

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

AN ELEMENTARY CONSTRUCTION OF THE REPRESENTATIONS OF SL(2, GF(q))

ALLAN J. SILBERGER

(Received February 10, 1969)

1. Introduction

Let *GF(q)* be a field containing *q* elements, *q* odd. Let *Q* denote $GL(2, GF(q))$, the group of non-singular two-by-two matrices with entries in $GF(q)$, and let *G* denote $SL(2, GF(q))$, the subgroup of G consisting of matrices with determinant one. In this paper, assuming a knowledge of certain of the characters of *Qy* we construct all the irreducible unitary representations of *G.* Our construction involves essentially no technique beyond the theory of induced representations and the orthogonality relations on a finite group. For a similarly elementary computation of the characters of *Q* we refer the reader to [3]. In future papers we shall generalize the methods employed in this paper to construct the representations of the $n \times n$ matrix groups $GL(n, GF(q))$ and *SL(n, GF(q)).*

Kloosterman [2] was the first to describe all the irreducible matrix representations of *SL(2, GF(q)).* Weil in [5] generalizes and gives an alternative construction for Kloosterman's representations. In [4] Tanaka uses Weil's theory to construct representations and presents a complete and unified description of the representations of G. We also mention the paper [1] of Gelfand-Graev, which classifies but does not detail the actual construction of all the representations of *G.*

2. The representations

Let *B* be the upper unipotent, *D* the diagonal, and *T* the upper triangular subgroups of G. Then $T=DB$. G has order $q(q^2-1)$ and contains an abelian subgroup *R* (unique up to conjugacy) of order $q+1$. Except for plus-or-minus the identity of G elements of R have characteristic roots in $GF(q^2) - GF(q)$. R is isomorphic to the subgroup of $GF(q^2)^{\times}$ comprised of elements of norm one.

The *q+4* equivalence classes of irreducible representations of G break up roughly into two main classifications. The $\frac{1}{2}(q+5)$ representations of the

Research partly supported by NSF Grant GP-7139.

"principal series" all contain B-invariant vectors. Those $\frac{1}{2}(q+3)$ inequivalent representations which do not contain B -invariant vectors we call discrete series.

More precisely, the principal series include:

(1) The trivial representation of degree 1, $U=1$;

(2) A q -dimensional representation U_1^1 which occurs with $U\equiv 1$ in the induced representation ind 1

(3) $\frac{1}{2}(q-3)$ irreducible induced representations U^{α} = ind α , where α is a one-dimensional representation of *T* which is not real-valued. *U"* has degree $q+1$ and $U^{\tilde{\alpha'}}$ is equivalent to $U^{\tilde{\alpha}}$ if and only if $\alpha'=\alpha$ or α^{-1} .

(4) Let $\alpha = \text{sgn}$, where sgn $\equiv 1$ and sgn² $\equiv 1$. Then ind sgn= $U^{\text{sgn}} = U^{\text{sgn}}$ $T \uparrow G$

 $+ U_2^{\text{sgn}}$, the direct sum of two inequivalent irreducible representations, each of degree $\frac{1}{2}(q+1)$.

The discrete series are as follows:

(5) If π is a non-trivial character of R, then there is a representation U^{π} of *G* of degree $q-1$ associated with π . U^* is characterized by the fact that it does *not* occur in ind π . U^* is irreducible if and only if π is not *R^G* real-valued. U^{π} is equivalent to $U^{\pi'}$ if and only if $\pi' = \pi$ or π^{-1} , so there are $\frac{1}{2}(q-1)$ inequivalent irreducible representations of degree $q-1$. (6) If $\pi \not\equiv 1$, $\pi^2 \equiv 1$, then $U^{\pi} = U_1^{\pi} + U_2^{\pi}$, the direct sum of inequivalent

representations of degree $\frac{1}{2}(q-1)$.

3. The construction of principal series

The construction of the representations of the principal series as induced representations is well-known. For completeness we discuss this problem in detail.

Let α be a one-dimensional representation of T. Since *B* is the commutator subgroup of T, $\alpha(btb') = \alpha(t)$ for any *b* and $b' \in B$ and $t \in T$. T/B is canonically D , so α is the extension to T of a character of the abelian group D. The mapping which identifies $d \in D$ with its upper diagonal entry regarded as an element of the multiplicative group $GF(q)^{\times}$ is an isomorphism. In this section, when convenient, we regard α as a function on $GF(q)^{\times}$ via this identification. Let U^{α} denote the representation of G induced from α .

By the definition of U^{α} , G acts by right translation in the space V^{α} which consists of complex-valued functions ψ on G satisfying

$$
\psi(tg) = \alpha(t)\psi(g)
$$

for all $t \in T$ and $g \in G$. Any such function is determined by its restriction to a set of representatives of $T\backslash G$. Since two matrices in G with the same lower entries differ only by a left factor in B , $\psi \in V^*$ implies $\psi(g) = \psi(g_{z_1}, g_{z_2}), g_{z_1}$

 g_{22} the lower entries of $g \in G$. Equation (3.1) entails

(3.2)
$$
\psi(d^{-1}g_{21}, d^{-1}g_{22}) = \alpha(d)\psi(g_{21}, g_{22})
$$

for $d \in GF(q)^{\times}$, g_{21} and g_{22} as before, so ψ is actually determined by its values, which may be chosen arbitrarily, on a set of representatives for the projective line over *GF(q).*

Theorem 3.1. Let α be a one-dimensional representation of T. Let U^* be *the representation of G induced from* α *.* $U^{\mathfrak{a}}$ *is right translation in the space* $V^{\mathfrak{a}}$ *defined by relations* (3.1) *and* (3.2).

- (1) The degree of U^{ω} is $q+1$.
- (2) U^{α} is irreducible if and only if $\alpha^2 \not\equiv 1$.
- (3) $U^{\omega'}$ is equivalent to U^{ω} if and only if $\alpha' = \alpha$ or α^{-1} .
- (4) *U¹ decomposes into the direct sum of an irreducible representation of degree q and the unique one- dimensional representation of G.*
- (5) U^{sgn} , where sgn $\equiv 1$ but sgn² \equiv 1, decomposes into the direct sum of two inequi*valent representations of degree* $\frac{1}{2}(q+1)$.

Proof.

(1) A set of representatives for the projective line over $GF(q)$ (e.g. $\{(0, 1),$ $(-1, z)|z \in GF(q)$) has cardinality $q+1$. In view of the above remarks this proves that V^* has dimension $q+1$.

(2) The proofs of the remaining parts of this theorem depend upon an analysis of the commuting algebra of *U*.*

Let C^{ϕ} be the convolution algebra of all complex-valued functions f on G satisfying $f(tgt') = \alpha(t t') f(g)$ for any $t, t' \in T$ and $g \in G$. Then $U^{\phi}(g_0)(f*\psi) =$ $f * U^{\alpha}(g) \psi$ for any $g_0 \in G$ and $\psi \in V^{\alpha}$, since $f \in C^{\alpha}$ acting from the left by convolution keeps V^{ϕ} stable and commutes with right translation. Frobenius' reciprocity theorem says precisely that C^* is large enough to be the full commuting algebra of *U*.*

 $f \in C^{\alpha}$ is determined by its values on a set of representatives for the double cosets $T\setminus G/T$, e.g. $\left\{e=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, w=\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\right\}$. Clearly, dim $C^{\infty}\leq 2$. Dim $C^{\infty}=2$ if and only if $f(w) \neq 0$ for some $f \in C^{\infty}$, if and only if $\alpha(t) f(w) {=} f(tw) {=} f(wt^{-1}) {=}$ $\alpha^{-1}(t) f(w)$ for all $t \in D$. Thus dim $C^{\infty} = 2$ if and only if $\alpha^2(t) \equiv 1$, so (2) is true. (3) The space of intertwining operators between V^{ω} and $V^{\omega'}$, $\alpha \neq \alpha'$, is canonically the vector space $T^{a,a'}$ of complex-valued functions on G satisfying $f(tgt')$ $=\alpha(t)f(g)\alpha'(t')$ for all $t, t' \in T$ and $g \in G$. It is spanned by any function f which satisfies $\alpha(t) f(w) = f(w) \alpha'(t^{-1})$ for all $t \in D$. $f(w) \neq 0$ implies $\alpha' = \alpha^{-1}$. (4) V^1 contains the constant functions on G as a stable subspace. The orthogonal complement of this one dimensional module must be an irreducible q -dimensional representation space for G .

332 **A.j.** SlLBERGER

(5) By the analysis in (2) we know that U^{sgn} decomposes into the direct sum of two inequivalent representations, $U_1^{\text{sgn}}+U_2^{\text{sgn}}=U^{\text{sgn}}$. By Frobenius' reciprocity theorem res U^{sgn}_{ν} , for $\nu=1$ or 2, contains sgn and no other onedimensional representation of T. Since $G/\{\pm e\}$ is a simple group, G has no non-trivial one-dimensional representations. Therefore, Lemma (4.3) implies that the degree of U_{ν}^{sgn} is $\frac{1}{2}(q+1)$, $\nu=1$ or 2.

REMARK. To complete our description of the representations of the principal series we need to be more specific about the G-stable subspaces $V_1^{\rm{sgn}}$ and $V_2^{\rm{sgn}}$ of V^{sgn} . Set $\phi(-1, z) = \Phi(z)$ for $z \in GF(q)$, where Φ is an additive character of $GF(q)$; let $\phi(0, 1) = 0$. Then ϕ extends uniquely to a function in V^{sgn} and $U^{\text{sgn}}(b(u))\phi = \Phi(u)\phi$, where *u* is the super diagonal entry of $b(u) \in B$. Moreover, $U^{\texttt{sgn}}(d) \phi(-1, z) {=} \texttt{sgn}\,(d) \phi(-1, \, d^{-2}z) {=} \texttt{sgn}\,(d) \Phi(d^{-2}z) \,\, \text{for all} \,\, z{\in}GF(q), \, d{\in}D$ (identified with $GF(q)^{\times}$); $U^{\text{sgn}}(d) \phi(0, 1) = 0$. Let $\Phi \equiv 1$. Then the $\frac{1}{2}(q-1)$ functions φ' which correspond to characters Φ' such that *Φ'(d~² z)=Φ(z)* for some $d\in GF(q)^{\times}$ belong to V_{ν}^{sgn} ; the other non-trivial additive characters of $GF(q)$ must correspond to elements of $V_{\nu}^{\text{sgn}}, 1 \leq \nu + \nu' \leq 2$. V_{ν}^{sgn} also contains a vector ψ satisfying $\psi(tgt')=sgn(tt')\psi(g)$ for all $t, t' \in T, g \in G$. In fact ψ may be chosen to be an idempotent in C^{sgn} .

Proposition 3.2. *Set*

$$
\psi(g) = \frac{1}{2} \frac{|G|}{|T|} \text{sgn}(t), \quad \text{if} \quad g = t \in T;
$$

=
$$
\frac{1}{2} \frac{|G|}{|T|} (q \text{ sgn} (-1))^{-1/2} \text{ sgn}(t),
$$

if g=twb, with $t \in T$, $b \in B$, and $w = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

 $Then \psi$ is an idempotent in the algebra $C^{\texttt{sgn}}$. There are two choices ψ , ψ' de*pending on the sign of* $[sgn(-1)]^{1/2}$. Clearly, $\psi + \psi'$ *is the identity in* C^{sgn} . The *function* φ *defined in the preceding remark and corresponding to the non-trivial character* Φ *of GF(q) belongs to the same G-irreducible subspace of* V^{sgn} *as* ψ *if* and only if \sum sgn(x) $\Phi(-x)$ =[q sgn(-1)]^{1/2} (with the same choice for the sign of *the right hand side as in the definition o*

Proof. To show that ψ is an idempotent in C^{sgn} it suffices to show that *e*) and $\psi * \psi(w) = \psi(w)$. We have

$$
\begin{aligned} \psi\ast\psi(g)&=\frac{1}{\mid G\mid}\sum_{z\in\sigma}\psi(x)\psi(x^{-1}g)=\frac{\mid T\mid}{\mid G\mid}\sum_{z\in\sigma/T}\psi(x)\psi(x^{-1}g)\\ &=\frac{\mid T\mid}{\mid G\mid}\{\psi(e)\psi(g)+\sum_{u\in GF(q)}\psi(w)\psi(w^{-1}b^{-1}(u)g)\}\,. \end{aligned}
$$

Therefore,

$$
\psi*\psi(e) = \frac{|T|}{|G|} \cdot \frac{1}{4} \frac{|G|^2}{|T|^2} \{1 + [q \operatorname{sgn}(-1)]^{-1} \operatorname{sgn}(-1)q\}
$$

\n
$$
= \psi(e) .
$$

\n
$$
\psi*\psi(w) = \frac{|T|}{|G|} \cdot \frac{1}{4} \frac{|G|^2}{|T|^2} \{[q \operatorname{sgn}(-1)]^{-1/2} + [q \operatorname{sgn}(-1)]^{-1/2}
$$

\n
$$
+ [q \operatorname{sgn}(-1)]^{-1} \sum_{\substack{u \in \mathcal{G} \text{reg} \\ u \neq 0}} \operatorname{sgn}(-u) \} .
$$

The last term on the right, being a character sum, is zero. It arises from the relation

$$
\begin{array}{lll}\n\ast & w^{-1}b^{-1}(u)w = \begin{Vmatrix} 0 & -1 \\ 1 & 0 \end{Vmatrix} \begin{Vmatrix} 1 & -u \\ 0 & 1 \end{Vmatrix} \begin{Vmatrix} 0 & 1 \\ -1 & 0 \end{Vmatrix} \\
&= \begin{Vmatrix} -u^{-1} & -1 \\ 0 & -u \end{Vmatrix} \begin{Vmatrix} 0 & 1 \\ -1 & 0 \end{Vmatrix} \begin{Vmatrix} 1 & u^{-1} \\ 0 & 1 \end{Vmatrix}, & \text{if} & u \neq 0 .\n\end{array}
$$

Thus, $\psi * \psi(w) = \psi(w)$.

Finally, since ψ is a minimal idempotent in C^{sgn} , $\psi * \phi = \phi$, if $\psi \in V^{sgn}$ and

Finally, since
$$
\psi
$$
 is a minimal temperature in C, $\psi \psi \psi = \psi$, in ψ
\n
$$
\phi \in V^{sgn}_{\nu}
$$
. If $\phi \notin V^{sgn}_{\nu}$, then $\phi \in V^{sgn}_{\nu}$, so $\psi * \phi = 0$.
\n
$$
\psi * \phi(w) = \frac{|T|}{|G|} \sum_{x \in G/T} \psi(x) \phi(x^{-1}w)
$$
\n
$$
= \frac{|T|}{|G|} \{ \psi(e) \phi(w) + \psi(w) \sum_{u \in G/F(q)} \phi(w^{-1}b^{-1}(u)w) \}.
$$

Using relation $*$ as well as the definitions of ψ and ϕ , we obtain

$$
\psi*\phi(w)=\phi(w)\left\{\frac{1}{2}+\frac{1}{2}\left[q\ \text{sgn}(-1)\right]^{-1/2}\sum_{u\neq 0}\text{sgn}(-u)\Phi(u)\right\},\,
$$

which implies the last part of the proposition.

4. The construction of discrete series for *GL(2, GF(q))*

Let Π be a character of $GF(q^2)^{\times}$ whose restriction to the elements of norm one is non-trivial. Then Π corresponds to a representation \mathcal{U}^{II} of the discrete series of $\mathcal{G}=GL(2, GF(q))$ (i.e. res $\mathbb{U}^{\pi}\oplus 1$). It turns out that res \mathbb{U}^{π} is an $G \downarrow B$ $G \downarrow T$ irreducible representation of 2, the triangle subgroup of *Q.* To determine a space of functions which transforms under $\mathcal G$ as $\mathbb C^{m}$ we find an irreducible representation *m* of $\mathcal I$ such that $m = \text{res } \mathcal T^{\pi}$. Then, using the trace of $\mathcal T^{\pi}$ *Q\<3ί* (which we assume known) we extend the matrix coefficients of *m* to *Q.* To determine the discrete series of G we study res $\mathbb{U}^{\mathfrak{m}}$. $G \downarrow G$

Let $\mathcal D$ be the diagonal subgroup of $\mathcal G$ and let α be a character of $\mathcal D$. Ind α $\mathcal I$ 1 $\mathcal T$ $=M^{\alpha}$ is right translation in the space of complex-valued functions on \mathcal{I} which satisfy $\psi(dt) = \alpha(d)\psi(t)$ for all $d \in \mathcal{D}$ and $t \in \mathcal{I}$. Since *B* represents $\mathcal{D}\backslash\mathcal{D}$, we may consider M^* as acting in a vector space B^* of complex-valued functions on B. We write $\psi \in B^*$ as a function of the super diagonal entries of elements of *B.* Then

(4.1)
$$
M^{\alpha}(db(u))\psi(x) = \alpha(d)\psi(d_{11}^{-1}d_{22}x+u)
$$

for any $d \in \mathcal{D}$ and $b(u)$ the element of B with superdiagonal entry $u \in GF(q)$, d_u and d_{22} the non-zero entries of d .

To see how M^* decomposes take as an orthonormal basis of B^* the q characters of *B*. The operators $M^*(b)$ for $b \in B$ obviously diagonalize with respect to this basis. Let Φ_0 be the trivial character of B. Clearly Φ_0 transforms under M^{α} as the one-dimensional representation α of \mathcal{I} . Now let Φ be a fixed non-trivial character of B. For $i \in GF(q)^{\times}$ set $\Phi_i(x) = \Phi(ix)$ for all $x \in GF(q)$. Then Φ_i is a non-trivial character of *B* and every non-trivial character of *B* is of the form Φ_i for some $i \in GF(q)^{\times}$. (4.1) entails that, except for scalar factors, $\mathcal D$ acts transitively on the non-trivial characters of B . Since M^{ϕ} is completely reducible, we see that the $(q-1)$ -dimensional subspace of *B*[®] spanned by the non-trivial characters of *B* must be irreducible. Call the resulting representation $m_α$.

Lemma 4.1. *An irreducible representation of 3 is either of degree one or* $q-1$. An irreducible $(q-1)$ -dimensional representation of $\mathcal I$ is determined by its *restriction to the center of 3.*

Proof. If an irreducible representation of *3* is not one-dimensional, it is equivalent to a representation $m_\text{\tiny \alpha}$ for some character α of $\mathcal D.$ Thus it is $(q-1)$ -dimensional. By Frobenius' reciprocity theorem characters α' which occur in res_{*m_a*} occur with multiplicity one. Since *m_a* is irreducible, every *31&* α' contained in res m_α must have the same values on the center of $\mathcal I$ (i.e. the *3\&* scalars). There are $q-1$ distinct characters of $\mathcal D$ which agree on the scalars, so they must all occur in res m_{α} . By Frobenius' theorem, m_{α} is equivalent to $m_{\alpha'}$, for all such α' . *Λ ',* for all such *a .*

Lemma 4.2. Let Φ be a non-trivial character of B. For $i \in GF(q)^*$ set $\Phi_i(x) = \Phi(ix)$ for all $x \in GF(q)$ (considered as super-diagonal entries of elements *of B). The matrix coefficients of the representation m^ with respect to the basis* for B^{∞} consisting of the $q-1$ non-trivial characters $\{\Phi_i\}_{i\in GF(q)}$ ^x of B are the *(q—l)² functions*

(4.2)
$$
m_{ij}^{\alpha}(t) = \langle m_{\alpha}(t) \Phi_j, \Phi_i \rangle
$$
, *i* and $j \in GF(q)^{\times}$,
\t\t\t\t $= \alpha(d) \Phi_j(u)$, *if* $\Phi_j(d_{11}^{-1}d_{22}x) = \Phi_i(x)$ for all $x \in GF(q)$;
\t\t\t\t $= 0$, otherwise.

In (4.2) $t = db(u)$, where $u \in GF(q)$ is the super-diagonal entry of the matrix *and dⁿ and d22 are the diagonal entries of*

Proof. Immediate from equation (4.1).

Lemma 4.3. Let m_{α} be an irreducible representation of α of degree $q-1$. *Then res m^Λ decomposes into ίnequivalent representations of degree ^(q* — 1). *Any* £Γ| *T irreducible representation of T is either one-dimensional or* $\frac{1}{2}(q-1)$ -dimensional.

Proof. Res_{*m*^{*n*}} decomposes simply; if res_{*m*^{*n*}</sup> decomposes, the component} $\mathcal{I} \downarrow B$ $\mathcal{I} \downarrow T$ representations must be inequivalent. By (4.1) $M^{\alpha}(d)\Phi(x) = \alpha(d)\Phi(d_{11}^{-2}x)$ for $d \in D$, so two characters Φ and Φ' of *B* occur in the restriction to *B* of the same irreducible subrepresentation of res_{*m*^{*n*}} if and only if $\Phi'(x) = \Phi(a^2x)$ for some $E_{\mathcal{I}}$ and all $x \in GF(q).$ Since half the characters of B satisfy this relation $a \in GF(q)^{\times}$ and all $x \in GF(q)$. and half do not, res m_α contains two irreducible representations, each of degree £Γ1 *T* $\frac{1}{2}(q-1)$. The last statement in Lemma (4.3) follows from the fact that any irreducible representation of *T* occurs in the restriction to *T* of some irreducible representation of \mathcal{I} .

Lemma 4.4. *Let G be a finite group and H a subgroup of G. Let U be a unitary representation of G whose degree is d and character is X. Assume* res U is irreducible. Then, for any matrix coefficient u_{ij} of U, $1 \leq i, j \leq d$, and any *G \ β.* $g\!\in\!G$

$$
u_{ij}(g) = \frac{d}{|H|} \sum_{h \in H} u_{ij}(h) X(h^{-1}g) .
$$

Proof.

$$
\frac{d}{|H|}\sum_{h\in H}u_{ij}(h)X(h^{-1}g) = \frac{d}{|H|}\sum_{h\in H}u_{ij}(h)\sum_{k=1}^{d}u_{kk}(h^{-1}g)
$$

$$
= \frac{d}{|H|}\sum_{h\in H}u_{ij}(h)\sum_{k=1}^{d}\sum_{l=1}^{d}u_{kl}(h^{-1})u_{lk}(g)
$$

$$
= \frac{d}{|H|}\sum_{l,k}u_{lk}(g)\sum_{h\in H}u_{ij}(h)\bar{u}_{lk}(h)
$$

$$
= u_{ij}(g),
$$

by Schur's orthogonality relations on *G.*

Lemma (4.1) implies that for any representation \mathbb{U}^{π} of the discrete series of *G*, res U^{π} is equivalent to an irreducible representation m_a , where m_a is, up $G \downarrow G$
 $\frac{G}{2}$ to equivalence, the unique irreducible $(q-1)$ -dimensional representation of \mathcal{D} which agrees with \mathbb{U}^{π} on the scalars. Since $\mathscr{Q} = \mathscr{Q} \cup \mathscr{Q} wB$, $w = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, it

³³⁶ AJ. SlLBERGER

suffices to compute the matrix coefficients for \mathbb{U}^{π} at w in order to extend them from \mathcal{I} to all of \mathcal{G} . For this purpose we need the character X^{π} of \mathcal{V}^{π} (To find directions for the easy computation of *X™* consult [3], p. 227.). Figure 1 presents *X^u .*

Figure 1.

Lemma 4.5. Let X^{II} be the character of a representation \mathbb{U}^{II} of the *discrete series of* \mathcal{G} *. Let* α *be a character of* \mathcal{D} *such that* $\alpha(\lambda) = \Pi(\lambda)$ *for any* \mathcal{L} *scalar matrix* $\lambda \in \mathcal{D}$. Then m_a is equivalent to res $\mathcal{U}^{\mathfrak{m}}$. Fix a non-trivial $S \downarrow \mathcal{I}$ *character* Φ *of B. Let* $\{m_{i}^{\alpha}\}_{i,j\in GF(q)^{\times}}$ *be the matrix coefficients of* m_{α} *with* $\emph{respect to the basis $\{\Phi_i\}_{i\in GF(q)}$x of B^{α} (see Lemma (4.2) and relation (4.2)).}$ matrix coefficients $m_{i}^{\alpha}{}_{j}$ are the restrictions to \mathfrak{I} of matrix coefficients $u_{i}^{\mathrm{II},\alpha}$ of $\mathbb{U}^{\mathrm{II}}.$ *For* $w = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\delta(a, b)$ the diagonal matrix with diagonal entries $\delta_{11} = a$ and $\delta_{22} = b$,

(4.3)
$$
u_{ij}^{\Pi,a}(w) = -\alpha^{-1}(\delta(i,j))q^{-1}\sum_{\varepsilon:\varepsilon\in\mathcal{I}=ij}\Pi(\varepsilon)\Phi(\varepsilon+\varepsilon^q).
$$

Proof. By Lemma (4.4) and relation (4.2)

$$
u_{ij}^{\text{II},*}(w) = \frac{(q-1)}{|\mathcal{I}|} \sum_{t \in \mathcal{I}} m_{ij}^{\alpha}(t) X^{\text{II}}(t^{-1}w)
$$

=
$$
q^{-1} \sum_{u \in \overline{GF}(\alpha)} \alpha(\delta) \Phi_j(u) X^{\text{II}}(b^{-1}(u) \delta^{-1}w)
$$

where $\delta = \delta(j, i)$ and $b(u) \in B$ has super diagonal entry u. Use of the explicit formula for X^{II} easily yields (4.3).

Theorem 4.6. Let Π be a character of $GF(q^2)^{\times}$ whose restriction to the *elements of norm one is not trivial. Let* X^{π} *be the character of the irreducible representation of Q associated with* Π, *Let a be any character of 3) which agrees*

with Π *on the scalar matrices. Then m^a is res* T7^Π *and B*, the representation space of m^a , is a representation space for^cU Ίί . Fix a non-trivial character* Φ *of B and write it as a function of the super-diagonal entries of elements of B. Take as a basis for B*^{*} the $q-1$ non-trivial characters $\{\Phi_i\}_{i\in GF(q)^{\times}},$ where $\Phi_i(x)=\Phi(ix)$ for all $x \in GF(q)$. Matrix coefficients for \mathbb{U}^{π} acting in B^{*} are as follows. For $i,j \in GF(q)^{\times}$ set $u_{ij}^{\pi,\alpha} = \langle \langle \langle U^{\pi}(g) \Phi_j, \Phi_i \rangle$. If $g = db(u)$, where $d \in \mathcal{D}$ has diagonal *entries* d_{11} and d_{22} and $b(u) \in B$ has super-diagonal entry $u \in GF(q)$, then

(4.4)
$$
u_{ij}^{\text{T}}(g) = \alpha(d) \Phi_j(u), \text{ provided } d_{11}^{-1} d_{22} = j^{-1}i;
$$

$$
= 0, \text{ otherwise.}
$$

If g=b(v)wdb(u), where $d \in \mathcal{D}$ has diagonal entries d_{11} and d_{22} , $w=\begin{bmatrix} 0 & 1 \ -1 & 0 \end{bmatrix}$, and $b(u)$ and $b(v) \in B$ have superdiagonal entries u and v respectively then

$$
(4.5) \quad u^{\Pi,\alpha}_{ij}(g) = \Phi(iv+ju)[-\Pi(d_{11})\alpha^{-1}(\delta(i,j))q^{-1}\sum_{e:\epsilon\epsilon q_{i}=l}\Pi(\epsilon)\Phi(\epsilon+\epsilon^q)]
$$

where $\delta(i, j)$ is the diagonal matrix with upper entry i and lower entry j and $l = i j d_{11}^{-1} d_{22}$

Proof. Relation (4.4) is the same as (4.2), so no proof is needed. To prove (4.5) note first that $u^{\text{II},\alpha}_{ij}(\vec{b}(v)gb(u)) = \Phi_i(v)u^{\text{II},\alpha}_{ij}(g)\Phi_j(u)$. Moreover, $u^{\text{II},\alpha}_{ij}(wd)$ = $\alpha(d) u_{i, id_i^{-1}d_i}(w)$. Use of (4.3) to express $u_{i, id_i^{-1}d_i}(w)$ as an exponential sum leads to a proof of (4.5).

5. Discrete series of *G*

Let Π be a character of $GF(q^2)^{\times}$ whose restriction to N^1 , the elements of norm one in $GF(q^2)^{\times}$, is not trivial. Let π be Π restricted to N^1 . Let \mathbb{U}^{Π} be the representation of the discrete series of *Q* associated with Π. Set *U*=* res \mathbb{U}^{π} . The trace X^{π} of U^{π} is the restriction to G of X^{π} , so, up to equiva- $\mathcal{G} \downarrow G$ lence, *U** depends only on the values of Π restricted to *N¹ .* Furthermore, *U** and $U^{\pi'}$ are equivalent if and only if $\pi' = \pi$ or π^{-1} , since, if π' is the restriction to N^1 of a character Π' of $GF(q^2)^{\times}$, $X^{\pi} = X^{\pi'}$ if and only if $\pi' = \pi$ or π^{-1} .

We may take as representatives for the conjugacy classes in G those representatives for conjugacy classes in *Q* which lie in *G* (see Figure 1.). However, $\begin{array}{c} 1 \ 0 \ 1 \ 1 \end{array}$ and $\begin{array}{c} 1 \ 0 \ 1 \end{array}$ f ζ a non-square, are not conjugate in *G*; similarly $-\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $-\left\| \frac{1}{\zeta} \frac{0}{1} \right\|.$

Theorem 5.1. Let π be a non-trivial character of N^1 and let U^{π} be the *corresponding representation of G defined above. IT* is irreducible if and only* if $\pi^2 \equiv 1$. If $\pi^2 \equiv 1$, $U^* = U_1^* + U_2^*$, the direct sum of inequivalent $\frac{1}{2}(q-1)$ -dimen*sional representations.*

Proof. It suffices to show that $|G|^{-1} \sum_{g \in G} |X^{\pi}(g)|^2 = 1$, if $\pi^2 \not\equiv 1$, and 2, otherwise. The computation is easy and we omit it. In the case that U^* is reducible, the components are $\frac{1}{2}(q-1)$ -dimensional and inequivalent, since, according to Lemma (4.3), this statement holds already for $\mathop{\rm res}_{\sigma + T} U^{\pi}$. We may use Lemma (4.3) to obtain representation spaces for U_1^* and U_2^* .

There are $q+4$ conjugacy classes in G and we have accounted for this many equivalence classes of irreducible representations, so our description of the irreducible representations of *SL(2, GF(q))* is complete.

BOWDOIN COLLEGE

References

- [1] I.M. Gel'fand and M.I. Graev: *Categories of group representations and the problem of classifying irreducible representations,* Soviet Math. Dokl. 3 (1962), 1378-1381.
- [2] H.D. Kloosterman: *The behavior of general theta functions under the modular group and the characters of binary modular congruence groups* I *and* II, Ann. of Math. 47 (1946), I: 317-375 and II: 376-447.
- [3] R. Steinberg: *The representations of* GL(3, *q),* GL(4, *q),* PGL(3, *q), and* PGL(4, *q),* Canad. J. Math. 3 (1951), 225-235.
- [4] S. Tanaka: *Construction and classification of irreducible representations of special linear group of the second order over a finite field*, Osaka J. Math. 4 (1967), 65-84.
- [5] A. Weil: *Sur certaines groupes d'operateurs unitaires,* Acta Math. **Ill** (1964), 143- 211.