti=p;*(p.lv)': V,—>L. We identify G with LX WX V, as a variety.

Injectivity of ='. Assume =(x,y, e)=n(x’,y’, e) with x,x’'€L and y,y'€W.
Then (%', y’, e)=(x,y, e)*(7(2), e, v) for v&V,. The right hand side can be
written as

(x7(2), 7(2)"y7(0), v) .

By comparison of both sides, we obtain v=e and 7(v)=e by the definition of .
Hence (x', y’, )=(x, y,e). Thus =’ is injective.
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Surjectivity of »'. It is enough to show z(x, y, 2)€Im =’ for arbitrarily chosen
x€L, yeW and z€V, Since V={(7(2), ¢, )|2EV,}, we can take an
element 2’ V, such that (7(2), e, 2)"'=(7(2’), ¢, 2’), where (7(2), e,2)™ " liesin V
because V is a group. From the equation (e, e, €)=(7(2), ¢, 2)+(7(2'), ¢, 2")=
(T()7(=2"), e, 7(2')'27(2')2"), we have 7(2')"'27(2')2'=e. Hence,

(% 3, 2)+(7(2), & #') = (¥7(="), 7(2')"y7(2"), 7(2")"27(2')3)
= (27(2"), 7(3")"y7(2), €) -

Therefore we obtain z(x, y, 2)=n(x1(2"), 7(2')"'y7(2’), e)En(LX W)=Im='.
QE.D.

Corollary 4.5. In the same situation as in Lemma 4.4, where we don’t have
to assume that U is commutative, G|V is affine provided p,(V)=U and V N L={e}.

Proof. We can take {¢} as W in Lemma 4.4. Q.E.D.

Proof of Theorem 4.3. Put V':=¢@(V'). For any element x of V’, there
is a unique homomorphism &: G,— V"’ of algebraic groups such that &1)=wx
(cf. [6; p. 96]). We use the notation x* with €k to denote &(f). By the con-
dition (ii), we can choose an element v’ of V'’ such that the minimal polymomial
of Into’ acting on U has degree equal to dim U. Let V; be the one-dimen-
sional closed subgroup {(v')!|t& k}, which is generated by o’. Since V' is
commutative, there exist one-dimensional connected closed subgroups V, -+, V,,
such that

V' =V, XV,X++XV,, where r<m:=dimU.

Let v; be a generator of V; for cach 1<i<r. We choose v’ as v,. Write
v;=(v}, v{’) with o{€GL(U) and v’ U. The conditions (i) and (ii) enable us
to write v{7}, «-+, v;"' as E+N, E+N,, -+, E+ N, & U(n, k) after a suitable change
of bases of U, where N is a nilpotent matrix of the following form

010
N=| ™.
0o 0.

Furthermore, since ¥’ is commutative, we conclude by a straightforward com-
putation that NN; has the following form

N;:= af’)N++-+a®,N*! with a{’ck.
Write v}/ =*(u{", ---, u$”’) as a column vector and let
k;:=max {k|uf’ & 0} and j;:= min {j|a{"+0} .

If k;=Fk;(i<j), replacing v; by a suitable element of the form v%v} with p, gk



238 M. KOITABASHI

and V; by the closure of <v?v%), the group generated by v?v%, we may as-
sume that k,, -+, k, are different from each other.

Claim. 9}’ does not belong to Im IV; for 1<i<7.

Proof. Assuming the contrary, take u< U so that 9{’=Nu. It is easy to
see that esFu 'vaucu ' VuNGL(U)Su 'V'uN GL(U). This contradicts the con-
dition (ITT).

By the above claim, we obtain k;+j;>n+1 and k,=n, in particular. After
a suitable permutation of the indices {2, ---, 7}, if necessary, we may assume
n=k, >k, > >k,

Put
Wi= {{(uy, -+ )€U |u,, =0 (1<i<r)}
and write the second factor of v§ as a column vector *(u{(s), -+, u$”(s)). Then

it is easy to check that u§(s) is a polynomial in s of degree 1, for k=Fk;. Hence,
for any u€ U, there is a unique (s;, **+, 5,) k" such that

wu-vi1--0;reW.

This implies that 7 | g1y xw: GL(U)X W—Gy [V’ is bijective, where = : Gy—Gy[V’
is the canonical quotient morhism. Therefore Gy/V’ is affine.

5. Some results on Hochschild cohomology groups.

In this section, we consider the Hochschild cohomology groups of an alge-
braic group G with coefficients in a rational G-module. We shall prove two
theorems, one of which concerns the vanishing of the Hochschild cohomology
groups, and the other does the non-vanishing of them.

Theorem 5.1. Let G be an algebraic group and let V be a rational G-module.
Then we have :

(1) If V is finite-dimensional, so is H'(G, V') for every i.

(2) H{(G, V)=0 for every i>dim R,(G).

Proof. Since H(G,indlim V,)=ind lim H*(G, V,), we may assume V is
finite-dimensional. Consider the following exact sequence of algebraic groups.

1> R(G)—> G — G :=GJR(G)—> 1,

where R,(G) is the unipotent radical of G. This gives a spectral sequence (cf.
[11; Th. (2.9)]):
H(G H'(R(G), V)= H"*Y(G, V).

Since G’ is fully reducible, Homg' (&, ?) is an exact functor. Hence we have:



ArrFINE HOMOGENEOUS SPACES 239

HYG, HY(R,(G), V)) =0 for every p>0.

So, we have:
HYG, V)= H(G', H(R/(G), V)) = H'(R,(G), V)¢ .

By these arguments, we are reduced to the case where G is unipotent. In this
case, the proof proceeds by indiction on dim G.

Case 1. If dim G=0, the assertions are trivial.

Case 2. If dim G=1, we show the assertion by the induction on dim V.
If dim V=1, we have HYG, V)=0(¢>2), =k (¢q=0,1) by [12; p. 71]. If
dim V>1, we have V¢=0, by Lie-Kolchin’s Theorem. Look at the following
exact sequence of rational G-modules,

0> V>V V[0

If V=V¢, we have HYG, V)=H*G, k)" where n=dim V, and we are done.
So, we may assume V'==V¢ Then by the above exact sequence, we have an
exact sequence

HYG, V¢ — HYG, V)— HYG, V|V°),

and the indiction hypothesis completes the proof.
Case 3. If dim G>1, G has a normal subgriup H different from {e} and G.
Condider the following exact sequence and the associated spectral sequence:
1-H->G—-G/H—1,
H¥G|H, H'H, V)= H"*(G, V).
The induction hypothesis implies dim H?*4(G, V)<<co. We prove the second

assertion. If p+¢>dim G, we have p>dim G/H or ¢>dim H. By the indiction
hypothesis, we have H*(G/H, H'(H, V))=0. Hence H**¢(G, V)=0. Q.E.D.

For the next teorem, we need the following:
Lemma 5.2. Lei V be a finite-dimensional G,-module. Then we have
dim H\G,, V) = the number of G,-indecomposable components of V.

Proof. Since HYG,, V)= 3.1 H(G,, V), where each V; is an inde-
composable component of ¥, we may assume V is indecomposable. We argue by
induction ondim V. If #n:=dim V=1, the assertion follows [12; p.71]. Assume
dim >1. Choosing 2 suitable coordinate of G, and a suitable k-basis e,, -, ¢,
of V, we may also assume

xee; = e;+xe;_(2<i<m) and =x-e, =e¢

for every x€G,. Put W:=Span, (e, ***, e,-;). It is easy to check that W is
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an indecomposable rational G,-module. We consider the cohomology exact
sequence:

0 — W — V% — (V[ W) — HYG,, W)
- HYG,, V)— HYG,, V/W)— HYG,, W)=10.

The last equality follows from Theorem 5.1. Our induction hypothesis implies
dim HY(G,, W)=1. From the result of the case n=1, we have dim HYG,, V/W)
=1. From the result of the case n=1, we have dim HY(G,, V/W)=1. Fur-
thermore, it is clear that W%, V¢ and (V/W)% has the same dimension 1.
Hence we have dim H(G,, V)=1. Q.E.D.

Theorem 5.3. Let G be a unipotent algbraic group and let V be a non-zero,
finite-dimensional rational G-module. Then we have H'(G, V)0, where r=dim G,

Proof. We use the induction on r. If r=1, we know that dim H'(G, V) is
the number of G-indecomposable components of V' by Lemma 5.2. Hence
H'(G,V)=+0. Ifr>1, we can find a normal closed subgroup H of G such that
H =+ {e}, G. Consider a spectral sequence:

HXG/H, H'(H, V))= H"™(G, V).
By virtue of Theorem 5.1, we have:
H'(G, V)= HG/H, HH, V)),

where s :=dim G/H and ¢:=dim H. The induction hypothesis insures us that
H!(H,V)=%0. Furthermore, Theorem 5.1 implies that dim H*(H, V)<<oco. So,
the induction hypothesis implies that H'(G, V) is a non-zero, finite-dimensional
vector space. Q.E.D.

6. Unipotent exact subgroups in terms of derivations.

In this section, we shall give an interpretation of commutative unipotent ex-
act subgroups (cf. [11; p.6]) of an algebraic group in terms of derivations.

Theorem 6.1. Let G be an algebraic group and let H be a commutative,
unipotent, closed subgroup of G. Then the following conditions are equivalent :

(1) H is exact in G, i.e., G/H is affine ;

(2) HYH,R[G])=0;

(3) Let X,, -+, X, be a k-basis of the Lie algebra L(H) of H. For any
n-tuple f=(f;) ER[G]" such that X,(f;)=X,(f;) for any pair (i,]), there exists an
element f of k[G] such that X,(f)=f,(1<i<n).

Proof. The equivalence of (1) and (2) follows from [11; Remark (2.5)b].



AFFINE HOMOGENEOUS SPACES 241

We shall rewrite the condition (2) in terms of X, -+, X,. Let a:=(a,, ***, a,)
be a row vector whose entries are elements of K[x;, **+, %,, ¥;, ***, ¥,]. Let I=(3,,
-++,1,) be a multi-index with integers as entries. The symbol &/ denotes

alil XYY a;‘”

We also denote by the symbol p,: R[G]—k[G] the right translation by an
element x of H, p,(f)(g)=f(gx) (cf. [6; p.62]). We often identify H with a k-
vector space consisting of row vectors of size # by choosing a suitable coordinate-
system.

Consider the Hochschild complex of a rational H-module k[G]:

0 1

o
0— k[G] - k[G] [xl) *t% xn] - k[G] [xl St Xy Y 0y yn] ’
where

8(f):=p(f)—f and &'E fix'):= 2 p(fr)y' —Zifulx+y) +Zifrx’ .

It suffices to show the following lemma.
Lemma 6.2. Let Z be the set

{FO)EHGT | X,(f?) = X(fP) for any (i, j)}

let e(7) be the n-ple row vector with 1 in the i-th entry and O elsewhere. Then the
mapping D: Ker8'—Z, defined by Z,fix"— (fuw, ***» fuw), 15 well-defined and it

gives rise to an isomorphism of k-vector spaces.

Proof. We divide our proof into the subsequent several steps:

(i) For any fEk[G], write p,(f)=2,f[I]¥'. Then we have f[e(:)]=X(f)
(1<i<mn) and f[0]=f.

(i) For any fek[G], we have (fITLN=("F/)T-+]1, where (T47)=
s (M) i =), - i) and J=(i(1), -, o).

(iii) Suppose =;fix'€Kerd'. Then we have:

Kl = (") frx G I0) and fi=0.

(iv) For any ¢ and j(1<7,j<n), we have X;(f.))=X;(f.;)- Hence the
map P is well-defined.
(v) & is bijective.

Proof of (i). Put x=0 in the equality p,(f)=3,f[I]x’. Then we get f=
po(f)=f[0]. Next, let u: GXG—G be the multiplication and write p*(f)=
3:fig:. Write g;|z=3a{"x’. For every g&G, we have:
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Xi(/)(8) = (8/0x).(ng-1(f) | n) = (8/0%:).(Z;;(8)g; 1 )
= 2,;i(8)(8/0%:).(8; u) = 2;fi(g)ailly »
where A, stands for the left-translation by the element g of G, (cf. [6; p. 62]),

and (0/0x;), is the evalutaion at e after applying 0/9x;.
Hence we have: X;(f)==%;a!{)f;- On the other hand, we have: f[e(:)]=

S;ahf; So, fle(@]=Xi(f)-

Proof of (ii). By the definition, we have p,(f)==,f[I]a!(for @ € H).
Hence we have ps-pu(f)=pps(Z1f[I]a’) =2 ps(f[I])a"= 21 (f[1]) [K ]’ B for
a, BEH.

On the other hand, we have p,.s(f)==;f[I](2¢+B)". Since o and B are
chosen arbitrarily, comparing the above equalities, we can verify the assertion.

Proof of (iii). We have 8'(2,f;x")=3;p.(f)V —Z1f1(x+y)+2,fix" =0.
Comparing the coefficients of x%y’, we have f;[K ]:(I—{}K) frix. We also have
Sk fo[K]xX=0, by comparing the coefficients of y°. Hence fo=f,[0]=0.

Proof of (iv). We get the following two equalities by virtue of (i) and (iii):

Xi(fun) = X;(fole(®)]) = (fole(®)]) [e(j)]  and
Xi(fep) = Xi(fole(7)]) = (fole(5)]) [e(?)] -
The both sides of these equalities are equal to fy[e(:)+e(j)] by virtue of (ii).

Proof of (v). First of all, we prove that ® is injective. Suppose ®(Z; f;x")=
(fle(D)], =+, fle(m)])=0. By (iv), we have f,=0. If I=(s, -+, ,)=+0, say ;>0,
we get the following equality by virtue of (iv):

0= fuplT—e(i) = (;_L ) )fr

Hence f;=0. These arguments imply that 3, f,x’=0. So, ® is injective.
Finally, we prove that @ is surjective. For any (f®)eZ, we define the
following elements of k[G] by

fo:=0,
fri=fOU—e(j)]fi;

where i; is the j-th entry of I, which is assumed to be non-zero. We must verify
that the above definition is independent of the choice of j. For this purpose, it
suffices to check that the following equality holds whenever 7,i,=0:

1, fPI—e(p)] = i,/ C[I—e(9)]-

We may assume p<<g. By virtue of the above (i) and (ii), we can rewrite the
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both sides as follows:

the left side = (F@[e(q)]) [I—e($)—c(q)]
= (X(fP)I—e(p)—e(@)], and
the right side = (f[e(p)]) [—e( ) —e(q)]

= (X(fONI—e(p)—e9)] -

Since X ,(f®)=X,(f?), we obtain the required equality.

Next we compute:

SNE; fra") = Zrpfr)y" —Zi fr(e4-y) =2 frxt .

The coefficient of x7y° is f,[[]=0 since f,=0. If the p-th entry ¢, of I is non-
zero, the coefficient of x¥y7 is:

iy < (FOU— @D KT~ ("5 ) e
— Uiy X (fPU—e(p)DIK]

Gyt X (TEES0)) s Uiy x I+ K—e( )
=0 (by (i)-

Hence 8'(Z,f;x")=0. It is clear that ®(Z, f;x")=(f®). So, ® is bijective.

(1]
(2]
(3]
[4]

[5]
(6]

[7]
(8]

9]

Q.E.D.
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