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Abstract 

Data generated by large-scale scientific simulations is expected to increase by orders of 

magnitude in the future as we approach exascale computing. Input/output constraints 

of supercomputers have increased the use of co-processing approaches, i.e., visualizing 

and analyzing scientific simulations on the fly. Co-processing tasks consume valuable 

simulation time, thus affecting the fidelity and scale of phenomena that can be simulated 

in a given time frame. As the complexity and scale of both simulations and co-processing 

tasks are bound to increase in the future, there is a need for new techniques to accelerate 

challenging co-processing tasks. 

In this dissertation, we identify and address three challenges facing the large-scale co-

processing of simulation data. The first challenge is how to expeditiously determine what 

constitutes important data. Analysis and visualization tasks can be focused on the most 

essential data, thus accelerating the co-processing. We present a method that evaluates the 

importance of different regions of simulation data and a data-driven approach that uses this 

information to accelerate the in-transit co-processing oflarge-scale simulations. We use the 

importance metrics to simultaneously employ multiple compression methods on different 

data regions to accelerate the in-transit co-processing. Our approach strives to adaptively 

compress data on the fly and uses load balancing to counteract memory imbalances. We 

demonstrate the method's efficiency through a fluid mechanics application, a Richtmyer— 
Meshkov instability simulation, showing how to accelerate the in-transit co-processing of 

simulations. The results show that the proposed method can identify regions of interest 

expeditiously, even when using multiple metrics. Our approach achieved a speedup of 

1.29x in a lossless scenario. The data decompression time was sped up by 2x compared 

to using a single compression method uniformly. 

The second challenge concerns load balancing simulation data. In large computing 

clusters, dynamically load balancing data can lead to significant inter-process memory 

imbalances; as a result, data is typically statically distributed among processes. We propose 

a novel compositing pipeline and a dynamic load balancing technique for volume rendering 

that utilizes a two-layered structure to achieve effective and scalable load balancing. The 

technique enables each process to render data from non-contiguous regions of the volume 

with minimal impact on the total rendering time. We demonstrate the effectiveness 

of the proposed technique by performing a set of experiments on a computing cluster. 

＞
 



The experiments show that using the technique results in up to a 35.7% lower worst-
case memory usage as compared to a dynamic k-d tree load balancing technique, whilst 

simultaneously achieving similar or lower rendering times. The proposed technique was 
also able to lower the amount of transferred data during the load balancing stage by up 
to 72.2吼o.The technique has the potential to be used in many scenarios where other 
dynamic load balancing techniques have proved to be inadequate, such as in large-scale 

visualization. 
The third challenge relates to image batch visualization. In many cases, rather than 
saving large quantities of simulation data, thousands to millions of images of different 
variables and viewpoints can be rendered on the fly and saved to permanent storage. This 
image generation process can be accelerated by rendering and compositing images in 
batches. Specifically, images can be combined into larger multi-images, which results in 

less synchronization and communication overhead during the image compositing stage. 
We present a technique to accelerate such batch processing, called dynamic image reso-

lutions. The dynamic image resolutions technique maps regions of blank pixels in each 
image and uses this information to dynamically restructure the multi-images to reduce 
the total image size with no loss of detail. An evaluation of the technique demonstrates 
a 2.02x speedup of the compositing stage as compared to traditional image compositing 
and a 1.82x speedup compared to existing multi-image techniques. 
Our work successfully addresses three important challenges facing on-the-fly co-

processing of large-scale simulation data. The first application shows how essential data 
can be identified, and how this information can be used to accelerate co-processing tasks 

of large-scale data sets. The second application significantly reduces memory imbalances 
resulting from dynamic load balancing, thus making load balancing feasible in large-scale 
environments. The third application shows that batch image visualization can be sped up 
significantly by taking advantage of the underlying image data. 
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Chapter 1 

Introduction 

The processing capabilities of distributed compute clusters are increasing at a fast pace; 

however, limited input/output (I/0) bandwidth leads to bottlenecks in many applica-

tions [12, 13]. This is one of the most pressing matters for large-scale scientific simula-

tions. Simulations can generate multiple tera-or petabytes of data, making it challenging 

to save all necessary data to permanent storage [ 14-17]. One popular approach to circum-

vent this limitation is to perform co-processing (i.e., to visualize and analyze simulation 

data on the fly). Co-processing tasks can be time consuming, thus limiting the available 

simulation time. In this dissertation, we identify and address three challenges facing 

on-the-fly co-processing of large-scale scientific simulations. Specifically, we accelerate 

three time-consuming co-processing tasks, thus freeing up time to perform more ad-

vanced and detailed simulations. We first introduce co-processing approaches and the 

visualization pipeline in Section 1. 1. We then present the challenges and our solutions in 

Sections 1.2-1.4. 

1.1 On-the-Fly Co-Processing of Simulation Data 

Computer simulations are used in a wide variety of fields to study how phenomena interact 

and develop in certain environments. Simulations are especially prevalent for applications 

that otherwise would be expensive or difficult to test, such as fluid mechanics simula-

tions [18, 19]. Scientific simulations are typically performed in three-dimensional (3D) 

space (x, y, and z-axis) and span multiple variables and time steps. Large-scale simulations 

have extensive compute and memory requirements, requiring the use of supercomputers 

or computer clusters. The simulation domain can be partitioned into multiple contigu-

ous and convex blocks; contiguous and convex data regions that combined make up the 

simulation data or 3D data set. Such blocks can be distributed and processed in parallel 

by multiple processes. Researchers can perform various analyses or visualizations on the 

data to extract information about the simulation. 

ー



Simulation 
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Figure 1. 1: In-situ co-processing. Simulation, visualization, analysis, and I/0 operations 

are performed on the same set of processes. 

Co-processing enables researchers to analyze and visualize all generated simulation 

data on the fly, as it is created. The often small-sized output from co-processing tasks (e.g., 

images or analysis results) can then be saved to permanent storage instead of the larger 

simulation data sets. As a result, time-consuming 1/0 operations can be kept at a minimum, 

whilst information about the simulation can be kept for post-hoc analysis. In addition, 

more resources and time can be dedicated to the simulation, allowing researchers to run 

larger simulations and process more data. Typically, two types of on-the-fly co-processing 

approaches are considered: in-situ and in-transit. 

In-situ co-processing (illustrated in Fig. 1.1) is typically performed on the same com-

pute nodes as the simulation and can achieve good performance, partly because of the 

locality of the data. The main drawback of in-situ co-processing is that time-consuming 

analysis and visualization tasks consume valuable simulation time. On the other hand, 

in-transit co-processing (shown in Fig. 1.2) is performed on a separate group of compute 

nodes. Utilizing a different group of nodes means that co-processing can be performed 

asynchronously during the simulation stage, resulting in a less strict time limitation com-

pared to an in-situ approach. Furthermore, nodes can be equipped with different hardware 

to accelerate the co-processing tasks. The main drawback of in-transit co-processing is 

the time-consuming data transfers needed to relocate necessary simulation data. Neither 

co-processing approach is objectively better than the other in all cases [20]; in many situ-

ations, in-situ and in-transit co-processing can be used in combination to take advantage 

of their respective benefits [16, 21]. 

Visualization is a common co-processing task to understand and store information 

about the studied phenomenon. In the context of scientific simulations, it is the process of 

creating one or more images of the simulations'underlying data variables. In a distributed 
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Figure 1.2: In-transit co-processing. The simulation is performed on one set of nodes, 

whereas visualization, analysis, and I/0 operations are performed on a different set. 

setting, visualization consists of two stages: rendering and compositing. In the rendering 

stage, one or more images are generated on each compute process based on the partial 

simulation data present on each process. As the images only contain information on part 

of the simulation domain, they need to be combined into a single, complete image. This 

work is done in the compositing stage. 

1.2 Determining Essential Simulation Data 

Important regions of simulated phenomena are often limited to a subset of the simulation 

domain. By identifying important data on the fly, regions not of interest can be down-

prioritized by analysis, visualization, and I/0 processes, which accelerates such operations. 

Another use case is to perform more fine-grained simulation steps on regions identified 

as important, which is faster than uniformly performing the same steps on the whole 

domain [8, 9]. 

The first challenge (Chapter 2) concerns how to determine the importance of different 

data regions. What constitutes important data depends on multiple factors, such as the 

simulation type and the focus of the study. As a result, there is no definitive approach to 

analyze the importance of data that can be used in all situations. The importance of a data 

region can be tied to multiple different metrics, and it must be possible to make multiple 

decisions about the data based on such metrics. A flexible pipeline that can adapt to these 

different situations is needed. 

To accurately determine the importance of data, we present a method to efficiently 

calculate the importance of regions of simulation data, as well as a data-driven approach 
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that uses the proposed method in-situ to accelerate the in-transit co-processing of a fluid 

simulation. Our hybrid in-situ in-transit approach strives to adaptively compress regions 
of data on the fly, using multiple different compression methods based on the underlying 
data. In addition, we use load balancing to counteract memory imbalances. 

1.3 Dynamic Load Balancing of 3D Data Sets in Large-

Scale Cluster Environments 

Differences in computing times between processes can significantly affect the rendering 
and compositing times when visualizing multiple images (e.g., when visualizing images in 
batches). Dynamic load balancing techniques are often used to alleviate these differences 
in compute time [22-26]. Load balancing techniques typically structure the underlying 
data in a tree structure, such as a k-d tree [27]; however, balancing the compute times 

using this type of tree structure can instead result in substantial memory imbalances [26]. 

The second challenge (Chapter 3) concerns large-scale dynamic load balancing of 3D 
data sets. Post-hoc exploration of certain time steps or using tools like cinema [28] to 
visualize simulation data on the fly results in rendering multiple images from the same 

data sets. Memory imbalances resulting from dynamic load balancing can, when using 
large-scale simulations, lead to some processes running out of memory. As a result, 
dynamic load balancing is seldom used in large-scale settings to balance compute times. 

To limit memory imbalances caused by load balancing 3D data sets, we propose a 

novel compositing pipeline and a dynamic load balancing technique for volume rendering 
that utilizes a two-layered group structure to achieve memory-efficient and scalable load 
balancing. The technique can be used in both in-situ and in-transit settings and enables 
each compute process to render data from non-contiguous regions of the volume with 

minimal impact on the total rendering time. 

1.4 Accelerating Data Visualization Using Multi-Images 

with Dynamic Image Resolutions 

In the context of scientific simulations, multiple images are often generated to represent 
different viewing angles, variables, and time steps. Certain tools [28, 29] automate this 
process by generating thousands to millions of images at regular intervals around the 
studied phenomenon in 3D space. These in-situ vis叫 izationtools can reduce the stored 

data size by orders of magnitude, while still enabling researchers to explore the data 
post-hoc. 

Consider several images, each representing a specific simulation variable or unique 
camera position. In a distributed setting, each process holds a small region of the simulation 
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domain in memory [30, 31]. As a result, images must be composited among the compute 

processes after being rendered. Typically, each image is rendered and composited in 

sequence. However, this type of image generation pipeline induces a substantial amount 

of overhead, primarily as a result of synchronization and communication between different 

processes. Such overhead can be reduced by rendering and compositing images in batches, 

as has been explored in related work [32]. Combining batches of images into multi-images 

proved to further accelerate the compositing process. 
The third challenge (Chapter 4) is related to multi-image batch visualization. Multi-

image techniques [32] have proved to substantially accelerate the batch processing oflarge 

quantities of images. However, rendering and compositing potentially up to millions of 

images remains a very time-consuming process. As a result, there is a need to further 

accelerate image batch processing techniques such as the multi-image technique. The 

amount of data generated by scientific simulations is bound to increase by orders of 

magnitude in the future as we approach exascale computing, making this type of co-

processing essential to analyze simulations post-hoc. 

We present a technique called dynamic image resolutions to accelerate on-the-fly 

multi-image batch visualization of distributed simulation data in large-scale computing 

environments. The dynamic image resolutions technique maps regions of blank pixels in 

each image. This information is then used to dynamically restructure the multi-images to 

reduce the total image size with no loss of detail. Reducing the image size significantly 

accelerates image compositing and the overall visualization process. 

1.5 Overview of the Dissertation 

The rest of this dissertation is organized as follows. Chapter 2 reports our work on the first 

challenge: determining essential simulation data, and how that information can be used 

to accelerate in-transit co-processing. Our work to address the second challenge, limiting 

memory imbalances caused by load balancing in large-scale environments, is presented in 

Chapter 3. Our solution to the third challenge is presented in Chapter 4: accelerating batch 

visualization by using multi-images with our novel dynamic image resolutions technique. 

Finally, Chapter 5 concludes the dissertation and presents directions for future work. 

5
 



6
 



Chapter 2 

Accelerating In-Transit Co-Processing 
for Simulations Using Data-Driven 
Analysis 

2.1 Introduction 

The processing capabilities of modern supercomputers are improving at a tremendous pace. 

However, I/0 bandwidth has advanced at a much slower rate, leading to bottlenecks in many 

applications [ 12, 13]. This is one of the most pressing matters for large-scale scientific 

simulations. Simulations can result in multiple tera-or petabytes of generated data, making 

it challenging to save all necessary data to permanent storage due to limited storage capacity 

or time-consuming I/0 operations [ 14-17]. In-situ or in-transit vis叫 izationand analysis 

are often used for each time step while the data is generated. 

In-situ co-processing is typically performed on the same compute nodes as the sim-

ulation and can achieve high performance, partly because of the locality of the data. 

However, in-situ co-processing takes up valuable simulation time. Many researchers 

are reluctant to dedicate computing resources used by the simulation to other compute-

intensive tasks [13, 15], meaning that the time available for in-situ co-processing often is 

short compared to that of the simulation. One option to reduce the co-processing time is to 

lower the frequency at which time steps are analyzed. Another is to limit the available time 

to perform co-processing for each analyzed time step. Both these options are undesirable 

because they limit the amount of data available to the researcher after the simulation has 

been completed. Furthermore, a significant amount of the available memory is used by 

the simulation in an in-situ scenario, meaning that only a tiny amount can be allocated for 

visualization or analysis purposes [33]. 

In contrast, in-transit co-processing [20, 34] is generally performed on a separate group 

of compute nodes, which we refer to as transit nodes. Utilizing a different group of nodes 
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means that co-processing can be performed asynchronously during the simulation stage, 

resulting in a less strict time limitation than an in-situ approach. Furthermore, the transit 

nodes can be equipped with different hardware to accelerate the co-processing tasks. The 

main drawback of in-transit co-processing is that the relevant simulation data needs to be 

transferred to the transit nodes. Moreover, it is not guaranteed that the simulation nodes 

can hold an extra copy of the data in memory. It is often impossible to transfer the data 

asynchronously while simulating the next time step. 

The data transfers required to perform in-transit co-processing can be accelerated by 

reducing or compressing the simulation data. However, using a reduction or a lossy 

compression method could lower the detail and accuracy of the whole data set, including 

regions of interest. It could instead be beneficial to selectively compress areas of data 

based on their contribution to the simulated phenomenon. Reducing or compressing areas 

that are not of interest would result in less time-consuming data transfers without any 

significant loss to the data quality. 

To determine the frequency at which data is analyzed, the time available for co-
processing, and what compression method(s) to use to accelerate the data transfers, there 

is a need to identify the importance of the underlying simulation data. Such information 

can be used in a wide variety of cases, including guiding the simulation, determining 

which time steps of the simulation to analyze or save to permanent storage, removing 

or reducing unimportant data, and finding interesting camera locations for co-processing 

purposes. Some of these cases have been explored in related work [ 4-11]. However, these 

methods have either been limited in the number of used importance metrics [ 4, 6-11] or 

been unable to combine multiple metrics to create advanced importance metrics and to 

make more advanced decisions [5]. 

We propose an in-situ method that efficiently can identify the importance of subsets 

of simulation data, which consists of multivariate and temporal data sets in the form 

of structured rectilinear grids. User-defined importance metrics and filters are used to 

determine the importance of blocks. The calculated importance can then be used for a 

variety of purposes to accelerate or guide the simulation, such as identifying important 

regions, down-sample, reducing, compressing, or simply removing parts of the data based 

on user-defined constraints and the underlying hardware. What sets the proposed method 

apart from related work is its ability to calculate importance when using multiple analyses 

efficiently. It can adaptively make any number of decisions based on the importance, 

compared to only a binary decision, which is typical in other methods. 

We also propose an approach that uses the proposed in-situ method to identify how to 

best combine the usage of multiple different compression methods based on the importance 

of the underlying data, which can be seen as a use case of the proposed method. In the 

case of lossy compression, loss of detail in regions of interest can be kept at a minimum 

by reducing unimportant areas. Using this data-driven approach, we strive to reduce the 

data size and the in-transit data transfer time to accelerate in-transit co-processing. The 

main contributions of this work are as follows: 
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1. An efficient method to determine the block importance of large-scale simula-

tions. Calculating the importance of various regions of data was a time-consuming 

task in many related works. As such, only a few importance metrics tend to be 

used. The main goal of our proposed method is to provide researchers with a 

customizable and easy-to-use way to efficiently determine the importance of sub-

sets of large-scale simulation data, even when using multiple complex analyses to 

determine such importance. To reach this goal, we have developed a scheme that 

uses a separate buffer to transform the data to a more suitable structure for analysis 

and strives to schedule importance analyses in a fashion that improves the cache hit 

rates. We also introduce the usage of an adaptive condition window; a custom range 

within which multiple condition parameters can vary. Using a condition window 

allows parameters to change based on the current constraints of the environment. 

For example, if a data transfer is too time-consuming, the parameters can be adapted 

to compress or remove more data in the coming time step. 

2. A flexible approach to accelerate in-transit co-processing. We observe that the 

effectiveness of a certain compression algorithm often depends on the underlying 

compressed data. By identifying the importance and the most suitable compression 

for each region of generated simulation data in-situ, we strive to minimize the 

data size and the in-transit data transfer time by combining the use of multiple 

compression methods integrated into a pipeline. The approach explored in this 

chapter puts no additional restraints on the contents of the co-processing stage. It 

can be used in tandem with various visualization software, e.g., Paraview [35], 

Vislt [36], or OSPRay [37]. 

3. A case study of how the in-transit co-processing of a Richtmyer-Meshkov in-

stability (RMI) simulation can be accelerated using the proposed approach. 

The RMI simulation is performed using CNS3D, a state-of-the-art program for 

numerical fluid simulations. 

The structure of this chapter is organized as follows. Related work is discussed in 

Section 2.2. The proposed approach is presented in Section 2.3. In Section 2.4, we 

evaluate the performance of the proposed approach. Lastly, our conclusions are presented 

in Section 2.5. 

2.2 Related Work 

Determining and analyzing regions of interest in 3D data sets has been an important topic 

in many research fields, and has as such been explored in many related works [ 4-11]. A 

commonly used technique is Adaptive Mesh Refinement (AMR) [7-9]. Using AMR, the 

simulated region is divided into multiple sub-regions, commonly by using a tree structure 
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such as an octree [38]. After the simulation has been completed, important regions in the 

tree structure are subdivided to create even smaller sub-regions, on which more compute-

intensive operations can be used to, for example, increase the accuracy or resolution of 

the simulation. This process can be performed recursively based on the researcher's 

specifications. The analysis required to calculate block-based importance metrics results 

in a fairly uniform data access over all data points in the simulation region. As such, 

the recursive, top-down AMR approach could result in redundant calculations and low 

cache hit rates. This notion is confirmed in related work [6], where a bottom-up approach, 

i.e., calculating the importance of each individual block, could achieve significantly better 

performance. 

Close to our work is a paper by Dori er et al. [ 4], in which calculated importance metrics 

were used to adaptively reduce unimportant blocks. The technique targets explicitly in-

situ visualization and supports elementary data reduction and load balancing based on a 

random distribution. However, the technique only supports a single reduction strategy. 
Furthermore, their technique assumes that simulation data is stored as blocks, which is 

not the case for most simulations. For their technique to work in the general case, all 

simulation data first needs to be preprocessed and partitioned into blocks, which is time-

consuming and increases the memory usage as two sets of the simulation data need to be 

maintained while performing the importance analysis. 

Wang et al. [5] introduced an importance curve to store the derived importance of 

all data blocks for a time-varying data set. By analyzing the changing block importance 

between different time steps it would be possible to characterize temporal behaviors 

exhibited by simulation data. Such information could be used to make informed processing 

decisions, e.g., setting a time budget for the co-processing stage or saving data to permanent 

storage. 
Nouanesengsy et al. [6] presented a prioritization method for 3D data sets inspired by 

AMR. Data sets were recursively partitioned into smaller regions based on user-defined 
importance metrics. A prioritization tree was constructed for the data set, which then could 

be used to identify interesting camera placements or to determine compression strategies 

for saving data to permanent storage. 

Some data sampling and summarization methods [10, 11] use importance based on 

entropy metrics to prioritize the reduction of unimportant data. Here, reduced subsets of 

the simulation data are saved to permanent storage for post-hoc analysis; more than 99喩

of simulation data is removed in some applications [10]. Data sampling methods are not 

suited for applications that operate on lossless simulation data. Moreover, these methods 

do not support use cases that require custom metrics to define important data. 

Table 2.1 shows a q叫 itativecomparison to related work. Here, we specifically 

compare features related to the use case considered in this work. Method [5] is processed 

post-hoc, whereas methods [6-9] have no defined behavior of how to use the calculated 

importance values to compress unimportant data. Out of the methods used for comparison, 

only related work [ 4, 10, 11] explore using the data importance to prioritize compression 
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Table 2.1: Comparing features of related work [ 4-11] to this work. 

Method 

This work [ 4] [5] [6] [7-9] [10, 11] 

Processing approach 

Supports custom importance metrics 

Decisions based on multiple metrics 

Tracks time-varying data 

Used to compress unimportant data 

In-transit In-situ Post-hoc In-situ In-situ In-situ 

/
＞
✓
 

✓
 

✓
 

✓
 

/

＞

／

＞

 

／
＞
 

／
＞
 

／
＞
 

✓ 

lossy 

Multiple compression methods 

lossless/lossy lossy 

✓ 

or reduction of unimportant data. However, in contrast to our work, none of the methods 

support lossless compression or simultaneously using multiple compression and reduction 

methods. In addition, there is no defined behavior of how to use the methods for in-transit 

co-processing. A quantitative comparison is difficult, as each work has a different feature 

set and use case. We, therefore, chose to evaluate our method independently, as was also 

done in related work [ 4-6]. 

Many visualization and analysis techniques have been proposed for in-situ and in-transit 

co-processing. Some aim to batch-render images of each time step of the simulation from 

multiple viewpoints, thus allowing researchers to interactively explore different regions of 

the simulation post-hoc [29, 39]. Other techniques focus on extracting features, metadata, 

or samples of the simulation [13, 40-42]. Using many different types of visualizations and 

analyses would generally be desired to extract as much information from the simulation 

as possible. However, each additional task would increase the execution time. The logical 

approach would be to use in-transit co-processing in such a scenario due to the often limited 

time available to perform such computations in-situ. To make in-transit co-processing a 

viable option, we need new techniques to achieve faster data transfers between simulation 

and transit nodes. Many researchers have developed methods to lower the data transfer 

time required to perform in-transit co-processing [16, 43-45]. Most works have focused 

on uniformly reducing or compressing data [16, 43, 44]. Although efficient, regions of 

mterest w1thm the data are reduced to the same extent as ummportant regions. 

Lossy compression methods such as zfp [46] and an extension of SZ [47] strive to 

lower the compression error by analyzing the entropy of the data. Data sets are split into 

blocks of size 4 x 4 x 4 and 6 x 6 x 6, respectively. A function is then used to predict a 

suitable level of compression for each block, based on the estimated compression error. 
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These lossy methods have proved to achieve good performance [46, 47]. However, the 

fact that they are lossy makes them unusable in many use cases. We also note that these 

methods are unable to determine the importance of regions of data and that although the 

level of compression varies, they ultimately use the same lossy compression method on the 

whole data set. Both of these compression methods can be integrated into the proposed 

approach, as presented in Section 2.3, to be used on a subset of the available data blocks. 

In summary, effectively performing in-transit co-processing of data generated by sci-

entific simulations remains an important research topic in the field of high-performance 

computing. Many methods which uniformly reduce or compress data have been proposed. 

However, the characteristics of the simulation data can vary substantially depending on 

the current time step, meaning that the need for compression and analysis also can vary. 

Some techniques which analyze the characteristics of the data also exist. However, one 

of the most commonly used techniques, AMR, is often unable to efficiently calculate 

individual block importance because of the different data access pattern. Although alter-

natives [ 4-6, 10, 11] have been proposed, they are generally limited in scope or in their 

ability to perform multiple analyses to determine block importance or characteristics of 

different parts in the studied simulation data. Our work improves upon this related work 

by efficiently handling multiple importance analyses and by adaptively utilizing multiple 

different compression and reduction strategies. 

2.3 Adaptive In-Transit Co-Processing 

In this section, we present the proposed method and an approach to accelerate in-transit 

co-processing. To the best of our knowledge, this is the first work to accelerate in-transit 

processing by simultaneously using more than one compression method based on multiple 

importance analyses of the underlying simulation data. The workflow of the approach is 

shown in Fig. 2.1. 

The approach consists of three distinct stages: 

1. The in-situ stage (Sections 2.3.1-2.3.4), which consists of the proposed method. The 

block importance is calculated, and which compression method to use is determined 

on a per-block basis. 

2. The distribution stage (Section 2.3.5), where data is compressed, load balanced, and 

transferred over the network to the transit nodes. 

3. The in-transit stage (Section 2.3.6), where compressed data is decompressed and 

restructured on the transit nodes. 
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Figure 2.1: Typical in-transit workflow using the proposed approach. 3D data sets are 

partitioned into blocks, analyzed, and compressed in parallel on the simulation nodes. 

The blocks are then transferred to the transit nodes, where they are decompressed and 

reconstructed into the original data sets. The in-situ stage consists of the proposed method. 

The proposed approach requires additional operations (highlighted in gray) compared to 

a typical in-transit workflow that uses a single compression method. 

2.3.1 Calculating Importance 

Calculating block importance has been a time-consuming task in many related works, even 

for relatively small data sets. Because of this reason, the block importance in related work 

has generally been calculated using one or a few importance measurements. However, 

simulation data often contains many different types of regions of interest. Furthermore, the 

best compression algorithm might differ based on the entropy of the data in the different 

regions, meaning that there are many situations in which using multiple importance 

measurements would be preferable. Typically, the computation time would increase 

proportionally to the number of used importance measurements. However, in our solution, 

we strive to minimize this increase in computation time. In addition to performing 

importance calculations on a block's complete simulation data, we also support using a 

random sample of a block's data. That is to say, importance calculations can either be 

performed on the entire simulation data of a block or a smaller, random sampled subset 
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of a block's data. Using only a sample of the simulation data can result in a significant 

speedup. The calculated importance would not be entirely accurate, which might be an 

issue in specific applications. However, sampling could still be useful in most cases. For 

example, random sampling could be used to identify blocks that appear only to contain 

homogeneous space, i.e., blocks in which all values are identical. A non-sampled analysis 

of the data could then be performed on the subset identified by the sampled importance, 

which substantially could reduce the total computation time. 

A key issue when calculating the importance is the time it takes to access data. The 

simulated region is typically allocated in contiguous memory space. However, a block 

makes up a 3D subset of the simulated area, which leads to low cache hit rates, especially 

for small block sizes. Using multiple importance metrics or metrics that utilize advanced 

data access patterns further complicates this issue. Some related work [ 4] has solved this 

issue by assuming the simulated region is allocated on a per-block basis. However, we feel 

that this is too limiting. Our solution is to dynamically allocate and deallocate a separate 

buffer for a block or a block sample when it is analyzed. All relevant importance analyses 

are then applied in sequence on a per-block basis, which leads to higher cache hit rates and 

a low memory overhead. Furthermore, this approach ensures that simulation data of each 

analyzed block only needs to be allocated and copied once, minimizing the computation 

time overhead introduced by this step. Operating on a separate buffer of a block's subset 

of the simulated area leads to higher cache hit rates, which means that multiple importance 

calculations can be performed at a lower computational cost. 

A pipeline consists of a list of filters, which are executed in sequence. Filters contain 

probes, which are functions that analyze the data on a per-block basis. An overview of a 

pipeline's block importance analysis scheme is provided in Algorithm 1. 

A filter contains zero or more probes, which are used to analyze each block in sequence. 

Each probe executed by a filter is assigned a custom weight (by default, 1). Given a block 

b, a filter f, and a set of probes for filter f, Pf, the resulting importance of block b, iか
after a filter has been applied is 

杯=Ip(b) ， 
pE幻
Wp 

(2.1) 

where w P is the weight of probe p and p (b) is the function by probe p to calculate the 

block importance of block b. A filter also contains an action, a condition, and a scope. An 

action specifies how a block should be handled during the data transfer stage. By default, 

a block has no specified action. However, a block's action can be changed by a filter to, for 

example, use a specific reduction strategy during the data transfer stage. Whether a block 

should assume a filter's action depends on if the block's importance fulfills the filter's 

condition. The condition returns either true or false depending on a block's importance; 

for example, a condition could specify ib > 0.8, in which case all blocks with importance 

higher than 0.8 will assume the filter's action. The scope, a set of one or more actions, 
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Algorithm 1 Scheme used to calculate the importance of all blocks. The importance is 
used to determine the action of each block. 
Input: 
:B = { 1, 2, ... , N}: set of all N blocks 
'F: set of all active filters in pipeline 
'W = {w砂： set of weights, where Wp is the weight of probe p 
Output: 
I= {i1,iふ..., iN }: set of importances, where柘isthe importance for block b E :B 
JI= {a1,a2, ... , 邸}:set of actions, where ab is the action for block b E :B 

1: for each block b E :B do 
2: ib← O; ~Importance initially set to zero for block b 
3: ab← NONE; ~Action initially set to NONE for block b 
4: for each filter f E'F do 
: if ab is in the scope off then ~Each scope 1s a set of zero or more act10ns 
6: for each probe p of filter f do~p E { Mean, Range, SD, AVGSEQ, Distinct, Entropy} 
7: if p analyzes a sample which is not allocated then 
8: allocate sample of block b; 

9: 

10: 

11: 

if p analyzes a block which is not allocated then 
allocate block b; 

ib =柘+p(b)/w祈 ~p (b) calculates the importance for probe p on block b 
12: if ib satisfies the condition of filter f then 
13: ab← action of filter f; ~ab E { NONE, Skip, RLE, LZ77, HOMO} 
14: Free the allocated memory of block b; 

15: return I, :ll; 

determines which blocks should be processed by a specific filter. For a filter to be applied, 

the block's action needs to match one of the scope's actions. This structure makes it 

possible to target specific subsets of blocks to perform further analysis and importance 

calculations. 

Data is analyzed by using probes. Probes are short functions that analyze and output 

the importance of each block, based on the full content or a sample of a block. That is to 

say, the output of a probe calculating the mean value of a block is computed by iterating 

through each element in the block and then calculating the average value. In our testing, 

six different probes were used. The six probes are defined as follows: 

• Mean. Calculates the mean of all values in a block. 

• Range. Calculates the range of the values in a block. 

• SD. Calculates the standard deviation of the values in a block. 

• AVGSEQ. Calculates the average sequence length of identical values in a block. 
This probe is only used on non-sampled data, as sampled data would not retain 

enough information about the average sequence length. 
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• Distinct. Calculates the number of distinct values compared to the total number of 
values in a block. 

• Entropy. Calculates the entropy of a block [ 4]. 

2.3.2 Block Actions 

Block actions consist of three stages: initialization, pre-processing, and post-processing. 

Block actions can act as tags for a wide variety of acceleration purposes and can be seen 

as the action that has been taken for a specific block, based on its importance and the used 

filter conditions. However, we consider actions as tags for different types of compression 

methods. The initialization stage can be used to initialize resources and to specify the 

estimated compressed data size. Such information could be used to, for example, improve 

load balancing. The pre-processing and post-processing stages can be used to compress 

and decompress a block's data, respectively. Five different actions are used in our testing: 

• No Action (NONE). No reduction or compression is performed. Blocks have this 
action set by default. This action is mainly useful for blocks where the time overhead 

introduced by compression outweighs the speedup of data transfers. 

• Skip. Blocks with this action are never allocated or sent to the transit nodes. This 
action is useful if, for example, a region of the simulated grid is not of interest. Using 

the Skip action can, as such, substantially reduce the data transfer and co-processing 

times in some scenarios. 

• Run-Length Encoding (RLE). Blocks with the RLE action are compressed using 
RLE. Both the compression and decompression of data can be completed in one 

pass. 

• LZ77. Blocks with this action are compressed using the LZ77 compression algo-
rithm [ 48]. Compared to the RLE compression method, LZ77 can be used to more 

effectively compress repeating sequences of data. This means that its usefulness 

differs depending on the simulation as well as on each block. 

• Homogeneous (HOMO). Blocks that are Homogeneous are allocated as a single 
value. Similar to the Skip action, it can dramatically reduce the data transfer time. 

This action is useful for empty or homogeneous space, and can also be used to reduce 

regions that are not of interest. The main benefit that the Homogeneous action has 

over other types of compression and reduction algorithms is the compression time, 

which has a time complexity of 0(1). 

We note that although these compression and reduction methods are used in the context 

of this chapter, the proposed approach can be used in combination with any existing 
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compression and reduction methods, including lossy methods like zfp [46], SZ [49], and 

its extension [47]. 

2.3.3 Adaptive Condition Window 

The time required to perform importance calculations and data transfers largely depends on 

the filters and the target block actions, which are based on the specified filter conditions. 

Setting static filter conditions, i.e., each condition has a non-changing, constant value, 

could work in some situations. However, simulation data is rarely the same between any 

two time steps. As such, the execution time and memory usage could vary substantially. 

Instead, it could be preferable to adaptively change the parameters of the filter conditions 

based on some criterion. This criterion could be based on, for example, the execution 

time, memory usage, or the remaining allocated time on a compute cluster. We refer to 

this kind of filter condition as an adaptive condition. 

In our approach, we have to consider multiple filters, all of which could include adaptive 

conditions. The key issue is how to adaptively modify the conditions without affecting 

the intended flow of the analysis. Our solution is to use an adaptive condition window, 処

by which multiple adaptive condition values can vary predictably. The condition window 

is a value that slides between 0.0 and 1.0, at 0.05 intervals. The condition window can 

slide one interval towards 0.0 or 1.0 after each time step. All filters have a defined range 

(upper bound u and lower bound l) for their condition value. The filter condition values 

are reevaluated after each executed time step based on input to the program, using the 

expression 

l + (u -l)・似 (2.2) 

The upper and lower bounds can be set to the same value, in which case the condition 

value of that filter is constant. 

For example, a researcher could determine that as much important data as possible 

should be saved to permanent storage after each time step. However, there is a strict time 

limit for the length of the I/0 operation. The researcher would first decide on probes and 

filters that accurately can identify important data for the specific use case. The l and u 

variables would then be set to 0.0, 1.0, respectively. Initially, w is set to 0.0. However, 

after each time step, w can increase by 0.05 based on if the I/0 time exceeds the specified 

time limit. Over time, w moves to the highest value possible such that the I/0 operation 

does not exceed the time limit. As a result, the researcher can maximize the amount of data 

that can be stored for each time step. This behavior further scales to work with multiple 

probes and filters, meaning that many decisions can be made about different aspects of the 

simulation data. 

The adaptive condition window ensures that the condition values of all filters can be 

modified in a controlled manner, thus retaining the intended analysis flow. One condition 
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window is used per pipeline, meaning that different condition windows can be used for 

different data sets if required. 

2.3.4 Advantages of the Pipeline Structure 

The proposed structure facilitates pipeline construction in practical applications. Specif-

ically, the pipeline has three key advantages compared to alternative structures (e.g., a 

directed acyclic graph (DAG) or a decision tree approach [50] that calculates an impor-

tance metric on each branch node): 

I. Ease of use. Using the structure of the proposed pipeline, each component (e.g., a 

filter or probe) is categorized and serves a clear purpose. In practice, it is easy to 

construct and understand the structure of the proposed pipeline. In contrast, some 

structures (e.g., decision trees) would not be intuitive without a visual interface. 

2. Gradual refinement. A new action can be assigned to a block after each filter has 

been applied. As filters are applied in sequence, this behavior enables a gradual 

refinement of the importance analysis. More advanced or time-consuming analyses 

can be limited to the relevant subsets of the simulation data. Although this behavior 

can be mirrored by other structures (e.g., a DAG or tree structure), it would be more 

complicated to create. 

3. Reusability. It is easy to reuse parts of a pipeline (e.g., filters or probes) in other 

applications as all parts of the pipeline are compartmentalized. 

2.3.5 Data Distribution 

Load balancing blocks of 3D data sets has been the focus of extensive research [ 4, 22-

26, 31]. A load balancing technique can either create a static distribution of the data or 

dynamically change the distribution based on some variables. Typically, dynamic load 

balancing techniques strive to minimize either the difference in computation time or the 

difference in memory usage on each process. 

Scientific simulations often generate large quantities of data, meaning that memory 

usage is of primary concern. Therefore, we currently consider a static and a dynamic 

different load balancing technique. The static technique is based on the initial distribution 

in a k-d tree [27], which distributes blocks to all processes on the transit nodes. However, 

some blocks may have been removed using the Skip action. As such, using this technique 

could result in a memory imbalance on the transit nodes. The dynamic technique partly 

resolves this issue by rebalancing the k-d tree. Let :Bt be the list of blocks on transit process 
t, μthe average number of blocks per process, and n the number of transit processes. The 
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goal is then to minimize 

言]戸 (2.3) 

i.e., the difference in allocated memory on each process on the transit nodes. 

Blocks sent to a specific process on a transit node make up a contiguous and convex 

subset of the original 3D data set. They can, as such, be decompressed in parallel and 

combined to reconstruct a single region in 3D space. This step is essential to perform cer-

tain types of analyses and vis叫 izationsefficiently. For example, many volume rendering 

engines utilize internal block structures to perform empty space skipping [ 51] and opti-

mization techniques such as early ray termination [52, 53]. Prematurely partitioning the 

3D data set into multiple blocks can negatively affect the effectiveness of such techniques. 

At the start of the distribution stage, we utilize distributed filters to apply filters that 

require information about blocks from multiple processes. For evaluation, only one 

distributed filter is used, Filter Borders. The Filter Borders distributed filter attempts to 

identify blocks of a specific action on the border of the 3D data set. If a slice of border 

blocks can be identified, their action is changed to the target action specified by the filter. 

For example, this distributed filter can be used to identify slices of homogeneous blocks 

along the border of the 3D volume, and then exclude them from the in-transit rendering 

process by changing the action to Skip. 

2.3.6 In-Transit Co-Processing 

Blocks transferred to processes on transit nodes might have been reduced or compressed 

during the in-situ stage. To perform any visualization or analysis of the data, the blocks 

first need to be decompressed. Blocks are decompressed based on the used compression 

algorithms. Because blocks on a specific process make up contiguous and convex regions 

in 3D space they can also easily be aggregated into a single block, which significantly can 

improve the performance of the co-processing process. 

The content of the co-processing is not part of our proposed approach. Instead, 

the approach only handles data decompression and data reconstruction on the transit 

nodes. Analysis and visualization can be performed in a normal fashion according to 

the researcher's needs, without any need to integrate existing tools and software with our 

approach. 

2.4 Experimental Evaluation 

To evaluate the proposed method and the approach to accelerate in-transit co-processing, 

we have run a series of tests on two different compute clusters, cluster A and cluster B 
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Table 2.2: Test environments. Each cluster system has Infiniband EDR as its interconnec-

tion. 

Cluster A Cluster B 

Simulation node Transit node Simulation node Transit node 

CPU Xeon Xeon Silver Xeon Gold Xeon Gold 

E5-1650 v4 4110 6126 x2 6126 x2 

6 cores 8 cores 12 cores x2 12 cores x2 

Memory (GB) 128 96 192 192 

Node count 16 2 32 4 

Processes 16 2 64 8 

Software GCC version 7.3.0 ICC 

OpenMPI version 3.1.0 Intel MPI version 18.0.3 

(Octopus) [54], at different resolutions using up to 864 cores. Information about the test 

environments is detailed in Table 2.2. 

2.4.1 
．． 

Experiment Description 

We used the RMI simulation data to evaluate the performance of our proposed approach. 

The RMI test-case set-up, as well as numerical methods considered, are similar to previous 

work [18, 19]. However, here, the effect of the membrane mesh separating the two gases 

is modelled in the simulations according to well-defined modes combined with random 

perturbation components [1, 55]. 

To mimic a realistic co-processing scenario, we used up to three different variables in 

each analyzed time step: the mass fraction (MF) and two axes of the momentum (MY and 

MZ). The data of these variables were analyzed, compressed, and transferred to the transit 

nodes using the proposed approach. On the transit nodes, data decompression and data 

reconstruction were also performed. However, no additional co-processing was included 

as part of the testing. 

A grid resolution of 1601 x 401 x 801 was used on cluster A, resulting in 11.5 GB of 

data spread over three variables, each time step. Similarly, the grid resolution on cluster B 

was set to 2401 x 601 x 1201, resulting in 38.7 GB of data for the three analyzed variables. 

We chose to perform co-processing for time steps at a 5e-5 second interval (simulated 

time). In practice, this amounts to approximately 1 out of every 127 and 1 out of 193 time 
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(a) (b) (c) 

Figure 2.2: Vis叫 izationof the MF data set generated by the RMI simulation at time 
(a) 0 ms, (b) 2 ms, and (c) 4 ms; blue represents pure air, red represents pure sulfur-

hexafluoride (SF6), while yellow represents the binary mixture comprising of the two 

miscible components. 

steps, respectively. The simulations ran for 10,292 time steps on cluster A and 15,653 

time steps on cluster B, out of which 81 were analyzed. That is to say, up to 0.91 TB 

(cluster A) and 3.06 TB (cluster B) of data were analyzed. It took a total of 117.5 hours 

on cluster A and 100.9 hours on cluster B to run the simulations. 

The data was loaded into memory as 64-bit floats during the testing. Figure 2.2 shows 

a visualization of the MF data set, using the OSPRay rendering engine [37], version 1.7.3. 

The proposed approach can utilize a combination of existing compression methods, 

and its performance depends on the performance of the used methods. We, therefore, 

chose to compare the approach to uniformly applying each compression method used by 
the approach on the full data set. Those methods consist of RLE, LZ77, and HOMO, as 

specified in Section 2.3.2. 

2.4.2 Block Size 

Analysis operations are heavily dependent on the size of each block. Appropriate block 

sizes for volume rendering have been investigated in related work [22], which found that 

blocks with a 64 x 64 x 64 resolution achieved the best result in their use case. A similar 

block resolution has been used in research related to this work [ 4], although with no 

motivation. We analyzed five resolution to determine an appropriate block resolution 

for our use case: 50 x 50 x 50, 50 x 50 x 100, 50 x 100 x 100, 100 x 100 x 100, and 

100 X 100 X 200. 

Tests were performed on cluster A using the MF data set and a Mean probe. As per 

21 



0.06 

0.05 

0.04 
(

s

)

 

a
 Eu
,
 

0.03 

0.02 

0.01 

゜

I I Importance 

s<:?i-so so+s so+ 裕裕
+s 

O+ ✓ ゎ+.;
o も。゚o+も゚ b 11゚。％。冤
Block Size 

Figure 2.3: The average time required to perform the importance analysis for the MF data 

set on cluster A. The error bars display the standard deviation of the computation times. 

the results, shown in Fig. 2.3, a block size of 50 x 50 x 100 or 50 x 100 x 100 achieved the 

fastest computation time. We chose to use the block size of 50 x 100 x 100 in all successive 

tests on cluster A presented in this chapter. The simulation resolution and the number of 

processes on cluster B differ from that of cluster A. As a result, it was not possible to use 

the same block size. Instead, we set the block size on cluster B to 75 x 75 x 75, which was 

the closest alternative. 

2.4.3 Performance of the Proposed Method 

The computation time varied between different probes, as shown in Fig. 2.4. For sampled 

probes, we used a block sample size of 2390 and 2387 for the two respective resolutions. 

All sampled probes were consistently faster; the best example being the Distinct probe, 

which on average took 1.19 seconds to complete on cluster A. In comparison, the sampled 

Distinct probe only required 0.02 seconds of computation time (a speedup of 61.14). 

Similar results were obtained on cluster B. 

We observe that the sampled probes generally were able to achieve more significant 

speedups on cluster A. This is primarily because of two reasons. First, simulation processes 

on cluster A had to process more data than the processes on cluster B. Second, simulation 

processes on cluster B could more efficiently calculate the importance due to having 

access to more cores. Calculating the importance of sampled blocks is limited by the time 

required to complete the initial data access, which is similar on both clusters. 

As discussed in Section 2.3.1, one of the goals of the proposed method was to minimize 

the computation overhead of utilizing multiple probes. As seen in Fig. 2.5, the compu-
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Figure 2.4: The importance calculation times on (a) cluster A and (b) cluster Busing the 

MF data set. The y-axis has a logarithmic scale. 

tation time increased linearly when using multiple non-sampled Mean probes. However, 

increasing the number of probes from one to four and eight only increased the computation 

time on cluster A by 2.28x and 4x, respectively, and 2.24x and 3.96x on cluster B, as 

compared to the expected 4x and 8x. Similarly, the increase was only 10/o and 30/o for 

the sampled Mean probes on cluster A, whereas all results were within the margin of 

error on cluster B. By preprocessing the block data and using the block-based importance 

calculation process described in Section 2.3.1, the importance calculation time is not di-

rectly proportional to the number of used probes. This is especially the case for sampled 

probes, where the increase in computation time was negligible in our tests. The initial data 

reorganization required to achieve this performance results in some overhead, increasing 

the computation time for a probe with a simplistic data access pattern. However, as seen 

in Fig. 2.5, the performance is better when using multiple probes or probes with more 

advanced data access patterns as a result of the improved cache hit rate. The performance 

of our method is directly affected by the data access pattern of the used probe(s). Intu-

itively, probes with advanced data access patterns should benefit more from the higher 

cache hit rates. A one-pass algorithm, such as the Mean probe, should as such represent a 

worst-case scenario. 

The accuracy of the sampled probes depends on the sample size as well as the used 

probe algorithm. Table 2.3 shows the absolute error, E, of the sampled probes using the 

MF data set on cluster A at time step 80. Eis equivalent to Xi -x, where x; and x are the 

measured and true values, respectively. Using the Mean or SD sampled probes resulted 
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Figure 2.5: The average importance calculation times using up to eight Mean probes on 

(a) cluster A and (b) cluster B for the MF data set. The error bars display the standard 

deviation of the computation times. 

in all blocks having an importance value within 0.01 of the correct importance value. 

However, The Range and Distinct sampled probes were not as accurate as the Mean, SD, 

and Entropy probes. In some scenarios, the calculated importance of these probes depends 

on a small subset of the data. For example, by changing a single data value in some blocks, 

the importance calculated by the Range probe can increase from O to I. 

In summary, the importance analysis scheme could successfully improve the perfor-

mance when using multiple probes. Sampled probes could achieve a high accuracy and 

further accelerate the importance analysis computation. 

2.4.4 Evaluating the Proposed Approach 

In this section, we evaluate the performance of the approach used to accelerate in-transit 

co-processing. 

C ompress1on Performance 

Intuitively, different probes should reflect different information about the underlying block 

data. It should then be possible to use this information to, for example, select the best 

compression technique for a specific use case. Figure 2.6 shows the relation between 

the RLE-, HOMO-, and LZ77-compressed block sizes and the importance calculated by 

the used probes. The Distinct probe provided an almost linear relationship between the 
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Table 2.3: Accuracy of the sampled probes. Percentage of all sampled block importance 

values which absolute error is less than 0.001, 0.005, 0.01, 0.05, and 0.1. Tests were run 

on cluster A, using the MF data set and time step 80. The AVGSEQ probe is not included, 

as it is only used on non-sampled data. 

<le-3 <0.005 <0.01 <0.05 <0.1 

Mean 71.9 98.5 100 100 100 

Range 72.9 75.0 76.4 86.4 95.1 

SD 71.9 99.4 100 100 100 

Distinct 51.2 60.1 63.9 82.2 98.3 

Entropy 50.2 56.4 61.3 85.4 99.7 

importance and the compressed data size, as seen in the figure. Similarly, the AVGSEQ 

and Entropy probes had clear connections between their calculated importance and the 

compressed block sizes. 

The compressed data size achieved by using RLE compression was generally smaller 

than when using LZ77. This trend was caused by the entropy of the used data set, which 

does not contain many repeating sequences of values. Similarly, the effectiveness of the 

RLE compression is linked to the many homogeneous regions in the investigated data set. 

However, as seen in Fig. 2.7 and Fig. 2.8, the performance of the various compression 

methods vary throughout the simulation. The initial data set, at time step 0, contains many 

homogeneous regions. Consequently, the initial compressed data size is minimal. As the 

simulation progresses, the homogeneous regions become smaller and disappear, which 

increases the compressed data size. The total compressed data size remains lower than 

that of the uncompressed data throughout the simulation. However, as seen for the RLE 

and LZ77 methods in Fig. 2.6, compressing some blocks actually increases the block size 

(an uncompressed block has a size of 3906 kB on cluster A). It is better to not use these 

compression methods when transferring such blocks. This further reinforces our notion 

of selectively choosing which compression method to use on a per-block basis for each 

time step. 

Assessing the Execution Times of the Proposed Approach 

Pipelines should be devised based on the needs of the researcher and the nature of the 

used simulation. It is not possible to create a pipeline that is optimal in all scenarios. 

Furthermore, which compression methods to use also depend on the specific use case. We 

designed two advanced pipelines: one lossless and one lossy that uses a condition window 

25 



Mean Range SD 

5000 

0

0

0

 

0

0

0

 

0

0

0

 

4

3

2

 

(
8
¥
)
 
az15~uo-8 

1000 

゜゚
0.2 

''  

0 4 0.6 

Importance 

AVGSEQ 

5000 

0

0

0

 

0

0

0

 

0

0

0

 

4

3

2

 

(
g
¥
)
Q
J
N
 
IS~u 

0
1
8
 

1000 

08 

゜゚
see, 二''ニ

0.0002 0.0004 0.0006 0.0008 0.001 

Importance 

5000 

4000 

3000 

2000 

1000 

立＿

o゚

5000 

4000 

3000 

2000 

1000 

~-芸宰争 l圭繹三

0.2 0.4 0.6 

Importance 

゜゚
0.2 

Distinct 

0.8 

',-=~ ニ''
0.4 0.6 0.8 1 

Importance 

5000 

4000 

3000 

2000 

1000 

゜゚

5000 

4000 

3000 

2000 

1000 

0.2 

0.2 

RLE 

HOMO 

LZ77 

0.4 0.6 

Importance 

＋ 

0.8 

Entropy 

゜゚
''  

0.4 0.6 

Importance 

08 

Figure 2.6: The compressed block sizes compared to the calculated importance for the 

MF data set using the Mean, Range, SD, AVGSEQ, Distinct, and Entropy probes. Tests 

were conducted on cluster A at time step 80. 

to reduce the least important data adaptively. Both pipelines used a distributed filter to 

remove homogeneous border blocks (i.e., blocks which are not of any significance to the 

analysis of the simulation data). Furthermore, the pipelines were evaluated using both no 

load balancing (static) and a k-d tree load balancing technique (kd) to equalize the data 

distribution after the use of the distributed filter. 

Pipeline 1 is structured as follows. Initially, all blocks are sampled using the Range 

probe. Blocks with an importance of O have their actions set to RLE. A non-sampled 

Range probe is then used on all blocks with action RLE. If the importance is 0, the action 

is set to Homogeneous. By initially using a sampled probe, the non-sampled probe only 

has to operate on a subset of all blocks, which reduces the computation time. Finally, the 

third filter uses a sampled Distinct probe to change the action of blocks with the NONE 

action and an importances 0.9 to RLE. The value 0.9 is based on previous experiments 

to evaluate the compressed block sizes, displayed in Fig. 2.6. Using the Distinct probe, 

having importance lower than approximately 0.9 resulted in a lower block size than the 
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Figure 2.7: The total compression, load balancing and data transfer times on (a) cluster A 

and (b) cluster B, using the MF, MY, and MZ data sets. The error bars display the standard 

deviation of the computation times. 

original non-compressed data. Intuitively, blocks with many distinct values might also be 

more time-consuming to compress and decompress, further increasing the data transfer 

time. We chose to use a sampled version of the Distinct probe to accelerate the in-situ 

computation time. Note that the resulting compression of Pipeline 1 is lossless. 

The idea behind Pipeline 2 is to reduce the most unimportant data (in this case, 

the blocks containing the lowest amount of distinct values) on the fly to achieve a total 

compressed data size of between 1200 to 1600 MB (cluster A) and 4000 to 5400 MB 

(cluster B) for each data set (i.e., using all three data sets, up to 4.69 GB and 15.82 GB of 

data for each time step on clusters A and B, respectively). We use a range rather than a 

specific threshold to reduce the volatility of the compressed data size between each time 

step. The initial three filters of Pipeline 2 are identical to those of Pipeline 1. However, 

Pipeline 2 includes a fourth filter that utilizes a condition window. The filter uses a Distinct 

sampled probe and targets blocks with the RLE or NONE actions. The condition value 

range is set as [O, 1.0], with an initial value of 0. If the condition of the filter is fulfilled, 

the action is changed to Homogeneous. 

The data size of homogeneous blocks using the Homogeneous compression method 

was almost the same as when using RLE compression. This can be seen in Fig. 2.9, 

where the compressed data size of Pipeline 1 is almost identical to when utilizing an RLE 

compression. However, Pipeline 2 achieved a significantly lower data size because of the 

additional adaptive (lossy) reduction filter. Noteworthy is that Pipeline 2 never reached 
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Figure 2.8: The size of the compressed data transferred during the distribution stage on 

(a) cluster A and (b) cluster B, using the MF, MY, and MZ data sets. 

the upper limits of 4.69 GB and 15.82 GB. This is because the compressed data size of at 

least one data set remained below the specified upper data size threshold. 

The impact of the proposed approach on the entire simulation time widely depends on 

the used simulation and co-processing. For example, the simulation time of a single time 

step, detailed in Section 2.4.1, and the in-transit co-processing time can vary by orders of 

magnitude depending on the simulation, the specified simulation parameters, and which 

types of analysis and visualization tasks are performed during the co-processing stage. 

Furthermore, co-processing could be performed for each simulated time step or for a small 

fraction of time steps. As such, we chose to focus the evaluation exclusively on the actual 

performance of the three main stages of the proposed approach, i.e., the co-processing 

stage only consists of data decompression and data reconstruction. The average execution 

times of each stage are shown in Fig. 2.10. The importance calculation of the RLE, 

HOMO, and LZ77 tests used for comparison consisted of a single Mean probe. 

Out of the lossless compression methods used for comparison, RLE achieved the best 

performance. For the total execution time, the RLE compression method achieved a 

speedup of 1.26x (cluster A) and 1.3x (cluster B) compared to using no compression. 

The lossless Pipeline 1 achieved an even more significant speedup; 1.62x on cluster A 

and 1.55x on cluster B. Compared to RLE, Pipeline 1 could speed up the execution time 

by up to 1.29x and 1.19x on the two respective clusters. Similarly, Pipeline 2, which 

reduces unimportant data, achieved total speedups of 1.69x and 1.52x compared to the 

RLE method. Table 2.4 summarizes the average speedups of the total execution time for 
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Figure 2.9: Size of the transferred compressed data using the MF, MY, and MZ data sets 

on (a) cluster A and (b) cluster B. The results of the RLE and Pipeline 1 tests overlap. 

Table 2.4: Relative speedups of the total execution time for Pipeline I and Pipeline 2 
compared to the other evaluated methods. 

Cluster A Cluster B 

None RLE HOMO LZ77 None RLE HOMO LZ77 

Pipeline I 

Pipeline 2 

1.62 

2.13 

1.29 

1.69 

0.55 

0.72 

3.51 

4.60 

1.55 

1.98 

1.19 

1.52 

0.26 

0.33 

2.98 

3.81 

both pipelines compared to the other evaluated methods. 

In more detail, both Pipeline 1 and Pipeline 2 achieved significantly better performance 

for the data distribution and co-processing stages than the NONE, RLE, and LZ77 methods. 

The execution time of the co-processing stage for Pipeline 1 was similar to the RLE 

test when using static load balancing. The uneven load caused this; although multiple 

transit processes achieved significantly lower computation time than when using only 

RLE compression, the total execution time is dependent on the slowest process. Using a 

k-d load balancing technique solved the uneven load on the transit nodes. On cluster A, 

Pipelines 1 and 2 achieved speedups of 1.91x and 1.94x of the co-processing stage as 

compared to using RLE compression, and speedups of 1.32x and 1.33x compared to using 

no compression. Similarly, on cluster B the two pipelines achieved speedups of 2.00x 

and 1.99x as compared to an RLE compression. Compared to using no compression, the 
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Figure 2.10: Average time step execution time for the three main stages using all three 
data sets on (a) cluster A and (b) cluster B. The error bars display the standard deviation 

of the computation times. 

30 



speedup of the co-processing stage was 1.05x and 1.04x for the two respective pipelines. 

Utilizing dynamic load balancing significantly improved the execution times of the 

co-processing stage. However, the load balancing only determines where data is sent. The 

compression time and the amount of data that needs to be transferred from each simulation 

process do not change. Using a dynamic load balancing technique did not improve the 

execution time of the data distribution stage to the same extent. On cluster A, the two 

pipelines achieved speedups of 1.17x and 1.70x as compared to an RLE compression 

and speedups of 1.83x and 2.65x compared to using no compression. On cluster B, 

the pipelines achieved speedups of 1.14x and 1.58x compared to RLE compression and 

speedups of 1.77x and 2.44x compared to no compression. 

Interestingly, the lossless Pipeline 1 was able to achieve better performance in all 

aspects (the compressed data size and the compression, data transfer, and decompression 

times) than the other lossless compression methods. This results from the fact that both 

of the pipelines scale with the utilized compression methods; in this case, using NONE, 

RLE, and HOMO. This scaling can be seen in Fig. 2.9, where the compressed data size of 

Pipeline 1 closely follows that of the RLE compression. This behavior should extend to 

other compression methods as well. 

2.5 Conclusion 

We have presented a method to efficiently determine the importance of regions of interest 

of simulation data, with an emphasis on using multiple importance metrics. In addition, 

we have presented a use case where the method was used to accelerate the in-transit 

co-processing of an RMI simulation by lowering the data transfer time. The approach to 

accelerate in-transit co-processing uses the importance of regions of interest to determine 

how to best combine the usage of multiple different compression methods on different 

subsets of the simulation data. Simulation data is analyzed to determine the importance of 

all regions of the 3D data sets, which is then used as a basis to utilize multiple compression 

and reduction methods adaptively. 

We have evaluated the performance of the proposed method and approach by con-

ducting tests on two different compute clusters, using multivariate data from an RMI 

simulation. Our proposed method was able to expeditiously calculate block importance, 

even when multiple data probes were used. The above was especially the case for probes 

using sampled data, which could calculate accurate importance values at a much faster 

rate. The proposed method was also able to adaptively identify regions of important data in 

a reliable manner. The excellent scalability when using multiple data probes and low com-

putation times also make the method viable to be used in many other in-situ and in-transit 

scenarios, such as: guiding the simulation; saving important data to permanent storage; 

or in tandem with additional analysis or visualization software. As for the approach, 

we were able to achieve better performance in all aspects (the compressed data size and 
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the compression, data transfer, and decompression times) than the compression methods 

used for comparison. Compared to an RLE compression, using the proposed approach 

in a lossless scenario resulted in a speedup of up to l .29x for the overall execution time, 

and 2x when performing data decompression. We conclude that the proposed approach 

significantly can accelerate the in-transit co-processing process. 

In future work, we will investigate how the proposed method can be used for other use 

cases. Furthermore, we plan to extend the proposed approach to work better with in-situ 

co-processing workflows. 
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Chapter 3 

Memory Efficient Load Balancing for 
Distributed Large-Scale Volume 
Rendering Using a Two-Layered Group 
Structure 

3.1 Introduction 

The capabilities of modern supercomputers enable the simulation and visualization of 

large-scale data sets with high precision and detail. Data sets generated by scientific 

simulations, often multivariate and spanning multiple time steps, can consist of terabytes 

of data. Using a sorting scheme called sort-last [30], the data can be partitioned and 

distributed among available processes. The distributed data volumes can then be visualized 

in parallel by utilizing ray-casting based volume rendering [56]. Partial images from all 

processes then need to be composed based on their position and distance from the camera 

in the volume [3]. 

The rendering times can vary between processes based on many factors, e.g., used 

optimization techniques or the characteristics of the data sets. If there are any substantial 

rendering time imbalances, dynamic load balancing techniques can be used to effectively 

reduce the total rendering time during in-situ vis叫 izationor post-hoc exploration. How-

ever, dynamically redistributing data can result in large memory imbalances between pro-

cesses. Some processes might run out of memory when handling large data sets, making 

many dynamic load balancing techniques unsuitable for large-scale visualization [57, 58]. 

Commonly used dynamic load balancing techniques are based on tree structures, e.g., 

a k-d tree [27]. In the k-d tree structure, the original volume is represented by the root 

of the tree, as illustrated in Fig. 3.1. For each new depth in the tree, the volume is split 

in two on either the x, y, or z-axis. The two resulting volume blocks are then separately 
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held in two child branches. Each process that participates in the rendering stage is given 

ownership of a branch (and all of its child branches) in one of the levels of the tree. For 

example, if 2, 4, or 8 processes are used, each process is given ownership of a branch at 

depth 1, 2, or 3, respectively. Data can be load balanced between children of the same 

branch in the tree, as shown in Fig. 3.1. The load-balanced data consists of a slice of blocks 

that border both branches, ensuring that each process still only holds a contiguous and 

convex partition of data in object space after the load balancing has been completed [22]. 

Utilizing this structure and ensuring that each process only renders contiguous data results 

in two positive aspects: 

1. A simple compositing order for partial images rendered by each process. The 

k-d tree structure enables processes to composite all partial images generated by 

its blocks during the rendering stage, without any external communication. Next, 

the partial images on each process are composited in an inter-process compositing 

stage. Finally, the remaining partial images can be gathered and merged to create 

an image of the full volume. 

2 Al . ow scheduling complexity. The・k d stnct -tree load balancing scheme hm1ts 

between which processes load balancing can take place. This limitation significantly 

simplifies the load balancing algorithm. 

If data needs to be transferred between two processes that have ownership of branches 

on opposite sides of the tree structure, it is impossible to transfer the data directly between 

them. Instead, load balancing has to be performed multiple times between the upper 

branches of the tree, meaning that many processes have to participate in the load balancing 

stage. The upper branches of the tree are responsible for larger regions of the volume; the 

amount of data that is transferred increases by 100% in each level. This does not only 
result in many redundant data transfers, it also means that using the k-d tree structure 

can lead to a significant memory load imbalance [26]. This behavior should scale with 

the number of processes, meaning that it could be of greater concern in large-scale 

vis叫 ization.An example of a k-d tree memory imbalance is shown in Fig. 3.2, where 

the main computational load is focused on the upper quadrant of the volume. Equalizing 

the rendering times also results in one process holding a substantial part of the volume in 

memory. 

The worst-case memory usage of a single process when using the k-d tree structure 

is O (v), where v is the number of voxels in the volume. The risk that a high memory 
imbalance occurs limits the use of k-d tree-based dynamic load balancing in large-scale 

applications, where even small imbalances can result in some processes running out of 

memory [58]. 

There is a need for a dynamic load balancing technique that does not adhere to the 

existing limitations of hierarchical tree structures. We propose a technique for distributed 
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Figure 3.1: k-d tree data distribution and load balancing. Circles represent branches in 

the tree, whereas blocks are represented by cuboids, each of which results in a partial 

image when rendered. Branches that can load balance are connected via dotted lines. 

iiii口ロロロロロ
轟日田B王
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Figure 3.2: 2D representation of a k-d tree block distribution between four processes, in a 

worst-case scenario where the main computational load is focused on the top left quadrant 

of the volume. Volume blocks are represented as squares, whereas the color distinguishes 

different processes. 

volume rendering of rectilinear grids by which processes can render data from non-

contiguous regions of the volume, contrary to k-d tree techniques. By having a non-

hierarchical, less restrictive structure, it is possible to prioritize load balancing blocks 

with high rendering times. This would lead to a lower worst-case memory usage and 

fewer redundant data transfers. However, rendering data from non-contiguous regions 

is not without its drawbacks. In a naive implementation, it would not be possible to 

compose partial images on each process during the rendering stage. Partial images, each 

representing a single block, would instead have to be composed during the inter-process 

compositing stage, greatly increasing the total compositing time. 

The contribution of this chapter is a novel compositing pipeline and a load balancing 

technique that utilizes a scalable non-hierarchical group structure to effectively allow 

a single process to render data from non-contiguous regions of the volume. Through 

this technique we also enable the use of custom load balancing schemes, meaning that 
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the algorithm effectively can be tailored according to the needs and constraints of the 

researcher. The main goal of the two-layered group technique is to resolve existing 

limitations of tree-based hierarchical structures, thus reducing the worst-case process 

memory usage, without negatively affecting the total rendering time. A secondary goal 

is to lower the number of redundant data transfers, which unnecessarily burdens I/0 

functionality. We demonstrate the effectiveness of the group technique as compared to 

a k-d tree technique and a static distribution by conducting a series of experiments on a 

cluster using up to 32 processes, each of which has a dedicated graphics processing unit 

(GPU). 

The structure of this chapter is organized as follows. Related work is presented in 

Section 3.2. The compositing pipeline and the load balancing technique are described in 

Section 3.3. The technique is then evaluated in Section 3.4. Lastly, our conclusions are 

presented in Section 3.5. 

3.2 Related Work 

k-d trees and similar tree structures have been used extensively in many related works to 

achieve dynamic load balancing [22-26]. The rendering time of the previous frame is often 

used as a load balancing heuristic [22, 23]. Commonly, uniformly-sized blocks are stored in 

the k-d tree [22, 25]. Other works have explored using variable block sizes to achieve finer 

granularity [23]. However, variable block sizes would require extensive preprocessing, 

and that the volume is static. Others have utilized machine learning and performance 

modeling as a load balancing heuristic, though still using a k-d tree structure [25]. 

Zhang et al. [26] proposed a constrained k-d tree structure to achieve dynamic load 

balancing for parallel particle tracing. They strove to achieve a balanced particle load 

by redistributing particles among processes based on a k-d tree structure. However, 

they recognized that particles can be condensed in a small region of the volume, thus 

requiring some processes to hold large sections of the volume in memory. Constrains were 

introduced on the k-d tree data partitioning to sidestep this issue, thus limiting the number 

of voxels held by each process. Although this approach ensures that processes can hold 

their respective regions of the volume in memory, it fails to guarantee an even distribution 

of particles. The authors note that the only way to ensure an optimal distribution is to 

allow processes to hold the complete volume in memory [26]. 

Utilizing dynamic load balancing techniques tends to result in an uneven data distri-

bution among processes. Data sets may consist of multiple terabytes of data in large-scale 

applications; even small-scale data transfers can be time consuming and result in some 

processes running out of memory. As such, many large-scale visualization projects have 

utilized static load balancing [58, 59] or limited load balancing to equalizing the data 

distribution, rather than explicitly lowering the total rendering time [ 4, 24]. 
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3.3 Two-Layered Dynamic Load Balancing Technique 

To lower the memory usage and redundant data transfers compared to k-d tree techniques, 

we propose a load balancing technique with a non-hierarchical structure by which processes 

can render blocks from non-contiguous regions of the volume. Rendering non-contiguous 

blocks can lead to a complicated irregular compositing order, as noted in Section 3.2. 

We introduce a two-layered group structure and a compositing pipeline to lower the 

complexity of the compositing stage. In this section, we provide an overview of the 

technique, followed by detailed information about all included functionality: how the 

two-layered group structure is formed, how efficient load balancing is accomplished, and 

how the compositing pipeline simplifies the compositing stage. Lastly, the memory usage 

of the group technique is analyzed. 

3.3.1 Overview of the Technique 

We coin the terms full sets, a number of sets which contain the initial static collection of 

contiguous blocks delegated to a process, and working sets, the sets of contiguous blocks 

being rendered by a process during a specific frame. Each process is responsible for two 

operations: (1) rendering all blocks present in its working sets and (2) compositing all 

partial images of blocks in its full sets. 

Figure 3.3 depicts the execution flow of the presented technique, whereas Fig. 3.4 shows 

an example where a block is load balanced to another process. As illustrated in Fig. 3.4b, 

the rendered partial images from load-balanced blocks are returned asynchronously to 

the original owner during the rendering stage. Each process can as such compose partial 

images from blocks in its own full sets (Fig. 3.4c), leading to a correct compositing order 

even if processes are rendering blocks from different regions of the volume. Utilizing this 

compositing pipeline means that only a single partial image from each process needs to be 

composed during a final inter-process compositing step (Fig. 3.4d). To summarize, two 

distinct compositing steps are required in the group technique: one to compose partial 

images of blocks in each process'full sets and one to compose the resulting image from 

each process. 

3.3.2 Two-Layered Group Structure 

Instinctively there are two scalability-related concerns coupled to the group technique: 

• Finding an adequate load balance for a large number of processes is time consuming. 

• The introduced first compositing step can be time consuming if many processes are 
involved. 
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Figure 3.3: Program execution flow of the two-layered group technique. Initially, pro-

cesses are partitioned into groups and the full sets are distributed to processes. The 

rendering stage and an initial compositing step are then performed by each process. The 

remaining images are composed in an inter-group fashion in a second compositing step. 

Lastly, load balancing is performed within each group before the next frame can be 

rendered. 

These factors can result in excessive communication and time-consuming computa-

tions if many processes are utilized. To improve the scalability of the technique, processes 

are distributed into one or more distinct and autonomous groups and limited to load bal-

ancing with processes within the same group. Load balancing and the first compositing 

step (Fig. 3.4a-c) have in such a scenario no inter-group dependence, meaning they can be 

performed in parallel within each group. By limiting the number of processes that can in-

teract we lower the communication and algorithm complexity, thus effectively eliminating 

many scalability-related concerns. 

We define a group as a non-empty static set of processes, whereas each process is a 

member of a single group. Processes are partitioned into groups in a round-robin fashion 

at the start of the program, which ensures that the blocks held by the processes in each 

group are not concentrated in the same region of the volume. By scaling the number of 

groups relative to the number of processes we can ensure that the number of processes in 

each group remains constant. An example group structure is displayed in Fig. 3.5. 

3.3.3 Intra-Group Load Balancing 

Load balancing can be performed between any pair of processes within the same group. 

Although this approach is more flexible than k-d tree techniques, it also means that the 

load balancing scheme is NP-Hard if no limitations are set. To lower the load balancing 

time complexity we utilize a greedy load balancing algorithm to determine between which 
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Figure 3.4: Example of how a load-balanced block is rendered and composed. (a) A 

block is load balanced between two processes in the same group. The load-balanced 

block makes up a new working set on the receiving process. (b) Each process renders its 

working sets, starting with blocks belonging to other processes. Images of working sets 

not present in a process'full sets are returned to the original owner asynchronously during 

the rendering stage. (c) Each process composes images from blocks in its full sets. (d) 

Inter-group image compositing takes place to compose the final image. 

processes load balancing takes place and what data is transferred. An example of the data 

distribution using the group technique in the scenario presented in Fig. 3.2 is shown in 

Fig. 3.6. 

We utilize f = 4 full sets on each process, created by splitting the initial contiguous 
collection of blocks in half on they-and z-axes. Slices of blocks can be load balanced from 

both the positive and negative direction on the x-axis, as illustrated in Fig. 3.7. However, 

we limit load balancing to a single process at a time in each direction on the x-axis for 

each full set. For example, if process 1 load balances a slice of blocks from the positive 

direction on the x-axis of the first full set to process 2, no other process can receive blocks 

from the set's positive direction until process 2 has returned all load-balanced blocks to 

process 1. This means that a process is simultaneously only able to delegate blocks to 2f 
other processes. Limiting load balancing to a single process in each direction for each full 

set has one key benefit: if a pair of processes consecutively performs load balancing, all 

transferred blocks are from a contiguous region in object space. They can as such be put 

in the same working set on the receiving process, resulting in a single partial image which 

asynchronously can be transferred back before the end of the rendering stage. 
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。Figure 3.5: An example structure containing two groups. Processes are partitioned into 

groups in a round-robin fashion. Processes within the same group can freely perform load 

balancing amongst each other, as illustrated by the dotted lines. 

Figure 3.6: 2D representation of a block distribution between four processes using the 

two-layered group technique, in a worst-case scenario where the main computational load 

is focused on the top left quadrant of the volume. Volume blocks are represented as 

squares, whereas the color distinguishes different processes. 

After each frame, the average rendering times are calculated in each group. Processes 

of which the rendering time deviates from the average are sorted into one of two lists 

depending on if the rendering time is lower or higher. Historical data transfers and current 

process rendering times are then used to dictate which processes in the two lists perform 

load balancing. This functionality helps reduce the unnecessary spread of blocks, resulting 

in fewer image transfers. The load balancing algorithm is shown in Algorithm 2. Once 

a process has performed load balancing it is excluded from subsequent load balancing 

events during the same frame to limit the amount of data that can be transferred before the 

next rendering stage. 

The goal of the load balancing algorithm is to equalize the rendering time among all 

processes. However, it also strives to minimize the spread of blocks to lower the amount of 

communication and data transfers during the compositing stage. For this purpose, in the 
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Figure 3.7: Slices of blocks can be load balanced from both directions of the x-axis. 

However, load balancing for each full set can only be performed with a single process in 

each direction. Having four full sets on each process means that blocks can be delegated 

to eight other processes simultaneously. 

first operation of Algorithm 2, each process that has a lower-than-average rendering time 

recalls a previously load-balanced slice of blocks, if possible. Similarly, in the second 

operation, each process with a higher-than-average rendering time attempts to return a 

load-balanced slice of blocks to another process. These operations ensure that a process 

never delegates blocks to other processes whilst simultaneously rendering blocks it does 

not own. If such operations are not possible, each process with a lower-than-average 
rendering time attempts to perform load balancing with processes from which it already 

has been delegated blocks. Transferred blocks can be put in an already existing working 

set, meaning that there is no extra overhead during the first compositing step. However, 

for this operation to be possible it requires that at least one such process has a higher-

than-average rendering time. Finally, if none of the previous operations are possible, each 

process with a lower-than-average rendering time is delegated a slice of blocks from a 

process with a higher-than-average rendering time, which then has to be put into a new 

working set. Processes with lower-than-average and higher-than-average rendering times 

are iterated starting with the lowest and highest rendering times, respectively. As such, 

the process with the lowest rendering time performs load balancing with the process that 

has the highest rendering time. 

All four operations have a clear block transfer order. In the first and second operations, 

slices of blocks are returned in a LIFO (last in first out) order between all pairs of blocks 

to ensure that working sets only render contiguous data. In the third operation, a slice 

of blocks is taken from the same full set and direction as previously transferred blocks 

between the two processes. For the fourth operation, the slice of blocks is taken from the 

full set on the sending process with the highest rendering time that currently has delegated 

blocks to fewer than two other processes. A slice of blocks is then load balanced from the 
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Algorithm 2 Intra-group load balancing algorithm executed after each rendered frame 
Input: 
: Processes that have a lower-than-average rendermg time; t> Sorted based on lowest rendering time 
1-( : Processes that have a higher-than-average rendering time; <> Sorted based on highest rendering time 

S← {s1, ... , Sp}; <> Dictionary of type {process, set of processes from which the process has been delegated blocks} 

e← { e1, ... , e P}; <> Dictionary of type { process, set of processes that the process has delegated blocks to} 
T← {t1, ... , tp}; <> Set conta:tmng the total rendering time of each process 

Output: 
S,8; 

I: :B← {h1, ... , hp}; <> et conta:tnmg all processes that have not performed load balancing this fra:iue 
2: for each t E L n :B do 
3: if e, cf. 0 then 
4: set q where q E e, n :B such that tq ::: t;, Vi E e, n :B; <> q has the highest rendering time in e, n :B 
5・ recall load-balanced slice from q tot; 

6: :B← :B¥ {t, q }; <> Exclude t and q from other load balancing events 

7: if !load-balanced blocks from t to qi= 0 then 

8: 釘← eハ{q}; 
9: Sq← sq¥{t}; 

10: for each t E 1-(n :B : do 
11: ifs,* 0 then 
12: set q where q Es, n :B such that t -<: t;, Vi Es, n :B; <> q has the lowest rendering time m s, n :B 
13: recall load-balanced slice from t to q; 

14: :B← :B¥ {t, q }; <> Exclude t and q from other load balancing events 

15: if lload-balanced blocks from q to ti= 0 then 

16: ふ← sハ{q}; 
17: eq← eq¥{t}; 

18: for each t E L n :B do 
19: if 1-(n s, * 0 then 
20: set q where q E'H n s, n :B such that tq ::: t;, Vi E 1-(n s, n :B; <> q has the highest rendering time in'H n s, n :B 
21: load balance sltce from q to t; 

22: :B← :B¥ {t, q }; <> Exclude t and q from other load balancing events 

23: for each t E L n :B do 
24: if'H * 0 then 
25: set q where q E 1-(n :B such that tq ::: t;, Vi E 1-(n :B; <> q has the highest rendering time in 1-(n :B 
26: load balance sltce from q to t; 

27: :B← :B¥ {t, q }; <> Exclude t and q from other load balancing events 
28: s, ← s, u {q}; 
29: eq← eq U {t}; 

30: return S, 8; 

positive direction of the x-axis, or the negative direction in case another process already 

has been delegated blocks from the positive direction. 

3.3.4 Image Compositing Pipeline 

As described in Section 3.3.1, two compositing steps are required when using the group 
technique. In the first step, all processes compose images of blocks in their full sets. This 
operation is strictly performed within each group and involves partial images from all 
load-balanced sets being transferred back to the owning process. As each process can load 

balance blocks to eight other processes, a maximum of O (p) partial images are transferred 
during this step, where p is the number of processes. This operation can be performed 
in parallel in each group; here, the maximum number of partial images transferred within 
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a group is O(p / g), where g is the number of groups. The first compositing step can be 

asynchronously performed during the rendering stage, resulting in minimal time overhead. 

In the second compositing step, all remaining partial images are composed to form 

the final image that represents the full volume. It is as such performed in an inter-group 

fashion, and is identical to a k-d tree's or static technique's compositing stage. 

We maintain the same resolution for all images generated and used in the two com-

positing steps. However, we note that utilizing various compression strategies [60] or 

variable image sizes could lower the compositing time; especially in the first compositing 

step where the partial images in many cases only portray a small subset of the volume. 

3.3.5 Process Memory Usage 

Using dynamic load balancing, the achieved load depends on the contents of the visualized 

data set; as such, without knowledge about the underlying data, it is not possible to predict 

the benefits of using the proposed group technique. However, it is possible to estimate the 

worst-case memory usage. 

Given a volume of v voxels, if the group technique is used each process has to keep its 

full sets in memory, resulting in a memory usage of v / p. Furthermore, in the worst-case 

scenario, a specific process'full sets consist of blocks with near-zero rendering times. The 

process is then delegated blocks so that its rendering time matches that of the rest of the 

processes in the group. The absolute worst-case memory usage is as such v/ g. However, as 

described in Section 3.3.3, the load balancing algorithm prioritizes load balancing blocks 

with high rendering times, ensuring that the process memory usage will remain lower than 

2v / p other than in extreme scenarios. 

3.4 Experimental Evaluation 

In this section, we evaluate the group technique by comparing it to a k-d tree technique 

as well as a static distribution. Load balancing, data transfers, and compositing can 

potentially be performed asynchronously during the rendering stage depending on the 

used rendering pipeline. As such we chose to evaluate the process rendering times, the 

process memory usage, the amount of transferred data, and the effect of utilizing multiple 

groups separately to provide a broader overview that is not tied to a specific rendering 

pipeline. We also provide a separate overview of the computation times for all stages of 

the pipeline. 

3.4.1 Experiment Description 

We performed a series of tests on a GPU cluster using 8, 16, and 32 processes. Each node 

was equipped with an Intel Xeon E5-2643 v4 CPU (6 cores), 128 GB of memory, and two 
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(a) (b) (c) 

Figure 3.8: Data sets used for evaluation: (a) a CT scan of a porcine heart, (b) a time step 
of an RMI simulation [l], and (c) a CT scan of a Spathorhynchus fossorium [2]. 

Nvidia GeForce GTX 1080 GPUs. Nodes were interconnected via EDR InfiniBand and 
used GCC version 7.3.0, CUDA version 9.2 [61], and Open MPI version 3.1.0 [62]. Up to 
two MPI processes were run on each node, each of which was allocated a dedicated GPU. 

We chose to rotate the camera 360 degrees around the y-axis to measure the rendering 
time and memory usage of each process at different viewing angles. The image resolution 
was set to 10242, which commonly is used for this type of testing [32]. The used test 

case and image resolution should represent an average-case scenario for the examined load 
balancing techniques. To test our technique in a wide range of scenarios we used three 
different data sets, each of which has its own unique characteristics. 

The first data set is a computed tomography (CT) scan of a porcine heart [2] (Fig. 3.8a). 
The second data set is of an RMI simulation [1] (Fig. 3.8b). The third data set is a CT 
scan of a Spathorhynchus fossorium [2] (Fig. 3.8c). The three data sets consist of 2048 x 
2048 x 2612 voxels (43.8 GB), 2048 x 2048 x 1920 voxels (32.2 GB), and 1024 x 1024 

x 750 voxels (6.3 GB), respectively. The third data set is substantially smaller than the 
other two and can be visualized on a single machine using modern hardware. As such, the 
computation times of the compositing and load balancing stages will constitute a higher 

percentage of the total rendering time as compared to the other two data sets. However, it 

is still of interest to evaluate the achieved load balance and the amount of transferred data. 

Performance variations due to different block sizes have been investigated in related 
work [22], which found that blocks of 643 voxels provided the best balance between fine-

grained load balancing and extra overhead. These block dimensions are still used in some 
modern applications [4]. Based on this information we chose to partition the data sets 
into same-sized blocks consisting of around 643 voxels: 64 x 64 x 82, 64 x 64 x 60, and 
64 x 64 x 47 voxels for the three respective data sets. As such, the two first data sets were 
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partitioned into 32, 768 blocks whereas the third data set was partitioned into 4096 blocks. 

The k-d tree technique used for testing follows the definition in related work [22]. The 

initial block distribution produced by the k-d tree is used as the initial block distribution 

for the three examined techniques. 

We developed a custom distributed volume rendering application to use during testing, 

which seamlessly can support the structures required by the k-d tree and group techniques. 

Volume data was stored in the float format, which is used internally by the developed 

rendering application. Rendering was carried out exclusively on GPUs using CUDA, 

whereas inter-process communication was performed using Open MPI. We used the binary 

swap [3] strategy in the IceT compositing framework [63] to compose images in the final 

compositing step of all evaluated techniques. Rudimentary empty space skipping [51] was 

used to avoid rendering empty blocks. 

3.4.2 Performance Benefits of the Two-Layered Group Technique 

We performed each test for multiple iterations on the three evaluated data sets. The per-

formance difference between each run was negligible; constantly being less than 1 %. An 

overview of the computation times of all stages of the pipeline is displayed in Fig. 3.9. 

Process Rendering Time represents the rendering time of the slowest process, excluding 

compositing, data transfers, and load balancing. First Compositing and Second Com-

positing represent the total time required to perform the first and second compositing 

steps, respectively. Load Balancing represents the time required to load balance blocks, 

including data transfers. 

The memory usage was measured by tracking the highest number of blocks held in 

memory by a single process for each test, shown in Fig. 3.10. Using eight processes did not 

result in any substantial differences between the two dynamic techniques. For example, 

when using the porcine heart data set the highest recorded number of blocks was 5568 
for the group technique and 5168 for the k-d tree technique, i.e. 35.9喩 and26.2% higher 

than using a static distribution, respectively. Using the RMI data set in an eight-process 

configuration resulted in both dynamic techniques running out of memory, and is as such 

not included in the test results. 

Increasing the number of processes to 32 resulted in the k-d tree technique having 

the highest memory usage in all tests. For the porcine heart data set the k-d tree and 

group techniques reached a memory usage of 2376 and 1792 blocks, respectively; 132.0焼

and 75.0峨 higherthan using a static distribution. The biggest difference between the 

two dynamic techniques was observed for the Spathorhynchus fossorium data set, where 

the k-d tree and group techniques held 162.5% and 68.8吼 moreblocks in memory than 

the static distribution, respectively. The group technique consistently achieved a lower 

memory usage than the k-d tree technique as the number of processes increased. As such, 

we conclude that the group technique has a lower memory usage. 

Figure 3.11 shows the average process rendering times for the three data sets. Both 
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Figure 3.9: Overview of the computation and communication times of the various stages 
in the rendering pipeline, including the process rendering time, the two compositing steps, 
and load balancing. The displayed values are the average of all frames using the (a) 
porcine heart, (b) RMI, and (c) Spathorhynchus fossorium data sets. group[l], group[2], 

and group[4] represent the group technique using 1, 2, and 4 groups, respectively. 

evaluated dynamic techniques achieved lower process rendering times than the static dis-
tribution in all tests, clearly demonstrating the benefits of utilizing dynamic load balancing 
during large-scale visualization. However, as the number of processes increased, the group 
technique was able to achieve a lower rendering time than the k-d tree technique. 

Using 8 or 16 processes resulted in similar process rendering times between the two 
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Figure 3.10: The highest number of blocks held in memory by a single process using the 
(a) porcine heart, (b) RMI, and (c) Spathorhynchus fossorium data sets on 8, 16, and 32 
processes. Only one group is used in the case of the group technique. 

dynamic techniques; the biggest difference was observed when using the Spathorhynchus 
fossorium data set, where the group technique was 12.30/o faster. Increasing the process 

count to 32 resulted in the group technique consistently achieving the lowest rendering 
time; between 33.10/o (Fig. 3.1 lc) and 9.50/o (Fig. 3.11 a) lower than the k-d tree technique. 

The k-d tree technique transferred more blocks than the group technique in all test 
cases, as seen in Fig. 3.12. The gap widened as the number of processes increased, which 
validates our claim that the k-d tree technique induces an abundant amount of redundant 

data transfers. Using 32 processes resulted in the k-d tree technique transferring 227.1喩
(Fig. 3.12a), 52.90/o (Fig. 3.12b), and 260.00/o (Fig. 3.12c) more data than the group 
technique for the three data sets. As an example, for the porcine heart data set 12,981 
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Figure 3.11: Average process rendering times using the (a) porcine heart, (b) RMI, and 

(c) Spathorhynchus fossorium data sets on 8, 16, and 32 processes. Only one group is 
used in the case of the group technique. 

blocks were transferred when using the k-d tree technique. That amounts to 39.60/o of the 
whole volume. All data sets used for evaluation were static, meaning that most of the load 
balancing occurred during the first few frames of the visualization to resolve the initial 
load imbalance. During in-situ vis叫 izationthe volume can change considerably at any 

time in the simulation, meaning that using a k-d tree technique could significantly affect 
1/0 functionality. Furthermore, transferring too much data during the same frame could 
prove to be time consuming. 
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Figure 3.12: The total number of transferred blocks using the (a) porcine heart, (b) RMI, 

and (c) Spathorhynchus fossorium data sets on 8, 16, and 32 processes. Only one group 

is used in the case of the group technique. 

3.4.3 Utilizing Multiple Groups 

To evaluate the scalability of the group technique's first compositing step we performed 

tests using down to eight processes per group, shown in Fig. 3.13. We observe that the 

first-step compositing times are similar for all three data sets and that they do not increase 

linearly with the number of processes. The highest increase was observed when going 

from 16 to 32 processes using the Spathorhynchus fossorium data set (Fig. 3.13c). The 

compositing time increased from 11.3 to 18.7 ms when using one group; a 64.5悦increase.

The recorded fist-step compositing times are sufficiently low to be performed asyn-

chronously during the rendering stage, thus not resulting in any time overhead. Increasing 

the number of groups generally lead to a lower compositing time. Although seemingly 
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Figure 3.13: The first-step compositing times for the group technique using the (a) porcine 
heart, (b) RMI, and (c) Spathorhynchus fossorium data sets on 8, 16, and 32 processes. In 
each test, the group technique is evaluated using as few as eight processes per group. 

not required in a 32-process configuration, we believe that utilizing multiple groups can 

lead to a large performance increase if more processes are involved. 

Decreasing the number of processes also limits between which processes load bal-
ancing can take place, resulting in higher rendering times. Figure 3.9 also includes the 
process rendering times for the group technique when using multiple groups; down to eight 

processes per group. Utilizing multiple groups sometimes results in a higher rendering 
time due to having too few processes in each group, which increases the chance of a high 
inter-group load imbalance. 
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3.5 Conclusion 

We have presented a dynamic load balancing technique for large-scale volume rendering 

by which processes can render data from non-contiguous regions of the volume. By 

utilizing a two-layered group structure and a novel compositing pipeline we are efficiently 

able to resolve many scalability-related concerns that normally would arise with this type 

of design. 

The effectiveness of the two-layered group technique was displayed by comparing it to 

a k-d tree load balancing technique in a variety of scenarios. The group technique proved to 

have a lower worst-case process memory usage, while simultaneously achieving similar or 

higher render performance. In addition, using the group technique significantly decreased 

the number of redundant data transfers. These results were consistently obtained using 

three distinct data sets, indicating that similar results can be expected in other applications. 

We believe that the presented technique has the potential to be used in large-scale and 

memory-limited scenarios where k-d tree techniques currently do not suffice. 

Next, we would like to evaluate the technique using more compute nodes to more 

accurately assess the benefits of utilizing multiple groups during large-scale visualization. 
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Chapter 4 

Accelerating Multi-Image Compositing 
Using Dynamic Image Resolutions 

4.1 Introduction 

In sort-last parallel rendering [30], a data set is partitioned into multiple contiguous 

and convex blocks, and these blocks are distributed and rendered in parallel by multiple 

processes. The resulting images present on all processes then need to be composited, i.e., 

the images and pixels must be merged based on their distance to the camera, to generate a 

single image of the entire data set. In the context of scientific simulations, visualization is 

often performed in-situ [4, 6, 13, 14, 40] or in-transit [17, 20, 21, 34] as the simulation data 

is generated. Multiple images are often produced to represent different viewing angles, 

variables, and time steps. Certain tools [28, 29] can automate this process by generating 

thousands to millions of images at regular intervals around the studied phenomenon in 

3D space. Such in-situ vis叫 izationtools can reduce the stored data size by orders of 

magnitude, while still allowing for post-hoc analysis of the data. In this chapter, we 

specifically consider the usage of a visualization tool like Cinema [28]. 

Here, consider several images, each representing a specific simulation variable or 

unique camera position. In such a case, each image is typically rendered and composited 

in sequence (Fig. 4.1); however, this type of image generation pipeline induces substantial 

overhead, primarily as a result of synchronization and communication that occur during 

rendering and compositing between different processes. Such overhead can be reduced 

by rendering and compositing images in batches [32]. In addition, combining batches of 

images into multi-images can further accelerate the compositing process. 

An example of the multi-image pipeline is shown in Fig. 4.2. Here, multiple images 

are rendered in sequence on each process, and then a number of images (determined by the 

researcher) on each process are combined into a multi-image, which can be composited 

to generate images of the visualized data. In the example shown in Fig. 4.2, the first 
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Figure 4.1: Traditional rendering and compositing are performed in sequence until all m 

images have been generated. 

Figure 4.2: Example of batch compositing using a multi-image. In this example, four 

images are rendered consecutively on each process per batch (labeled 1-4). The images 

can, for example, represent different variables of a simulation or different camera positions. 

Images are then combined into a multi-image on each process (two images on each axis if 

each batch contains four images). Then, the multi-images are composited by the compute 

processes to produce a final image for each of the four partial images. Multiple batches 

are processed until all m images have been generated. 

image is set to the top-left quadrant of the multi-image, the second image is set to 

the top-right quadrant, and so on. The output of the compositing stage is a multi-

image that contains all of the final images, which otherwise would have been composited 

sequentially via multiple compositing stages. Thus, the synchronization overhead is 

reduced by compositing multiple images at once. 

Using multi-images changes some typical characteristics of composited images. As 

shown in Fig. 4.3a, single images are prone to have large areas of blank pixels. Typically, 

the camera is focused on the studied phenomenon, making such empty space more common 

toward the outer regions of the image. This leads to redundant computations and load 

imbalances between processes, which has spawned many optimization techniques for 

single-image compositing, e.g., interlacing [64] and bounding box [3] techniques. By 

contrast, as shown in Fig. 4.3b, blank pixels in multi-images are spread fairly evenly 

throughout the multi-image, thereby making techniques like the bounding box technique 

significantly less effective. 

The amount of data generated by scientific simulations is expected to increase by 

orders of magnitude in the future because of increased computing capabilities and more 

detailed simulations. Distributed rendering and compositing of large quantities of images 

is sure to become an essential method to analyze large-scale simulations. Therefore, it 

is important to develop new techniques to accelerate the compositing process and, more 
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Figure 4.3: Example of (a) an image and (b) a multi-image (two images on each axis) 

using the bounding box technique. Pixels outside the region outlined by the bounding box 

can be ignored during the compositing stage. 

specifically, utilize the unique characteristics of multi-images. 

In this chapter, we present the dynamic image resolutions (DIR) technique to accelerate 

multi-image batch compositing. The DIR technique generates a bounding grid (BG) 

for each process; a low-resolution 2D grid that maps the regions of blank pixels in the 

process'multi-image. These grids can be used to avoid compositing blank pixels of a k x k 

resolution in the multi-image. Note that this functionality can be compared to empty space 

skipping [51], which is used in a similar manner to accelerate volume rendering of 3D 

data. The generated grid is then used to relocate parts of the multi-image and dynamically 

reduce the resolution of the multi-image through some of the image compositing steps. 

Here, the regions of pixels are relocated to a subset of the image based on the output of 

a recursive algorithm in a manner that does not compromise the fidelity or result of the 

compositing. Reducing the image size results in less computation and faster data transfers, 

which yields faster compositing times. 

The remainder of this chapter is organized as follows. Related work is presented in 

Section 4.2, followed by a detailed description of the proposed technique in Section 4.3. 

The proposed technique is evaluated and compared to existing techniques in Section 4.4. 

Finally, the chapter is concluded in Section 4.5, including a summary of potential future 

work. 
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4.2 Related Work 

Distributed sort-last image rendering and compositing is a widely researched field of study. 

As a result, many compositing methods exist [3, 31, 63-68]. Binary swap [3] is an efficient 

divide and conquer method that has been used in a wide variety of applications since its 

creation. The binary swap method has also served as a basis for many extensions and 

derivations [64, 65, 67]. We use the binary swap method with the proposed DIR technique 

for evaluation purposes. Other distributed compositing methods that use a tree order (e.g., 

the Radix-k [67] method), optimization techniques, and compression methods [60] can 

also be used in tandem with the proposed DIR technique. 

Distributed image compositing involves compositing partial images, often generated 

from blocks of 3D data sets spread over multiple processes. Using the binary swap 

method, compositing consists of log p steps, where p is the number of processes. In 

each step, partial images are split in half, and then compositing is performed in pairs of 

processes that share the same image region. As a result, the number of processes that can 

perform compositing with any given process is reduced by 50% after each compositing 

step. An example of the distributed compositing process is shown in Fig. 4.4. We employ 

Z-buffering to manage the depth and how to composite pixels. Using Z-buffering, for 

each pair of pixels at index i, 0~i < n, where n is the number of pixels, the pixel 
with the shortest distance to the camera is composited on top of the other pixel. After 

all compositing steps are completed, the remaining partial images must be gathered and 

merged into a final image. 

Multi-images were investigated by Larsen et al. [32], who explored two different 

multi-image strategies. However, these two strategies only differ in how the composited 

images are saved to permanent storage. The multi-image is set up by concatenating 10 x 10 

images of a 1024 x 1024 resolution. Distributed rendering could be sped up because of two 

reasons. First, multi-image compositing is a type of batch-processing of images, meaning 

that the inter-process synchronization and communication times during rendering and 

compositing can be reduced by processing multiple images simultaneously. Second, using 

a multi-image can potentially improve the cache-hit rate and reduce overhead induced 

by data transfers, because all image data is allocated to a continuous memory region. 

Our work expands on this research by introducing a novel optimization technique that 

dynamically can reduce the resolution of the multi-image in a lossless manner. 

4.3 Dynamic Image Resolutions 

The DIR technique uses BGs and exploits the typical pattern of blank pixels in multi-

images to reduce the image resolution dynamically during the compositing stage. Here, 

non-zero grid cells, and the pixels they represent, are reorganized to fit in the smaller 

image. This size reduction is achieved with no loss of detail. 
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Figure 4.4: Example distributed image compositing between four processes using binary 

swap [3]. In each compositing step, images are split in half as indicated by the dotted 

lines. The end result is a fully composited partial image on each process that covers a part 

of the image domain. The compositing method works for both multi-images and single 

images. 

4.3.1 Overview of the DIR technique 

An overview of the DIR technique is shown in Fig. 4.5. The DIR technique consists 

of six stages. In stage 1, a BG is generated for the partial multi-image present on each 

process. Then, in stage 2, the grids are used to determine the order of operations required 

by the DIR technique. The order of operations is determined by an algorithm (described 

in Section 4.3.6). This algorithm uses the BGs to analyze the multi-images recursively to 

find the smallest image resolution that can be obtained with no loss of data (constraints 

explained in Section 4.3.4). The order of operations is then used in stage 3, where the non-

blank regions of pixels are reorganized to fit in an image of smaller size (Section 4.3.7). 

In stage 4, compositing is performed using the reduced resolution as specified by the 

order of operations. Then, the multi-images are restored to their original resolution in 

stage 5, i.e., they stop using the smaller image size and relocate the non-blank pixels of 

each multi-image to their original positions. 

Note that the reduced resolution cannot be used in all compositing steps in some 

cases (Section 4.3.5). In such cases, additional compositing steps are performed using the 

original resolution in stage 6. 
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Figure 4.5: Overview of the DIR technique. 

4.3.2 Bounding Grids 

A BG is a low-resolution grid (i.e., a 2D array), where each cell in the grid represents k 

pixels on each axis in the original image, for a total of k x k pixels per grid cell. Figure 4.6 

shows an example grid. The BG can identify blank pixels in multi-images more efficiently 

than a bounding box technique (Fig. 4.3). Whereas a bounding box can identify blank 

pixels in the outer regions of an image, a BG can identify blank pixels throughout the 

whole image. Note that BGs also work with single images (not only multi-images). 

Before compositing the image, the grid is initialized by iterating through each pixel 

of the image. Here, for each grid cell, the cell's value is set to O if all k x k pixels it 

represents are blank; otherwise, the cell's value is set to the index of the cell (starting from 

1). After each compositing step, a new image is created on each process by compositing 

two images. The BG of the new image can be updated using the data from the grids of 

the two composited images. Note that the resulting time complexity to update the grid is 

O(n/kり．

At the start of each compositing step, the grid is used to construct a bounding box for the 

image to exclude blank pixels at the outer regions. Throughout the compositing process, 

the grid is continuously checked to verify if an area of the image contains any non-blank 

data. If not, all pixels in the area can be skipped, which reduces the computational costs. 

Given an image, a BG comprises n / k2 grid cells. Thus, smaller k values increase the 

memory usage and time required to iterate the entire grid, and larger k values result in 

reduced memory usage and accelerate the grid iteration speed. However, smaller k values 

increase the grid resolution, which enables more fine-grained identification of blank pixels. 

Similar to the bounding box technique, the time complexity to calculate the initial 

state of a BG is O(n); however, the time complexity of updating the BG after compositing 

two images is O (n / k2), which is greater than the O (l) of the bounding box. By setting 
k = Q (fn), the time complexity can be regarded as O (1) instead of O (n / k2). 
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Figure 4.6: Example of the BG of a multi-image. The 8 x 8 grid keeps track of which 

image regions that contain non-blank pixels. Empty grid cells (represented by white cells) 
do not contribute to the final image; thus, pixels represented by empty grid cells can be 
skipped during the compositing stage. 

4.3.3 Order of Operations 

The DIR technique is executed through a sequence of operations. Here, three operations 

are used to realize the specified functionality of the DIR technique. 

I. Reorg. This operation specifies the new image dimensions (determined by the 

recursive algorithm) and a grid that specifies the new index of each non-zero grid 
cell (k x k image region). 

2. Restore. This operation restores the image to its original size and all pixels to their 
original positions. 

3. Composite. This operation specifies a pair of processes that are to share images 
and perform compositing. 

By executing the sequence of operations, stored as a list on each process, we can ensure 
correct functionality. Note that the Reorg and Restore operations only are executed once 

for each composited multi-image. 

4.3.4 Constraints of the Lossless Image Reduction 

To facilitate the explanation of the image reduction constraints, we introduce the term end 
ID, end ID E { 1, 2, ... , p}. For each cell, the end ID specifies which process the pixels 

represented by the cell are located on after the final compositing step that uses the reduced 
image resolution. To demonstrate an example using binary swap, assume that the DIR 
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technique is employed in Fig. 4.4. Here, in the final result, the top-left quadrant of the 

original image is present on process 1, i.e., grid cells representing pixels in the top left 

quadrant would have an end ID of 1. Note that the end ID calculation depends on the 

employed compositing method, n, k, p, and the resolution of the reduced image. 

There are three constraints when reducing the image size and reorganizing non-bl~nk 
pixels. These constraints ensure that the data relocation and the reduced image resolution 

do not affect the output of the compositing stage; thus, existing compositing methods 

can be used without modification. First, the new image (of reduced size) must be able 

to store all relevant data (non-blank pixels). Second, the DIR technique cannot change 

which pairs of pixels perform compositing. Pairs of pixels in the reorganized images 

can only be composited if they come from the same index i, 〇：：：：：：： i < n, in the original 

image. Specifically, for p multi-images (one on each process), if on process 1 a pixel 

is relocated from index i to index j, the other p -1 processes must perform the same 

relocation. Third, after the final compositing step using the reduced image resolution, a 

process'partial image cannot contain a grid cell (nor the pixels it represents) that, if not 

for the reorganization and resolution reduction, would be located on a different process. 

The first constraint can be satisfied by ensuring that the number of non-zero grid cells 

with a specific end ID does not exceed the maximum (M) that can be stored. 

The second constraint is satisfied by ensuring that, when any two pixels are composited, 

the values of the grid cells they belong to are identical, i.e., the grid cells they belong to 

had the same index in the original image. 

The third constraint is satisfied if each grid cell, when relocated, is moved to an index 

of the grid with the same end ID the cell had before the relocation. As a result, the pixels 

represented by the cell are located on the same process after compositing is completed, 

regardless of whether the DIR technique is used. In contrast, if the end ID is different, the 

cell's pixels end up on a different process once the compositing stage has finished, thus 

not satisfying the third constraint. 
The third constraint limits how pixels can be reorganized in the smaller image, and 

this constraint is the primary reason the DIR technique works well with multi-images. As 

described in Section 4.1 and illustrated in Fig. 4.3b, blank pixels are fairly evenly spread 

throughout a multi-image, i.e., the number of non-zero grid cells for each partial image 

should be similar at the end of the compositing stage. In most cases, this is not true when 

using single-image compositing; the non-blank pixels would instead be skewed toward a 

specific end ID, i.e., it would be harder to satisfy both the first and third constraints when 

reorganizing pixels to the smaller image. 

4.3.S Assigning Colors 

Through testing, we discovered that increasing the value of p occasionally made it difficult 

to achieve any substantial reduction to the image resolution, as the non-blank pixels from 

the p multi-images could not fit in a smaller image. To make the DIR technique usable 
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Algorithm 3 CAN_ADD: determine if process h can be assigned color w. The algorithm 

checks whether the current level allows all non-zero grid cells to be stored. 

Input: 
p: number of processes; 
rh: BG for process h; 
加： BG for color w; 
l: level; 
c: number of colors; 
Output: 
True or False; 

l: for i← 1 top do 

1> h is the process to be added 
1> w is the target color 

1> Whether h can be added to w 

2: 8 [i]← O; 1> Keeps track of the number of non-zero grid ce11s in every end ID 

3: for i← 1 to SIZEOF(rh) do 1> Iterate through all cells 
4: if r』i]-:f:. 0 orb』i]-:f:. 0 then 
5: j← GET_END_ID(i); I> End ID for i 
6: 8 [j]← 8 [j] + 1; 
7: if 8 [j] > (SIZEOF(rh)・C) / (p・2りthen 1> M 

8: return False・ ， 1> Ce11s exhausted 

9: return True; 

in large-scale environments, we assign a color to each process (c colors, where c~1). 
Then, processes are partitioned into p / c independent sets based on the assigned colors. 

When compositing, communication is initially limited to processes within the same set. 

Thus, p / c processes communicate, reduce their image resolution, and composite images 

within each set. The number of multi-images (and processes) participating in these 

compositing steps is p / c, down from p, making it easier to reduce the image resolution 

with no loss of detail. Then, the original image resolution is restored, and the remaining 

log p -log (p / c) = log c compositing steps between processes assigned different colors 
can be performed normally (not using the reduced image size of the DIR technique). Here, 

the benefit is that the image resolution can be reduced also in large-scale environments. 

To satisfy the first and third constraints, we must ensure that the number of non-zero 

grid cells belonging to the processes in a color's set do not exceed the maximum amount 

for any end ID. This verification process is described in Algorithm 3. The maximum 

number of non-zero cells for each end ID, M, is (n / k2・c) / (p・2りforeach process, 
where l indicates a resolution level; how many times the resolution of the multi-image can 

be successfully reduced by 50%. For example, in Fig. 4.7, if n/k2 = 64 (number of grid 
cells), c = 1, and p = 2, the maximum number for each end ID is 16 and eight for l = 1 

and l = 2, respectively. 
Increasing the number of colors also increases the computation time required to de-

termine the order of operations and reduces the number of compositing steps that use the 
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with p = 2. For any level, the number of pixels in the reduced image, n', is equal to n Ji. 

smaller image size. Thus, the maximum number of colors, MAX_COLOR, is limited to at 

most log p. 

4.3.6 Image Size Reduction Method 

The recursive Algorithm 4 shows how the order of operations is calculated (initially called 

from Algorithm 5). Here, given a number of processes p, p multi-images of n pixels (one 

on each process) and their BGs,'R← { r 1, ... , r P}, Algorithm 4 attempts to reduce the 
multi-image resolution as much as possible with no loss of detail. The output is the order 

of operations of each process. 

To determine the reduced image resolution, the number of colors, and the pixel reorga-

nization, we recursively try multiple l and c values in a bottom-up fashion. A maximum 

resolution level was determined through testing, and MAX_LEVEL = 4 (16x size reduction) 
was never exceeded in any tested configuration for non-empty images. 

Given l and c, Algorithm 4 attempts to assign colors to processes such that exactly 

p / c processes are assigned to each color. Each color iterates through the list of available 

processes and adds the first process that can be added while satisfying the constraints 

(determined using Algorithm 3). Then, if any process has not been assigned a color, either 

c or l is updated to make partitioning easier. Algorithm 4 first attempts to increase the 

number of colors, because decreasing the level doubles the number of pixels in the smaller 

image. If the level is decreased, the number of colors is reset to 1. The order of operations 

can be generated once a successful partition has been found. 

The first generated operation is always the Reorg operation, and then composite oper-
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Algorithm 4 GET_ OP_ ORDER: a recursive function that produces the order of operations 

for each process. Operations concerning other processes are ignored during program 

execution. 

Input: 
p: number of processes; 

刊： List of all processes, sorted by the number of non-zero grid cells; 

'R: { r1, ... , r P}; e> Contains a BG for each process 
l: resolution level; 
c: number of colors; 

q: index of the compute process; 

Output: 
の： order of operations; 

1: 1.1←刊；
2: g← {g1, • • • ,gc}; 
3: :B← {b卜．．．，れ｝；
4: for i← 1 top do 
5: w← i mod c; 
6: for j← 1 to SIZEOF(刊） do 

7: h← <fl [j]; 
8: 

9: 

10: 

if CAN_ADD(p, rh, hw, l, c) then 

Add h to gw; 
Remove h from刊；

11: Update bw to include all non-zero cells m rh; 
12: break 

13: if SIZEOF(知>0 then 
14: C← C・2; 
15: if c > MAX_COLOR then 

16: C← 1; 
17: l← l -I; 

18: return GET_OP_ORDER(p, u,'R, l, C, q); 

19: else 

1> Save copy of original list 

1> Set of c colors, V g E g, g← o 
1> BGs for all colors 

1> Algorithm 3 

1> Color partition unsuccessful 

1> Color part1t1on successful 

20: Init order of operationsのwithReorg operation for process q; 
21: Add intra-color Composite operations toの；
22: Add Restore operation for process q toの；
23: if c > I then 
24: Add inter-color Composite operations toの；

25: return'D; 1> Finished 

ations between pairs of processes of the same color are appended. Here, all compositing 

pairs belong to the same color; thus, the reduced image resolution can be used with no 

loss of data. Given log(p / c) intra-color compositing steps and p /2c pairs of processes 
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Algorithm 5 Calculates the order of operations on all p processes (function is called in 

parallel by each process). 

Input: 
p: number of processes; 
M: p multi-images of n pixels; 
l: MAX_LEVEL; 

c: MAX_COLOR; 
q: index of the compute process; 
Output: 
の： order of operations; 

l: 刊← [I, ...'p]; 
2:'R← {r1, ... ,rz,}; 

3: for i← I top do 
4: 乃←the BG for the i-th multi-image M [i]; 

1> One on each process 

1> Set to store the p BGs 

5: Sort刊 bythe number of non-zero cells in each BG in'R (descending order); 
6: return GET_OP _ORDER(p, 刊，'R,l, c, q); 1> Algorithm 4 

for every step, a total of log(p / c)・p /2c compositing operations are performed within 

each color's set of processes. Then, as no more compositing steps can be completed using 

the reduced image resolution, the Restore operation is appended, to restore the images 

to their original resolution and all pixels to their original indices. Finally, the remaining 

log(c)・p /2 composite operations between pairs of processes assigned different colors are 

appended. After the operations have been executed, each process is left with a part of the 

final image. 

4.3.7 Pixel Reorganization 

We use the grid of each multi-image to reorganize different regions of pixels; i.e., 炉pixels
are relocated to the smaller image at a time. Figure 4.7 shows an example of the pixel 

reorganization process. As shown, each grid cell whose value is not zero is relocated to 

the smallest unoccupied index for its end ID, which satisfies the third constraint. This 

approach can potentially improve the efficiency of skipping the compositing of empty grid 

cells because all non-zero cells are concentrated in the same area of the grid. When a 

grid cell is relocated, the cell's value is still set to the original grid index it had before the 

reorganization. The index can then be used at the end of the compositing stage to relocate 

the cells (and the pixels they represent) to their original position in the multi-image. The 

pixel reorganization is identical for all processes assigned the same color, satisfying the 

second constraint. 
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4.3.8 Theoretical Performance Analysis 

Maintaining the BG increases the memory usage by bn/ k2 on each process, where b 

determines how many bytes can be used by each grid cell to record the indices used by the 

Reorg operation. The best b value depends on the resolution of the multi-image and the k 

value. The Reorg operation also stores a grid containing bn/ k2 elements. As a result, the 

memory usage is increased by at most 2bn/k2. For example, if b = 2, n = 204802, and 

k = 64, the memory usage would only increase by 0.1喩．

To facilitate understanding of the theoretical analysis, we first show the total time for 

a basic method before that of the DIR technique. The basic method here simply uses the 

binary swap method, with no optimization techniques applied. We define the total time T 

as a function of the number of pixels (n). Because the basic method consists of a sequence 

of compositing steps followed by a gather step, the total time can be given by: 

T(n) = 1喜sWp(~) + lg,the, い。:,p), (4.1) 

where tstep is the time required to process a compositing step in the binary swap method 

and tgather is the time required to merge the partial images after all compositing steps have 

completed. The number of compositing steps and the image size for each step i depend 

on the used compositing method; using binary swap results in log p steps. As the number 

of pixels in an image is halved after each step, the number of pixels at step i is equal to 
n/i-1. 
The time tstep can be further detailed as follows: 

fstep(n) = tcomm(n) + tca1c(n) + fsync(n), (4.2) 

where tcomm, tcalc, and tsync are the inter-process communication time, the compositing 
computation time, and the inter-process synchronization overhead for each compositing 

step, respectively. 

We next analyze the total time for the DIR technique. There are three differences 

compared to the basic method. First, for each compositing step, additional computation 

and inter-process communication are required to update and transfer the grid between 

processes. Let these actions be done in tgrid• We then have 

t~tep(n) = fstep(n) + tgrict(n/kり， (4.3) 

where t贔tepis the time required to process a compositing step in the DIR technique. Second, 

as a result of the dynamic image size reduction, the number of elements is reduced from n 

to n'= n /2'for the first log(p / c) steps. Third, using the DIR technique, the BGs must be 

generated, called tgen• In addition, the DIR technique involves the computation times of 
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the Reorg and Restore operations, treorg and trest, respectively. As a result, we obtain the 
following function T'for the total time: 

log(p/c) 

T'(n) = L n'logp n 

;~1 ,;,"'い） + ;clogf,;1,-)+1 t;lep (z,"1) (4.4) 

+ tgather い。~gJ +tgen (~) +treorg(n) +trest(n). 

The phases specific to the DIR technique (tgen, treorg, and trest) all depend on n rather 
than p. As a result, the proposed technique should be more effective in large-scale 
environments, as the number of pixels typically remams constant; m such scenarios, t step 
is bound to account for a greater proportion of the total execution time. 

4.4 Evaluation 

To evaluate the proposed technique, we ran tests on a 16-node cluster (Table 4.1). Ren-
dering was performed using the OSPRay rendering engine [37], version 1.7.3, and com-
positing was implemented in C++ and accelerated using OpenMP [69]. The multi-image 
size was set to 100 (10 images per axis), same as in related work [32]. However, we used 

an image resolution of 2048 x 2048, resulting in a resolution of 20480 x 20480 (1.67 GB) 
per multi-image, for a total of 26.84 GB of data spread across 16 nodes. 

The camera was moved along a spherical spiral around each data set to ensure all 
images were rendered from different viewing angles and positions. We evaluate the 
following techniques, all of which use the binary swap method: 

1. Single. Traditional single-image compositing. 

2. Basic. Multi-image compositing with no optimization techniques. 

3. BB. Multi-image compositing using a bounding box. 

4. DIR. Multi-image compositing using the proposed DIR technique. 

We used the traditional image compositing method shown in Fig. 4.1 in the single tech-
nique to demonstrate the differences in rendering times between the traditional approach 
and batch rendering. 

Two data sets were used for testing purposes; referred to as data set 1 and data 

set 2. Data set 1 is a time step of the mass fraction of a Richtmyer-Meshkov Instability 
simulation [l], at a 2048 x 2048 x 1920 resolution (64 GB). Data set 2 is a time step of the 
pressure field of a forced isotropic turbulence simulation [70], at a 4096 x 4096 x 4096 
resolution (550 GB). Figure 4.8 displays a visual representation of the two data sets. 
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Table 4.1: Cluster specifications. The cluster system consists of p = 16 nodes. 

CPU 
Memory 
Interconnect 
Software 

(a) 

Xeon ES-1650 v4 6 cores 

128 GB 
InfiniBand EDR 
GCC 7.3.0, OpenMPI 3.1.0, and OSPRay 1.7.3 

(b) 

Figure 4.8: Visualization of (a) data set I and (b) data set 2. 

4.4.1 Selecting the Grid Size 

To evaluate the effect of using different k values in the DIR technique, we ran tests for k 

values of 16, 32, 64, and 128. The results for data set 1 are shown in Fig. 4.9, which breaks 
down the compositing times according to the phases outlined in Section 4.3.8. Similar 

results were obtained for data set 2. 

A k value of 128 resulted in a coarse-grained grid, that failed to reduce the resolution 

of the multi-image to the same extent as lower k values. As a result, the fstep phase was 
more time-consuming than the k = 32 or k = 64 cases. Note that decreasing the value 
of k further instead made the grid more fine-grained; however, the extra overhead from 

the tstep, trest, and treorg phases introduced by increasing the number of cells negated the 
benefits of the proposed DIR technique. Based on these results, we used k = 64 for all 
subsequent tests. 
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Figure 4.9: Compositing times using different k values on 16 processes (k = 64 achieved 
the fastest compositing time). 

4.4.2 Overall Speedup 

The total execution times (rendering and compositing) are shown in Fig. 4.10. Using batch 
processing proved to improve the execution time significantly. The biggest difference was 
observed between the single and DIR techniques, where speedups of 1.32x and 1.27x 
were observed on the two respective data sets. In addition, speedups comparing the DIR 

to the basic technique were 1.12x and 1.07x, respectively. Using batch processing sped 
up the rendering times by 1.2x on both data sets, which suggests that the performance 
benefits of rendering images in batches are independent of the size of the data set. 

Rendering made up 77% of the total execution time on data set 1 and 85% on data set 2 
for the basic technique. Using the DIR technique, the improvements to the overall execution 
times seem limited, as rendering is more time-consuming than compositing. However, 
increasing the p value increases the amount of compositing time compared to rendering; 
indeed, compositing is considered to be a significant bottleneck when performing large-

scale visualization [63]. As a result, evaluating the compositing times independently 
of other computation tasks provides a better understanding of the speedup in different 
scenarios; such as when using smaller data sets or larger-scale systems. 
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Figure 4.10: Total execution times (rendering and compositing times) of the evaluated 

techniques on 16 processes. 

4.4.3 Compositing Performance 

The compositing times of the evaluated techniques are presented in Fig. 4.11. In line 

with expectations, the bounding box technique did not achieve any significant speedup as 

compared to basic multi-image compositing (1恢oslower on both data sets). This result 
confirms that some common optimization techniques for image compositing are not as 

effective on multi-images. Using a multi-image was faster than single-image compositing. 

The basic technique achieved speedups of 1.11 x compared to the single technique on both 

data sets. The proposed DIR technique achieved significant speedups of the compositing 

stage; l.82x on both data sets compared to the basic multi-image technique. Similarly, 

the DIR technique achieved speedups of 2.02x compared to single-image compositing. 

On both data sets, we observed a 75喩 sizereduction (l = 2) in our testing of the DIR 
technique (1.67 GB to 0.42 GB per multi-image). 

Figure 4.12 shows a breakdown of the compositing times based on the phases outlined 

in Section 4.3.8. Using the DIR technique, treorg and trest together account for 12-13喩

of the total compositing time. However, these operations depend on the resolution of the 

multi-image (rather than p). As a result, the execution times of these operations should 

decrease in proportion to the total compositing time asp increases. 

The lstep phase was significantly faster using the DIR technique than all other evaluated 

techniques, which is consistent with the theoretical performance improvements outlined 

in Section 4.3.8. Compared to the basic technique, the proposed DIR technique sped up 

the lstep phase by 2.38x and 2.43x on the two respective data sets. Even when accounting 

for the extra computation required by the DIR technique (tgen, treorg, and trest), speedups of 
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Figure 4.11: Compositing times using the evaluated techniques (p = 16). 

1.97x and 2.00x were achieved on the two data sets. Based on these results, we conclude 

that using the DIR technique can accelerate multi-image compositing significantly. 

To evaluate the scalability of the proposed DIR technique, we measured the composit-

ing times using 2, 4, 8, and 16 processes (Fig. 4.13). We make two observations; first, the 

DIR technique achieves a greater speedup compared to the techniques used for comparison 

as we increase p. This relative improvement is a direct result of the reduced image size. 

For example, going from p = 4 top = 16, the tstep execution time of the basic technique 

increased by 25喩 ondata set 1; compared to an increase of only 40/o when using the 

DIR technique. Second, tstep constitutes a greater proportion of the execution time of the 

DIR technique as the p value increases, consistent with our discussion in Section 4.3.8. 

Table 4.2 summarizes the execution time of each phase compared to the total compositing 

time on data set 1. Here, 45峨ofthe compositing time initially consists of tstep when p = 2. 
Overhead induced by the trest and treorg phases makes the DIR technique less efficient; only 

a l.16x speedup over the basic technique. As the value of p increases, the tstep phase 

accounts for a greater proportion of the execution time (over 700/o when p~8). The 
proposed DIR technique specifically accelerates the tstep phase, meaning that it should be 

able to further accelerate the compositing stage when the tstep phase constitutes a greater 

portion of the compositing time; in our case, a l.82x speedup compared to the basic 

technique for p = 16 on both data sets. We conclude that the DIR technique scales better 
than the techniques used for comparison and that it is especially well-suited for large-scale 

visualization. 
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Figure 4.12: Breakdown of the compositing times of the evaluated techniques (p = 16). 
For the BB technique, tgen represents the time to calculate the bounding box. 

Table 4.2: Time spent by the DIR technique on each phase compared to the total com-
positing time on data set 1. 

t step tgather trest treorg T gen 

p=2 
p=4 

p=8 
p = 16 

45喩
62.4喩
72.2喩
70.5喩

20喩
15.8喩
13.7峨

14.8峨

16.3喩
10.3位

3.90/o 
60/o 

16.20/o 
9.3~。

7 .80/o 
6.1 0/o 

2.5吼
2.3悦
2.3% 
2.6% 

4.5 Conclusion 

In this chapter, we proposed the DIR technique to accelerate multi-image batch com-

positing. Compared to existing multi-image compositing techniques, our contribution is 

twofold. First, the proposed technique maintains low-resolution grids that track empty 

regions in the composited multi-images, which can be ignored during the compositing 

process to reduce the computation time. Second, the grids are analyzed by a novel algo-

rithm, whose output can be used to reduce the total image size in a lossless manner, which 

can lower the compositing time significantly. 

The proposed DIR technique realized a 2.02x speedup of the image compositing stage 
as compared to traditional single-image compositing and l.82x compared to existing 
multi-image techniques. Similar results were obtained using multiple distinct data sets, 
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Figure 4.13: Breakdown of the compositing times of the evaluated techniques on (a) data 

set I and (b) data set 2 using 2, 4, 8, and 16 processes. For the BB technique, t gen represents 

the time to calculate the bounding box. Note that no results are presented for the case 

using two processes on data set 2; the processes ran out of memory and were not able to 

render the images. 
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meaning that the performance benefits of the proposed technique should not be limited to 

this application. We also showed that the DIR technique can accelerate the compositing 

for computing clusters of different sizes consistently. Moreover, we observed that the 

proposed technique achieved greater speedups as the number of processes increased. 

Thus, we conclude that the presented technique can accelerate the batch compositing of 

images and that the technique is especially suitable in large-scale cluster environments 

where extensive visualization is needed. The speedup compared to related techniques is 

excellent; using the DIR technique can potentially reduce the compositing time by up to 

45% in large-scale applications. 

In future work, we plan to continue improving the DIR technique to further accelerate 

the compositing process. In addition, we plan to investigate how multi-image compositing 

on GPUs can be accelerated by using different scheduling techniques and data structures. 

73 



74 



Chapter 5 

Conclusions 

Here, we present a summary of the dissertation and discuss future work. 

5.1 Summary of Work 

In this dissertation, we identified and addressed three challenges facing large-scale co-

processing of simulation data: (1) how to identify essential simulation data, (2) how to 

perform memory-efficient load balancing, and (3) how to accelerate multi-image batch 

compositing. These challenges were addressed in Chapter 2, Chapter 3, and Chapter 4, 

respectively. 

In Chapter 2, we proposed a method that efficiently can identify important regions 

of simulation data, and then used the proposed method to combine the usage of multiple 

compression methods. Using a data-driven approach, we could successfully accelerate 

data transfers and data compression in an in-transit setting; achieving an overall speedup 

of l .29x compared to using RLE. The proposed approach significantly accelerated the 

in-transit co-processing and should be usable in many in-transit applications. 

In Chapter 3, we presented a dynamic load balancing technique by which processes 

can render data from non-contiguous regions of 3D data sets. We were able to reduce the 

amount of transferred data in large-scale environments by 72.2りoand lower the highest 
observed memory usage compared to a typical k-d load balancing technique by 35.7%, 

while not negatively affecting the rendering performance. Similar performance benefits 

were shown for the three distinct data sets used for evaluation, meaning that similar results 

should be obtained in other applications. The technique has the potential to be used in 

large-scale or memory-limited scenarios where other dynamic load balancing techniques 

do not suffice. 

In Chapter 4, we presented a technique that dynamically can reduce the size of multi-

images with no loss of data, thus able to accelerate the image compositing process sig-

nificantly. We were able to display excellent scalability compared to other techniques, 
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and achieved a speedup of 2.02x compared to traditional image compositing and 1.82x 

compared to existing multi-image techniques on two distinct data sets. Based on the 

evaluation results, the DIR technique can reduce the compositing time by up to 45悦 in

other applications. 

Summarizing the work of this dissertation, we successfully addressed three time-

consuming challenges facing large-scale co-processing of scientific simulations, finding 

novel solutions that function at scale in distributed settings. We believe that the novel 

techniques and findings presented in this work can be applied to many applications that need 

to expeditiously process simulation data on the fly. We also believe that our techniques will 

perform even better in the future thanks to the excellent scalability shown in our testing. 

5.2 Future Work 

In future research, we would like to investigate how these applications can be used in 

combination to accelerate all stages of the visualization pipeline. The memory-efficient 

load balancing technique can be used to dynamically balance the computational load 

during the rendering stage, the DIR technique can accelerate the compositing stage, and 

by identifying essential data, we can prioritize different types of co-processing tasks at 

interesting time steps, compress data, and save important simulation data to permanent 

storage. 

We also detail three topics of future research that build on the applications presented 

in this dissertation. First, we would like to further explore how identifying important 

simulation data can be used to accelerate and improve the co-processing process. In 

addition to many time-saving measures, we believe that many simulation-specific tasks 

can be automated; for example, the calculated importance can be used to determine which 

time steps to analyze. Second, continue work on developing new optimization techniques 

for batch image visualization using multi-images. Third, investigate how dynamic load 

balancing can be improved by knowing the importance of different data regions. 
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