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本論文の梗概

国際交流が盛んになるにつれて外国語を母語に、また母語を外国語に変換する翻
訳へのニーズが高まっている。翻訳者による翻訳は信頼性、精度がともに高いが、
翻訳者の数は限られており、一般ユーザが気軽に使用することは出来ない。そこ
で、コンピュータにより自動で翻訳を行う機械翻訳への注目が高まっている。
特に日本語、英語間のように語順が大きく異なる言語対の機械翻訳においては、
語順の差異が障壁となる。この問題に対して、翻訳器に入力する前に原言語文を目
的言語文の語順に並び替える事前並び替え手法が提案されている。事前並び替えに
よって長距離の並び替えを効果的かつ効率的に行え、翻訳精度の向上につながる。
そこで本論文では、代表的な機械翻訳手法に対して事前並び替えを使用し、語順が
大きく異なる言語対の機械翻訳における翻訳精度の向上に取り組む。本論文は (1)
統計的機械翻訳のための Recursive Neural Network (RvNN) による事前並び替え手
法の開発、(2) Transformer のための事前並び替え位置表現の開発、(3) 非自己回帰
ニューラル機械翻訳における事前並び替えの効果の検証の三つの研究を実施した。

(1) では RvNN を使用した事前並び替え手法を提案する。当時主流であったフ
レーズベース統計的機械翻訳において事前並び替えが語順の問題の解決に有効な手
段であることが知られていた。しかし、当時最高精度を達成していた既存の事前並
び替え手法では人手での特徴量の設計が必要であった。提案手法は構文木に基づく
RvNN によって事前並び替えの学習を行うことで、人手での特徴量の設計に依存し
ない手法を提案する。また RvNN はボトムアップに並び替えの計算を行うため、
並び替えの際に重要である部分木を考慮した並び替えが実現出来る。翻訳評価実験
では、言語構造の大きく異なる英日対において先行研究である人手での特徴量設計
が必要な既存の事前並び替え手法と同等の翻訳精度を達成したことを確認した。

(2) では Transformer のための事前並び替え位置表現手法を提案する。2016 年か
らフレーズベース機械翻訳に代わり自己回帰ニューラル機械翻訳が主流となっ
た。自己回帰ニューラル機械翻訳の一つである Recurrent Neural Network ベースの
機械翻訳モデルでは事前並び替えのインデックスを使用することで翻訳精度が
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向上することが報告されているが、現在機械翻訳のスタンダードなモデルである
Transformer において事前並び替えが有効に活用出来るかは定かではなかった。提
案手法である事前並び替え位置表現は、事前並び替えのインデックスに基づいたベ
クトル表現であり、 Transformer において事前並び替えを活用した初めての事例で
ある。特に各言語から英語方向への翻訳において事前並び替えの精度が高い場合、
提案手法によって翻訳性能が向上することを示した。また目的言語が英語の翻訳に
おいては、事前並び替えの情報を使用することで中程度の長さ以上の文において事
前並び替え位置表現が有効に働くことがわかった。

(3) では非自己回帰ニューラル機械翻訳モデルにおける事前並び替えの利用を検
討する。2018 年に自己回帰ニューラル機械翻訳において翻訳文の出力の際に単語
数に比例した時間がかかるという問題の解決のために非自己回帰ニューラル機械翻
訳が提案された。非自己回帰ニューラル機械翻訳では原言語文の語順のベクトル表
現に基づいて翻訳文を出力するが、言語構造が大きく異なる場合に翻訳精度が大き
く低下してしまう。そこで非自己回帰ニューラル機械翻訳モデルにおいて事前並び
替えの利用の検討を行い、事前並び替えの情報が翻訳精度に与える影響を調査し
た。翻訳評価実験の結果、非自己回帰ニューラル機械翻訳では並び替えた文を直接
入力として使用しても翻訳精度が向上することが確認出来た。また、特に 20 単語
以上の文において事前並びを使用することで翻訳精度が向上することが分かった。
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第 1章 序論

1.1 研究背景

1.1.1 機械翻訳需要の高まり
国際交流が盛んになるに伴い、翻訳へのニーズが高まっている。翻訳者による翻
訳は信頼性、精度がともに高いが、翻訳者の数は少なくコストがかかるため、一般
のユーザが気軽に利用することは出来ない。そこで、コンピュータによって自動で
翻訳を行う機械翻訳技術への注目が高まっている。図 1.1 に、現在性能が一番いい
と言われている、DeepL GmbH によって開発された DeepL1）による機械翻訳の一
例を示す。この例では日本語から英語方向を指定し、翻訳したい日本語文を入力す
ることで英文が出力されている。このようにブラウザ上で簡単に翻訳を行えるツー
ルが提供されていたり、NICT による VoiceTra2）のように音声の翻訳を行えるアプ
リケーションが提供されていたりする。また公開時点では二言語間の翻訳にしか対
応していなかったグーグル翻訳は、2020 年時点で 100 言語を超える言語の翻訳に
対応している。さらに使用しているユーザ数も数百人から数百万人へと増加してお
り、機械翻訳技術に対する注目は徐々に高まってきている。3）4）国内においても、オ
リンピックや 2025 年に大阪で開催予定の万国博覧会によって外国人の流入が増加
することが予想されるため、機械翻訳に対する需要が高くなっている。機械翻訳技
術がより発達することで母国語以外の言語を使用する相手とのコミュニケーション
を行うことがより容易になり、円滑なやりとりが可能となる。

1） https://www.deepl.com/home
2） https://voicetra.nict.go.jp/
3） https://blog.google/products/translate/ten-years-of-google-translate/
4） https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
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図 1.1 DeepL による機械翻訳の例 (日本語の例文は「吹田市人権尊重の社会をめざす条
例」より引用)

1.1.2 機械翻訳モデルの変遷
機械翻訳の始まり 機械翻訳は 1947 年に Warren Weaver から Nobert Wiener に
送られた手紙を発端としている [69]。Weaver はその手紙の中で翻訳を暗号解読の
問題として捉えており、さらに二年後には機械翻訳のアイデアを覚書として記述し
ている。その覚書の中で、情報理論 [81]に基づいた暗号解読や統計的手法、さらに
言語学的な知識も取り入れて機械翻訳の可能性について論じており、それを契機に
大学や研究所などで機械翻訳の研究が盛んになった。1954 年には Georgetown 大
学と IBM が共同で開発したロシア語から英語への機械翻訳のデモンストレーショ
ンが発表される [38] など、1950、60 年代に機械翻訳の研究が盛り上がったがそ
の翻訳精度は実用には程遠く、1966 年の ALPAC (Automatic Language Processing
Advisory Committee) によるレポート [16]では “there is no immediate or predictable
prospect of useful machine translation” と報告され、その結果 10 年以上機械翻訳の
研究が停滞した。
原言語文とそれに紐づいた目的言語文による対訳コーパスなどの言語資源が充
実し始めたのに伴い、1980 年代からデータに基づく翻訳手法が提案されるように
なった。図 1.2 に示すように、データに基づく機械翻訳では対訳コーパスから機械
翻訳のモデルを学習し、そのモデルに基づいて翻訳を行う。1984 年には Nagao [64]
が用例に基づく機械翻訳を提案した。用例に基づく機械翻訳は事前に翻訳の知識や
確率モデルなどを仮定せず、対訳コーパスから自動で用例を獲得し、翻訳文の生成
の際は入力文と用例との編集距離のような類似度に基づいて翻訳を決定する手法で
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My father is a teacher
I have a pen
The teacher is my brother
…

私の⽗は教師です
私はペンを持っています
その教師は私の兄です
…

翻訳システムの
獲得

I am a teacher

機械翻訳
システム

翻訳⽂

対訳コーパス

図 1.2 データに基づく機械翻訳の概要図

ある。しかし、入力文と類似した用例が見つかることは多くないため、複数の用
例から部分的な訳を取り出し、それらを組み合わせることによって翻訳文を決定
する。
統計的機械翻訳 用例に基づく機械翻訳では対訳コーパスから用例を取得し、入
力文との類似度に基づいて翻訳を決定するが、その類似度の計算はシステムの開発
者に委ねられているという問題点がある。そこで 1990 年に対訳コーパスから統計
的なモデルを獲得する統計的機械翻訳が Brown et al. [7]によって提案された。用
例に基づく機械翻訳では対訳コーパスから自動的に翻訳対を抽出し、入力文に近い
対訳のペアから翻訳を決定するが、統計的機械翻訳では翻訳の正しさだけではなく
目的言語文の流暢さも同時に考慮して翻訳文を決定する。2003 年には Koehn et al.
[50]によってフレーズベース統計的機械翻訳が提案された。その後も階層的フレー
ズベース統計的機械翻訳手法 [13]や構文木に基づいた統計的機械翻訳手法 [35, 56]
が提案され、2006 年には機械翻訳の国際的なコンペティションである Workshop
on statistical machine translation (WMT) が開催される [49] など、統計的機械翻訳
は 20 年ほど機械翻訳のベースラインとなった。
自己回帰ニューラル機械翻訳 2006 年に Hinton et al. [32] によって発表された
ニューラルネットワークによる次元削減の研究を皮切りに、ニューラルネットワー
クを使用した機械学習の研究が盛んになり、Recurrent Neural Network (RNN) によ
る言語モデルがそれまでの統計的な言語モデルの精度を上回る [61]など、自然言語
処理の分野においてもニューラルネットワークを使用した手法が提案され始めた。
2014 年には Sutskerver et al. [90]によって、 RNN ベースの自己回帰ニューラル機
械翻訳手法が提案された。自己回帰ニューラル機械翻訳は翻訳文の出力の際に以前
に出力した単語に基づいて次の単語を予測するモデルである。単純な RNN ベース
の自己回帰ニューラル機械翻訳モデルは長距離の依存関係を考慮することが難し
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く、長文の翻訳精度が低い傾向があった。そこで 2015 年には Bahdanau et al. [2]
や Luong et al. [57]によって注意機構を使用した RNN ベースの自己回帰ニューラ
ル機械翻訳モデル (注意機構付き RNN モデル) が提案された。このモデルはエン
コーダのどの単語に注目するかを計算することで長文の翻訳精度が低くなる問題の
解決を図っている。2016 年には WMT においても自己回帰ニューラル機械翻訳が
統計的機械翻訳の精度を上回り [4, 79]、ニューラルネットワークを使用したモデル
が機械翻訳のスタンダードなモデルとなっていった。
これらのモデルは RNN をベースとしているため、原言語文の入力、翻訳文の出
力ともに文長に比例した時間がかかるという問題点があった。入力文のエンコー
ドにかかる時間を削減する手法として、Gehring et al. [22]によって Convolutional
Neural Network (CNN) を使用した自己回帰ニューラル機械翻訳モデルが提案され
た。しかし CNN では完全な並列化は出来ておらず、ある単語のベクトル表現を計
算する際に他の位置の単語のベクトル表現を使用するためには位置の差に比例した
計算時間がかかるという問題点が残っていた。ベクトル表現の計算の完全な並列化
に向けて、Vaswani et al. [95]は 2017 年に自己注意機構を使用した自己回帰ニュー
ラル機械翻訳モデルである Transformer を提案し、このモデルは現在の機械翻訳の
ベースラインとなっている。しかし Transformer でも推論の際に以前の単語に基づ
いて次の単語を予測するために単語の出力を並列に行うことが出来ず、翻訳文の出
力にその単語数に比例した時間がかかってしまう。
非自己回帰ニューラル機械翻訳 翻訳文の出力の際に文長に比例した時間がかか
るという問題を解決するために、Gu et al. [28]は翻訳文全体を一度に出力する非自
己回帰ニューラル機械翻訳手法を提案した。非自己回帰ニューラル機械翻訳は自己
回帰ニューラル機械翻訳と比較して翻訳にかかる時間を大幅に短縮することに成功
した。しかし前から順番に単語を出力する自己回帰ニューラル機械翻訳モデルとは
異なり、翻訳文の単語を一度に全て出力するため、同じ単語の繰り返し (重複訳)
や、参照訳と比較して単語が欠如する (訳抜け) という問題が頻繁に起こる。Lee
et al. [53]や Gu et al. [29]は出力した文を再度デコーダの入力として使用し繰り
返し翻訳文を出力することで翻訳精度が低下してしまう問題の解決を図っている。
Ghazvininejad et al. [24] らは一度出力した翻訳文に対して、どの単語の翻訳を変え
るべきかのマスクをかけて再度翻訳を行う手法を提案しており、Wang et al. [98]
は n-gram のチャンクごとにまとめて前から順に出力する手法を提案し周囲の単語
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が考慮出来ない問題を解決している。また Wei et al. [102] らは非自己回帰ニュー
ラル機械翻訳モデルのベクトル表現を自己回帰ニューラル機械翻訳モデルのベクト
ル表現に近づくように学習する手法を提案している。Wang et al. [101] は目的言語
文の単語のベクトル表現の類似度とその単語に対応したデコーダ内のベクトル表現
の類似度が近づくように学習させ、さらにデコーダのベクトル表現から原言語文を
復元するタスクを設定することで重複訳や訳抜けの問題の解決を図っている。一
方、Kaiser et al. [41]や Ma et al. [58]、Shu et al. [83] は 潜在変数を使用した非自己
回帰ニューラル機械翻訳モデルを提案している。これらの非自己回帰ニューラル機
械翻訳モデルによる翻訳精度は年々上昇しており、データセットによっては自己回
帰ニューラル機械翻訳モデルを上回る翻訳精度を達成している。
現在の機械翻訳 現在の機械翻訳の分野では、自己回帰ニューラル機械翻訳モデ
ルの一つである Transformer をベースラインとして研究がなされている。非自己回
帰ニューラル機械翻訳は近年注目が集まって盛んに研究がなされている。非自己回
帰ニューラル機械翻訳の翻訳精度は、データセットによっては自己回帰ニューラル
機械翻訳を超えるものも存在しているが、平均的にはまだ比肩しうるものではな
く、現在では自己回帰ニューラル機械翻訳、非自己回帰ニューラル機械翻訳の両方
が主に研究されている手法である。

1.2 機械翻訳の課題

1.1.2 節で議論した機械翻訳技術には、原言語文の単語を目的言語のどの単語に
翻訳すべきかを決定する語彙選択の問題や、対訳データが少ない言語対において翻
訳精度が低下してしまう低資源機械翻訳の問題、新しく使用され始めた単語の翻訳
が存在しない新語翻訳の問題、原言語と目的言語の構造が大きく異なることによっ
て翻訳精度が低下する語順の問題など解決すべき問題が多く存在している。本研究
では語順の問題に取り組む。
語順の問題は、どの順番で原言語文の単語の翻訳を行うべきかを決定する問題で
ある。例えば英語から日本語への翻訳を行う際に、“My father is a teacher.” という
文をそのままの語順で翻訳を行ってしまうと正しい日本語文の語順とならないた
め、原言語文をどの順で翻訳していくべきかを考慮する必要がある。特に語順の問
題は、英日対のように言語構造が大きく異なる言語間の翻訳において無視出来ない
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図 1.3 事前並び替えと事後並び替えの処理手順 (図は [86] より引用)

問題であり、本論文ではこの語順の問題の解決に取り組む。
翻訳と同時に語順を考慮する手法 これまでにさまざまな語順の問題に対する解
決手法が提案されており、その一つに翻訳を行う際に同時に語順を考慮する手法
[27, 65, 92, 106]がある。例えば Tillmann [92] は直前に出力したフレーズに対して、
翻訳するべき原言語文の次のフレーズがその直前か直後に出力されるか、それとも
隣接していないかを予測することで語順の問題の解決を図っている。この手法では
前のフレーズと比較して前後どちらに出力すべきかの予測は出来るが、その位置ま
では考慮することが出来ない。また Green et al. [27]は前のフレーズに対して次に
出力するフレーズのインデックスの距離をクラスとして分類する手法を提案してい
る。しかしこの手法ではすべての距離をクラスとして考慮することは出来ない。こ
れらの手法は、英仏対のように語順が近い言語間では局所的な語順を考慮すること
で精度の高い翻訳が実現出来るが、英日対のように語順が大きく異なる言語間では
局所的な語順の考慮だけでは語順の問題を解決出来ないため翻訳精度が低く、また
翻訳時に同時に長距離の語順を考慮しようとすると計算量が爆発してしまうといっ
た問題点がある。
翻訳とは独立して語順を考慮する手法 翻訳とは独立して並び替えを行う手法と
して「事後並び替え」と「事前並び替え」と呼ばれる手法が提案されている（図
1.3）。事後並び替えは原言語文をそのままの語順で翻訳を行う単調翻訳を行った後
に、原言語文の語順で翻訳された翻訳文を目的言語文の語順に並び替える手法であ
る。特に日英翻訳における事後並び替え [30, 86, 88]では、SVO 型言語の文を SOV
型言語の文の語順に近づける head finalization [37] を使用して原言語文の語順と同
じ目的言語文を作成する。その後、作成した対訳コーパスを使用して翻訳器を学習
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し原言語文の語順の翻訳文を出力した後、その翻訳文を目的言語文の語順に並び替
えることで最終的な翻訳文を決定している。
事前並び替えは翻訳器に原言語文を入力する前にあらかじめ原言語文を目的言語
文の語順に近づくように並び替える手法であり、特に長距離の並び替えを効果的か
つ効率的に行える [39, 43, 66]。事前並び替えにおいて、考えうる原言語文の語順全
てから最適な語順を探索しようとすると原言語文の単語数の階乗に比例した時間が
必要となり、計算量が爆発してしまう。そのため、これまでにさまざまな手法によ
る効率的な事前並び替え手法が提案されてきた。

Isozaki et al. [37] や Gojun and Fraser [25] は構文木に対して手動で定めたルール
を適用することで事前並び替えを実現している。しかし、ある言語間におけるルー
ルを定めるためには原言語文および目的言語文の知識が必要であり、また全ての言
語間のルールを定めることは非常に難しい。そこで対訳コーパスから自動で事前並
び替えを学習する手法も提案されている。Zhang et al. [108]や Crego and Habash
[17]は n-gram からなるチャンクに対して、並び替えルールを対訳コーパスから得
る手法を提案している。
また、木構造を使用することで部分フレーズの並び替えをその部分フレーズが
対応したノードを並び替える問題へと帰着でき、長距離の部分フレーズの並び替
えが容易に実行出来るという利点があるため、木構造を使用して自動で事前並び
替えを学習する手法も多く提案されている。特に 2 分木の構文木に限定すること
で、子ノードを並び替えるかどうかの二値分類として問題を設定出来る。Hoshino
et al. [34]は、2分木に対して順位相関係数であるケンドールの τ [45]が最大となる
ように二値分類の分類器を使用して各ノードでの並び替えを行っている。DeNero
and Uszkoreit [20] や Neubig et al. [68]、Nakagawa [66] は Bracketing Transduction
Grammar (BTG) に基づいて 構文解析をしながら事前並び替えを同時に行う手法を
提案しており、特に Nakagawa の手法はフレーズベース統計的機械翻訳において最
高性能を達成している手法の一つである。これらの手法は構文木を構築しながら並
び替えも予測するため構文解析を事前に行う必要がなく、構文解析器の精度に依る
ことなく並び替えを行える。しかしその学習のために素性テンプレートを人手で設
計する必要がある。
近年では、素性テンプレートの設計を必要としないニューラルネットワーク
に基づいた手法も提案されている。de Gispert et al. [19] は Feed-Forward Neural
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Network (FFNN)を用いた 2分木での並び替えを提案している。Botha et al. [6]も
FFNNを用いた並び替えを提案しているが、木構造を使用せずに並び替えを行っ
ている。Miceli-Barone and Attardi [60]は RNNを用いて係り受けのノードを辿る
ことで並び替えを行う手法を提案している。彼らは、単語を出力する “EMIT”、親
ノードへ移動する “UP”、j 番目のノードへ移動する “DOWNj”の三つの動作を定
義し、RNNで動作を予測することで並び替えを行う。Kanouchi et al. [42]は統計
的機械翻訳の翻訳モデルにより抽出するフレーズペアについて、Recursive Neural
Network (RvNN) を用いて並び替えラベルを推定することで、翻訳システムの内部
で翻訳と同時にフレーズの並び替えを行う。

1.3 本研究の位置づけと貢献

1.2 節で議論したように、機械翻訳の語順の問題に対して事前並び替え手法を使
用することで翻訳精度が向上する。特に、BTG に基づく事前並び替え手法は最高
性能を達成した手法であるが、人手での特徴量の設計が必要であった。それに対し
て、第 2 章で提案する RvNN を使用した 2 分木に基づく事前並び替え [43, 111]は
ニューラルネットワークを使用した手法であり、人手での特徴量の設計が不要であ
る。また、構文木を使用することで長距離の並び替えを容易に行うことが出来る。
さらにボトムアップに計算し並び替えを行うため、並び替えの際に重要である部分
木を考慮した並び替えが実現出来る。フレーズベース統計的機械翻訳による翻訳評
価実験において、言語間の大きく異なる英日間において提案手法による翻訳精度の
向上を示す。
自己回帰ニューラル機械翻訳ではフレーズベース統計的機械翻訳とは異なり、事
前並び替えを直接使用して訓練および翻訳を行うと翻訳精度が低下することが知ら
れている [21, 43]。そのため、語順の情報を自己回帰ニューラル機械翻訳モデルに
おいて活用する手法が提案されてきた [11, 12, 21, 107, 109]。特に Zhao ら [109] は
注意機構付き RNN モデルにおいて事前並び替えのインデックスのベクトル表現を
加えることで翻訳精度が向上したことを報告している。しかし現在の機械翻訳モデ
ルのスタンダードである Transformer における事前並び替えの効果は定かではな
い。第 3 章で提案する事前並び替え位置表現 [44] は Transformer において事前並
び替えの情報を活用した初めての事例である。翻訳評価実験では事前並び替えのイ
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ンデックスのベクトル表現を使用することで翻訳精度が向上することを示す。
非自己回帰ニューラル機械翻訳ではエンコーダの出力をそのままの順序でデコー
ダの入力に使用するため、特に英日対のように大きく語順が異なる言語対では翻
訳精度が大きく低下してしまう。Ran et al. [77] は非自己回帰ニューラル機械翻訳
モデルにおいて並び替えられた潜在変数を予測することで翻訳精度が向上するこ
とを示しているが事前並び替えは使用していない。そこで第 4 章では非自己回帰
ニューラル機械翻訳における事前並び替えの利用方法の検証を行い、事前並び替え
が非自己回帰ニューラル機械翻訳における翻訳精度に与える影響を調査し分析を行
う。三つの検証手法による翻訳評価実験を行い、非自己回帰ニューラル機械翻訳で
は事前並び替えによって翻訳精度が向上することを示す。

1.4 本論文の構成

本論文は 5 章で構成されている。第 2 章ではフレーズベース統計的機械翻訳に
おける人手での特徴量設計が不要な RvNN を使用した事前並び替え手法を提案す
る。まず事前並び替えのための正解ラベル付与を行う手法について説明し、RvNN
の構築を説明する。提案手法を適用し翻訳評価実験を行った結果、人手での特徴量
設計が必要な先行手法である BTG に基づく事前並び替え手法と同等の翻訳精度を
達成したことを述べる。また、構文解析器に基づく事前並び替え手法の先行研究
である Hoshino et al. の手法と比較し、提案手法の有効性を確認する。さらに、事
前並び替えの精度がフレーズベース統計的機械翻訳に与える影響について分析を
行う。
第 3 章では自己回帰ニューラル機械翻訳モデルの一つである Transformer におけ
る事前並び替え位置表現を使用した翻訳手法を提案する。提案手法である事前並び
替え位置表現とその適用方法について説明し、翻訳評価実験を行うことで提案手法
の有効性を確認する。また、事前並び替えの精度が Transformer の翻訳精度に与え
る影響について分析を行う。さらに提案手法が翻訳に与える影響について詳細に調
査を行うため、訳抜けと重複訳に与える影響および文長と翻訳精度の関係について
詳細な分析を行う。
第 4 章では非自己回帰ニューラル機械翻訳モデルにおける事前並び替えの検証
を行う。非自己回帰ニューラル機械翻訳モデルではデコーダの入力としてエンコー
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ダの出力をそのままの順序で使用するため、語順の相違を考慮した翻訳が出来な
い。そこで事前並び替えが非自己回帰ニューラル機械翻訳における翻訳精度に与え
る影響を確かめるため、事前並び替えを適用した文をそのまま入力として使用する
方法、エンコーダの出力を並び替える方法、エンコーダの入力時に事前並び替えの
情報を使用する三つの方法を翻訳評価実験を通して評価する。また、事前並び替え
が翻訳精度に与える影響について詳細な調査を行うため、文長と翻訳精度の関係に
ついて分析する。第 5 章では以上の成果についてまとめ、今後の展望について議
論する。
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第 2章 統計的機械翻訳のための RvNN
による事前並び替え

2.1 はじめに

フレーズベース統計的機械翻訳モデル [50]は、フレーズを翻訳単位として機械翻
訳を行う手法である。この手法ではあるフレーズを翻訳した後、次に翻訳するフ
レーズを前後数フレーズのうちから選ぶため、英語とフランス語のように語順が似
ている言語対や短い文においては高品質な翻訳を行えることが知られている。しか
し、英語と日本語のように語順が大きく異なる言語対では、前後数フレーズを考慮
するだけでは次に翻訳するべきフレーズを正しく選択することは難しいため、翻訳
精度が低い。このような語順の問題に対し、Nakagawa の提案した BTG に基づく
事前並び替え手法 [66] は最高性能を達成しているが、並び替えの学習のために人
手による素性テンプレートの設計が必要である。
そこで、本章では統計的機械翻訳のための RvNN [85] を用いた事前並び替え手
法を提案する。ニューラルネットワークによる学習の特徴として、人手による素性
テンプレートの設計が不要であり、訓練データから直接素性ベクトルを学習出来る
という利点がある。また、RvNN は木構造の再帰的ニューラルネットワークであ
り、事前並び替えに適用することで長距離の並び替えが容易に行える。提案手法で
は与えられた構文木にしたがって RvNN を構築し、葉ノードからボトムアップに
計算を行っていくことで、各節ノードにおいて、並び替えに対して重要であると考
えられる部分木の単語や品詞・構文タグを考慮した並び替えを行う。
現在ではニューラル機械翻訳が主流となっているが、統計的機械翻訳をベースに
することで、事前並び替えのような中間プロセスに注目した手法の性能が翻訳全体
に与える影響について明らかに出来る利点がある。また統計的機械翻訳のようにホ
ワイトボックス的なアプローチは、商用翻訳においてシステムの修正やアップデー
トが容易であるという利点もある。さらに統計的機械翻訳とニューラル機械翻訳を
組み合わせることで性能を向上するモデルが先行研究 [100]により提案されており、
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統計的機械翻訳の性能を向上させることは有益である。
本章は以下のように構成されている。2.2 節では、関連研究について説明を行う。

2.3 節では本章で使用する機械翻訳手法であるフレーズベース統計的機械翻訳と注
意機構付き RNN モデルについて説明する。 2.4 節では提案手法である RvNN を使
用した事前並び替え手法における正解ラベルの付与の手法と、事前並び替えモデル
の構造及び構築方法を説明する。2.5 節では英日、英仏、英中の言語対を使用した
翻訳評価実験について述べ、2.6 節で実験の分析を行う。2.7 節で本章のまとめと
今後の課題を検討する。

2.2 関連研究

本節では、提案手法と関連の深い事前並び替えに関する既存研究について詳細に
議論する。Collins et al. [15]や Gojun and Fraser [25]、Wang et al. [97]は並び替え
のルールを定め、そのルールにしたがって事前並び替えを行っている。Xu et al.
[104]や Isozaki et al. [37]は木構造に対して並び替えのルールを定め、SVO型言語
である英語から SOV型言語への翻訳における事前並び替えを行っている。これら
の手法のように、ある言語対について並び替えのルールを定めるためには原言語と
目的言語についての知識が必要である。また、全ての言語対において並び替えの
ルールを定めることは難しい。単純に特定の言語をピボットとする手法では、原言
語の語順からピボットとする言語の語順に並び替えるルール、ピボットとする言語
の語順から目的言語の語順に並び替えるルールが必要であるが、並び替え後の原言
語文の単語やフレーズがピボットとする言語の単語やフレーズのどの部分に対応す
るかを特定しなければ並び替え後の原言語文をピボットとする言語と同じルールで
並び替えることが出来ないため、ルールに基づいた並び替えでは適用可能な言語対
が限られてしまう。
そこで、対訳コーパスから自動で並び替えを学習する手法も提案されている。

Zhang et al. [108]や Crego and Habash [17]は n-gram からなるチャンクに対して、
並び替えルールを対訳コーパスから得る手法を提案している。Crego and Mariño
[18]や Tromble and Eisner [93]は品詞タグを用いた事前並び替え手法を提案してい
る。また Visweswariah et al. [96]は単語をノードとしたグラフを作成し、巡回セー
ルスマン問題として並び替えの問題を定式化している。
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木構造を用いることで長距離の部分フレーズの並び替えが容易に行えるという利
点があるため、木構造を用いる手法も多く提案されている。Xia and McCord [103]
や Genzel [23]は木構造から並び替えパターンを抽出し、これを原言語文に適用す
ることで並び替えを行っている。機械学習を用いて並び替えを学習する手法も提案
されている。Li et al. [55]は構文木での各ノードにおいて最大エントロピーモデル
を用いて、子ノードが三つ以内のノードに限定して学習および並び替えを行うモデ
ルを提案している。Lerner and Petrov [54]は依存木に対して、子ノードが七つ以内
のノードに対して並び替えを行う手法を提案している。Yang et al. [105]は並び替
えを子ノードの順序を求める順序問題とし、Ranking-SVM [40]を使用して子ノー
ドの順序を求めることで並び替えを行っている。
木構造を用いて各ノードにおける子ノードの順序を決定するようなモデルでは、
子ノードの数が多くなるにつれて並び替え候補が爆発的に増加するという問題があ
る。そこで、木構造を 2分木に限定することで、各ノードにおいて子ノードを並び
替えるか否かという二値分類の問題として定義出来る。Jehl et al. [39] は 2分木に
対して、単語アライメントの交差が少なくなるようにロジスティック回帰モデルを
用いて並び替えを学習する手法を提案している。単語アライメントは原言語文の
単語と目的言語文の単語の対応関係を表しており、原言語文の単語のあるペアを
考えたとき、対応している単語の目的言語文内での順序が原言語文の単語の順序
と異なっている場合に単語アライメントが交差していると定義している。Hoshino
et al. [34]は、2分木に対して順位相関係数であるケンドールの τ [45]が最大とな
るように二値分類の分類器を用いて各ノードでの並び替えを行っている。DeNero
and Uszkoreit [20]は構文解析をしつつ同時に並び替えも学習する手法を提案してい
る。Neubig et al. [68]は BTGに基づいて構文木の構築および並び替えを行う手法
を提案しているが、計算量が多く時間がかかるという問題があった。本研究で比較
を行う BTG に基づく事前並び替え手法 [66] は計算量の問題を解決した手法であ
り、翻訳において本論文執筆時点で最高性能を達成している。この手法は入力とし
て与えられた文を構文解析しながら同時に並び替える手法であり、latent variable
perceptron [89] によって単語、単語クラスタ、品詞タグ、親ノードの並び替えラベ
ルから素性テンプレートに従って選択された素性に従い、並び替え後の単語アライ
メントの交差がなくなるようにモデルのパラメータを訓練する。単語クラスタは各
単語に対して周辺単語を元にクラスタリングを行ったものを指す。素性はモデルの
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My    father    is  a  teacher

[1, 5]

[3, 5]
[4, 5][1, 2]

図 2.1 BTG に基づく並び替えモデルによる “My father is a teacher” の構文木の例 (横線
はそのノードを入れ替えることを表す)

訓練を行う際に注目する値のことを指す。素性テンプレートは、「現在のノードが
動詞で、かつ同じスパンに属している一番左の単語が名詞か」のように与えられ
た情報のどの部分に注目するか、どのように組み合わせるかが記述された表であ
り、人手によってどの情報を組み合わせるかが設計される。BTG による構文木の
各ノードは入力として与えられた文のある一つのスパンに対応している。二単語以
上のスパンに対応したノードは二つの子ノードとそれら子ノードを並び替えるかど
うかのラベルを持ち、一単語のスパンに対応したノードは終端ノードとしてその
スパンに対応した単語に紐づけられる。図 2.1 に BTG による構文木の例を示す。
[l, r] は文の l 番目から r 番目までの単語を覆う節ノードであることを表している。
BTG に基づく並び替え手法では各節ノードに対して Inverted (I) か Straight (S) の
どちらのラベルを付与するかをトップダウンで決定していく。Inverted (I) ラベル
は子ノードの順序を入れ替えることを表しており、Straight (S) は子ノードの順序
を維持することを表している。各節ノードではまずそのノードが覆うスパンのどこ
で二つに分割するかを決定し、その後どちらのラベルを付与するかを決定する。す
べてのノードにおいてラベルが付与された後、各ノードに付与されたラベルに従っ
てノードを並び替えていくことで事前並び替えを実現する。推論時は以下の式に
従って構文解析およびラベルを決定する。

ξ̂ = arg max
ξ∈Ξ(x)

∑
η∈Nodes(ξ)

Λ · Φ(η)

x′ = Proj(ξ̂)

Φ(η) は BTG による構文木のノード η の素性ベクトルを返す関数であり、Λ は各
素性に対する重みを表すベクトルである。素性ベクトルは各次元がそれぞれ別の素
性に対応したベクトルであり、素性が存在しているなら 1 を、そうでなければ 0
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となるベクトルである。例えば素性として、与えられた単語が「名詞かどうか」、
「動詞かどうか」を考える。この時、「素性」という単語は名詞であるが動詞ではな
いため、素性ベクトルは [0, 1] として表される。素性をどのように選択するかを表
す素性テンプレートはモデルの設計時に人手で設計される必要があるが、言語やド
メインによっては新たに素性テンプレートを設計しなければならない。本研究では
2.4 節で説明するように、ニューラルネットワークを使用することで最適な情報の
組み合わせ方が決定される点で BTG に基づく事前並び替え手法と異なる。Ξ(x)
は BTG によって到達可能な文 x の構文木の集合であり、Nodes(ξ) は構文木 ξ の
ノードの集合、Proj(ξ) は BTG の構文木 ξ から並び替えられた文 x′ を生成する関
数である。
近年では、素性テンプレートの設計を必要としないニューラルネットワークに基
づいた手法も提案されている。de Gispert et al. [19]は FFNN を用いた 2分木での
並び替えを提案している。Botha et al. [6]も FFNNを用いた並び替えを提案してい
るが、木構造を用いずに並び替えを行っている。Miceli-Barone and Attardi [60]は
RNN を用いて依存木のノードを辿ることで並び替え手法を提案している。彼らは、
単語を出力する “EMIT”、親ノードへ移動する “UP”、j 番目のノードへ移動する
“DOWNj”の三つの動作を定義し、RNNで動作を予測することで並び替えを行う。
Kanouchi et al. [42]は統計的機械翻訳の翻訳モデルにより抽出するフレーズペアに
ついて、RvNNを用いて並び替えラベルを推定することで、翻訳システムの内部で
翻訳と同時にフレーズの並び替えを行う。提案手法と同様 RvNNを使用している
が、1.2 節で議論したように翻訳と同時に並び替えを考慮する手法は長距離の並び
替えを考慮しようとすると計算量が爆発してしまう。提案手法は翻訳システムとは
独立して事前並び替えを行う点で異なり、構文木を使用することで長距離の並び替
えがより簡単に行えるという利点がある。また提案手法では原言語の構文木に対し
てボトムアップに構築される RvNNを用いて 2種類のラベルの予測を行うことで、
部分木全体を考慮した並び替えを行える。

2.3 前提知識

本節では事前並び替えを適用する機械翻訳手法について説明する。2.3.1 節では
本章で事前並び替えを適用する機械翻訳手法であるフレーズベース統計的機械翻訳
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について説明し、2.3.2 節では事前並び替えを適用する機械翻訳手法である注意機
構付き RNN モデルについて説明する。

2.3.1 フレーズベース統計的機械翻訳
本節では、事前並び替えを適用する機械翻訳手法として使用する、統計的機械翻
訳の一つであるフレーズベース統計的機械翻訳モデル [50]について説明する。統計
的機械翻訳は雑音のある通信路モデル [81]に基づいて x に対する最適な翻訳文 ŷ
を決定する手法である。

ŷ = arg max
y∈E(x)

Pr(y|x)

= arg max
y∈E(x)

Pr(x|y)Pr(y) (2.1)

ここで E(x) は原言語文 x の可能な翻訳文の集合を表す。Pr(x|y) は翻訳モデルと
呼ばれ翻訳の確からしさを表しており、Pr(y) は言語モデルと呼ばれ文の確からし
さを表している。機械翻訳において一般的に使用される言語モデルは n-gram 1）言
語モデルと呼ばれるものである。n-gram 言語モデルは各単語の確率をその前に出
現した n− 1 個の単語の条件付き確率として計算するモデルであり、式 (2.2) のよ
うに計算される。

Pr(y) =
m∏

i=1
pml(yi|yi−1

i−n+1) (2.2)

pml(yi|yi−1
i−n+1) =

C(yi
i−n+1)

C(yi−1
i−n+1)

ここで yj
i は文 y の i 番目から j 番目の単語列を表す。C(yj

i ) は単語列 yj
i がデー

タ中で出現する回数を表す。
フレーズベース統計的機械翻訳モデルは単語の代わりに、連続した単語列である
フレーズというまとまりを基本単位として翻訳を行う手法である。フレーズベース
統計的機械翻訳モデルでは以下の翻訳モデルの確率を最大化する。

1） n-gram は n 個の連続した単語の連なりを表す。
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Pr(x|y) =
∑

⟨x,y⟩∈D

∑
ϕ,α

Pr(x, ϕ, α|y)

≈
∑

⟨x,y⟩∈D

∑
ϕ,α

pd(x, α|ϕ)pϕ(ϕ|y)

≈
∑

⟨x,y⟩∈D

∑
ϕ,α

pd(x, α|ϕ)
L∏

k=1
pϕ(x̄(ϕk)|ȳ(ϕk))

ここで D は原言語文と目的言語文のペアの集合を表す。x̄, ȳ はそれぞれ原言語側
と目的言語側のフレーズを表し、pϕ(x̄(ϕk)|ȳ(ϕk))) は k 個目のフレーズの、フレー
ズ単位の翻訳モデルを表す。ϕ は原言語文と目的言語文の対訳フレーズ、α はフ
レーズ単位のアライメントである。pϕ(ϕ|y) はフレーズ翻訳モデルと呼ばれ、フ
レーズへの分割と対訳フレーズの生成を担当する。 pd(x, α|ϕ) はフレーズ歪みモ
デルと呼ばれ、フレーズの並び順を決定し x を生成する。推論時は式 (2.1) を最大
化するような翻訳文が生成される。推論時は可能な全てのフレーズペアを列挙する
と計算量が爆発してしまうため、フレーズベース統計的機械翻訳では歪み制約と呼
ばれる、最後に翻訳を決定した原言語文のフレーズの最後の単語の位置と次に翻訳
するべき原言語文のフレーズの最初の位置の距離の差に上限を設けることで計算量
爆発を回避している。

2.3.2 注意機構付き RNN モデル
本節では、事前並び替えを適用する機械翻訳手法として使用する、注意機構付き

RNN モデルについて説明する。Luong et al. [57] によって提案された注意機構付き
RNN モデルは、Long Short-Term Memory (LSTM) [33] を使用してベクトル表現を
計算しそのベクトル表現に基づいて翻訳文の出力を行う。図 2.2 に注意機構付き
RNN モデルの全体図を載せる。この例では原言語文 “My father is a teacher” から
翻訳文「私の父親は教師です」を出力する例である。2）

注意機構付き RNN モデルはハイパーパラメータ L によって決められた回数
RNN をスタックしたモデルであり (図 2.2 は L = 2 の例)、第 l 層における k 番目
の単語のベクトル表現 hl

k ∈ Rdh (dh はベクトル表現の次元数) は式 (2.3) に従って
計算される。
2） “<bos>” と “<eos>” はそれぞれ文の先頭と末尾を表すタグである。
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My father is a teacher 私 の ⽗親 は 教師 です<bos>

私 の ⽗親 は 教師 です<eos>

attention

図 2.2 注意機構付き RNN モデルの全体図

hl
k = f(hl

k−1, hl−1
k ) (2.3)

f は非線形関数であり、Luong et al. [57] と同様に本論文でも LSTM を使用した。
また 0 番目の層は存在しないため、h0

k として k 番目の単語のベクトル表現を使用
する。j 番目の単語 yj はデコーダの最終的なベクトル表現 h̃j ∈ Rdh に基づいて決
定される。h̃j はデコーダの最後の層のベクトル表現 h̄L

j と文脈ベクトル cj ∈ Rdh

から式 (2.4) に従って計算される。

h̃j = tanh(Wc · Concat(cj, h̄L
j )) (2.4)

cj =
n∑

i=1
aijĥL

i

aij =
exp((ĥL

i )TWah̄L
j )∑n

k=1 exp((ĥL
k )TWah̄L

j )

ĥl
i ∈ Rdh はエンコーダの第 l 層における i 番目の単語のベクトル表現、Concat(·)
は受け取ったベクトルをその順に結合したベクトルを返す関数である。
Wc ∈ Rdh×2dh , Wa ∈ Rdh×dh は重み行列、aij はデコーダの j 番目に対するエンコー
ダの i 番目の重みである。このようなあるベクトル表現への重みは attention と呼
ばれる。この attention によって次の単語の予測時にエンコーダのどの単語のベク
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トル表現に注目するかを考慮してベクトル表現の計算を行い、そのベクトル表現に
基づいて次に出力すべき単語を決定する。

2.4 提案手法

本節では提案手法である RvNN による事前並び替え手法を説明する。まず本手
法で使用する単語アライメントについて説明を行う。その後、節ノードにおける正
解ラベル付与のアルゴリズムについて述べ、続いて RvNN を用いた事前並び替え
モデルについて述べる。

2.4.1 単語アライメント
単語アライメントとは対訳文における単語単位の対応関係を表した集合である。
図 2.3 に英語から日本語への単語アライメントの例を示す。 対訳文において愚直
に原言語文と目的言語文の単語のペアを考慮すると、全てのペア n×m 通りに対
して対応づけるかどうかの 2n×m 通りの候補を探索する必要がある。そこで IBM
モデル [8]では原言語文側から目的単語文側への対応は最大一単語という制約を加
えることで計算量を大幅に削減しており、単語アライメントは原言語文の各単語に
対応する目的言語文の単語の位置として表現することが出来る。例として図 2.3 に
おける英語から日本語方向への単語アライメントは、 それぞれの英語文の単語に
対応づけられている日本語文の単語の位置を並べた a = (1, 3, 7, 6, 5, 9) として表さ
れる。ここで “My” は「私」と「の」に対応づけられているが、原言語文側から目
的単語文側への対応は最大一単語という制約によって「私」のみへのアライメント
となっている。また、アライメントが存在しない場合は 0 番目に NULL の単語が
存在すると仮定し 0 へと対応づけられる。原言語文の単語 xj の単語アライメント
aj のアライメントモデル pa は以下のように表される。

Pr(aj|xj−1
1 , aj−1

1 , y) ≈ pa(aj|aj− , xj−1
1 , y)

j− = arg max
j′

j′ < j ∧ aj′ ̸= 0 (2.5)

xj−1
1 , aj−1

1 はそれぞれ原言語文の最初から j − 1 番目までの単語と単語アライメ
ントを表す。アライメントモデルによって単語アライメントは前から順に決定さ
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図 2.3 “My parents live in London.” と「私の両親はロンドンに住んでいる。」の単語アラ
イメントの例

れる。

2.4.2 正解ラベルの付与
事前並び替えは翻訳器を通した後の文で評価を行うため、翻訳に最適な並び替
えを行った文を人手で得ることは難しい。そこで Nakagawa は単語アライメント
に基づいて並び替えラベルを決定し正解ラベルとして付与している。提案手法で
も同様に、単語アライメントに基づいて並び替えの正解ラベルを付与する。2分
木である句構文木の各節ノードにおいて子ノードの順序を入れ替えるかどうかの
ラベル付けをケンドールの τ に基づいて行い、並び替えの訓練データを作成する。
Algorithm 1に正解ラベル付与の擬似コードを示す。入力は 2分木のノード nと単
語アライメント aである。ノードは左右の子ノードへのリンク (leftおよび right)
と、並び替えを示すラベル (label) を保持する。a[n]は、葉ノードにおける単語の
アライメントの目的言語におけるインデックスを表す。並び替えのラベルは関数
KendallTau(al, ar)によってケンドールの τ の値を計算し、その結果に基づいて決定
する。各節ノードにおいて、子ノードを並び替えた際にケンドールの τ が大きくな
る場合は並び替えを行う “Inverted”ラベルを、小さくなるまたは変わらない場合は
そのままの順序を維持する “Straight”ラベルを付与する。これをボトムアップで行
うことで、与えられた構文木においてケンドールの τ が最大となるように正解ラベ
ルが付与される。
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Algorithm 1 正解ラベル付与の擬似コード
Input: 2文木のノード n、単語アライメント a

Output: ラベルが付与された 2分木
1: function Labeling(n, a)
2: if n ̸= NULL then
3: if n.left ̸= NULL and n.right ̸= NULL then
4: Nl, al ← LABELING(n.left, a)
5: Nr, ar ← LABELING(n.right, a)
6: if KendallTau(al, ar) < KendallTau(ar, al) then
7: N ← {“left”: Nl, “right”: Nr, “label”: “Inverted”}
8: Align← ar ∪ al

9: else
10: N ← {“left”: Nl, “right”: Nr, “label”: “Straight”}
11: Align← al ∪ ar

12: end if　　
13: return N, Align

14: else
15: return n, a[n]
16: end if
17: end if

18: end function

2.4.3 事前並び替えモデル
RvNNは木構造型のニューラルネットワークである [85]。RvNNにおける各ノー
ドは図 2.4に示す構造を持ち、これを再帰的に結合することで、図 2.5に示すよう
な木構造型のニューラルネットワークを構築する。
提案手法では句構文木にしたがって RvNN を構築し、 各節ノードにおいて

Algorithm 1で付与した正解ラベルを予測する学習を行う。Algorithm 2に予測した
ラベルを用いた並び替えの擬似コードを示す。入力は Algorithm 1によって正解ラ
ベルが付与された 2分木のノード nであり、左右の子ノードへのリンク (leftおよ
び right) と並び替えの予測結果を保持する labelを持つ。len(·)は要素の数を計算す
る。葉ノードはさらに自身の単語 wordとそのベクトル表現 eを保持する。Sl、Sr

は並び替え後の単語列である。節ノードにおいては、左と右の子ノードから、それ
ぞれのベクトル表現 vl、vr を入力とし、関数 RvNN(vl, vr)によって自身のベクト
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図 2.4 RvNNの基本となる構造

Algorithm 2 RvNNによる並び替えの擬似コード
Input: 正解ラベルが付与された 2分木のノード n

Output: 並び替えを適用した文、ノードのベクトル表現
1: function Preordering(n)
2: if len(n.children) = 2 then
3: Sl, vl ← PREORDERING(n.left)
4: Sr, vr ← PREORDERING(n.right)
5: Label, v ← RvNN(vl, vr)
6: if Label = “Straight” then
7: return Sl + Sr, v

8: else
9: return Sr + Sl, v

10: end if
11: else
12: return n.word, n.e

13: end if

14: end function

ルの計算とラベルの予測を行う。RvNN(vl, vr)はベクトル表現 vl、vr を受け取り、
予測されたラベル Labelと節ノードのベクトル vを返す関数である。左の子ノード
と右の子ノードのベクトル表現を用いてラベルを予測することで、部分木を考慮し
つつ並び替えを行うかどうかを決定出来る。
図 2.5に “My parents live in London” という文に対して RvNNを用いた並び替え
の例を示す。例えば “live in London” のフレーズに対応したノードにおいて、式
(2.6) に従い “live” と “in London” の子ノードを考慮してベクトルを計算する。

v = f(Concat(vl, vr)W + b) (2.6)

s = vWs + bs (2.7)
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図 2.5 “My parents live in London”の RvNNによる並び替え (横線が引いてある節ノード
は “Inverted”)。緑色はノードのベクトル表現を表し、青色は品詞・構文タグのベクトル表

現を表す。

f は ReLU関数、W ∈ Rλ×2λは重み行列、vl、vr ∈ Rλはそれぞれ左、右の子ノード
のベクトル、Ws ∈ R2×λ は出力層における重み行列、b ∈ Rλ、bs ∈ R2 はバイアス
項を表す (λは隠れ層の次元数を表す)。s ∈ R2 は各ラベルに対する重みのベクト
ルであり、式 (2.8) に示すソフトマックス関数に入力することで “Straight”および
“Inverted”ラベルの確率を計算する。

pi = exp(si)∑|s|
m=1 exp(sm)

(2.8)

| · |はベクトルの次元数を表し、ここでは |s| = 2である。
葉ノードでは、単語ベクトルを入力とし、式 (2.10) によってベクトル表現を
得る。

e = xWx (2.9)

ve = f(eWe + be) (2.10)

ここで x ∈ RV は入力単語を表す one-hotベクトル、Wx ∈ RV ×λ は単語ベクトル表
現を表す行列 (V は語彙数を表す)、We ∈ Rλ×λ は重み行列、be ∈ Rλ はバイアス項
である。ロス関数は式 (2.11) で定義される交差エントロピーを用いる。

L(θ) = − 1
K

K∑
k=1

∑
n∈T

log p(ln
k ; θ) (2.11)

θ はモデルのパラメータ、nは構文木 T のノードであり、K はミニバッチのサイ
ズ、ln

k はミニバッチの k番目の構文木の n番目のノードのラベルを表す。
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本研究では、各ノードにおける品詞もしくは構文タグを考慮する手法も提案す
る。これらを考慮する際は、式 (2.6) に代わり式 (2.12) を使用する。

vt = f([vl; vr; et]Wt + bt) (2.12)

et ∈ Rλ は品詞・構文タグの情報を表現するベクトルで、各ノードの品詞または構
文タグを表す one-hotベクトルを入力とし、式 (2.9)と同様に計算する。Wt ∈ R3λ×λ

は重み行列、bt ∈ Rλはバイアス項である。式 2.10 および式 (2.12) における重み行
列 We, Wt の値が訓練時に更新されることで入力として与えられた情報からどの情
報をどの程度の重みで使用するかが決定されるため、人手での素性テンプレート設
計の必要がなくなる。

2.5 翻訳評価実験

本節では事前並び替えを用いた翻訳評価実験について述べる。まず初めに実験設
定について説明し、次に実験結果を示す。実験ではまず提案手法と BTG に基づく
事前並び替えの精度を評価し、それから事前並び替えを使用した翻訳の評価を行う
ためにフレーズベース統計的機械翻訳による翻訳精度の評価を行う。それぞれの機
械翻訳モデルが出力した翻訳文の評価値の統計的有意差を検証するため、ブートス
トラップによる検定 [48]を行う。

2.5.1 実験設定
コーパスの前処理 英日、英仏、英中対において原言語文の事前並び替えを
行い、その上で機械翻訳システムを訓練し、翻訳精度を評価する。英日翻訳は
ASPECコーパス [67]を使用した。ASPECコーパスは、科学技術論文の概要から
Utiyama and Isahara [94] の提案した文間の類似度に基づいて対応づけられている
約 300 万文からなる対訳コーパスである。本研究では上位 50万文対から 10万文対
をサンプリングして事前並び替えの訓練データとした。英仏翻訳は Common Crawl
コーパス [5]を使用し、英中翻訳は IWSLTコーパス [9]を使用した。英仏、英中と
もに、訓練データから無作為にサンプリングした 10万文を並び替えの訓練データ
とした。翻訳の訓練データは全ての言語対において、先行研究 [57, 66]と同様翻訳
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表 2.1 翻訳の学習に用いたデータの統計量 (文対)
訓練データ 開発データ テストデータ

英日 (ASPEC) 1, 805, 583 1, 790 1, 812

英仏 (Common Crawl) 2, 652, 425 3, 000 3, 003

英中 (IWSLT15) 198, 718 887 1, 261

器の学習には原言語文、目的言語文ともに 50 単語以下で、文対の単語数の比は
Mosesの前処理スクリプト3）のデフォルト値である 9以下の条件を満たす文対を用
いた。表 2.1 にそれぞれの言語対の実験で使用した文対数を載せる4）。
英語文は Stanford CoreNLP5）[59]で単語分割と品詞タグ付けを、Enju6）[62]で構
文解析を行った。日本語文はMeCab7）[52]で形態素解析を、Ckylark8）[73]で構文解
析を行った。フランス語文は Mosesに付属しているスクリプト9）で単語分割を行
い、Berkeley Parser10）[75]で構文解析を行った。中国語文は KyotoMorph11）を用い
て単語分割を行い、Berkeley Parserで構文解析を行った。KyotoMorphの訓練には
CTB version 5 (CTB5)と SCTB [14]を用いた。並び替えの学習における単語アラ
イメントは MGIZA12）[72]を使用し、IBM Model1と hidden Markov model [8] をそ
れぞれ 3回繰り返して原言語文から目的言語文方向とその逆方向のアライメントを
それぞれ計算した。この時の単語クラスタリングのサイズは、先行研究 [66]にした
がって 256とし、クラスタリングは mkcls13）[70]を使用した。両方向のアライメン
トの積集合をとったものを最終的な単語アライメントとした。
3） https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/

clean-corpus-n.perl
4） ASPEC コーパスはノイズが多く、全てを使用して訓練した場合の翻訳精度よりも上位 200 万文を
使用して訓練した場合の翻訳精度の方が高い。そのため ASPEC を使用した研究の多くは上位 100
万文から 200 万文を使用しているものが多く、本研究でも類似度の高い順から上位 200 万文に対し
て前処理を行ったものを翻訳器の訓練に使用した

5） http://stanfordnlp.github.io/CoreNLP/
6） https://github.com/mynlp/enju
7） http://taku910.github.io/mecab/
8） https://github.com/odashi/Ckylark
9） https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.

perl
10） https://github.com/slavpetrov/berkeleyparser
11） https://bitbucket.org/msmoshen/kyotomorph-beta
12） https://github.com/moses-smt/mgiza
13） https://github.com/clab/mkcls
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事前並び替え手法の訓練 提案手法である RvNNは Chainer14）を用いて実装し、
語彙は頻度が高いものから 5 万語を用いた。最適化には Adam [47] に重み減衰
(0.0001) および GradientClipping (5) を適用して行った。バッチサイズは 500文と
した。開発データにおけるロス値が最小となったエポック (英日:2、英中・英仏:5)
のモデルを使用し、事前並び替えを行う。Nakagawa [66]の BTGに基づく事前並び
替え手法を比較対象とし、公開されている実装15）を用いた。訓練には提案手法と同
一の前処理を行った 10万文対の対訳データを用い事前並び替えを行った。
機械翻訳モデルの訓練 統計的機械翻訳器としてMoses16）のフレーズベース統計
的機械翻訳 (PBSMT) を使用した。訓練データの目的言語文を用いて KenLM17）[31]
を使用し 5-gram 言語モデルを訓練した。フレーズ歪みモデルは Linear モデル
[50]を用いた。ハイパーパラメータのチューニングは開発データを用いて MERT
[71]で 3回行った。それぞれの設定でテストデータの翻訳を評価した評価値の平
均を最終的な評価値とする。また、注意機構付き RNN モデル (AttRNN) として
OpenNMT-py18）を使用した。語彙は原言語、目的言語ともに頻度の上位 5万語を
用い、単語ベクトルの次元数は 500、隠れ層のベクトルの次元数は 500とした。デ
フォルトの設定に従い、エンコーダ、デコーダともに 2層の LSTMを用いた。バッ
チサイズは 64文とし、13エポックの学習を行った。

2.5.2 評価指標
本節では並び替えの評価指標として使用したケンドールの τ [45]、翻訳の評価指
標として使用した BiLingual Evaluation Understudy (BLEU 値) [74] と Rank-based
Intuitive Bilingual Evaluation Score (RIBES 値) [36]について説明する。
ケンドールの τ ケンドールの τ は式 (2.13)で表される、順位相関係数の一つで
ある。

14） http://chainer.org/
15） http://github.com/google/topdown-btg-preordering
16） http://www.statmt.org/moses/
17） http://github.com/kpu/kenlm
18） https://github.com/OpenNMT/OpenNMT-py
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τ(a) =
4∑n−1

i=1
∑n

j=i+1 δ(ai < aj)
n(n− 1)

− 1, (2.13)

δ(x) =


1 (x is true),

0 (otherwise)

ここで a は長さ n の数列である。数列 a の要素が完全に昇順に並んでいる場合、
τ(a)は 1を、完全に降順であれば −1をとり、それ以外であれば −1 < τ(a) < 1と
なる。式 (2.13)は aに含まれる数値のペア aiと aj (i < j)が昇順 (ai < aj)になって
いる割合を −1から 1の間に正規化したものであり、この値が大きいほど昇順に並
んでいるペアの割合が多い。事前並び替えの評価を行う際は、各対訳文で並び替え
た文の単語に対応した目的言語文の単語のインデックスをその順に並べた数列に対
してケンドールの τ を計算し、その平均値をケンドールの τ として評価を行う。19）

BLEU BLEU 値は機械翻訳において標準的に使用されている翻訳精度の評価指
標であるため、本研究でも使用する。BLEU 値は翻訳文の適合率に基づいた評価指
標であり、式 (2.14)のように参照訳 Rと翻訳文 Eの n-gram ごとの適合率の幾何平
均として計算される。本論文では一般的に使用されている、式 (2.14)に示すような
4-gram までの適合率で BLEU 値を計算する。

BLEU(R, E) =
4∏

n=1

(
Mn(R, E)

Cn(E)

) 1
4

· BP(R, E) (2.14)

BP(R, E) = min
{

1, exp
(

1− |R|
|E|

)}

ここで Cn(E) は E 中の n-gram の数を表し、Mn(R, E) は R と E で重複する
n-gram の数を表す。BP(R, E) は簡潔ペナルティと呼ばれる値であり、翻訳文 Eが
短い場合に適合率が高くなることによって BLEU 値が不当に高くなる問題を回避
するために用いられる。

RIBES RIBES 値 [36]は適合率に加えて語順も考慮した評価指標であり、特に
言語構造の大きく異なる言語間の翻訳に対する評価指標として提案された。RIBES

19） 他の順位相関係数としてスピアマンの順位相関係数が使用されることもあるが、スピアマンの順
位相関係数は順位の差の絶対値を基に評価を行う。今回は「並び替えが出来ているか」に注目したい
ため、順位の差ではなく交差の数に基づいて順位相関係数を計算するケンドールの τ を使用した。
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は式 (2.15)のように単語の 1-gram の適合率とその順位相関係数によって計算さ
れる。

RIBES(R, E) = τ(h(R, E)) ·
(
|h(R, E)|
|E|

)α

· BP(R, E)β (2.15)

ここで h(R, E) は翻訳文の単語とアライメントされた参照訳の単語のインデックス
を順に並べた数列であり、アライメントの数が 1-gram のマッチした数と一致する。
α、β はハイパーパラメータであり、本論文では通して、著者実装によるデフォル
ト値であり、人手評価との相関が一番高かった値として報告されている α = 0.25、
β = 0.10 を使用し評価を行った。

2.5.3 実験結果
事前並び替え精度の評価指標としてケンドールの τ を、翻訳精度の評価指標と
して BLEU 値、翻訳と語順の評価指標として RIBES 値を使用する。表には全て
100 倍したものを記載している。
提案手法における品詞・構文タグの効果 RvNNにおける品詞・構文タグおよび
単語ベクトル、節ノードのベクトルの次元数が事前並び替えおよび PBSMTの翻訳
精度に与える影響を検証するため、英日対において ASPECコーパスの上位 50万
文対を用いて実験を行った。表 2.2に、単語のみを入力とした場合と品詞・構文タ
グを付与した場合の開発セットにおける BLEU値を示す。機械翻訳のコンペティ
ションの一つである WAT2017 のベースラインシステム20）と同様に並び替えなしの
ものは歪み制約は 20とし、BTGと RvNNで並び替えを行った場合の歪み制約は 0
とした。品詞・構文タグがない場合、ベクトルの次元数が 100の時に比べて、200
の時は BLEU値が低下しているが、500の時は向上している。品詞・構文タグを用
いた場合、ベクトルの次元数が 100の時に比べて、200の時は BLEU値が向上した
が、500の時は低下している。また、品詞・構文タグを用いないベクトル次元数が
500の時と、品詞・構文タグを用いたベクトル次元数が 200の時を比較すると、有
意差は見られなかった。以上の結果に基づき、以降の実験では隠れ層のベクトルの
次元数をより少ない 200とし、品詞・構文タグを用いて事前並び替えを行う。

20） http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/baseline/baselineSystemPhrase.html
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表 2.2 ベクトルの次元数と品詞・構文タグの有無による開発セットにおける BLEU 値の変
化 (英日 ASPECコーパスの 50 万文対で学習)
ノードの次元 100 200 500

並び替えなし 24.37

品詞・構文タグなし 28.41 28.18 28.79

品詞・構文タグあり 28.55 28.88 28.32

事前並び替えと翻訳精度の関係 事前並び替えの性能および事前並び替えが翻訳
結果に与える影響を調査するため、事前並び替えの性能と翻訳精度の関連を分析す
る。入力文の理想的な事前並び替えが行えると、原言語と目的言語の語順が等しく
なる。つまり、並び替えた入力文と参照翻訳の語順が等しくなり、翻訳タスクは逐
語翻訳に近づくと考えられる。そのため、並び替えた入力文と参照翻訳の語順の
近さを評価するケンドールの τ と、翻訳結果と参照翻訳の語順を評価する RIBES
値には相関があると期待される。また逐語翻訳に近づくことで翻訳タスク自体が
簡単になり、BLEU値も向上すると期待出来る。表 2.3に、開発セットにおける並
び替え前後の入力文それぞれと参照翻訳文間のケンドールの τ と、PBSMTによ
る翻訳結果の BLEU値、RIBES値を示す。BTG の行は BTG に基づく事前並び替
えによる結果を表し、RvNN の行は RvNN を使用した事前並び替えによる結果を
表す。英日対において、RvNNは並び替えなしに比べてケンドールの τ が 27.07ポ
イント向上しており、英語、日本語文での語順の一致率を大きく向上出来ている。
BLEU値、RIBES値もそれぞれ 3.68ポイント、8.27ポイント向上している。日英
対においても並び替えなしと比較して RvNNによる事前並び替えでケンドールの τ

が 10.83ポイント向上し、BLEU値、RIBES値もそれぞれ 2.27ポイント、8.23ポイ
ント向上している。つまり RvNNでは、語順の一致率を大きく向上出来た英日、日
英対では、BLEU値および RIBES値を改善出来ていることが分かる。一方、仏英、
中英対では並び替えなしに比べて RvNNのケンドールの τ がそれぞれ 1.08ポイン
ト、0.26ポイント向上したが、BLEU値、RIBES値に有意な変化はみられなかっ
た。このことから、事前並び替えにより語順の一致率を高めることが出来れば、翻
訳精度に大きく貢献出来るが、ケンドールの τ の小規模な改善が翻訳精度に与える
影響は限定的であることが分かる。
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表 2.3 開発データにおける PBSMT のケンドールの τ と BLEU 値および RIBES 値 (最も
性能の高いものと有意差がないもの (p < 0.05) を太字で表す)

τ BLEU RIBES

英日
並び替えなし 37.56 25.23 67.44

　 BTG 77.93 30.32 77.58
RvNN 64.63 28.91 75.71

日英
並び替えなし 39.10 15.45 61.44

　 BTG 46.98 19.38 69.22
RvNN 49.93 17.72 69.67

英仏
並び替えなし 89.03 23.42 78.29

　 BTG 83.70 25.27 79.25
RvNN 88.93 23.93 78.16

仏英
並び替えなし 90.27 26.29 80.87

　 BTG 91.70 27.56 81.28
RvNN 91.35 26.58 80.92

英中
並び替えなし 76.21 7.90 58.83

　 BTG 78.63 7.80 59.08
RvNN 78.11 7.66 58.65

中英
並び替えなし 80.51 8.88 63.78

BTG 82.16 7.97 64.02
RvNN 80.77 7.69 61.25

一方で、BTG に基づく事前並び替えでは仏英対においてケンドールの τ を 1.43
ポイント向上出来ており、また BLEU値、RIBES値がそれぞれ 1.27ポイント、0.41
ポイント、中英対においてもケンドールの τ を 1.65ポイント改善し、また RIBES
値が 0.24ポイント向上している。提案手法では中英対において BLEU、RIBESを
向上出来なかった理由として、構文解析エラーの影響が考えられる。BTG に基づ
く事前並び替えでは事前並び替えに適した木構造を構築しながら並び替えを行う。
一方、RvNNでは構文解析器が出力する構文木に基づいて事前並び替えを行うた
め、構文解析器の精度が RvNNによる並び替えの精度に影響する。本実験で用い
た構文解析器の精度は、中国語で 77% [10]と報告されており、英語の場合の 91%
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[62]より大幅に低い。中英翻訳のため構文解析した中国語文のうち、開発データか
ら一文単位の BLEU値が低下した 50件を観察した結果、構文解析エラーと単語ア
ライメントの質が低いことによる複合的な要因により事前並び替えに失敗している
ことが明らかとなった。構文解析に失敗した文は 13文あり、そのうち名詞句の解
析誤りが 9件、動詞句の解析誤りが 6件あった。これらの構文解析エラーにより、
事前並び替えに失敗したものは 6件あった。このうち構文解析エラーによりどのよ
うな並び替えを行ってもケンドールの τ を向上出来ないものが 3件、単語アライ
メントそのものが出来ておらず、どのような並び替えを行ってもケンドールの τ

を向上出来ないものが 2件あった。これらは中英翻訳の実験に用いた対訳コーパ
ス (IWSLT2015) は TED21）より収集された口語体の文であるため構文解析が難し
く、またコーパスサイズが小さいことから単語アライメントも困難なためと考えら
れる。

PBSMT および AttRNN による翻訳精度 PBSMT、AttRNN により翻訳を行っ
た結果を表 2.4に示す。BTG に基づく事前並び替えと RvNN を使用した事前並び
替えを用いた PBSMT における歪み制約は 0とした。並び替えなしのものは英日、
日英では WAT2017 のベースラインシステムの設定に従い、歪み制約を 20とした。
英中、中英、英仏、仏英対では歪み制約をMosesのデフォルト値である 6とした22）。

PBSMTで翻訳を行った場合、英日方向の翻訳では並び替えなしに比べて RvNN
を使用した事前並び替えと BTG に基づく事前並び替えの両方で BLEU値がそれぞ
れ 4.62ポイント、4.97ポイント有意に向上した。また RIBES値も事前並び替えな
しに比べて、RvNN を使用した事前並び替えおよび BTG に基づく事前並び替えで
それぞれ 8.77ポイント、9.58ポイント有意に向上した。これらの結果から、英日
翻訳において事前並び替えを行うことで翻訳精度が大きく向上していることが分
かる。RvNN を使用した事前並び替えと BTG に基づく事前並び替えでは、BLEU
値および RIBES 値において統計的有意差は認められなかった（p 値はそれぞれ
p = 0.068、p = 0.226であった）。このことから提案手法では、素性テンプレートの
設計を必要とすることなく、本論文執筆時点で事前並び替え手法の最善の手法であ

21） https://wit3.fbk.eu/2015-01
22） Goto et al. [26]は中英翻訳において歪み制約を 10、20、30、∞にして翻訳を行い、歪み制約が 10
の時に BLEU値が一番高かったと報告している。そのため、英中、中英翻訳において、歪み制約を
6、10、20に設定し翻訳実験を行った。その結果、開発データにおいて BLEU値が一番高かった歪み
制約 6を選択した。
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表 2.4 テストセットにおける BLEU 値および RIBES 値の評価結果 (最も性能の高いもの
と有意差がないもの (p < 0.05) を太字で表す)

PBSMT AttRNN
BLEU RIBES BLEU RIBES

英日
並び替えなし 24.54 67.62 32.68 81.68

BTG 29.51 77.20 28.91 79.58
RvNN 29.16 76.39 29.01 79.63

英仏
並び替えなし 26.39 81.60 28.20 81.66

BTG 27.85 82.05 27.86 81.30
RvNN 26.64 81.56 28.85 81.84

英中
並び替えなし 10.16 68.71 12.44 71.86

BTG 10.65 69.65 11.83 71.39
RvNN 10.27 68.72 11.98 71.61

日英
並び替えなし 15.31 61.71 24.85 74.89

BTG 19.14 69.98 20.11 71.07
RvNN 17.30 69.36 19.92 71.74

仏英
並び替えなし 27.45 83.23 29.06 83.41

BTG 28.32 83.64 28.37 82.97
RvNN 27.18 83.16 28.61 83.18

中英
並び替えなし 11.94 70.88 15.49 72.52

BTG 12.25 71.45 14.61 71.78
RvNN 11.24 70.09 16.11 73.09

る BTG に基づく事前並び替えと同等の翻訳性能を達成していることが分かる。
英仏、英中方向における PBSMTを用いた翻訳結果の BLEU値および RIBES値
は、 BTG に基づく事前並び替えでは有意に向上したが、RvNN を使用した事前並
び替えでは並び替えなしと同程度となった。一方で、RvNN を使用した事前並び替
え、BTG に基づく事前並び替え、並び替えなしの三者について、英仏・英中翻訳
における RIBESの値に有意差はなかった。これは英中、英仏の言語対では元々長
距離の語順変換が不要であるため、事前並び替えの効果が限定的だったことを示唆
していると考える。
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また日英方向では、PBSMTを使用した翻訳結果では、並び替えなしと比較して
RvNN を使用した事前並び替えを行うことで、BLEU値が有意に 1.99ポイント向
上している。しかし BTG に基づく事前並び替えでの並び替えによる BLEU値の向
上には及ばない結果となった。RIBES値は RvNN を使用した事前並び替えと BTG
に基づく事前並び替えでそれぞれ 7.65ポイント、8.27ポイントの向上を達成して
いる。仏英、中英方向において PBSMTによる翻訳では、BTG に基づく事前並び
替えでは BLEU値が並び替えなしの場合に比べ有意に向上しているが、RvNN を
使用した事前並び替えでは、並び替えなしの場合よりも低下している。これは構文
木の精度が影響したものと考えられる。

AttRNN では、RvNNによる事前並び替えを行うと、英日、英中、日英、仏英方
向の翻訳において BLEU値、RIBES値が低下した。しかし、英仏方向では BLEU
値が 0.65ポイント、RIBES値が 0.18ポイント、中英方向では BLEU値が 0.62ポ
イント、RIBES 値が 0.57 ポイント向上した。BTG に基づく事前並び替えでは、
AttRNN による翻訳の結果、並び替えなしの場合に比べすべての言語対で BLEU
値、RIBES値が低下する結果となった。これは Sudoh et al. [87]の英中翻訳におけ
る実験結果と共通の現象であり、原因の一つとして、事前並び替えにより言語の構
造が崩れてしまうことが考えられる。しかし英仏、中英対においては、RvNN を
使用した事前並び替えの結果 AttRNN での翻訳精度が向上しており、自己回帰
ニューラル機械翻訳おいても事前並び替えによる効果が発揮される場合があること
を示している。。

AttRNN による翻訳における RIBES値について、英仏、仏英翻訳において BTG
に基づく事前並び替えを行った PBSMTの性能が事前並び替えなしの AttRNN の
性能をわずかに上回っているが、これらの結果には統計的有意差はなかった（それ
ぞれ p = 0.329、p = 0.323）。先行研究でも示されている通り、本実験においても事
前並び替えの有無に関わらず、AttRNN が PBSMT を上回る結果となっている。
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表 2.5 機械学習手法の違いによる並び替えの PBSMTによる英日対での翻訳評価 (最も性
能の高いものと有意差がないもの (p < 0.05) を太字で表す)

BLEU RIBES

並び替えなし 24.54 67.62
Hoshino et al. 28.58 75.27
RvNN 29.16 76.39

2.6 分析

2.6.1 機械学習手法の効果
提案手法では構文木に基づく機械学習により事前並び替えを行うが、構文木を用
いる効果および機械学習手法の効果を分けて検証するため、提案手法と同様に機械
学習を用いて構文木の各ノードで並び替えを行う手法である Hoshino et al. [34]と
英日対で比較実験を行った。Hoshino et al. の手法は機械学習手法として Support
Vector Machine を使用したものであり、著者らによる実装を使用した。
表 2.5にその結果を示す。Hoshino et al. の手法と比較して、RvNN を使用した事
前並び替えによる翻訳では BLEU値が有意に 0.58ポイント高い結果となった。こ
の結果より、単語ベクトルおよび品詞・構文タグベクトルを考慮し RvNNによる事
前並び替えを行うことで、構文情報をよりとらえた並び替えを実現出来ることが分
かる。

2.6.2 翻訳例の分析
表 2.6 に英日対において事前並び替えに成功した例、およびその PBSMT、

AttRNN を使用した翻訳結果を示す。原文と参照訳では語順が大きく異なってい
るが、並び替えを行うことで語順が近づいていることが分かる。PBSMTによる翻
訳例では、並び替えなしの文と比べ、並び替えを行った文は意味が通るような訳
文となっている。特に、動詞である “causes”が並び替えを行うことで文末に移動
し、参照訳の「ひきおこす」と同様の意味を表す「原因となる」と翻訳されてお
り、並び替えなしの翻訳である「部品である」と比べて正しい翻訳結果となってい
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)	of	sd rats	was	recorded	to	examine	the	effects	of	chinoform (	c	)	on	thermal	reaction

図 2.6 失敗した構文解析結果の一部分 (横線が引いてある節ノードは “Inverted”を示す)

る。AttRNN による翻訳例では PBSMTによる翻訳例と比較してより流暢な翻訳と
なっているが、低頻度語である “economizer”が未知後を表す ⟨unk⟩へと翻訳されて
いる。
表 2.7に英日対において事前並び替えに失敗した例およびその PBSMT、AttRNN
による翻訳結果を示す。RvNN を使用した事前並び替えの例では、元々括弧外に
あった単語列が、並び替えの結果括弧の中に入っていたり、左括弧と右括弧の順番
が反対になっている。これは構文解析の結果、図 2.6に示すように “(c)”というフ
レーズが誤って二つの句に分断されており、その誤りが事前並び替えに影響してし
まったためである。BTG に基づく事前並び替えでは構文解析と並び替えを同時に
行うため、このような構文解析誤りの影響を受けない。
表 2.8、2.9に、英仏対および英中対での並び替えおよび翻訳結果を示す。これら
の言語対では語順が似ているため、事前並び替えを行っても語順はほとんど変化せ
ず、実際に並び替えなしの文と BTG、RvNNによって並び替えられた文も、それほ
ど変化しておらず、英仏対においては参照訳とほとんど同じ文が生成されている。

2.7 おわりに

本章では統計的機械翻訳のための素性テンプレートの設計を必要としない RvNN
を使用した事前並び替え手法を提案した。英日、英仏、英中言語対を用いた評価実
験の結果、提案手法は英日統計的機械翻訳において、人手で設計した素性テンプ
レートに基づく事前並び替え手法の本論文執筆時点で最善の手法 [66]と同等の翻
訳性能を達成している。しかし、提案手法では外部の構文解析器を必要とするた
め、構文解析の誤りが事前並び替えの精度に影響する。よって、構文解析とノード
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表 2.6 英日対における並び替えの成功例とその翻訳例
並び替え例

原言語文 sulfur content causes sulfate corrosion of low temperature
parts such as the fuel economizer and air preheater .

BTG
sulfur content the fuel economizer and air preheater as such of
low temperature parts sulfate corrosion causes .

RvNN
sulfur content of as the fuel economizer and air preheater such
low temperature parts sulfate corrosion causes .

参照訳
硫黄分は節炭器や空気予熱器などの低温部で硫酸腐食をひきおこす。

PBSMTによる翻訳例

並び替えなし 硫酸塩の硫黄含有量が燃料及び空気予熱器エコノマイザの
低温腐食などの部品である。

BTG
硫黄含有量が燃料エコノマイザ，空気予熱器等の低温部の
硫酸腐食の原因となる。

RvNN
硫黄含有量の燃料は，エコノマイザ，空気予熱器等の低温部の
硫酸腐食の原因となる。

AttRNN による翻訳例

並び替えなし 硫黄含有量は，燃料 ⟨unk⟩や空気予熱器などの低温部品の
硫酸塩腐食を引き起こす。

BTG
硫黄含有量は，燃料予熱器や空気予熱器などの低温部品の硫酸
腐食を引き起こす。

RvNN
硫黄含有量は燃料 ⟨unk⟩や空気予熱器などの低温部品の硫酸
腐食を引き起こす。
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表 2.7 英日対における並び替えの失敗例とその翻訳例
並び替え例

原言語文
single neural discharge of the cutaneous pain receptor ( r ) of
sd rats was recorded to examine the effects of chinoform ( c )
on thermal reaction .

BTG
of sd rats of the cutaneous pain receptor ( r ) single neural
discharge was recorded the of thermal reaction on chinoform
( c ) effects examine to .

RvNN
of the cutaneous pain receptor ( r single neural discharge of sd
rats ) was to the ) on thermal reaction of chinoform ( c effects
examine recorded .

参照訳
ＳＤラットの皮膚痛覚受容器（Ｒ）の単一神経放電を記録し，熱反応に対する
キノホルム（Ｃ）の作用を検討した。

PBSMTによる翻訳例

並び替えなし 単一神経放電に及ぼす影響を調べるため，キノホルムのＳＤ
ラットの皮膚痛覚受容体（Ｒ）の（Ｃ）について熱反応を記録した。

BTG
のＳＤラットの皮膚痛覚受容体（Ｒ）の単一神経放電を記録の
熱反応のキノホルム（Ｃ）の効果を検討した。

RvNN
の皮膚痛覚受容体（Ｒの単一神経放電のＳＤラット）は，）に
ついて熱反応の chinoform（Ｃの効果を検討した。

AttRNN による翻訳例

並び替えなし ＳＤラットの皮膚痛受容体（Ｒ）の単一神経放電を記録し，
熱反応に対するキノホルム（Ｃ）の影響を検討した。

BTG
ＳＤラットの皮膚痛覚受容体（Ｒ）の単一神経放電を記録し，
キノホルム（Ｃ）の熱反応に対する影響を調べた。

RvNN
ラットの皮膚痛受容体（Ｒ）の単神経放電ＳＤラットの熱反応に
対する影響を検討した。
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表 2.8 英仏対における並び替えの例とその翻訳例
並び替え例

原言語文 the u.s. senate approved a $ 90-million pilot project last year that
would have involved about 10,000 cars .

BTG
the senate u.s. approved a project pilot $ 90-million year last that
would have involved about 10,000 cars .

RvNN
the u.s. senate approved a project pilot $ 90-million last year that
would have involved about 10,000 cars .

参照訳
le sénat américain a approuvé un projet pilote de 90 m $ l’ année dernière qui
aurait porté sur environ 10000 voitures .

PBSMTによる翻訳例

並び替えなし le sénat américain a approuvé un projet pilote 90-million $ l’ année
dernière qui aurait participé environ 10000 voitures .

BTG
le sénat américain a approuvé un projet pilote $ 90-million l’ année
dernière qui aurait participé environ 10000 voitures .

RvNN
le sénat américain a approuvé un projet pilote 90-million $ l’ année
dernière qui aurait participé environ 10000 voitures .　

AttRNN による翻訳例

並び替えなし le sénat américain a approuvé un projet pilote de ⟨unk⟩ $ l’ an
dernier qui aurait impliqué environ 10000 voitures .

BTG
le sénat américain a approuvé un projet pilote de ⟨unk⟩ $ l’ an
dernier qui aurait impliqué environ 10000 voitures .

RvNN
le sénat américain a approuvé un projet pilote de ⟨unk⟩ $ l’ an
dernier qui aurait impliqué environ 10000 voitures .
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表 2.9 英中対における並び替えの例とその翻訳例
並び替え例

原言語文 i worked for an italian ngo , and every single project that we set up
in africa failed .

BTG
i worked for an italian ngo , and that we set up in africa every single
project failed .

RvNN
i worked for an italian ngo , and every that we set up in africa single
project failed .

参照訳
我 在一 家 意大利非 政府组织 工作 。我们 在 非洲的 每一 个 项目 ， 都 失败了 。

PBSMTによる翻訳例

並び替えなし 我 的工作 是 为意大利 的非 政府 组织 ， 每 一个 项目 ， 我们
设立 在非洲 的 失败了 。

BTG 我 做了 一 个意大利 的非 政府 组织 ， 和 我们设立 在非洲 的
每 个项目 都 失败了 。

RvNN 我 的工作 是 为意大利 公司的 非 政府组织 ， 与每 一个 我们
设立 在非洲 的 一个 项目都 失败 了 。

AttRNN による翻訳例

並び替えなし 我 为一 个 意大利非 政府组织 工作 ，每 个 我们在 非洲
建立 的项目 都 失败了 。

BTG 我 为意大利 非 政府组织 工作 ， 我们 建立了 非洲 的每
一 个项目 。

RvNN 我 为一 个 意大利非 政府组织 工作， 我们在 非洲 建立
了 一个 项目 。

39



の並び替えを同時に行うことにより構文解析のエラーを考慮した並び替えモデルの
構築が今後の課題の一つとして挙げられる。
先行研究 [21, 87]において、事前並び替えを行った文対で注意機構付き RNN モ
デルを訓練すると、翻訳精度が低下することが報告されている。しかし提案手法を
用いた場合、英仏、中英対では注意機構付き RNN モデルにおいて BLEU値が有意
に向上しており、事前並び替えが自己回帰ニューラル機械翻訳モデルに貢献する可
能性が示された。
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第 3章 Transformer のための事前並び
替えのベクトル表現

3.1 はじめに

統計的機械翻訳において、原言語文と目的言語文の語順の相違は翻訳精度に大き
く影響する [30, 66, 92]。 この問題を解決する手法として、第 2 章では RvNN によ
る事前並び替えを提案し、語順が大きく異なる英日言語対におけるフレーズベース
統計的機械翻訳の翻訳精度を大幅に向上させることが出来ることを示した。近年の
機械翻訳における標準的な手法であるニューラル機械翻訳では Zhao et al. [109] が
並び替えた後の文における位置に対応したベクトル表現を利用して翻訳精度を向上
させた。しかし、RNN ベースの機械翻訳モデルより高い性能を持つ Transformer
[95] において事前並び替えが有効に働くかどうかは依然として不明である。

Vaswani et al. によって提案された Transformer は、RNN ベースの機械翻訳モデ
ルの翻訳精度を大きく上回った。しかし、Transformer は各単語のベクトル表現を
独立に計算するため単語の語順を考慮することが出来ないという問題がある。その
ため、Vaswani et al. は絶対的位置表現と呼ばれる位置のベクトル表現を単語のベ
クトル表現に加えてからモデルへの入力としている。また Shaw et al. は絶対的位
置表現の代わりに相対的位置表現という、Transformer の各層で単語の相対位置を
計算して各単語のベクトル表現に足し合わせる手法を提案した [82]。これらの位置
ベクトル表現によって、原言語文と目的言語文のそれぞれの語順を Transformer で
考慮出来るようになった。しかし、原言語、目的言語両方の文の語順を同時に考慮
することは出来ない。
そこで本章では、Transformer において原言語文と目的言語文の両方の語順を考
慮するための事前並び替え位置表現を提案する。事前並び替え後の位置を使用した
ベクトル表現を単語のベクトル表現に加えることで、attention と呼ばれる重みを
計算する際に語順の相違を考慮することが可能になり、事前並び替えの情報を考慮
した単語のベクトル表現を計算することが可能になる。これにより、Transformer
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は原言語文と目的言語文の語順を考慮した翻訳文を出力することが出来ると考えら
れる。
本章は以下のように構成されている。3.2 節では本章に関連する先行研究につい
て議論する。3.3.1, 3.3.2 節では提案手法を適用するにあたって必要な背景知識につ
いて説明し、3.3.3 節では提案手法である事前並び替え位置表現について説明する。
3.4 節では提案手法の有効性を確かめるため英日、英独、英チェコ、英露対を使用
した翻訳評価実験とその結果について述べ、3.5 節で実験の結果から提案手法が翻
訳制度に与える影響について詳細な分析を行う。3.6 節で本章のまとめと今後の課
題を検討する。

3.2 関連研究

注意機構付き RNN モデルにおける語順の活用 Zhang et al. [107] は 注意機構
付き RNN モデルにおいて、統計的機械翻訳における歪みモデルを attention の計
算に活用する手法を提案している。この歪みモデルは原言語文の単語に対して、目
的言語文中の位置を紐づける役割をしており、歪みモデルに基づいて attention を
シフトし次の単語予測のための重みの計算を行っており、翻訳精度を大きく向上さ
せた。この結果は目的言語文中の単語の位置が翻訳精度に貢献することを表してい
る。Murthy et al. [63] は低資源の注意機構付き RNN における転移学習において、
並び替えを活用する手法を提案している。この手法では、まず量が豊富な言語対の
原言語文を、低資源な言語対の原言語文の語順に近づくように並び替えを行い、並
び替えた文を使用して学習を行う。その後、低資源な言語対で転移学習を行う。こ
の手法によって、並び替えをしなかったものと比べて翻訳精度が大幅に向上した。
この結果は多言語翻訳においても語順の情報が大幅に翻訳精度を向上させることを
示唆している。
位置のベクトル表現の活用 Du and Way [21] は、Sennrich and Haddow の提案
した特徴量を使用した注意機構付き RNN モデル [78] において事前並び替えの情報
を特徴量として使用することで翻訳精度を向上させている。Zhao et al. [109] は、
注意機構付き RNN モデルにおいて事前並び替えのインデックスをベクトル表現と
して加えることで翻訳精度が向上したことを報告している。Chen et al. [11, 12] は
Transformer モデルにおいて、語順に基づいたベクトル表現の学習手法を提案して
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いる。エンコーダ側で原言語文の語順のベクトル表現を、デコーダ側で目的言語文
の語順のベクトル表現を学習しており、原言語文、目的言語文両方の語順を使用し
て計算を行っている。しかし、事前並び替えは使用しておらず、Transformer にお
いて事前並び替えを活用した研究は存在していない。

3.3 提案手法

3.3.1 前提知識: Transformer

Transformer は Vaswani et al. [95]によって提案されたモデルであり、自己注意機
構を使用して単語のベクトル表現を計算し、そのベクトル表現に基づいて翻訳文の
出力を行う。自己注意機構は、入力として受け取った文の単語ベクトル表現それぞ
れに対して attention を計算する仕組みである。図 3.1にモデルの全体図を載せる。
Transformer は原言語文を入力として受け取るエンコーダと、それまでに予測した
単語列から次の単語の予測を行うデコーダの二つの部分からなり、式 (3.1) で表さ
れる損失関数 L(x, y) の最小化を目的として訓練される。

L(x, y) = − log Pr(y|x)

= −
m∑

i=1
log Pr(yi|y<i, x) (3.1)

ここで x = (x1, x2, · · · , xn) は長さ n の原言語文、y = (y1, y2, · · · , ym) は長さ m の
目的言語文を表す。

(1) エンコーダ エンコーダでは原言語文を入力として受け取り、入力文の単語
数と同じ数のベクトル表現の列へと変換する。各単語を単語に対応付けられたベク
トル表現に変換するモデルと、自己注意機構を使用してベクトル表現の計算を行
う Multi-head attention および FFNN を一つの層とし、複数の層をスタックしたモ
デルからなる。Multi-head attention と FFNN で計算された後のベクトル表現は、
Residual connection によりそれぞれの入力のベクトル表現と足し合わされた後に
Layer Normalization [1] によって正規化される。

(2) デコーダ デコーダは i− 1 番目までに出力した単語とエンコーダで計算さ
れたベクトル表現から i 番目の単語を予測する。各単語を単語に対応付けられた
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図 3.1 Transformer モデルの全体図 ([95] より引用、一部表記を改変)

ベクトル表現に変換するモデルと、Masked multi-head attention、Cross-attention、
FFNN を 1 つの層として複数の層をスタックしたモデルからなる。自己注意機構
を使用してベクトル表現の計算を行う Masked multi-head attention、Cross-attention
および FFNN で計算された後のベクトル表現は、Residual connection によりそれ
ぞれの入力のベクトル表現と足し合わされた後に Layer Normalization によって正
規化される。その後 FFNN を通して計算されたベクトル表現から softmax 関数に
よって各単語の確率を計算し i 番目の単語を決定する。

(3) 自己注意機構 エンコーダ、デコーダともに各層において自己注意機構を
複数個使用する Multi-head attention によって各単語のベクトル表現を計算する。
図 3.2 に Multi-head attention のモデル図を載せる。Multi-head attention は、以下
の式に従って head と呼ばれる部分で 自己注意機構を使用してベクトル表現を計算
した後に各 head のベクトル表現を結合する。
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図 3.2 Multi-head attention のモデル図 ([95] より引用)
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図 3.3 Scaled dot-product attention のモデル図 ([95] より引用)

MultiHead(Q, K, V ) = Concat(head1, head2, · · · , headh)W O

headi = Attention(QW Q
i , KW K

i , V W V
i )

ここで W Q
i , W K

i , W V
i ∈ Rdk×dm はそれぞれ重み行列、dm はベクトル表現の次元数

である。それぞれの head ではこの重み行列によって各単語のベクトル表現の線形
変換を行ってから attention の計算を行い新たなベクトル表現の計算を行う。この
ように複数の head によってベクトル表現の計算を行うことで、同じ単語に対して
様々なベクトル表現を計算することが出来るため翻訳精度が向上する [95]。
本論文における自己注意機構では Scaled dot-product attention と呼ばれるものを
使用した。図 3.3に Scaled dot-product attention のモデル図を載せる。Scaled dot-
product attention は入力である行列 Q = (q1, q2, · · · , qJ), K = (k1, k2, · · · , kJ), V =
(v1, v2, · · · , vJ), qi, ki, vi ∈ Rdk から以下の式に従って新たなベクトル表現を計算
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する。

zi =
n∑

j=1
αij(vjW

V + bV ) (3.2)

αij = exp (sij)∑n
k=1 exp (sik)

,

sij = (qiW
Q + bQ)(kjW

K + bK)T
√

dz

, (3.3)

ここで J は原言語文または目的言語文の単語数であり、dk はベクトル表現の次元
数である。W V , W V , W Q ∈ Rde×dz はベクトル表現を変換するための重み行列であ
り、bV , bV , bQ ∈ Rdz はバイアスである。αij は i 番目のベクトル表現を計算する際
の、j 番目のベクトル表現に対する attention の重みである。

Cross-attention では V、K としてエンコーダで計算されたベクトル表現、Q と
してその前の層でのベクトル表現を受け取って、Multi-head attention と同様に複
数の head でベクトル表現を計算する。その後、各 head で計算されたベクトル表
現を結合する。

Feed-Forward では式 (3.4)で表される関数を通してベクトル表現の計算を行う。

FFNN(a) = ReLU(0, aW1 + b1)W2 + b2 (3.4)

ここで W1 ∈ Rdm×dff , W2 ∈ Rdff ×dm は重み行列、b1 ∈ Rdff , b2 ∈ Rdm はバイアス項
である。

3.3.2 前提知識: 絶対的位置表現と相対的位置表現
Vaswani et al. [95] はサイン関数とコサイン関数によって計算される絶対的位置
表現で各単語の絶対的な位置の情報を使用している。絶対的位置表現は以下の式で
計算される。

PE(i, 2q) = sin(i/100002q/dz), (3.5)

PE(i, 2q + 1) = cos(i/100002q/dz), (3.6)

i は単語のインデックスであり、0 から始まる位置で表される。q は絶対的位置表
現のベクトルの次元の何番目かを表すインデックスであり、0 から始まる位置で表
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図 3.4 相対的位置表現を使用した Scaled dot-production attention

される。このベクトル表現を単語のベクトル表現に足し合わせることで単語の位置
を表している。

Shaw et al. [82] は、絶対的な位置のベクトル表現の計算手法の代わりとして、単
語の相対的な位置に基づいた相対的位置表現を使用した自己注意機構を提案してい
る。相対的位置表現 aK

ij と aV
ij は以下の式で計算される。

aK
ij = relclip(j−i,k)E

K
a , (3.7)

aV
ij = relclip(j−i,k)E

V
a , (3.8)

clip(x, k) = max(−k, min(k, x)),

clip(·, k) で相対的な位置を計算する。k は考慮する最大の距離であり、前後 k 単語
(自身を含めた周辺の 2k + 1 単語) の位置をラベルとすることでそれぞれの単語の
相対的位置表現の計算を行う。reli ∈ R2k+1 は、対応した位置が 1 でそれ以外は 0
である one-hot ベクトルである。EK

a と EV
a ∈ R(2k+1)×dz は、各行が一つの位置のベ

クトル表現に対応した行列であり、訓練を通して学習される。
図 3.4 に相対的位置表現を用いた Scaled dot-product-attention のモデル図を示
す。aK

ij と aV
ij は式 (3.2) と (3.3) において、式 (3.9) と (3.10) に従って足し合わさ

れる。
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zi =
n∑

j=1
αij(ejW

V + bV + aV
ij), (3.9)

sij =
(eiW

Q + bQ)(ejW
K + bK + aK

ij )T
√

dz

. (3.10)

相対的位置表現を attention の計算の際にそれぞれ単語のベクトル表現に足し合わ
せることで、zi は各単語の位置を考慮したベクトル表現となる。

3.3.3 事前並び替え位置表現
3.3.2 節で説明した絶対的位置表現や相対的位置表現は、エンコーダで原言語文
の単語の位置を考慮することは出来るが、原言語文と目的言語文の語順の相違を考
慮することが出来ない。そこで、本節では事前並び替えによって得られた原言語文
の単語の並び替え後のインデックスを使用した事前並び替え位置表現を提案する。
事前並び替えを使用した絶対的位置表現では、並び替えた後のインデックスを使用
して各単語の事前並び替え位置表現を計算する。その後、元々のインデックスでの
絶対的位置表現と並び替えた後のインデックスによる事前並び替え位置表現の両方
を単語のベクトル表現に足し合わせることで事前並び替えの語順を考慮したベクト
ル表現が計出来る。
事前並び替えを用いた相対的位置表現は式 (3.7) と (3.8) において事前並び替
え位置表現を足し合わせて計算される。図 3.5 に英語の文 “I like the pen that my
father bought yesterday.” に対して事前並び替え位置表現を計算する例を示す。こ
の英語文は、事前並び替えを適用することで図の下側の “I my father yesterday
bought that the pen like” へと並び替えられる。並び替える前の文の、並び替えた
後の文のインデックスは (0, 8, 6, 7, 5, 1, 2, 4, 3) となる。ここで例として “bought” に
対するクリップされた相対位置を考えると、それぞれ (−4, 4, 2, 3, 1,−3,−2, 0,−1)
となる。 例えば、“pen” の並び替え後の文のインデックスは 7 であり、相対位置
は 7− 4 = 3 となる。また、“yesterday” の並び替え後の文のインデックスは 3 であ
り、その相対位置は 3− 4 = 1 となる。
相対位置表現に対する事前並び替え位置表現 rK

ij と rV
ij は以下の式に従って計算

される。
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yesterdayboughtfathermythatpenthelikeI

I my father yesterday bought that penthe like

0 8 6 7 5 1 2 4 3

0 -1-2-31324-4

相対的位置

0 1 2 3 4 5 6 7 8
並び替え後の
インデックス

図 3.5 “bought” に対して相対位置の計算を行う例

rK
ij = relRCD(i,j,k)E

K
r ,

rV
ij = relRCD(i,j,k)E

V
r ,

RCD(i, j, k) = clip(rpos(j)− rpos(i), k)

ここで rpos(k) は k 番目の単語の、並び替えた後のインデックスを返す関数であ
る。EK

r , EV
r ∈ R(2k+1)×dz は 各行が一つの位置のベクトル表現に対応した行列であ

り、rK
ij、 rV

ij ∈ Rdz は並び替え後のインデックスを使用して計算された相対位置の
ベクトル表現である。これによって並び替えを考慮したベクトル表現を計算するこ
とが出来る。

zi =
n∑

j=1
αij(ejW

V + bV + aV
ij + rV

ij),

sij =
(eiW

Q + bQ)(ejW
K + bK + aK

ij + rK
ij )T

√
dz

.

rK
ij と rV

ij を計算した後、式 (3.9) と (3.10) において事前並び替え位置表現を足し合
わせることでベクトル表現 zi を計算する。これにより、zi は原言語文と目的言語
文の両方の語順を考慮したベクトル表現となる。

3.4 翻訳評価実験

本節では翻訳実験とその結果を述べる。3.4.1 節では実験設定について述べ、
3.4.2 節では実験結果を述べる。詳細な分析については 3.5 節で行う。
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表 3.1 翻訳の学習に用いたデータの統計量 (文対)
訓練データ 開発データ テストデータ

英日 1, 814, 494 1, 790 1, 812

英独 2, 227, 354 3, 003 2, 169

英チェコ 745, 782 3.003 2, 656

英露 817, 256 3, 003 2, 818

3.4.1 実験設定
コーパスと前処理 提案手法の有効性を確認するため、言語構造の大きく異な
る英日対で翻訳実験を行った。さらに、ドメインの違いによる翻訳への影響を避
けるため、ニュースコーパスが提供されている英独対、英チェコ対、英露対で翻
訳実験を行った。英日対では ASPEC コーパス [67]、英独対、英露対では Common
Crawl Corpus1）、英チェコ対では Common Crawl Corpus と CzEng 1.02）[3]を使用し
た。前処理として、原言語文もしくは目的言語文が 50 単語以下で、文対の単語数
の比が Moses の前処理スクリプトのデフォルト値である 9 以下の条件を満たす文
対を使用した。表 3.1 にそれぞれの言語対の実験で使用した文対数を載せる。
英語文の単語分割および品詞タグ付けは Stanford Core NLP を使用し、構文解析
には Enju を使用した。日本語文の単語分割には Juman3）を使用し、構文解析には
Ckylark を使用した。ドイツ語文の単語分割には Moses に付属の tokenizer4）を使
用し、構文解析には Berkeley parser5）を使用した。チェコ語とロシア語の文の単語
分割および品詞タグ付けは Stanza6）[76] を使用した。7）

事前並び替えモデルの訓練 本実験では事前並び替えモデルとして BTG に基
づく事前並び替えと RvNN を使用した事前並び替えを使用した。単語のアライメ

1） http://www.statmt.org/wmt15/translation-task.html
2） http://ufal.mff.cuni.cz/czeng/czeng10
3） http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN
4） https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.

perl
5） https://github.com/slavpetrov/berkeleyparser
6） https://stanfordnlp.github.io/stanza/
7） チェコ語とロシア語の構文解析器が存在しないため、RvNN によるチェコ英翻訳、露英翻訳の実験
は行わなかった。
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表 3.2 英日翻訳における、クリッピングの距離 k を変化させた時の開発データの BLEU 値
k = 1 k = 2 k = 4 k = 8

ベースライン 33.36 33.62 34.15 33.53
+BTG (相対的位置表現) 33.91 34.36 34.64 34.72

ントの計算には MGIZA を用いた。BTG に基づく事前並び替えは、Nakagawa に
よって実装されたコードを使用した。訓練は訓練データから無作為にサンプリング
した 10 万文を用いて 20 イテレーション学習させた。単語クラスタのサイズは 256
とした。

RvNN を使用した事前並び替えは BTG に基づく事前並び替えと同じ 10 万文の
文で 5 エポック学習を行った。語彙は頻度が高いものから 5 万語とし、ミニバッ
チのサイズは 500 とした。単語ベクトル表現と品詞タグベクトル表現の次元数は
200 とした。

Transformer の訓練 Transformer の訓練では全て以下に示すハイパーパラメー
タを使用した。語彙は頻度の多いものから 5 万単語を使用した。エンコーダ、デ
コーダはともに 6 層であり、de と dz は 512、head の数は 8、相対的位置表現と事
前並び替え位置表現のクリッピングの距離はともに 4とした。 最適化手法として
Adam [47] を用い、学習率の初期値は 0.001 とした。学習率は 5 万回のイテレー
ション後、1 万イテレーションごとに減衰させていった。学習は 25 万イテレー
ション行い、開発データでパープレキシティが一番低いイテレーションでのモデル
を使用してテストデータの翻訳を行った。
提案手法は OpenNMT-py8）の Transformer 上に実装した。絶対的位置表現と相
対的位置表現を両方とも使用したものをベースラインとした。Shaw et al. [82] は絶
対的位置表現と相対的位置表現を両方使用しても翻訳精度は向上しなかったと報告
している。しかし、予備実験において英日翻訳、英独翻訳で実験した際には両方使
用することで翻訳精度が向上した。そのため、本実験では両方使用したものをベー
スラインとした。
クリッピングの距離 k による BLEU 値の変化を検証するため、英日翻訳にお
いて開発データを使用して実験を行った。表 3.2 に翻訳実験の結果を示す。k が
4 以下の時は、ベースライン、BTG による相対的位置表現に対する事前並び替え

8） https://github.com/OpenNMT/OpenNMT-py
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表 3.3 英語から各言語への翻訳実験における、ケンドールの τ、BLEU 値、および RIBES
値のテストデータの数値 (表中の太字は p < 0.05 で一番スコアの高いモデルと統計的な有意
差がなかったものであり、↑ と ↓ はそれぞれベースラインのスコアと比較して p < 0.05 で
統計的に有意に向上したもの、および有意に低下したもの。“+BTG” と “+RvNN” はそれ

ぞれ BTG と RvNN を使用した事前並び替え位置表現を指す)
英日 英独

τ BLEU RIBES τ BLEU RIBES

ベースライン 27.46 35.53 83.68 75.79 13.41 74.45

相対的位置表現 +BTG 59.35↑ 34.50↓ 83.35 72.92↓ 15.25↑ 75.44
+RvNN 44.15↑ 35.05↓ 83.42 75.77 15.23↑ 75.30

絶対的位置表現 +BTG 59.35↑ 34.41↓ 83.30 72.92↓ 15.60↑ 75.73
+RvNN 44.15↑ 34.56↓ 83.23 75.77 15.33↑ 75.09

英チェコ 英露
τ BLEU RIBES τ BLEU RIBES

ベースライン 75.42 10.79 70.29 79.28 11.80 70.87

相対的位置表現 +BTG 74.40↓ 10.87 70.60 77.61↓ 11.80 71.49
+RvNN 75.19 9.23↓ 68.29↓ 79.28 13.06↑ 72.51↑

絶対的位置表現 +BTG 74.40↓ 10.80 70.18 77.61↓ 11.79 70.99
+RvNN 75.19 9.24↓ 67.80↓ 79.28 13.28↑ 72.67↑

位置表現ともに BLEU 値が増加している。しかし、k が 8 の時は、ベースライン
の BLEU 値は低下する。一方で、BTG による相対的位置表現に対する事前並び替
え位置表現による BLEU 値は k が 8 の時も増加している。しかし、k が 4 と 8 の
BLEU 値の差は無視出来るほど小さい。そのため、本実験では、全てのモデルにお
いて k = 4 とした。

3.4.2 実験結果
翻訳文は BLEU 値と RIBES 値によって評価した。実験結果がパラメータの初期
値のランダム性に依存してしまうのを避けるため、各実験は 3 回ずつ行い、その平
均の値を最終的な評価値とした。
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表 3.4 各言語から英語への翻訳実験における、ケンドールの τ、BLEU 値、および RIBES
値のテストデータの数値 (表中の太字は p < 0.05 で一番スコアの高いモデルと統計的な有意
差がなかったものであり、↑ と ↓ はそれぞれベースラインのスコアと比較して p < 0.05 で
統計的に有意に向上したもの、および有意に低下したものである。“+BTG” と “+RvNN”
はそれぞれ BTG と RvNN を使用した事前並び替え位置表現を適用したものを指す)

日英 独英
τ BLEU RIBES τ BLEU RIBES

ベースライン 33.74 23.94 76.06 75.07 17.08 77.83

相対的位置表現 +BTG 49.82↑ 25.28↑ 76.52 73.47 16.49↓ 77.50
+RvNN 35.04↑ 25.06↑ 76.52 74.81 16.49↓ 77.43

絶対的位置表現 +BTG 49.82↑ 24.95↑ 76.59 73.47 16.76↓ 77.86
+RvNN 35.04↑ 24.67↑ 76.28 74.81 16.70↓ 77.61

チェコ英 露英
τ BLEU RIBES τ BLEU RIBES

ベースライン 76.84 16.88 75.28 79.12 15.16 74.64

相対的位置表現 +BTG 78.16↑ 17.03↑ 75.36 78.24↓ 14.86↓ 74.29
+RvNN - - - - - -

絶対的位置表現 +BTG 78.16↑ 16.94 75.18 78.24↓ 15.17 74.53
+RvNN - - - - - -

英語から各言語への翻訳結果 表 3.3 に英語から各言語への翻訳実験における
BLEU 値と RIBES 値を示す。ベースラインと比較すると、英独翻訳では BTG に
よる事前並び替え位置表現 (表 3.3 中の “BTG” の行) と RvNN による事前並び替
え位置表現 (表 3.3 中の “RvNN” の行) によって BLEU 値が、相対的位置表現にお
いてそれぞれ 1.84 ポイント、1.82 ポイント、絶対的位置表現においてそれぞれ
2.19 ポイント、1.92 ポイント向上し、RIBES 値は相対的位置表現においてそれぞ
れ 0.99 ポイント、0.85 ポイント、絶対的位置表現においてそれぞれ 1.28 ポイント、
0.64 ポイント向上した。英露翻訳では BTG に基づく事前並び替えでは翻訳精度は
向上しなかったが、RvNN を使用した事前並び替えによって相対的位置表現、絶対
的位置表現それぞれで BLEU 値が 1.26 ポイント、1.48 ポイント、RIBES 値が 1.64
ポイント、1.80 ポイント向上した。
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しかし、英日翻訳においては、RvNN を使用した事前並び替えと BTG に基づく
事前並び替えによる BLEU 値が相対的位置表現によってそれぞれ 1.03 ポイント、
0.48 ポイント、絶対的位置表現によってそれぞれ 1.12 ポイント、0.97 ポイント低
下した。また RIBES 値は相対的位置表現によってそれぞれ 0.33 ポイント、0.26 ポ
イント、絶対的位置表現によってそれぞれ 0.38 ポイント、0.45 ポイント低下した。
英チェコ翻訳では、RvNN を使用した事前並び替えによる相対的位置表現と絶対的
位置表現によって BLEU 値が 1.56 ポイント、1.55 ポイント、RIBES 値が 2.00 ポ
イント、2.29 ポイント低下した。
各言語から英語への翻訳結果 表 3.4 に各言語から英語方向への翻訳実験にお
ける BLEU 値と RIBES 値を示す。日英翻訳では、BTG による事前並び替え位置
表現 (表 3.4 中の “BTG” の行)と RvNN による事前並び替え位置表現 (表 3.4 中の
“RvNN” の行)によって BLEU 値が、相対的位置表現によって 1.34 ポイント、1.12
ポイント向上し、絶対的位置表現によって 1.01 ポイント、0.73 ポイント向上した。
チェコ英翻訳では、BTG に基づく事前並び替えを使用した相対的位置表現によっ
て 0.15 ポイント、絶対的位置表現によって 0.06 ポイント向上した。
しかし、独英翻訳においては BTG に基づく事前並び替えと RvNN による BLEU
値が相対的位置表現によって 0.59 ポイント、0.59 ポイント、絶対的位置表現に
よって 0.32 ポイント、0.38 ポイント低下した。RIBES 値も BTG に基づく事前並
び替えと RvNN を使用した事前並び替えによる相対的位置表現によって 0.33 ポイ
ント、0.40 ポイント低下し、RvNN を使用した事前並び替えによる絶対的位置表
現によって 0.22 ポイント低下した。露英翻訳では、BTG に基づく事前並び替え
を使用した相対的位置表現で BLEU 値が 0.30 ポイント、RIBES 値が 0.35 ポイン
ト低下した。一方で、BTG に基づく事前並び替えを使用した絶対的位置表現では
BLEU 値が 0.01 ポイント向上し、RIBES 値は 0.09 ポイント低下した。
事前並び替え位置表現を使用しない場合の翻訳結果 事前並び替えを行って得ら
れた文のみを使用した場合の翻訳精度への影響を確かめるために、事前並び替え位
置表現を使用せず並び替えた文を直接 Transformer へ入力して翻訳実験を行った。
表 3.5 に事前並び替えによって得られた文を用いた際の英日対における実験結果を
載せる (表中の “BTG” と “RvNN” はそれぞれ BTG に基づく事前並び替え使用し
たもの、RvNN を使用した事前並び替えを使用したものを指す) 。この結果から、
事前並び替えを行った文を直接使用すると翻訳精度が低下することが分かった。こ
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表 3.5 英日対における並び替えを行った文のみを使用した際の BLEU 値と RIBES 値
英日 日英

BLEU RIBES BLEU RIBES

ベースライン 35.53 83.68 23.94 76.06
BTG 31.20 81.15 22.11 73.51
RvNN 32.18 81.83 20.99 73.88

の結果は Du and Way [21]、Chen et al. [11]、Wang et al. [99] が報告している「事
前並び替えを適用した文で直接翻訳の訓練を行うと翻訳精度が低下する」という結
果と一致しており、先行研究においてもベースラインと比較して BLEU 値が 1 か
ら 3 ポイント、RIBES 値が 2 から 3 ポイント程度低下している。この結果から、
並び替えを使用する際は並び替える前の文の位置が重要であることが分かる。

3.5 分析

事前並び替え位置表現がどういう点で翻訳精度を向上させたのかを調査するた
め、以下の四つの観点から詳細な分析を行った。

Q1 事前並び替え位置表現によって向上出来る翻訳精度の上限はいくらか。
(3.5.1 節)

Q2 事前並び替え位置表現の精度はどの程度翻訳精度に影響を与えるか。 (3.5.2 節)
Q3 事前並び替え位置表現が訳抜けと重複訳の問題に対してどう影響するか。9）

(3.5.3 節)
Q4 文長によって翻訳精度はどのように変化するか。 (3.5.4 節)

絶対的位置表現に対する事前並び替え位置表現と相対的位置表現に対する事前並
び替え位置表現の翻訳結果の傾向は似ているため、この後では相対的位置表現に対
する事前並び替え位置表現について分析を行った。
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表 3.6 テストデータでの BLEU 値と RIBES 値 (「+オラクル」はオラクルな事前並び替
えによる事前並び替え位置表現を使用した結果を表す)

BLEU RIBES

英日 ベースライン 35.53 83.68
+オラクル 44.84 89.85

英独 ベースライン 13.41 74.45
+オラクル 20.67 79.88

英チェコ ベースライン 10.79 70.29
+オラクル 14.37 74.84

英露 ベースライン 11.80 70.87
+オラクル 14.88 74.76

日英 ベースライン 23.94 76.06
+オラクル 36.45 87.91

独英 ベースライン 17.08 77.83
+オラクル 21.88 81.54

チェコ英 ベースライン 16.88 75.28
+オラクル 20.82 79.00

露英 ベースライン 15.16 74.64
+オラクル 18.58 77.19

3.5.1 事前並び替え位置表現による翻訳精度の上限
まず事前並び替え位置表現による翻訳精度の向上の上限値がどの程度かを調査す
るために、オラクルな並び替えを用いて翻訳実験を行った。訓練データ、開発デー
タ、テストデータ全てを使用して MGIZA によって単語アライメントを計算した
後、Neubig et al. [68] と同様に単語アライメントに基づいて原言語文の単語を目的
言語文の語順となるように並び替えたものをオラクルな並び替えとした。
表 3.6 にオラクルな事前並び替えを用いた結果を示す。全ての言語対において、
オラクルな事前並び替えを使用することでベースラインよりも翻訳精度が大幅に向

9） 訳抜けは翻訳モデルの出力した文の意味が参照訳と比較して欠如している問題、重複訳は翻訳モデ
ルの出力した文が同じフレーズを何度も繰り返している問題を指す。
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表 3.7 ベースラインとオラクルな事前並び替えを使用した翻訳文における 1、2、3、
4-gram ごとの適合率

1-gram 2-gram 3-gram 4-gram

英日 ベースライン 71.0 47.5 33.3 23.8
オラクル 75.4 (+4.4) 55.9 (+8.4) 42.7 (+9.4) 33.0 (+9.2)

英独 ベースライン 40.9 18.3 9.6 5.4
オラクル 47.0 (+6.1) 25.9 (+7.6) 15.7 (+6.1) 9.8 (+4.4)

英チェコ ベースライン 36.6 14.8 7.1 3.6
オラクル 38.9 (+2.3) 18.7 (+3.9) 10.2 (+3.1) 5.6 (+2.0)

英露 ベースライン 35.8 15.7 8.1 4.3
オラクル 38.6 (+2.8) 19.0 (+3.3) 10.7 (+2.6) 6.1 (+1.8)

日英 ベースライン 60.4 31.6 18.6 11.3
オラクル 69.6 (+9.2) 46.2 (+14.6) 32.0 (+13.4) 22.5 (+11.2)

独英 ベースライン 46.4 22.3 12.0 6.6
オラクル 50.5 (+4.1) 27.7 (+5.4) 16.4 (+4.4) 10.0 (+3.4)

チェコ英 ベースライン 48.6 22.1 11.8 6.4
オラクル 52.2 (+3.6) 27.4 (+5.3) 16.2 (+4.4) 9.8 (+3.4)

露英 ベースライン 45.4 20.2 10.4 5.5
オラクル 48.5 (+3.1) 24.1 (+3.9) 13.4 (+3.0) 7.7 (+2.2)

上している。この結果は目的言語文の語順の情報が翻訳精度に大きな影響を与え
ることを示している。英語を原言語とする翻訳での BLEU 値は、英日翻訳で 9.31
ポイント、英独翻訳で 7.26 ポイント、英チェコ翻訳で 3.58 ポイント、英露翻訳で
3.08 ポイント向上した。英語を目的言語とする翻訳での　BLEU 値は、日英翻訳で
12.51 ポイント、独英翻訳で 4.80 ポイント、チェコ英翻訳で 3.94 ポイント、露英翻
訳で 3.42 ポイント向上した。この結果から、今回使用したコーパスでは日英翻訳
においてより事前並び替え位置表現の効果があることが分かる。
翻訳精度の向上についてさらに分析を行うために、ベースラインとオラクルな
事前並び替えを使用した翻訳の n-gram 適合率の評価を分析した。表 3.7 にテスト
データでの 1、2、3、4-gram ごとの精度を載せる。各 n-gram の適合率において、
オラクルな並び替えを使用した結果がベースラインを上回っている。この結果は、
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事前並び替えの情報が単語レベルの翻訳 (1-gram) だけでなくフレーズレベルの翻
訳 (2 から 4-gram) にとっても有効であることを示している。

3.5.2 事前並び替えの精度と翻訳精度の関係
事前並び替えの精度と翻訳精度の関係を調査するため、オラクルな並び替えを正
解データとして事前並び替えの性能を評価した。事前並び替えの評価にはケンドー
ルの τ を使用した。
表 3.3 に英語から各言語への翻訳における結果を載せる。英日翻訳ではケンドー
ルの τ が、BTG に基づく事前並び替えによって 31.89、RvNN を使用した事前並び
替えによって 16.69 向上した。一方で、BLEU 値は BTG に基づく事前並び替えで
1.03 ポイント、RvNN を使用した事前並び替えで 0.48 ポイント低下した。英独翻
訳では、ケンドールの τ は BTG に基づく事前並び替えによって 2.87 ポイント低
下し、RvNN を使用した事前並び替えでは 0.02 ポイント低下した一方で、BLEU
値は、相対的位置表現に対する事前並び替え位置表現を用いることで BTG に基
づく事前並び替えで 1.84 ポイント、RvNN を使用した事前並び替えで 1.82 ポイン
ト、絶対的位置表現に対する事前並び替え位置表現を用いることで BTG に基づく
事前並び替えで 2.19 ポイント、RvNN を使用した事前並び替えで 1.92 ポイント向
上した。英チェコ翻訳では、RvNN を使用した事前並び替えではケンドールの τ

は 0.23 ポイント低下し、BLEU 値は相対的位置表現に対する事前並び替え位置表
現で 1.56 ポイント、絶対的位置表現に対する事前並び替え位置表現で 1.55 ポイン
ト低下した。英露翻訳では、RvNN を使用した事前並び替えではケンドールの τ

は変化しなかった一方で、BLEU 値は相対的位置表現に対する事前並び替え位置表
現で 1.26 ポイント、絶対的位置表現に対する事前並び替え位置表現で 1.48 ポイン
ト向上した。これに対して様々な分析 (ケンドールの τ ごとの BLEU 値や、並び
替えた後と元々の単語の距離とそれぞれの BLEU 値、元々の文と並び替えた文の
ケンドールの τ の差と BLEU 値など) を行ったが、英語から各言語への翻訳では
明確な傾向は見られなかった。
表 3.4 に各言語から英語への翻訳における結果を載せる。日英翻訳ではケンドー
ルの τ が、BTG に基づく事前並び替えによって 16.08、RvNN を使用した事前並び
替えによって 1.30 ポイント向上し、チェコ英翻訳では、BTG に基づく事前並び替
えによってケンドールの τ が 1.32 ポイント向上した。一方で独英翻訳では、BTG
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表 3.8 英語から各言語への翻訳における、文ごとの単語の削除の回数と挿入の平均回数 (↑
と ↓ はそれぞれベースラインと p < 0.05 で有意に向上したものと低下したものを表す。

“+BTG”、“+RvNN”、“+オラクル” はそれぞれ提案手法を BTG による並び替え、RvNN
による並び替え、オラクルな事前並び替えで訓練したものを指す)

英日 英独 英チェコ 英露
訳抜け 重複訳 訳抜け 重複訳 訳抜け 重複訳 訳抜け 重複訳

ベースライン 1.15 4.52 2.12 1.94 1.28 1.52 1.45 1.79
+BTG 1.17 4.80 2.07 1.98 1.21 1.52 1.35 1.95↓

+RvNN 1.16 4.58 2.29 2.01 1.19 1.75↓ 1.54 1.73
+オラクル 0.77↑ 3.58↑ 1.48↑ 2.45↓ 0.89↑ 1.69↓ 1.03↑ 2.18↓

表 3.9 各言語から英語への翻訳における、文ごとの単語の削除と挿入の平均回数 (↑ と ↓
はそれぞれベースラインと p < 0.05 で有意に向上したものと低下したものを表す。

“+BTG”、“+RvNN”、“+オラクル” はそれぞれ提案手法を BTG による並び替え、RvNN
による並び替え、オラクルな事前並び替えで訓練したものを指す)

日英 独英 チェコ英 露英
訳抜け 重複訳 訳抜け 重複訳 訳抜け 重複訳 訳抜け 重複訳

ベースライン 1.81 3.45 1.09 3.15 1.21 2.41 1.42 3.40
+BTG 1.68 3.55 1.26 3.30 1.26 2.34 1.33 3.56
+RvNN 1.66↑ 3.66 1.22 3.22 - - - -

+オラクル 0.68↑ 3.07↑ 0.85↑ 3.52↓ 0.91↑ 2.69↓ 1.38 3.66↓

に基づく事前並び替えによってケンドールの τ が 1.60 ポイント低下し、RvNN を
使用した事前並び替えで 0.26 ポイント低下した。露英翻訳では BTG に基づく事
前並び替えによってケンドールの τ が 0.88 ポイント低下した。特に、独英、チェ
コ英、露英翻訳はニュースのコーパスであり、ケンドールの τ と BLEU 値に相関
が見られる。このことから、各言語から英語方向への翻訳においては事前並び替え
位置表現は翻訳精度の向上に有効であることが示唆される。

3.5.3 訳抜けと重複訳に対する効果
翻訳の訓練に事前並び替え位置表現を使用することで目的言語文の語順が
分かり、そのため訳抜けが減少すると推測した。この仮説を確かめるために、
Takebayashi et al. [91] と同様に重複訳と訳抜けの自動評価を行った。ここでは、
Translation Edit Rate (TER) [84] における「挿入」と「削除」操作をそれぞれ訳抜
けと重複訳として評価を行った。
表 3.8 と 3.9 に文ごとの操作回数の平均を示す。全ての結果について、ブートス
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表 3.10 日英翻訳における並び替えとその翻訳例
並び替え例

原言語文 対策としては導電性のテーブルマットとフロアマット、リスト
ストラップを挙げ、人体の静電容量も表で示した。

BTG 挙げ を 対策 テーブル マット と として は 導 電 性 の フロア
マット ， リストストラップ ， 容量 電 人体 の 静 も 示し で
表 た 。

RvNN として 対策 は マット と フロア テーブル 性 の 電 マット ，
リストストラップ を 導 挙げ ， 容量 電 人体 の 静 も で 表
示し た 。

参照訳
as a countermeasure, electroconductive table mat and floor mat and list
strap are listed, and the static charged capacity of human body is shown in table.

翻訳例
ベースライン antistatic capacity of human body is also shown in a table.

+BTG antistatic table mat and floor mat of electroconductive are
mentioned as countermeasure, and electrostatic capacity of
human body is also shown in the table.

+RvNN as countermeasure, this paper mentions table mat and floor mat of
the conductivity, and <unk>, and shows the electrostatic capacity
of the human body in the table.

トラップ法 [48] を用いて有意差検定を行った。ベースラインと比較すると、日英
翻訳において RvNN による事前並び替えを用いることで訳抜けが有意に減少した
ことが分かる。絶対的位置表現と相対的位置表現は、原言語文の単語の位置は分か
るがそれに対応した目的言語文の単語の位置は分からない。そのため、並び替えを
考慮した翻訳が出来ない。一方で、事前並び替え位置表現は事前並び替えモデルに
よって推測された目的言語文の語順を使用することが出来る。そのため、特に日英
翻訳においては、目的言語文の訳抜けを考慮しつつ翻訳を行うことが出来たと考え
られる。
また全ての翻訳において、オラクルな並び替えを用いることで訳抜けが減少し
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表 3.11 日英翻訳における並び替えとその翻訳例
並び替え例

原言語文 調査が潮間帯に限られたため得られた種類数は少なかった。
BTG 調査 が 数 は 種類 た られ 少なかっ 得 れ た ため 潮間 帯 に

限ら た 。
RvNN 得 られ 少なかっ た は た 種類 数 ため 潮間 帯 に が 調査 限ら

れ た 。
参照訳

A few species were obtained, since the survey was limited to the intertidal zone.

翻訳例
ベースライン The number of species obtained in the intertidal zone was small.

+BTG The number of species obtained was small because
the investigation was limited to intertidal zone.

+RvNN The number of species obtained was small because
the survey was limited to the intertidal zone.

た。同時に、英独対、英チェコ対、英露対において、ベースラインと比較して重複
訳が増加した。この結果より、オラクルな並び替えによる事前並び替え位置表現は
訳抜けを減少させるが、不必要な単語を生成してしまう傾向にあることがわかる。
表 3.10、3.11、3.12、3.13 に日英翻訳における翻訳例を示す。表 3.10 の例では、
ベースラインによる翻訳文は “electroconductive table mat and floor mat and list
strap are listed” というフレーズが欠落しており、原言語文の情報が翻訳文では
抜けている。一方で、事前並び替え位置表現を使用することで “electroconductive
table mat and floor mat and list strap are listed” というフレーズが出力されてい
る（RvNN を使用したモデルでは “this paper mentions table mat and floor mat
of the conductivity” というフレーズが出力されており、BTG を使用したモ
デルでは “antistatic table mat and floor mat of electroconductive are mentioned as
countermeasure” というフレーズが出力されている）。表 3.11 の例においても、
ベースラインによる翻訳文では “since the survey was limited” というフレーズが出
力されておらず原言語文の情報が欠落しているが、事前並び替え位置表現を使用す
ることで原言語文の情報を損なわずに翻訳文が出力出来たいる。
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表 3.12 日英翻訳における並び替えとその翻訳例
並び替え例

原言語文 抗生剤を投与したが、突然のショック状態となり、心・呼吸
停止となり死亡した。

BTG 抗生 剤 を 投与 し し が た ショック の 状態 と 突然 ， なり
停止 と なり 死亡 呼吸 ・ 心 ， た 。

RvNN 剤 を 抗生 投与 し た が ， の 突然 ショック 状態 と なり ，
心 ・ 呼吸 停止 と なり 死亡 し た 。

参照訳
Though antibiotics were administered, sudden shock state and
cardiac and respiratory arrest were caused and the patient was dead.

翻訳例
ベースライン Though antibiotics were administered, he suddenly fell into

shock state, and died of heart and respiratory arrest.

+BTG Though antibiotics were administered, he suddenly fell
into shock state and died of heart and respiratory arrest.

+RvNN Although antibiotics were administered, he suddenly fell into
shock state and died.

表 3.12 の例では、ベースラインによる翻訳文は参照訳とほとんど同じである。
しかし、RvNN による事前並び替え位置表現では “cardiac and respiratory arrest
were caused.” というフレーズに当たる部分が出力されていない。表 3.13 の例では、
ベースラインの翻訳文、事前並び替え位置表現の翻訳文ともに原言語文の情報が欠
落した文となっている。これは、前述したように、事前並び替えが完璧でないこと
に起因すると考えられる。よって、今後の課題の一つとして事前並び替えの性能向
上が挙げられる。

3.5.4 文長と翻訳の関係
原言語文が長くなると翻訳品質が低下すること知られており、並び替えにおいて
も同じ現象が起こると考えられる。そのため、原言語文の長さと並び替え及び翻訳
品質についてさらに分析を行った。図 3.6、3.7、3.8、3.9 に日英、チェコ英、英独、
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表 3.13 日英翻訳における並び替えとその翻訳例
並び替え例

原言語文 走査型プローブ顕微鏡（SPM）は走査型トンネル顕微鏡
（STM）が原型であるが、試料-深針間の様々な相互作用を用いた
SPMが研究・開発されてきた。

BTG 走査 型 プローブ 顕微鏡 （ SP M ） は 様々 な 相互 作用 を
用い た SPM が の 研究 間 ・ 開発 さ れ て 針 で ， 試料‐探
ある が き 走査 型 トンネル 顕微鏡 原型 が ） STM （ た 。

RvNN 走査 型 プローブ 顕微鏡 （ SP M ） は 走査 型 顕微鏡 （
STM ） が 原型 ある で が ， 試料‐探 針 た 用い を 様々 な
相互 作用 の SPM が 間 トンネル 研究 ・ 開発 さ れ て き た 。

参照訳
Scanning probe microscopes (SPM) are based on scanning tunnel microscopes (STM),
and SPMs using various interactions between samples and probes have been studied
and developed.

翻訳例
ベースライン Scanning probe microscopy (SPM) is a prototype of scanning

tunneling microscopy (STM).

+BTG Scanning probe microscopy (SPM) is a prototype of scanning
tunneling microscopy (STM).

+RvNN Scanning probe microscope (SPM) is a prototype, but SPM using
various interactions between sample and probe has been studied
and developed.

英露翻訳における原言語文の長さとケンドールの τ および BLEU 値の平均のグラ
フを載せる。これらは提案手法においてベースラインよりも翻訳精度が向上したも
のである。
日英翻訳では、原言語文の長さが長くなるほどケンドールの τ が減少していく。
特に 60 単語以上の文において、BTG に基づく事前並び替えと RvNN を使用した
事前並び替えによるケンドールの τ は並び替えなしの文よりも低くなっている。
しかし、20 単語以上の文において、BLEU 値はベースラインよりも高い。また、
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図 3.6 日英翻訳における文長ごとの BLEU 値とケンドールの τ

チェコ英翻訳では、ケンドールの τ は 20 単語以上の文においてベースラインより
も高く、30 単語以上の文において BLEU 値も高い。この結果から、目的言語が英
語の翻訳においては中程度の長さ以上の文において事前並び替え位置表現が有効に
働くことがわかる。
英独翻訳においては、BTG に基づく事前並び替えと RvNN を使用した事前並び
替え位置表現を使用すると常にベースラインよりも低くなっている。しかし、長文
において BLEU 値はベースラインよりも高い。英露翻訳では BTG に基づく事前
並び替えも RvNN を使用した事前並び替えもケンドールの τ はベースラインより
低い。しかし、RvNN を使用した事前並び替えによる BLEU 値は 10 単語以上の文
でベースラインよりも高い。また BTG に基づく事前並び替えによる BLEU 値も
50 単語以上の文でベースラインよりも高くなっている。目的言語が英語ではない
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図 3.7 チェコ英翻訳における文長ごとの BLEU 値とケンドールの τ

ことによってケンドールの τ がその言語に大きく影響してしまうため、この結果
は日英翻訳やチェコ英翻訳と直接比較できるものではない。今後の課題として、目
的言語が英語でない場合の事前並び替え位置表現についてより詳細な調査を行う必
要があると考えている。

3.6 おわりに

本章では、Transformer モデルにおいて並び替えの情報を利用するための事前
並び替え位置表現を提案した。この手法によって、Transformer モデルは翻訳時
に原言語文と目的言語文の両方の語順を考慮することが出来る。実験結果では、
Transformer モデルによる日英、チェコ英、英独、英露翻訳において提案手法が翻
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図 3.8 英独翻訳における文長ごとの BLEU 値とケンドールの τ

訳精度を向上させることを確認出来た。また、提案手法では英語方向への翻訳にお
いて事前並び替えの精度向上が翻訳精度の向上に寄与することがわかった。さら
に、英語方向への翻訳において中程度以上の長さの文で翻訳精度が向上しており、
提案手法によって中程度以上の距離の依存関係を捉えられていることがわかった。
この手法は著者の知る限り Transformer モデルにおいて並び替えを翻訳に活用した
初めての成功例である。
今後の課題として、オラクルな事前並び替えと比較すると事前並び替えモデルの
並び替えのケンドールの τ が低いため、事前並び替えモデルの精度向上が挙げら
れる。また、今回は事前並び替えモデルと Transformer モデルは完全に分離されて
いるために事前並び替えモデルの誤りが Transformer モデルに影響してしまうと
いったデメリットがある。そのため、事前並び替えモデルと Transformer モデルの
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統合が課題として挙げられる。
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第 4章 非自己回帰ニューラル機械翻訳
における事前並び替えの効果の
検証

4.1 はじめに

第 3 章では自己回帰ニューラル機械翻訳モデルである Transformer に対して、事
前並び替え位置表現を適用することで翻訳精度が改善することを示した。近年で
は、推論時に翻訳文の全単語を一度に出力する非自己回帰ニューラル機械翻訳が提
案され [28]、盛んに研究されている。非自己回帰ニューラル機械翻訳のモデルの一
つとして、Shu et al. [83] は潜在変数モデルによる非自己回帰ニューラル機械翻訳
(LaNMT) を提案した。目的言語文の不確かさを低次元の潜在変数によってことで
モデリングし、その潜在変数に基づいて翻訳文の出力を行うことでより精度の高い
翻訳を可能にしており、最高性能を達成した翻訳手法の一つである。しかし、エン
コーダの出力をそのままの順序で使用してデコーダの入力として用いているため、
原言語文と目的言語文の語順の相違を考慮出来ない。Ran et al. [77]は Transformer
により原言語文の語順を並び替えた隠れ変数を非自己回帰ニューラル機械翻訳の
デコーダに入力することで翻訳精度が向上すると報告している。しかし本手法を
LaNMTに直接適用することは出来ず、また Transformer による事前並び替えは、
自己回帰ニューラル機械翻訳と同様、文の長さに比例した時間がかかるという課題
がある。非自己回帰ニューラル機械翻訳において原言語文と目的言語文の語順の相
違が考慮出来ないという問題に対し、事前並び替え手法を使用することで、語順を
考慮することが出来ると考えられる。一方で自己回帰ニューラル機械翻訳では、事
前並び替えを行った文をそのまま入力として使用すると、事前並び替えを行わな
かった文を入力として使用した場合と比較して翻訳精度が低下することが報告され
ており [21, 43, 44]、非自己回帰ニューラル機械翻訳における事前並び替え手法の適
用方法は明らかでない。そこで本章では、非自己回帰ニューラル機械翻訳モデルの
一つである LaNMT における事前並び替えの効果的な適用手法の検討を行う。
本章は以下のように構成されている。4.2 節では事前並び替えの利用を検討する
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非自己回帰ニューラル機械翻訳について説明し、事前並び替えの適用手法につい
て述べる。4.3 節では英日間における翻訳評価実験について述べ、4.4 節では実験
結果のより詳細な分析を行う。また、Knowledge distillation を使用した場合、Byte
pair encoding を使用した場合の事前並び替えの効果についても実験を行い分析す
る。 4.5 節で本章のまとめと今後の課題を検討する。

4.2 LaNMTにおける事前並び替えの適用

4.2.1 前提知識: LaNMT

本節では、本論文で使用する潜在変数を使用した非自己回帰ニューラル機械翻
訳手法の一つである Latent-variable non-autoregressive translation (LaNMT) モデル
について説明する。図 4.1に LaNMT の全体図を載せる。LaNMT は大きく三つの
サブモデルからなる。一つ目は x から潜在変数 z の事前確率分布を予測するモデ
ル、二つ目は x と y から z の事後確率分布を予測するモデル、三つ目は z から翻
訳文の単語数 ly と y を予測するモデルである。

LaNMT は式 (4.1) で表される、対数周辺尤度 log p(y|x) = log
∫

p(y|x, z)p(z|x) の
変分下限を最大化するように学習を行う。

Ez∼qϕ
[

m∑
i=1

log pθ(yi|x, z, ly) + log pθ(ly|z)]

−
n∑

j=1
KL[qϕ(zj|x, y)||pω(zj|x)] (4.1)

ここで KL[P ||Q] は確率分布 P と Q の KL ダイバージェンスを表す。θ, ϕ, ω はそ
れぞれデコーダ、潜在変数の事前確率分布 qϕ のモデル、潜在変数の事後確率分布
pω のモデルのパラメータを指す。式 (4.1) に従い、LaNMT は z が与えられた時の
ly の条件付き確率、および x, z, ly が与えられた時の y の条件付き確率の期待値を
最大化しつつ、z の事前分布と事後分布の KL ダイバージェンスが小さくなるよう
に訓練される。これにより、訓練時は x, y から z が計算できるが、推論時は x の
みを使用して z を計算しなければならないために z の計算をうまく行うことが出
来なくなる問題を解決している。推論時はまず x から z の計算を行い、それをデ
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図 4.1 LaNMT のモデル図 (Shu et al. [83] より引用)

コーダの入力として使用して翻訳文 y′ の各単語を決定する。それから出力した y′

と x を使用して z の再計算を行い、新たな翻訳文の出力を行う。これを一定回数
繰り返し、最後の出力を最終的な翻訳文とする。
原言語文の長さと目的言語文の長さは異なることがあるため、デコーダの入力に
エンコーダの出力をそのまま使用することは出来ない。そのため、エンコーダの出
力を変換してデコーダの入力を得る。LaNMT では length-transform という機構に
よってエンコーダの出力を変換し、デコーダの入力を生成している。図 4.2 に例を
示す。エンコーダの出力 z からデコーダの入力 z′ は、以下の式に従って各位置を
基準に計算された重みを使用し z の重み付き和によって計算される。
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図 4.2 Length-transform の例 (ここではエンコーダの出力は 6 単語、デコーダへの入力は
4 単語としており、2 単語目への入力の重みの例を表している)

z′
j =

|x|∑
k=1

wj
kzk (4.2)

wj
k = exp(aj

k)∑|x|
k′=1 exp(aj

k′)

aj
k = − 1

2σ2 (k − |x|
ly

j)2 (4.3)

j はデコーダの入力のインデックス、k はエンコーダの出力のインデックス、aj
k は

デコーダの入力に対するエンコーダの出力のアテンション、wj
k はデコーダの入力

に対するエンコーダの出力の重みを表す。各 z′ に対する重みは式 (4.3)によってそ
れぞれの位置を中心とした正規分布によって計算される。

4.2.2 事前並び替えの適用
本研究では、(1) 事前並び替えを行った原言語文をエンコーダに入力するシンプ
ルな手法、(2) 潜在変数 z を並び替える手法、(3) 第 3 章で提案した事前並び替え
の位置表現を足し合わせる手法によって事前並び替えの利用の検証を行う。以降で
は (1)、(2) および (3) の手法について説明する。
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図 4.3 事前並び替え位置表現を足し合わせる手法の概要図

(1) 事前並び替えを入力として使用する手法 事前並び替えを使用
す る シ ン プ ル な 手 法 と し て、事 前 並 び 替 え を 行 っ た 原 言 語 文 x′ =
(xrpos−1(1), xrpos−1(2), · · · , xrpos−1(n)) (rpos(k) は第 3 章と同様に k 番目の単語の並
び替えた後のインデックスを返す関数を指す) をそのまま入力として使用する。非
自己回帰ニューラル機械翻訳ではエンコーダの出力をそのままの順序で使用するた
め、事前並び替えをそのまま使用すると逐次翻訳のように翻訳を行えるため翻訳精
度が向上すると考えられる。

(2) 潜在変数を並び替える手法 LaNMT では原言語文の潜在変数 z の順番をそ
のまま使用しているが、そのままでは語順の相違を考慮することが出来ない。そこ
で潜在変数 z の変換の際に以下の式 (4.4)に示すように並び替えた後のインデック
スを使用することで語順の相違を考慮した翻訳が可能になると期待される。

z′
j =

|x|∑
k=1

wj
kzrpos(k) (4.4)

例を図 4.2 の右に示す。オレンジの数字が並び替え後のインデックスを表す。事前
並び替えによって予測されたインデックスに基づいて zk を並び替えてから重み付
き和を計算することで、対応した目的言語文の位置に近い zrpos(k) の重みが大きく
なり、並び替えた後の文における周辺単語をより考慮した z′ が計算出来る。

(3) 事前並び替え位置表現を足し合わせる手法 ここでは事前並び替えを利用す
るため、事前並び替え位置表現を足し合わせる手法を設計する。図 4.3 に概要図を
示す。単語の左上の紫色の数字は元の文でのインデックスを表し、単語の右上の橙
色の数字は事前並び替え後のインデックスを表す。事前並び替えのインデックスに
よる事前並び替え位置表現は式 (3.5)、(3.6) において、元の文のインデックスの代
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わりに以下のように事前並び替え後のインデックスを使用して計算される。

PE(rpos(k), 2q) = sin(rpos(k)/100002q/dm), (4.5)

PE(rpos(k), 2q + 1) = cos(rpos(k)/100002q/dm), (4.6)

第 3 章では Transformer において事前並び替え位置表現を足し合わせることで翻訳
精度の向上を達成したが、非自己回帰ニューラル機械翻訳モデルにおける効果は定
かではない。非自己回帰ニューラル機械翻訳モデルにおいて、図 4.3 に示すように
単語のベクトル表現に元の文の位置表現と事前並び替え位置表現を足し合わせてエ
ンコーダの入力とすることで、エンコーダで語順を考慮した潜在変数の計算が出来
ると期待される。

4.3 翻訳評価実験

4.3.1 実験設定
ASPEC コーパス [67] を使用して英日翻訳実験を行った。ASPEC コーパスに含
まれている訓練データは 300 万文対、開発データは 1, 790 文対、テストデータは
1, 812 文対である。前処理として、原言語文もしくは目的言語文が 50 単語以下で、
文対の単語数の比が Moses の前処理スクリプトのデフォルト値である 9 以下の条
件を満たす文対である約 180 万文対を使用した。英語文の単語分割および品詞タ
グ付けには Stanza を使用した。日本語の形態素解析は Juman で行った。
事前並び替え手法として BTG に基づく事前並び替え [66] を使用した。事前並び
替えモデルは、訓練データのうち上位 50 万文からランダムにサンプリングした 10
万文を使用して 20 イテレーションの訓練を行った。単語クラスタのサイズは 256
に設定し、単語アライメントは MGIZA を使用して計算した。
自己回帰ニューラル機械翻訳モデルのベースラインとして第 3 章と同じ

Transformer モデルを使用した。非自己回帰ニューラル機械翻訳モデルのベースラ
インは Shu et al. の公開モデルである LaNMT 1）を使用し、事前並び替えの適用手
法 (2) および (3) は LaNMT 上に実装した。LaNMT のベクトル表現の次元数、層

1） https://github.com/zomux/lanmt
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表 4.1 英日翻訳における翻訳結果 (それぞれのモデルのベースラインと p < 0.05 で有意差
があり、精度が向上したものを ↑で、精度が低下したものを ↓で示す)

BLEU RIBES

自己回帰
ニューラル
機械翻訳

事前並び替えなし 35.53 83.68
BTG 31.20↓ 81.15↓

オラクル 44.84↑ 89.85↑

非自己回帰
ニューラル
機械翻訳

事前並び替えなし 22.14 79.42
BTG 24.01↑ 77.92↓

オラクル 32.39↑ 86.26↑

潜在変数の並び替え (BTG) 13.49↓ 78.21↓

潜在変数の並び替え (オラクル) 15.71↓ 81.55↑

事前並び替え位置表現 (BTG) 15.49↓ 78.18↓

事前並び替え位置表現 (オラクル) 21.05↓ 83.75↑

数はエンコーダ、デコーダともに自己回帰ニューラル機械翻訳モデルと同様の設定
とし、潜在変数のベクトルは Shu et al. に従って 8 次元とした。訓練は 5 万ステッ
プ行った。また Shu et al. に同様に、初めに翻訳文を出力した後に、再度その翻訳
文を入力として新たに出力した翻訳文を最終的な翻訳文とした。翻訳結果において
同じ単語が二回以上繰り返されている場合は二回目以降を除去した。

4.3.2 実験結果
本研究では翻訳精度の評価指標として BLEU 値、また語順の評価指標として

RIBES 値を使用した。それぞれの評価値の統計的有意差を検証するため、ブート
ストラップによる検定 [48]を行った。
実験結果を表 4.1に示す。ここでオラクルは第 3 章と同様に単語アライメントの
計算をした後、アライメントの交差がなくなるように並び替えたものを指す。自己
回帰ニューラル機械翻訳モデルでは BTG に基づく事前並び替えによって得られた
文をそのまま使用すると、事前並び替えなしと比較して BLEU 値および RIBES 値
がそれぞれ 4.33 ポイント、2.53 ポイント低下した。一方、非自己回帰ニューラル
機械翻訳モデルでは BTG に基づく事前並び替えによって得られた文をそのまま使
用すると、事前並び替えなしと比較して BLEU値が 1.87ポイント向上した。また、
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オラクルな並び替えを使用して学習を行った翻訳実験では、自己回帰ニューラル機
械翻訳モデルにおいても非自己回帰ニューラル機械翻訳モデルにおいても事前並び
替えなしと比較して大幅に翻訳精度が向上した (自己回帰ニューラル機械翻訳モデ
ルで BLEU 値が 9.31 ポイント、RIBES 値が 6.17 ポイント、非自己回帰ニューラ
ル機械翻訳モデルで BLEU 値が 10.25 ポイント、RIBES 値が 6.84 ポイント)。こ
れは、翻訳の学習において事前並び替えの情報が有用であることを示唆している。
潜在変数を並び替える方法では、BTG に基づく事前並び替えの順に並び替える
方法においてもオラクルな事前並び替えの語順に並び替える方法においても、並
び替えなしの場合より BLEU 値が低下した (BTG に基づく事前並び替えの順に並
び替えた場合で −8.65 ポイント、オラクルな順に並び替えた場合で −6.43 ポイン
ト)。また、 事前並び替え位置表現を使用した場合でも BLEU 値は低下した (BTG
に基づく事前並び替えの順を使用した場合で −6.65 ポイント、オラクルな語順を
使用した場合で −1.09 ポイント)。翻訳精度が低下した原因として、潜在変数を並
び替えることで潜在変数同士の依存関係が崩れてしまったためであると考えられ
る。また、位置表現を足し合わせる手法では、z の変換において原言語文の語順を
そのまま使用しているため、並び替え後のインデックスが離れている潜在変数の重
みが大きくなる場合があるためであると考えられる。

4.4 分析

4.4.1 文長と翻訳精度の関係
非自己回帰ニューラル機械翻訳モデルではエンコーダの出力をそのままの順序で
デコーダの入力へと変換するため、長距離の単語の依存構造を捉えることが出来ず
より翻訳精度が低下すると考えられる。図 4.4 に原言語文の文長とその翻訳精度を
示す。事前並び替えなしの場合と BTG に基づく事前並び替えによって並び替えた
文を使用した場合のグラフを比較すると、15 単語以上の文において事前並び替え
なしの場合よりも BTG に基づく事前並び替えを使用した文の翻訳精度が向上して
いることがわかる。このことから、事前並び替えを使用することで長距離の依存関
係をうまく捉えた翻訳が出来ていることが分かる。また 60 単語未満の文において
潜在変数を並び替える手法よりも事前並び替え位置表現を使用する手法のほうが、
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図 4.4 非自己回帰ニューラル機械翻訳モデルにおける文長と翻訳精度の関係 (“rez” は潜
在変数を並び替える手法、“repos” は事前並び替え位置表現を使用する手法を指す)

BTG に基づく事前並び替えを使用した場合、オラクルな並び替えを使用した場合
どちらにおいても BLEU 値が高いが、60 単語以上の文ではほとんど同じ値となっ
ている。このことから提案手法だけでは長距離の依存関係を考慮することは難し
く、事前並び替えの情報を有効に活用する手法の提案が今後の課題として挙げら
れる。
また、事前並び替えなし、BTG に基づく事前並び替え、オラクルな並び替え、
潜在変数を並び替える手法、事前並び替え位置表現を使用する手法での全ての翻訳
においてより長い文になるにつれて翻訳精度が低下している。このことから非自己
回帰ニューラル機械翻訳モデルでは長文の依存関係を捉えた翻訳はまだ難しく、う
まく長距離の依存関係を捉えた翻訳手法の検討が今後の課題として挙げられる。

4.4.2 Knowledge Distillation に対する影響
非自己回帰ニューラル機械翻訳モデルの訓練では、訓練データの参照訳をそのま
ま使用するのではなく、自己回帰ニューラル機械翻訳モデルで翻訳した出力を使用
した訓練を行う Knowledge Distillation [46] によって翻訳性能が大幅に向上するこ
とが知られている [28, 83]。表 4.2 に Knowledge Distillation を適用し訓練を行った
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表 4.2 非自己回帰ニューラル機械翻訳モデルにおける Knowledge Distillation を使用した
英日翻訳結果 (それぞれのモデルのベースラインと p < 0.05 で有意差があり、精度が向上し

たものを ↑で、精度が低下したものを ↓で示す。KD の列で ✓ が付いている行は
Knowledge distillation を適用し翻訳を行ったものを指す)

KD BLEU RIBES

事前並び替えなし 22.14 79.42
✓ 30.15 82.32

BTG
24.01↑ 77.92↓

✓ 27.11 79.49

オラクル 32.39↑ 86.26↑

✓ 37.46 88.04

結果を示す。ここで、BTG に基づく事前並び替えによって得られた文で自己回帰
ニューラル機械翻訳モデルの訓練を行うと表 4.1 の実験結果のように事前並び替え
なしの文を使用した場合よりも精度が低下し、結果として非自己回帰ニューラル機
械翻訳モデルの訓練結果も低下すると考えられるため、Knowledge Distillation は全
てオラクルな事前並び替えを行った文によって自己回帰ニューラル機械翻訳モデル
を訓練し翻訳したものを使用している。先行研究と同様に、非自己回帰ニューラ
ル機械翻訳モデルに対して Knowledge Distillation で訓練を行うことでそのままの
対訳コーパスを使用する場合と比較して翻訳精度が向上した (事前並び替えなし
で BLEU 値が 8.01 ポイント、RIBES 値が 2.90 ポイント、BTG に基づく事前並び
替えを適用した文で BLEU 値が 3.10 ポイント、RIBES 値が 1.57 ポイント、オラ
クルな事前並び替えを使用した文で BLEU 値が 5.07 ポイント、RIBES 値が 1.78
ポイント) 。Knowledge distillation を適用することによって原言語文に対する参照
訳のばらつきが減ることが知られている [110]。例えば英日翻訳において、“Thank
you” に対して「ありがとう ござい ます」と「どうも ありがとう」という二つの対
訳文が訓練データに含まれている場合、自己回帰ニューラル機械翻訳モデルでは以
前に出力した単語に基づいて翻訳を行うため「ありがとう」を最初に出力した場合
は続けて「ござい ます」と出力出来る。自己回帰ニューラル機械翻訳モデルの出
力を使用することで同じ原言語文に対する翻訳が一つに定まり参照訳のばらつきが
減るため、翻訳精度が向上したと考えられる。
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表 4.3 非自己回帰ニューラル機械翻訳モデルにおける BPE を使用した英日翻訳結果
(BPE の列で ✓ が付いている行は BPE を適用したもの、KD の列で ✓ が付いている行は

Knowledge Distillation を適用したものを指す)
BPE KD BLEU RIBES

事前並び替えなし
22.14 79.42

✓ 28.66 81.31
✓ ✓ 31.31 82.68

BTG
24.01 77.92

✓ 24.78 78.05
✓ ✓ 28.82 79.99

オラクル
32.39 86.26

✓ 31.08 86.12
✓ ✓ 39.01 88.09

4.4.3 Byte Pair Encoding による翻訳精度の変化
近年のニューラル機械翻訳では、単語をそのまま使用するのではなく subword

[51, 80] と呼ばれる部分文字列単位に単語を分割してニューラル機械翻訳を訓練す
る手法もとられている。そこで本節では Byte Pair Encoding (BPE) [80] を非自己回
帰ニューラル機械翻訳モデルで使用した際の翻訳への影響を調査した。BPE ツー
ルとして fastBPE2）を使用し、BTG に基づく事前並び替え、オラクルな事前並び
替えを使用する文については並び替えを行った後に BPE を適用した。
表 4.3 に翻訳実験結果を示す。BPE を適用すると事前並び替えなしでは BLEU
値が 6.52 ポイント、RIBES 値が 1.89 ポイント向上し、BTG に基づく事前並び替
えを使用したものでは BLEU 値が 0.77 ポイント、RIBES 値が 0.13 ポイント向上
したが、オラクルな事前並び替えを使用したものでは BLEU 値が 1.31 ポイント、
RIBES 値が 0.14 ポイント低下した。今回は単語単位で単語アライメントの計算を
行った後にアライメントの交差がなくなるように並び替えを行ってから BPE を適
用して部分文字列に分割した。しかし部分文字列単位でのアライメントを計算した
場合にアライメントの交差が増えてしまう場合があり、特にオラクルの事前並び替

2） https://github.com/glample/fastBPE
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表 4.4 英日翻訳における翻訳成功例
並び替え例

原言語文 groupware was introduced as work environment for activating group
activity .

BTG
group activity activating for work environment as groupware introduced
was .

参照訳
グループ 活動 を 活性 化 する ため の 作業 環境 として グループ ウェア を 導入 し た 。

翻訳例
事前並び替えなし 活性 化 活動 の 作業 環境 として グループ を 紹介 し た 。
(後処理なし) 活性 化 化 活動 の 作業 環境 として グループ グループ を 紹介 し た 。
BTG

グループ 活動 を 活性 化 する 作業 環境 として グループ ウェア を
紹介 し た 。

(後処理なし)
グループ 活動 を 活性 化 する 作業 環境 として グループ ウェア を
紹介 し た 。

潜在変数の 活性 化 活性 を として グループ を 紹介 し た 。並び替え
(後処理なし)

活性 化 活性 活性 を として として として グループ グループ グループ
を 紹介 し た 。

事前並び替え グループ 活動 化 として 作業 ウェア を 紹介 し た 。位置表現
(後処理なし)

グループ 活動 化 として 作業 作業 作業 作業 作業 ウェア を
紹介 し た 。

えを使用したものでは翻訳精度が下がってしまったと考えられる。また BPE を適
用し Knowledge distillation を使用した文による翻訳結果では、事前並び替えなし、
BTG に基づく事前並び替えを行った文、オラクルな事前並び替えを行った文全て
において Knowledge distillation を使用しなかったものと比較して翻訳精度が向上
した。これは第 4.4.2 節と同様の結果であり、事前並び替えを行い BPE を適用し
た文で学習を行った非自己回帰ニューラル機械翻訳モデルにおいても Knowledge
distillation によって翻訳精度が向上することが分かった。

4.4.4 翻訳例
表 4.4、4.5、4.6 に各翻訳モデルの出力例を表す。「後処理なし」の行は各モデル
の翻訳文において二回以上繰り返されている単語を削除していない文を指す。表
4.4 の例では、事前並び替えなしの翻訳文において「グループウェア」が出力され

80



表 4.5 英日翻訳における翻訳失敗例
並び替え例

原言語文 next , the change of hydrogen bond networks which was a basis of
the motion of the water was explained .

BTG
next , water the of motion of the a which hydrogen bond networks of
the change was basis explained was .

参照訳
次に ， 水 の 運動 の 基本 で ある 水素 結合 ネットワーク の 変化 を 説明 し た 。

翻訳例
事前並び替えなし 次いで ， 水 の 運動 の 基礎 で ある 水素 結合 ネットワーク の変化 を 説明 し た 。
(後処理なし)

次いで ， 水 の 運動 運動 の 基礎 で ある 水素 結合 ネットワーク の
変化 を 説明 し た 。

BTG
次に ， 水 の 運動 で ある 水素 結合 ネットワーク の 変化 を 基 に
説明 し た 。

(後処理なし)
次に ， 水 の 運動 運動 で ある 水素 結合 ネットワーク の 変化 を
基 に 説明 し た 。

潜在変数の 次に ， 水 の 基礎 で ある 水素 ネットワーク の 変化 を 説明 し た 。並び替え
(後処理なし)

次に ， 水 の の の 基礎 で ある 水素 水素 水素 ネットワーク の の
変化 を 説明 し た 。

事前並び替え 次に ， 水 の 基本 で ある 水素 結合 の 変化 を 説明 し た 。位置表現
(後処理なし)

次に ， 水 の の 基本 で ある 水素 水素 結合 結合 結合 の 変化 を 説明
し た 。

ていない。「グループウェア」は参照訳では文の後ろに配置されているが原言語文
では “group” が文の後ろ側にあるために語順の相違を考慮出来ずこのような翻訳が
出力されたと考えられる。BTG に基づく事前並び替えでは “groupware” が文の後
ろへと並び替えられ、その結果 BTG に基づく事前並び替えを使用した翻訳文では
「グループウェア」が出力されている。表 4.5 の例は BTG に基づく事前並び替え
を使用した翻訳の失敗例である。ここでは参照訳の「基本」に対応した “basis” が
後ろに並び替えられてしまったことで、「変化を基に説明した」という間違った翻
訳が出力されている。表 4.6 の例では非自己回帰ニューラル機械翻訳において同じ
翻訳が繰り返された例である。事前並び替えなしの場合の翻訳文では「肝」と「肝
臓」、「流から」が二回繰り返されており、BTG に基づく事前並び替えによって得
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表 4.6 英日翻訳における重複訳例
並び替え例

原言語文
the liver is the organ in which the portal blood flow from the digestive
system organ flows first , and it is the organ in which metastasis frequency
of the digestive cancer is the highest .

BTG
liver the is first the the digestive system organ flows from portal blood
flow in which the organ , and digestive cancer the of the metastasis
frequency which organ in the highest is is it .

参照訳
肝臓 は 消化 器 系 臓器 から の 門 脈 血 流 が 最初 に 流入 する 臓器 で あり， 消化 器
癌 の 転移 頻度 が 最も 高い 臓器 で ある 。

翻訳例
事前並び替えなし 肝 肝臓 は 消化 器 系 の 流 から 門 脈 流 から 最初 臓器 で あり ，消化 器 癌 の 転移 頻度 最も 臓器 で ある 。
(後処理なし)

肝 肝臓 は 消化 器 系 の 流 から 門 脈 流 から 最初 最初 臓器 で あり ，
消化 器 癌 の 転移 頻度 頻度 最も 最も 臓器 臓器 臓器 臓器 で ある 。

BTG
肝臓 は 消化 器 臓器 から の 門 脈 血 流 で ある 臓器 で あり ， 消化
器 癌 の 転移 頻度 が 最も 臓器 最も 臓器 で ある 。

(後処理なし)
肝臓 は 消化 器 臓器 から の 門 脈 血 流 流 で ある 臓器 で あり ，
消化 器 癌 の 転移 頻度 が 最も 臓器 臓器 臓器 最も 臓器 で ある 。

潜在変数の 肝 は 消化 系 から 血 臓器 で あり 消化 器 癌 転移 頻度 臓器 で ある 。並び替え

(後処理なし)
肝 は は 消化 消化 系 系 から から から から 血 血 血 血 血 臓器 臓器
で あり あり 消化 消化 器 癌 転移 頻度 頻度 臓器 臓器 臓器 臓器 臓器
で ある 。

事前並び替え 肝臓 は ， 消化 管 臓器 から 門 脈 から する 肝 系 で ， 消化 転移 の
位置表現 頻度 で ある 。
(後処理なし)

肝臓 は ， 消化 管 臓器 から から 門 門 脈 から から から する 肝 系 で
で で ， 消化 消化 消化 転移 転移 転移 転移 転移 転移 の 頻度 で ある 。

られた文を使用した翻訳では「最も臓器」というフレーズが二回繰り返されてい
る。このように、非自己回帰ニューラル機械翻訳では自己回帰ニューラル機械翻訳
と異なり以前に出力した翻訳を考慮することが難しいため、同じフレーズを繰り返
してしまう重複訳が多くなる傾向にある。
表 4.7 に各翻訳モデルの出力した文の 1 単語あたりの平均繰り返し回数を示す。
事前並び替えなしと比較すると BTG による翻訳文では 1 単語あたりの平均繰り返
し回数が増加しており、事前並び替えを使用することで重複訳が多くなる傾向にあ
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表 4.7 非自己回帰ニューラル機械翻訳モデルにおける 1 単語あたりの平均繰り返し回数

事前並び替えなし BTG
潜在変数の 事前並び替え
並び替え 位置表現

0.1093 0.1571 0.3659 0.3243

ることがわかる。また潜在変数を並び替える手法、事前並び替え位置表現を使用
する手法では 1 単語あたりの平均繰り返し回数がベースラインの約 3 倍に増加し
ている。実際に表 4.6 の翻訳例において、潜在変数を並び替える手法では「は」、
「消化」、「系」、「から」、「血」、「臓器」、「あり」、「頻度」、「臓器」という単語が繰
り返され、事前並び替え位置表現を使用する手法では「から」、「門」、「で」、「消
化」、「転移」という単語が繰り返し出力されている。検討手法によって非自己回帰
ニューラル機械翻訳モデルにおける重複訳の問題が顕著に現れており、この原因の
調査は今後の課題とする。

4.5 おわりに

非自己回帰ニューラル機械翻訳では原言語文の語順をそのまま使用して翻訳文を
出力するため、語順の相違を考慮することが出来ない。そのため、英日対のように
語順が大きく異なる言語対では翻訳精度が低下する。そこで本章では非自己回帰
ニューラル機械翻訳手法の一つである LaNMT モデルにおける事前並び替えの適
用手法について調査を行った。非自己回帰ニューラル機械翻訳では自己回帰ニュー
ラル機械翻訳の場合と異なり、事前並び替えを行った文をそのまま入力することで
翻訳精度が向上することが明らかとなった。一方、潜在変数を並び替える手法や事
前並び替え位置表現を足し合わせる手法では翻訳精度が低下し、とくに重複訳が多
く見られる傾向にあることが判明した。今後の課題として、語順を予測するモデル
を組み込んで潜在変数に語順の情報を取り入れるなど、よりうまく語順の情報を活
用した非自己回帰ニューラル機械翻訳の検討が挙げられる。
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第 5章 結論

機械翻訳では、特に英語と日本語のような語順の大きく異なる言語対において翻
訳精度が低下するという問題がある。本論文では機械翻訳における語順の問題に着
目し、フレーズベース統計的機械翻訳における事前並び替え手法の提案、自己回帰
ニューラル機械翻訳における事前並び替え位置表現の提案、非自己回帰ニューラル
機械翻訳における事前並び替えの効果の検証を行った。
第 2 章のフレーズベース統計的機械翻訳における事前並び替えでは、ニューラル
ネットワークである RvNN を使用した人手での特徴量設計が不要な事前並び替え
手法を提案した。この手法は先行研究であり人手での特徴量設計に依存する BTG
と同等の翻訳性能を達成し、特に英日対のような語順が大きく異なる言語対で翻訳
精度が向上したことを実験で確認した。
統計的機械翻訳の後継となるニューラル機械翻訳において、注意機構付き RNN
モデルでは並び替え後のインデックスのベクトル表現を使用し翻訳精度が向上した
ことが報告されていた。しかし現在の機械翻訳でスタンダードである Transformer
において事前並び替えが有効に働くかは定かではなかった。そこで第 3 章では
Transformer 対して、事前並び替えによって得られたインデックスのベクトル表現
を使用する手法を提案した。この手法によって原言語文と目的言語文の両方の語順
を考慮した翻訳を行うことが可能になる。翻訳評価実験では、特に各言語から英語
方向への翻訳において、事前並び替えが精度よく行えた場合に翻訳精度が向上する
ことが確認出来た。また、中程度の長さ以上の文において提案手法によって翻訳精
度が向上していることが分かった。
近年では翻訳にかかる時間を削減することを目的とし、翻訳文を一度に出力す
る非自己回帰ニューラル機械翻訳が盛んに研究されている。しかし、非自己回帰
ニューラル機械翻訳では原言語文のベクトル表現をそのままの順番で使用するた
め、語順の相違を考慮することが出来ない。そこで第 4 章では非自己回帰ニュー
ラル機械翻訳における事前並び替えの効果の検証を行った。その結果、非自己回帰
ニューラル機械翻訳では事前並び替えをそのまま使用しても翻訳精度が向上するこ
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とを確認した。一方で、潜在変数を並び替える手法や事前並び替え位置表現を使用
する方法では翻訳精度が低下することが明らかとなった。
上述の通り本論文では、機械翻訳における語順の問題の解消を目指し、事前並び
替え手法の開発と、フレーズベース統計的機械翻訳モデル、自己回帰・非自己回帰
ニューラル機械翻訳モデルに対する事前並び替えの適用に取り組んだ。第 1 章で
も触れたように、機械翻訳において語順の問題は特に英日対のように語順の大きく
異なる言語間において障壁となっている。そのため語順の問題の解決のためにこれ
まで多くの手法が提案されてきた。本論文で提案した手法によって語順を考慮した
翻訳が可能になり翻訳精度が向上したが、RvNN を使用した並び替えは外部の構文
解析器を必要とする。そこで今後の課題として、構文解析器を使用しない並び替え
手法の開発が挙げられる。また、Transformer に対する事前並び替え位置表現は翻
訳精度を向上したが、事前並び替え器と Transformer が完全に切り離されているた
めに翻訳精度が事前並び替えの誤りに影響を受けてしまうという問題がある。その
ため、事前並び替えモデルと翻訳モデルを統合したモデルのように語順の情報をモ
デル内部で活用する手法の検討が今後の課題である。
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