Title: An elementary construction of the representations of $SL(2, GF(q))$

Author(s): Silberger, Allan J.

Citation: Osaka Journal of Mathematics. 6(2) P.329–P.338

Issue Date: 1969

Text Version: publisher

URL: https://doi.org/10.18910/8521

DOI: 10.18910/8521

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
1. Introduction

Let $GF(q)$ be a field containing q elements, q odd. Let $GL(2, GF(q))$, the group of non-singular two-by-two matrices with entries in $GF(q)$, and let G denote $SL(2, GF(q))$, the subgroup of GL consisting of matrices with determinant one. In this paper, assuming a knowledge of certain of the characters of GL, we construct all the irreducible unitary representations of G. Our construction involves essentially no technique beyond the theory of induced representations and the orthogonality relations on a finite group. For a similarly elementary computation of the characters of GL we refer the reader to [3]. In future papers we shall generalize the methods employed in this paper to construct the representations of the $n \times n$ matrix groups $GL(n, GF(q))$ and $SL(n, GF(q))$.

Kloosterman [2] was the first to describe all the irreducible matrix representations of $SL(2, GF(q))$. Weil in [5] generalizes and gives an alternative construction for Kloosterman's representations. In [4] Tanaka uses Weil's theory to construct representations and presents a complete and unified description of the representations of G. We also mention the paper [1] of Gelfand-Graev, which classifies but does not detail the actual construction of all the representations of G.

2. The representations

Let B be the upper unipotent, D the diagonal, and T the upper triangular subgroups of G. Then $T=DB$. G has order $q(q^2-1)$ and contains an abelian subgroup R (unique up to conjugacy) of order $q+1$. Except for plus-or-minus the identity of G elements of R have characteristic roots in $GF(q^2)-GF(q)$. R is isomorphic to the subgroup of $GF(q^2)^\times$ comprised of elements of norm one.

The $q+4$ equivalence classes of irreducible representations of G break up roughly into two main classifications. The $\frac{1}{2}(q+5)$ representations of the
principal series” all contain B-invariant vectors. Those $\frac{1}{2}(q+3)$ inequivalent representations which do not contain B-invariant vectors we call discrete series. More precisely, the principal series include:

1. The trivial representation of degree 1, $U \equiv 1$;
2. A q-dimensional representation U^1_{α} which occurs with $U \equiv 1$ in the induced representation ind_{α};
3. $\frac{1}{2}(q-3)$ irreducible induced representations $U^\alpha = \text{ind}_{\alpha}$, where α is a one-dimensional representation of T which is not real-valued. U^α has degree $q+1$ and $U^{\alpha'}$ is equivalent to U^α if and only if $\alpha' = \alpha$ or α^{-1}.
4. Let $\alpha = \text{sgn}$, where $\text{sgn} \equiv 1$ and $\text{sgn}^2 \equiv 1$. Then $\text{ind}_{\alpha} = U^\alpha_{\alpha} = U^\alpha_{\text{sgn}} + U^\alpha_{\text{sgn}}$, the direct sum of two inequivalent irreducible representations, each of degree $\frac{1}{2}(q+1)$.

The discrete series are as follows:

5. If π is a non-trivial character of R, then there is a representation U^π of G of degree $q-1$ associated with π. U^π is characterized by the fact that it does not occur in ind_{π}. U^π is irreducible if and only if π is not real-valued. U^π is equivalent to $U^{\pi'}$ if and only if $\pi' = \pi$ or π^{-1}, so there are $\frac{1}{2}(q-1)$ inequivalent irreducible representations of degree $q-1$.
6. If $\pi \equiv 1$, $\pi^2 \equiv 1$, then $U^\pi U^\pi_1 + U^\pi_2$, the direct sum of inequivalent representations of degree $\frac{1}{2}(q-1)$.

3. The construction of principal series

The construction of the representations of the principal series as induced representations is well-known. For completeness we discuss this problem in detail.

Let α be a one-dimensional representation of T. Since B is the commutator subgroup of T, $\alpha(btb') = \alpha(t)$ for any b and $b' \in B$ and $t \in T$. T/B is canonically D, so α is the extension to T of a character of the abelian group D. The mapping which identifies $d \in D$ with its upper diagonal entry regarded as an element of the multiplicative group $GF(q)^\times$ is an isomorphism. In this section, when convenient, we regard α as a function on $GF(q)^\times$ via this identification. Let U^α denote the representation of G induced from α.

By the definition of U^α, G acts by right translation in the space V^α which consists of complex-valued functions ψ on G satisfying

$$\psi(tg) = \alpha(t)\psi(g)$$

for all $t \in T$ and $g \in G$. Any such function is determined by its restriction to a set of representatives of $T \setminus G$. Since two matrices in G with the same lower entries differ only by a left factor in B, $\psi \in V^\alpha$ implies $\psi(g) = \psi(g_{21}, g_{22}), g_{21}$ and
Representations of $SL(2, GF(q))$

g_{31} the lower entries of $g \in G$. Equation (3.1) entails

$$\psi(d^{-1}g_{31}, d^{-1}g_{32}) = \alpha(d)\psi(g_{31}, g_{32})$$

for $d \in GF(q)^*$, g_{31} and g_{32} as before, so ψ is actually determined by its values, which may be chosen arbitrarily, on a set of representatives for the projective line over $GF(q)$.

Theorem 3.1. Let α be a one-dimensional representation of T. Let U^* be the representation of G induced from α. U^* is right translation in the space V^* defined by relations (3.1) and (3.2).

1. The degree of U^* is $q+1$.
2. U^* is irreducible if and only if $\alpha^2 \equiv 1$.
3. $U^{*'}$ is equivalent to U^* if and only if $\alpha' = \alpha$ or α^{-1}.
4. U^1 decomposes into the direct sum of an irreducible representation of degree q and the unique one-dimensional representation of G.
5. U^{*n}, where $\text{sgn} \equiv 1$ but $\text{sgn}^n \equiv 1$, decomposes into the direct sum of two inequivalent representations of degree $\frac{1}{2}(q+1)$.

Proof.

(1) A set of representatives for the projective line over $GF(q)$ (e.g. $\{(0, 1), (-1, z) | z \in GF(q)\}$) has cardinality $q+1$. In view of the above remarks this proves that V^* has dimension $q+1$.

(2) The proofs of the remaining parts of this theorem depend upon an analysis of the commuting algebra of U^*.

Let C^* be the convolution algebra of all complex-valued functions f on G satisfying $f(tgt') = \alpha(tt')f(g)$ for any $t, t' \in T$ and $g \in G$. Then $U^*(g_0)(f*\psi) = f^*U^*(g_0)\psi$ for any $g_0 \in G$ and $\psi \in V^*$, since $f \in C^*$ acting from the left by convolution keeps V^* stable and commutes with right translation. Frobenius' reciprocity theorem says precisely that C^* is large enough to be the full commuting algebra of U^*.

$f \in C^*$ is determined by its values on a set of representatives for the double cosets $T \backslash G / T$, e.g. $\{e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, w = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\}$. Clearly, dim $C^* \leq 2$. Dim $C^* = 2$ if and only if $f(w) \neq 0$ for some $f \in C^*$, if and only if $\alpha(t)f(w) = f(tw) = f(wt^{-1}) = \alpha^{-1}(t)f(w)$ for all $t \in D$. Thus dim $C^* = 2$ if and only if $\alpha^2(t) \equiv 1$, so (2) is true.

(3) The space of intertwining operators between V^* and V'^*, $\alpha \neq \alpha'$, is canonically the vector space $T^* \cdot a'$ of complex-valued functions on G satisfying $f(tgt') = \alpha(t)f(g)\alpha'(t')$ for all $t, t' \in T$ and $g \in G$. It is spanned by any function f which satisfies $\alpha(t)f(w) = f(w)\alpha'(t^{-1})$ for all $t \in D$. $f(w) \neq 0$ implies $\alpha' = \alpha^{-1}$.

(4) V^1 contains the constant functions on G as a stable subspace. The orthogonal complement of this one dimensional module must be an irreducible q-dimensional representation space for G.

(5) By the analysis in (2) we know that U^sgn decomposes into the direct sum of two inequivalent representations, $U_1^\text{sgn}+U_2^\text{sgn}=U^\text{sgn}$. By Frobenius' reciprocity theorem $\text{res}_{G/F}\ U^\text{sgn}$, for $\nu=1$ or 2, contains sgn and no other one-dimensional representation of T. Since $G/\{\pm e\}$ is a simple group, G has no non-trivial one-dimensional representations. Therefore, Lemma (4.3) implies that the degree of U^sgn_ν is $\frac{1}{2}(q+1)$, $\nu=1$ or 2.

REMARK. To complete our description of the representations of the principal series we need to be more specific about the G-stable subspaces V^sgn_1 and V^sgn_2 of V^sgn. Set $\phi(-1, z)=\Phi(z)$ for $z \in GF(q)$, where Φ is an additive character of $GF(q)$; let $\phi(0, 1)=0$. Then Φ extends uniquely to a function in V^sgn and $U^\text{sgn}(b(u))\phi=\Phi(u)\phi$, where u is the super diagonal entry of $b(u) \in B$. Moreover, $U^\text{sgn}(d)\phi(-1, z)=\text{sgn}(d)\phi(-1, d^{-2}z)=\text{sgn}(d)\Phi(d^{-2}z)$ for all $z \in GF(q)$, $d \in D$ (identified with $GF(q)^*$); $U^\text{sgn}(d)\phi(0, 1)=0$. Let $\Phi \equiv 1$. Then the $\frac{1}{2}(q-1)$ functions ϕ' which correspond to characters Φ' such that $\Phi'(d^{-2}z)=\Phi(z)$ for some $d \in GF(q)^*$ belong to V^sgn; the other non-trivial additive characters of $GF(q)$ must correspond to elements of V^sgn_ν, $1 \leq \nu \neq \nu' \leq 2$. V^sgn also contains a vector ψ satisfying $\psi(\text{tgt'})=\text{sgn}(tt')\psi(g)$ for all $t, t' \in T$, $g \in G$. In fact ψ may be chosen to be an idempotent in C^sgn.

Proposition 3.2. Set

$$
\psi(g) = \frac{1}{|G|} \sum_{t \in T} \text{sgn}(t) , \quad \text{if } g = t \in T ;
$$

$$
= \frac{1}{2} \frac{|G|}{|T|} \left(q \text{sgn}(-1) \right)^{-1/2} \text{sgn}(t) ,
$$

if $g = t \omega b$, with $t \in T$, $b \in B$, and $\omega = \left| \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right|$.

Then ψ is an idempotent in the algebra C^sgn. There are two choices ψ, ψ' depending on the sign of $[\text{sgn}(-1)]^{1/2}$. Clearly, $\psi + \psi'$ is the identity in C^sgn. The function ϕ defined in the preceding remark and corresponding to the non-trivial character Φ of $GF(q)$ belongs to the same G-irreducible subspace of V^sgn as ψ if and only if $\sum_{x \in G} \text{sgn}(x)\Phi(x) = [q \text{sgn}(-1)]^{1/2}$ (with the same choice for the sign of the right hand side as in the definition of ψ).

Proof. To show that ψ is an idempotent in C^sgn it suffices to show that $\psi*\psi(e)=\psi(e)$ and $\psi*\psi(w)=\psi(w)$. We have

$$
\psi*\psi(g) = \frac{1}{|G|} \sum_{x \in G} \psi(x)\psi(x^{-1}g) = \frac{|T|}{|G|} \sum_{x \in G/T} \psi(x)\psi(x^{-1}g)
$$

$$
= \frac{|T|}{|G|} \{ \psi(e)\psi(g) + \sum_{x \in GF(q)} \psi(w)\psi(w^{-1}b^{-1}(u)g) \} .
$$
Therefore,

\[\psi^* \psi(e) = \frac{|T|}{|G|} \cdot \frac{1}{4} \frac{|G|^2}{|T|^2} \{1 + [q \text{ sgn}(-1)]^{-1} \text{sgn}(-1)q\} \]

\[= \psi(e). \]

\[\psi^* \psi(w) = \frac{|T|}{|G|} \cdot \frac{1}{4} \frac{|G|^2}{|T|^2} \{[q \text{ sgn}(-1)]^{-1/2} + [q \text{ sgn}(-1)]^{-1/2} \]

\[+ [q \text{ sgn}(-1)]^{-1} \sum_{x \in GF(q) \setminus G} \text{sgn}(-u) \}. \]

The last term on the right, being a character sum, is zero. It arises from the relation

\[w^{-1} b^{-1}(u) w = \begin{bmatrix} 0 & -1 & 1 & -u \\ 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \quad \text{if } u \neq 0. \]

Thus, \(\psi^* \psi(w) = \psi(w) \).

Finally, since \(\psi \) is a minimal idempotent in \(C^{\text{sgn}} \), \(\psi^* \phi = \phi \), if \(\psi \in V_{\text{sgn}}^* \) and \(\phi \in V_{\text{sgn}}^* \). If \(\phi \in V_{\text{sgn}}^* \), then \(\phi \in V_{\text{sgn}}^* \), so \(\psi^* \phi = 0 \).

\[\psi^* \phi(w) = \frac{|T|}{|G|} \sum_{x \in GF(q)} \psi(x) \phi(x^{-1} w) \]

\[= \frac{|T|}{|G|} \{ \psi(e) \phi(w) + \psi(w) \sum_{x \in GF(q) \setminus G} \phi(w^{-1} b^{-1}(u) w) \}. \]

Using relation * as well as the definitions of \(\psi \) and \(\phi \), we obtain

\[\psi^* \phi(w) = \phi(w) \left\{ \frac{1}{2} + \frac{1}{2} [q \text{ sgn}(-1)]^{-1/2} \sum_{x \in GF(q) \setminus G} \text{sgn}(-u) \Phi(u) \right\}, \]

which implies the last part of the proposition.

4. **The construction of discrete series for \(GL(2, GF(q)) \)**

Let \(\Pi \) be a character of \(GF(q^2)^x \) whose restriction to the elements of norm one is non-trivial. Then \(\Pi \) corresponds to a representation \(Q_{\Pi} \) of the discrete series of \(G=GL(2, GF(q)) \) (i.e. \(\text{res } Q_{\Pi} \equiv 1 \)). It turns out that \(\text{res } Q_{\Pi} \) is an irreducible representation of \(\mathcal{G} \), the triangle subgroup of \(G \). To determine a space of functions which transforms under \(\mathcal{G} \) as \(Q_{\Pi} \) we find an irreducible representation \(m \) of \(\mathcal{G} \) such that \(m= \text{res } Q_{\Pi} \). Then, using the trace of \(Q_{\Pi} \) (which we assume known) we extend the matrix coefficients of \(m \) to \(\mathcal{G} \). To determine the discrete series of \(G \) we study \(\text{res } Q_{\Pi} \).

Let \(\mathcal{D} \) be the diagonal subgroup of \(G \) and let \(\alpha \) be a character of \(\mathcal{D} \). Ind \(\alpha = M^* \) is right translation in the space of complex-valued functions on \(\mathcal{D} \)
which satisfy \(\psi(dt) = \alpha(d) \psi(t) \) for all \(d \in \mathcal{D} \) and \(t \in \mathcal{I} \). Since \(B \) represents \(\mathcal{D} \setminus \mathcal{I} \), we may consider \(M^* \) as acting in a vector space \(B^* \) of complex-valued functions on \(B \). We write \(\psi \in B^* \) as a function of the super diagonal entries of elements of \(B \). Then

\[
(4.1) \quad M^*(db(u))\psi(x) = \alpha(d)\psi(d_{11}^{-1}d_{22}x + u)
\]

for any \(d \in \mathcal{D} \) and \(b(u) \) the element of \(B \) with superdiagonal entry \(u \in GF(q) \), \(d_{11} \) and \(d_{22} \) the non-zero entries of \(d \).

To see how \(M^* \) decomposes take as an orthonormal basis of \(B^* \) the \(q \) characters of \(B \). The operators \(M^*(b) \) for \(b \in B \) obviously diagonalize with respect to this basis. Let \(\Phi_0 \) be the trivial character of \(B \). Clearly \(\Phi_0 \) transforms under \(M^* \) as the one-dimensional representation \(\alpha \) of \(\mathcal{I} \). Now let \(\Phi \) be a fixed non-trivial character of \(B \). For \(i \in GF(q)^\times \) set \(\Phi_i(x) = \Phi(ix) \) for all \(x \in GF(q) \). Then \(\Phi_i \) is a non-trivial character of \(B \) and every non-trivial character of \(B \) is of the form \(\Phi_i \), for some \(i \in GF(q)^\times \). (4.1) entails that, except for scalar factors, \(\mathcal{D} \) acts transitively on the non-trivial characters of \(B \). Since \(M^* \) is completely reducible, we see that the \((q-1)\)-dimensional subspace of \(B^* \) spanned by the non-trivial characters of \(B \) must be irreducible. Call the resulting representation \(m_\alpha \).

Lemma 4.1. An irreducible representation of \(\mathcal{I} \) is either of degree one or \(q-1 \). An irreducible \((q-1)\)-dimensional representation of \(\mathcal{I} \) is determined by its restriction to the center of \(\mathcal{I} \).

Proof. If an irreducible representation of \(\mathcal{I} \) is not one-dimensional, it is equivalent to a representation \(m_\alpha \) for some character \(\alpha \) of \(\mathcal{D} \). Thus it is \((q-1)\)-dimensional. By Frobenius' reciprocity theorem characters \(\alpha' \) which occur in \(\text{res} \ m_\alpha \) occur with multiplicity one. Since \(m_\alpha \) is irreducible, every \(\alpha' \) contained in \(\text{res} \ m_\alpha \) must have the same values on the center of \(\mathcal{I} \) (i.e. the scalars). There are \(q-1 \) distinct characters of \(\mathcal{D} \) which agree on the scalars, so they must all occur in \(\text{res} \ m_\alpha \). By Frobenius' theorem, \(m_\alpha \) is equivalent to \(m_{\alpha'} \), for all such \(\alpha' \).

Lemma 4.2. Let \(\Phi \) be a non-trivial character of \(B \). For \(i \in GF(q)^\times \) set \(\Phi_i(x) = \Phi(ix) \) for all \(x \in GF(q) \) (considered as super-diagonal entries of elements of \(B \)). The matrix coefficients of the representation \(m_\alpha \) with respect to the basis for \(B^* \) consisting of the \(q-1 \) non-trivial characters \(\{\Phi_i\}_{i \in GF(q)^\times} \) of \(B \) are the \((q-1)^2 \) functions

\[
(4.2) \quad m_{ij}^*(t) = \langle m_\alpha(t)\Phi_j, \Phi_i \rangle, \quad i \text{ and } j \in GF(q)^\times ,
\]

\[
= \alpha(d)\Phi_j(u), \quad \text{if } \Phi_j(d_{11}^{-1}d_{22}x) = \Phi_i(x) \text{ for all } x \in GF(q);
\]

\[
= 0, \quad \text{otherwise}.
\]
In (4.2) \(t = db(u) \), where \(u \in GF(q) \) is the super-diagonal entry of the matrix \(b(u) \in B \) and \(d_{11} \) and \(d_{22} \) are the diagonal entries of \(d \in D \).

Proof. Immediate from equation (4.1).

Lemma 4.3. Let \(m_\alpha \) be an irreducible representation of \(G \) of degree \(q-1 \). Then \(\text{res} \ m_\alpha \) decomposes into inequivalent representations of degree \(\frac{1}{2}(q-1) \). Any irreducible representation of \(T \) is either one-dimensional or \(\frac{1}{2}(q-1) \)-dimensional.

Proof. \(\text{Res} \ m_\alpha \) decomposes simply; if \(\text{res} \ m_\alpha \) decomposes, the component representations must be inequivalent. By (4.1) \(M^\alpha(d) \Phi(x) = \alpha(d) \Phi(d^{-2} x) \) for \(d \in D \), so two characters \(\Phi \) and \(\Phi' \) of \(B \) occur in the restriction to \(B \) of the same irreducible subrepresentation of \(\text{res} \ m_\alpha \) if and only if \(\Phi'(x) = \Phi(a^2 x) \) for some \(a \in GF(q)^* \) and all \(x \in GF(q) \). Since half the characters of \(B \) satisfy this relation and half do not, \(\text{res} \ m_\alpha \) contains two irreducible representations, each of degree \(\frac{1}{2}(q-1) \). The last statement in Lemma (4.3) follows from the fact that any irreducible representation of \(T \) occurs in the restriction to \(T \) of some irreducible representation of \(G \).

Lemma 4.4. Let \(G \) be a finite group and \(H \) a subgroup of \(G \). Let \(U \) be a unitary representation of \(G \) whose degree is \(d \) and character is \(\chi \). Assume \(\text{res} \ U \) is irreducible. Then, for any matrix coefficient \(u_{ij} \) of \(U \), \(1 \leq i, j \leq d \), and any \(g \in G \)

\[
u_{ij}(g) = \frac{d}{|H|} \sum_{h \in H} u_{ij}(h) X(h^{-1} g)
\]

Proof.

\[
\frac{d}{|H|} \sum_{h \in H} u_{ij}(h) X(h^{-1} g) = \frac{d}{|H|} \sum_{h \in H} u_{ij}(h) \sum_{k=1}^{d} u_{kh}(h^{-1} g)
\]

\[
= \frac{d}{|H|} \sum_{h \in H} u_{ij}(h) \sum_{k=1}^{d} \sum_{i=1}^{d} u_{ki}(h^{-1}) u_{ih}(g)
\]

\[
= \frac{d}{|H|} \sum_{i=1}^{d} u_{ih}(g) \sum_{k=1}^{d} u_{ij}(h) \bar{u}_{ih}(h)
\]

by Schur's orthogonality relations on \(G \).

Lemma (4.1) implies that for any representation \(\Upsilon \) of the discrete series of \(G \), \(\text{res} \ \Upsilon \) is equivalent to an irreducible representation \(m_\alpha \), where \(m_\alpha \) is, up to equivalence, the unique irreducible \((q-1)\)-dimensional representation of \(G \) which agrees with \(\Upsilon \) on the scalars. Since \(G = G \cup \tau w B \), \(w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \), it
suffices to compute the matrix coefficients for \(Q^\Pi \) at \(w \) in order to extend them from \(\mathcal{D} \) to all of \(G \). For this purpose we need the character \(X^\Pi \) of \(Q^\Pi \) (To find directions for the easy computation of \(X^\Pi \) consult [3], p. 227.). Figure 1 presents \(X^\Pi \).

<table>
<thead>
<tr>
<th>Conjugacy Classes on (G)</th>
<th>Values of (X^\Pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix})</td>
<td>(\Pi(\lambda)(q-1))</td>
</tr>
<tr>
<td>(\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix})</td>
<td>(-\Pi(\lambda))</td>
</tr>
<tr>
<td>(\begin{pmatrix} 0 & 0 \ 1 & 1 \end{pmatrix})</td>
<td>(0)</td>
</tr>
<tr>
<td>(\begin{pmatrix} \alpha & 0 \ 0 & \beta \end{pmatrix})</td>
<td>(-\Pi(\epsilon)+\Pi(\epsilon^t))</td>
</tr>
</tbody>
</table>

\(\epsilon, \lambda \in GF(q)^*, \ t+1; \ \epsilon=\alpha+\beta\sqrt{\zeta}, \ \alpha, \beta, \zeta \in GF(q) \) with \(\zeta \) not a square and \(\beta \neq 0 \). * Matrices with the same characteristic roots are conjugate.

Figure 1.

Lemma 4.5. Let \(X^\Pi \) be the character of a representation \(Q^\Pi \) of the discrete series of \(\mathcal{G} \). Let \(\alpha \) be a character of \(\mathcal{D} \) such that \(\alpha(\lambda)=\Pi(\lambda) \) for any scalar matrix \(\lambda \in \mathcal{D} \). Then \(m_\alpha \) is equivalent to \(\text{res} \ Q^\Pi \). Fix a non-trivial character \(\Phi \) of \(B \). Let \(\{m_{ij}^\alpha\}_{i,j \in GF(q)^*} \) be the matrix coefficients of \(m_\alpha \) with respect to the basis \(\{\Phi_f\}_{f \in GF(q)^*} \) of \(B^\alpha \) (see Lemma (4.2) and relation (4.2)). The matrix coefficients \(m_{ij}^\alpha \) are the restrictions to \(\mathcal{D} \) of matrix coefficients \(u_{ij}^\Pi \) of \(Q^\Pi \). For \(w=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) and \(\delta(a,b) \) the diagonal matrix with diagonal entries \(\delta_{11}=a \) and \(\delta_{22}=b \),

\[
(4.3) \quad u_{ij}^\Pi(w) = -\alpha^{-1}(\delta(i,j))q^{-1} \sum_{\epsilon \in GF(q)^*} \Pi(\epsilon) \Phi(\epsilon+\epsilon^t) .
\]

Proof. By Lemma (4.4) and relation (4.2)

\[
u_{ij}^\Pi(w) = \frac{q-1}{|\mathcal{D}|} \sum_{t \in \mathcal{D}} m_{ij}^\alpha(t) X^\Pi(t^{-1}w)
= q^{-1} \sum_{u \in GF(q)^*} \alpha(\delta) \Phi_f(u) X^\Pi(b^{-1}(u)\delta^{-1}w) ,
\]

where \(\delta=\delta(j,i) \) and \(b(u) \in B \) has super diagonal entry \(u \). Use of the explicit formula for \(X^\Pi \) easily yields (4.3).

Theorem 4.6. Let \(\Pi \) be a character of \(GF(q'^*) \) whose restriction to the elements of norm one is not trivial. Let \(X^\Pi \) be the character of the irreducible representation of \(\mathcal{G} \) associated with \(\Pi \). Let \(\alpha \) be any character of \(\mathcal{D} \) which agrees
with Π on the scalar matrices. Then m_a is res Q^Π and B^σ, the representation space of m_a, is a representation space for Q^Π. Fix a non-trivial character Φ of B and write it as a function of the super-diagonal entries of elements of B. Take as a basis for B^σ the $q-1$ non-trivial characters $\{\Phi_i\}_{i \in GF(q)^*}$, where $\Phi_i(x) = \Phi(ix)$ for all $x \in GF(q)$. Matrix coefficients for Q^Π acting in B^σ are as follows. For $i, j \in GF(q)^*$ set $u_{ij}^\Pi = \langle Q^\Pi (g) \Phi_j, \Phi_i \rangle$. If $g = db(u)$, where $d \in D$ has diagonal entries d_1 and d_2, and $b(u) \in B$ has super-diagonal entry $u \in GF(q)$, then

$$u_{ij}^\Pi (g) = \alpha(d) \Phi_j(u), \quad \text{provided } d_1^{-1} d_2 = j^{-1} i;$$

$$= 0, \quad \text{otherwise.}$$

If $g = b(v) wd(b(u))$, where $d \in D$ has diagonal entries d_1 and d_2, $w = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and $b(u)$ and $b(v) \in B$ have super-diagonal entries u and v respectively then

$$u_{ij}^\Pi (g) = \Phi(iv+ju)[- \Pi(d_1) \alpha^{-1}(\delta(i,j)) q^{-1} \sum_{\varepsilon \in GF(q)^*} \Pi(\varepsilon) \Phi(\varepsilon+\varepsilon^q)]$$

where $\delta(i,j)$ is the diagonal matrix with upper entry i and lower entry j and $l = ij d_1 d_2$.

Proof. Relation (4.4) is the same as (4.2), so no proof is needed. To prove (4.5) note first that $u_{ij}^\Pi (b(v) gb(u)) = \Phi_i(v) u_{ij}^\Pi (g) \Phi_j(u)$. Moreover, $u_{ij}^\Pi (wd) = \alpha(d) u_{ij}^\Pi d_1^{d_2} (w)$. Use of (4.3) to express $u_{ij}^\Pi (g)$ as an exponential sum leads to a proof of (4.5).

5. Discrete series of G

Let Π be a character of $GF(q)^*$ whose restriction to N^1, the elements of norm one in $GF(q)^*$, is not trivial. Let π be Π restricted to N^1. Let Q^Π be the representation of the discrete series of G associated with Π. Set $U^\pi = \text{res } Q^\Pi$. The trace X^π of U^π is the restriction to G of X^{Q^Π}, so, up to equivalence, U^π depends only on the values of Π restricted to N^1. Furthermore, U^π and $U^{\pi'}$ are equivalent if and only if $\pi' = \pi$ or π^{-1}, since, if π' is the restriction to N^1 of a character Π' of $GF(q)^*$, $X^\pi = X^{\pi'}$ if and only if $\pi' = \pi$ or π^{-1}.

We may take as representatives for the conjugacy classes in G those representatives for conjugacy classes in Q which lie in G (see Figure 1.). However, $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ \xi & 1 \end{bmatrix}$, ξ a non-square, are not conjugate in G; similarly $- \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $- \begin{bmatrix} 1 & 0 \\ \xi & 1 \end{bmatrix}$.

Theorem 5.1. Let π be a non-trivial character of N^1 and let U^π be the corresponding representation of G defined above. U^π is irreducible if and only if $\pi^2 \equiv 1$. If $\pi^2 \equiv 1$, $U^\pi = U^\pi_1 + U^\pi_2$, the direct sum of inequivalent $\frac{1}{2}(q-1)$-dimensional representations.
Proof. It suffices to show that \(|G|^{-1} \sum_{g \in G} |X^\pi(g)|^2 = 1\), if \(\pi^2 = 1\), and 2, otherwise. The computation is easy and we omit it. In the case that \(U^\pi\) is reducible, the components are \(\frac{1}{2}(q-1)\)-dimensional and inequivalent, since, according to Lemma (4.3), this statement holds already for \(\text{res}_{q^{1/2}} U^\pi\). We may use Lemma (4.3) to obtain representation spaces for \(U^\pi_1\) and \(U^\pi_2\).

There are \(q+4\) conjugacy classes in \(G\) and we have accounted for this many equivalence classes of irreducible representations, so our description of the irreducible representations of \(SL(2, GF(q))\) is complete.

Bowdoin College

References