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Abstract

Data generated by large-scale scientific simulations is expected to increase by orders of
magnitude in the future as we approach exascale computing. Input/output constraints
of supercomputers have increased the use of co-processing approaches, i.e., visualizing
and analyzing scientific simulations on the fly. Co-processing tasks consume valuable
simulation time, thus affecting the fidelity and scale of phenomena that can be simulated
in a given time frame. As the complexity and scale of both simulations and co-processing
tasks are bound to increase in the future, there is a need for new techniques to accelerate
challenging co-processing tasks.

In this dissertation, we identify and address three challenges facing the large-scale co-
processing of simulation data. The first challenge is how to expeditiously determine what
constitutes important data. Analysis and visualization tasks can be focused on the most
essential data, thus accelerating the co-processing. We present a method that evaluates the
importance of different regions of simulation data and a data-driven approach that uses this
information to accelerate the in-transit co-processing of large-scale simulations. We use the
importance metrics to simultaneously employ multiple compression methods on different
data regions to accelerate the in-transit co-processing. Our approach strives to adaptively
compress data on the fly and uses load balancing to counteract memory imbalances. We
demonstrate the method’s efficiency through a fluid mechanics application, a Richtmyer—
Meshkov instability simulation, showing how to accelerate the in-transit co-processing of
simulations. The results show that the proposed method can identify regions of interest
expeditiously, even when using multiple metrics. Our approach achieved a speedup of
1.29% in a lossless scenario. The data decompression time was sped up by 2X compared
to using a single compression method uniformly.

The second challenge concerns load balancing simulation data. In large computing
clusters, dynamically load balancing data can lead to significant inter-process memory
imbalances; as aresult, data is typically statically distributed among processes. We propose
anovel compositing pipeline and a dynamic load balancing technique for volume rendering
that utilizes a two-layered structure to achieve effective and scalable load balancing. The
technique enables each process to render data from non-contiguous regions of the volume
with minimal impact on the total rendering time. We demonstrate the effectiveness
of the proposed technique by performing a set of experiments on a computing cluster.



The experiments show that using the technique results in up to a 35.7% lower worst-
case memory usage as compared to a dynamic k-d tree load balancing technique, whilst
simultaneously achieving similar or lower rendering times. The proposed technique was
also able to lower the amount of transferred data during the load balancing stage by up
to 72.2%. The technique has the potential to be used in many scenarios where other
dynamic load balancing techniques have proved to be inadequate, such as in large-scale
visualization.

The third challenge relates to image batch visualization. In many cases, rather than
saving large quantities of simulation data, thousands to millions of images of different
variables and viewpoints can be rendered on the fly and saved to permanent storage. This
image generation process can be accelerated by rendering and compositing images in
batches. Specifically, images can be combined into larger multi-images, which results in
less synchronization and communication overhead during the image compositing stage.
We present a technique to accelerate such batch processing, called dynamic image reso-
lutions. The dynamic image resolutions technique maps regions of blank pixels in each
image and uses this information to dynamically restructure the multi-images to reduce
the total image size with no loss of detail. An evaluation of the technique demonstrates
a 2.02x speedup of the compositing stage as compared to traditional image compositing
and a 1.82% speedup compared to existing multi-image techniques.

Our work successfully addresses three important challenges facing on-the-fly co-
processing of large-scale simulation data. The first application shows how essential data
can be identified, and how this information can be used to accelerate co-processing tasks
of large-scale data sets. The second application significantly reduces memory imbalances
resulting from dynamic load balancing, thus making load balancing feasible in large-scale
environments. The third application shows that batch image visualization can be sped up
significantly by taking advantage of the underlying image data.
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Chapter 1

Introduction

The processing capabilities of distributed compute clusters are increasing at a fast pace;
however, limited input/output (I/O) bandwidth leads to bottlenecks in many applica-
tions [12, 13]. This is one of the most pressing matters for large-scale scientific simula-
tions. Simulations can generate multiple tera- or petabytes of data, making it challenging
to save all necessary data to permanent storage [14—17]. One popular approach to circum-
vent this limitation is to perform co-processing (i.e., to visualize and analyze simulation
data on the fly). Co-processing tasks can be time consuming, thus limiting the available
simulation time. In this dissertation, we identify and address three challenges facing
on-the-fly co-processing of large-scale scientific simulations. Specifically, we accelerate
three time-consuming co-processing tasks, thus freeing up time to perform more ad-
vanced and detailed simulations. We first introduce co-processing approaches and the
visualization pipeline in Section 1.1. We then present the challenges and our solutions in
Sections 1.2-1.4.

1.1 On-the-Fly Co-Processing of Simulation Data

Computer simulations are used in a wide variety of fields to study how phenomena interact
and develop in certain environments. Simulations are especially prevalent for applications
that otherwise would be expensive or difficult to test, such as fluid mechanics simula-
tions [18, 19]. Scientific simulations are typically performed in three-dimensional (3D)
space (X, y, and z-axis) and span multiple variables and time steps. Large-scale simulations
have extensive compute and memory requirements, requiring the use of supercomputers
or computer clusters. The simulation domain can be partitioned into multiple contigu-
ous and convex blocks; contiguous and convex data regions that combined make up the
simulation data or 3D data set. Such blocks can be distributed and processed in parallel
by multiple processes. Researchers can perform various analyses or visualizations on the
data to extract information about the simulation.
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Figure 1.1: In-situ co-processing. Simulation, visualization, analysis, and I/O operations
are performed on the same set of processes.

Co-processing enables researchers to analyze and visualize all generated simulation
data on the fly, as it is created. The often small-sized output from co-processing tasks (e.g.,
images or analysis results) can then be saved to permanent storage instead of the larger
simulation data sets. As aresult, time-consuming I/O operations can be kept at a minimum,
whilst information about the simulation can be kept for post-hoc analysis. In addition,
more resources and time can be dedicated to the simulation, allowing researchers to run
larger simulations and process more data. Typically, two types of on-the-fly co-processing
approaches are considered: in-situ and in-transit.

In-situ co-processing (illustrated in Fig. 1.1) is typically performed on the same com-
pute nodes as the simulation and can achieve good performance, partly because of the
locality of the data. The main drawback of in-situ co-processing is that time-consuming
analysis and visualization tasks consume valuable simulation time. On the other hand,
in-transit co-processing (shown in Fig. 1.2) is performed on a separate group of compute
nodes. Utilizing a different group of nodes means that co-processing can be performed
asynchronously during the simulation stage, resulting in a less strict time limitation com-
pared to an in-situ approach. Furthermore, nodes can be equipped with different hardware
to accelerate the co-processing tasks. The main drawback of in-transit co-processing is
the time-consuming data transfers needed to relocate necessary simulation data. Neither
co-processing approach is objectively better than the other in all cases [20]; in many situ-
ations, in-situ and in-transit co-processing can be used in combination to take advantage
of their respective benefits [16, 21].

Visualization is a common co-processing task to understand and store information
about the studied phenomenon. In the context of scientific simulations, it is the process of
creating one or more images of the simulations’ underlying data variables. In a distributed
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Figure 1.2: In-transit co-processing. The simulation is performed on one set of nodes,
whereas visualization, analysis, and I/O operations are performed on a different set.

setting, visualization consists of two stages: rendering and compositing. In the rendering
stage, one or more images are generated on each compute process based on the partial
simulation data present on each process. As the images only contain information on part
of the simulation domain, they need to be combined into a single, complete image. This
work is done in the compositing stage.

1.2 Determining Essential Simulation Data

Important regions of simulated phenomena are often limited to a subset of the simulation
domain. By identifying important data on the fly, regions not of interest can be down-
prioritized by analysis, visualization, and I/O processes, which accelerates such operations.
Another use case is to perform more fine-grained simulation steps on regions identified
as important, which is faster than uniformly performing the same steps on the whole
domain [8, 9].

The first challenge (Chapter 2) concerns how to determine the importance of different
data regions. What constitutes important data depends on multiple factors, such as the
simulation type and the focus of the study. As a result, there is no definitive approach to
analyze the importance of data that can be used in all situations. The importance of a data
region can be tied to multiple different metrics, and it must be possible to make multiple
decisions about the data based on such metrics. A flexible pipeline that can adapt to these
different situations is needed.

To accurately determine the importance of data, we present a method to efficiently
calculate the importance of regions of simulation data, as well as a data-driven approach



that uses the proposed method in-situ to accelerate the in-transit co-processing of a fluid
simulation. Our hybrid in-situ in-transit approach strives to adaptively compress regions
of data on the fly, using multiple different compression methods based on the underlying
data. In addition, we use load balancing to counteract memory imbalances.

1.3 Dynamic Load Balancing of 3D Data Sets in Large-
Scale Cluster Environments

Differences in computing times between processes can significantly affect the rendering
and compositing times when visualizing multiple images (e.g., when visualizing images in
batches). Dynamic load balancing techniques are often used to alleviate these differences
in compute time [22-26]. Load balancing techniques typically structure the underlying
data in a tree structure, such as a k-d tree [27]; however, balancing the compute times
using this type of tree structure can instead result in substantial memory imbalances [26].

The second challenge (Chapter 3) concerns large-scale dynamic load balancing of 3D
data sets. Post-hoc exploration of certain time steps or using tools like cinema [28] to
visualize simulation data on the fly results in rendering multiple images from the same
data sets. Memory imbalances resulting from dynamic load balancing can, when using
large-scale simulations, lead to some processes running out of memory. As a result,
dynamic load balancing is seldom used in large-scale settings to balance compute times.

To limit memory imbalances caused by load balancing 3D data sets, we propose a
novel compositing pipeline and a dynamic load balancing technique for volume rendering
that utilizes a two-layered group structure to achieve memory-efficient and scalable load
balancing. The technique can be used in both in-situ and in-transit settings and enables
each compute process to render data from non-contiguous regions of the volume with
minimal impact on the total rendering time.

1.4 Accelerating Data Visualization Using Multi-Images
with Dynamic Image Resolutions

In the context of scientific simulations, multiple images are often generated to represent
different viewing angles, variables, and time steps. Certain tools [28, 29] automate this
process by generating thousands to millions of images at regular intervals around the
studied phenomenon in 3D space. These in-situ visualization tools can reduce the stored
data size by orders of magnitude, while still enabling researchers to explore the data
post-hoc.

Consider several images, each representing a specific simulation variable or unique
camera position. In adistributed setting, each process holds a small region of the simulation

4



domain in memory [30, 31]. As a result, images must be composited among the compute
processes after being rendered. Typically, each image is rendered and composited in
sequence. However, this type of image generation pipeline induces a substantial amount
of overhead, primarily as a result of synchronization and communication between different
processes. Such overhead can be reduced by rendering and compositing images in batches,
as has been explored in related work [32]. Combining batches of images into multi-images
proved to further accelerate the compositing process.

The third challenge (Chapter 4) is related to multi-image batch visualization. Multi-
image techniques [32] have proved to substantially accelerate the batch processing of large
quantities of images. However, rendering and compositing potentially up to millions of
images remains a very time-consuming process. As a result, there is a need to further
accelerate image batch processing techniques such as the multi-image technique. The
amount of data generated by scientific simulations is bound to increase by orders of
magnitude in the future as we approach exascale computing, making this type of co-
processing essential to analyze simulations post-hoc.

We present a technique called dynamic image resolutions to accelerate on-the-fly
multi-image batch visualization of distributed simulation data in large-scale computing
environments. The dynamic image resolutions technique maps regions of blank pixels in
each image. This information is then used to dynamically restructure the multi-images to
reduce the total image size with no loss of detail. Reducing the image size significantly
accelerates image compositing and the overall visualization process.

1.5 Opverview of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 reports our work on the first
challenge: determining essential simulation data, and how that information can be used
to accelerate in-transit co-processing. Our work to address the second challenge, limiting
memory imbalances caused by load balancing in large-scale environments, is presented in
Chapter 3. Our solution to the third challenge is presented in Chapter 4: accelerating batch
visualization by using multi-images with our novel dynamic image resolutions technique.
Finally, Chapter 5 concludes the dissertation and presents directions for future work.






Chapter 2

Accelerating In-Transit Co-Processing
for Simulations Using Data-Driven
Analysis

2.1 Introduction

The processing capabilities of modern supercomputers are improving at a tremendous pace.
However, I/0 bandwidth has advanced at a much slower rate, leading to bottlenecks in many
applications [12, 13]. This is one of the most pressing matters for large-scale scientific
simulations. Simulations can result in multiple tera- or petabytes of generated data, making
itchallenging to save all necessary data to permanent storage due to limited storage capacity
or time-consuming I/O operations [14—17]. In-situ or in-transit visualization and analysis
are often used for each time step while the data is generated.

In-situ co-processing is typically performed on the same compute nodes as the sim-
ulation and can achieve high performance, partly because of the locality of the data.
However, in-situ co-processing takes up valuable simulation time. Many researchers
are reluctant to dedicate computing resources used by the simulation to other compute-
intensive tasks [13, 15], meaning that the time available for in-situ co-processing often is
short compared to that of the simulation. One option to reduce the co-processing time is to
lower the frequency at which time steps are analyzed. Another is to limit the available time
to perform co-processing for each analyzed time step. Both these options are undesirable
because they limit the amount of data available to the researcher after the simulation has
been completed. Furthermore, a significant amount of the available memory is used by
the simulation in an in-situ scenario, meaning that only a tiny amount can be allocated for
visualization or analysis purposes [33].

In contrast, in-transit co-processing [20, 34] is generally performed on a separate group
of compute nodes, which we refer to as transit nodes. Utilizing a different group of nodes
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means that co-processing can be performed asynchronously during the simulation stage,
resulting in a less strict time limitation than an in-situ approach. Furthermore, the transit
nodes can be equipped with different hardware to accelerate the co-processing tasks. The
main drawback of in-transit co-processing is that the relevant simulation data needs to be
transferred to the transit nodes. Moreover, it is not guaranteed that the simulation nodes
can hold an extra copy of the data in memory. It is often impossible to transfer the data
asynchronously while simulating the next time step.

The data transfers required to perform in-transit co-processing can be accelerated by
reducing or compressing the simulation data. However, using a reduction or a lossy
compression method could lower the detail and accuracy of the whole data set, including
regions of interest. It could instead be beneficial to selectively compress areas of data
based on their contribution to the simulated phenomenon. Reducing or compressing areas
that are not of interest would result in less time-consuming data transfers without any
significant loss to the data quality.

To determine the frequency at which data is analyzed, the time available for co-
processing, and what compression method(s) to use to accelerate the data transfers, there
is a need to identify the importance of the underlying simulation data. Such information
can be used in a wide variety of cases, including guiding the simulation, determining
which time steps of the simulation to analyze or save to permanent storage, removing
or reducing unimportant data, and finding interesting camera locations for co-processing
purposes. Some of these cases have been explored in related work [4—11]. However, these
methods have either been limited in the number of used importance metrics [4, 6-11] or
been unable to combine multiple metrics to create advanced importance metrics and to
make more advanced decisions [5].

We propose an in-situ method that efficiently can identify the importance of subsets
of simulation data, which consists of multivariate and temporal data sets in the form
of structured rectilinear grids. User-defined importance metrics and filters are used to
determine the importance of blocks. The calculated importance can then be used for a
variety of purposes to accelerate or guide the simulation, such as identifying important
regions, down-sample, reducing, compressing, or simply removing parts of the data based
on user-defined constraints and the underlying hardware. What sets the proposed method
apart from related work is its ability to calculate importance when using multiple analyses
efficiently. It can adaptively make any number of decisions based on the importance,
compared to only a binary decision, which is typical in other methods.

We also propose an approach that uses the proposed in-situ method to identify how to
best combine the usage of multiple different compression methods based on the importance
of the underlying data, which can be seen as a use case of the proposed method. In the
case of lossy compression, loss of detail in regions of interest can be kept at a minimum
by reducing unimportant areas. Using this data-driven approach, we strive to reduce the
data size and the in-transit data transfer time to accelerate in-transit co-processing. The
main contributions of this work are as follows:



1. An efficient method to determine the block importance of large-scale simula-
tions. Calculating the importance of various regions of data was a time-consuming
task in many related works. As such, only a few importance metrics tend to be
used. The main goal of our proposed method is to provide researchers with a
customizable and easy-to-use way to efficiently determine the importance of sub-
sets of large-scale simulation data, even when using multiple complex analyses to
determine such importance. To reach this goal, we have developed a scheme that
uses a separate buffer to transform the data to a more suitable structure for analysis
and strives to schedule importance analyses in a fashion that improves the cache hit
rates. We also introduce the usage of an adaptive condition window; a custom range
within which multiple condition parameters can vary. Using a condition window
allows parameters to change based on the current constraints of the environment.
For example, if a data transfer is too time-consuming, the parameters can be adapted
to compress or remove more data in the coming time step.

2. A flexible approach to accelerate in-transit co-processing. We observe that the
effectiveness of a certain compression algorithm often depends on the underlying
compressed data. By identifying the importance and the most suitable compression
for each region of generated simulation data in-situ, we strive to minimize the
data size and the in-transit data transfer time by combining the use of multiple
compression methods integrated into a pipeline. The approach explored in this
chapter puts no additional restraints on the contents of the co-processing stage. It
can be used in tandem with various visualization software, e.g., Paraview [35],
Vislt [36], or OSPRay [37].

3. A case study of how the in-transit co-processing of a Richtmyer—Meshkov in-
stability (RMI) simulation can be accelerated using the proposed approach.
The RMI simulation is performed using CNS3D, a state-of-the-art program for
numerical fluid simulations.

The structure of this chapter is organized as follows. Related work is discussed in
Section 2.2. The proposed approach is presented in Section 2.3. In Section 2.4, we
evaluate the performance of the proposed approach. Lastly, our conclusions are presented
in Section 2.5.

2.2 Related Work

Determining and analyzing regions of interest in 3D data sets has been an important topic
in many research fields, and has as such been explored in many related works [4-11]. A
commonly used technique is Adaptive Mesh Refinement (AMR) [7-9]. Using AMR, the
simulated region is divided into multiple sub-regions, commonly by using a tree structure
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such as an octree [38]. After the simulation has been completed, important regions in the
tree structure are subdivided to create even smaller sub-regions, on which more compute-
intensive operations can be used to, for example, increase the accuracy or resolution of
the simulation. This process can be performed recursively based on the researcher’s
specifications. The analysis required to calculate block-based importance metrics results
in a fairly uniform data access over all data points in the simulation region. As such,
the recursive, top-down AMR approach could result in redundant calculations and low
cache hit rates. This notion is confirmed in related work [6], where a bottom-up approach,
1.e., calculating the importance of each individual block, could achieve significantly better
performance.

Close to our work is a paper by Dorier et al. [4], in which calculated importance metrics
were used to adaptively reduce unimportant blocks. The technique targets explicitly in-
situ visualization and supports elementary data reduction and load balancing based on a
random distribution. However, the technique only supports a single reduction strategy.
Furthermore, their technique assumes that simulation data is stored as blocks, which is
not the case for most simulations. For their technique to work in the general case, all
simulation data first needs to be preprocessed and partitioned into blocks, which is time-
consuming and increases the memory usage as two sets of the simulation data need to be
maintained while performing the importance analysis.

Wang et al. [5] introduced an importance curve to store the derived importance of
all data blocks for a time-varying data set. By analyzing the changing block importance
between different time steps it would be possible to characterize temporal behaviors
exhibited by simulation data. Such information could be used to make informed processing
decisions, e.g., setting a time budget for the co-processing stage or saving data to permanent
storage.

Nouanesengsy et al. [6] presented a prioritization method for 3D data sets inspired by
AMR. Data sets were recursively partitioned into smaller regions based on user-defined
importance metrics. A prioritization tree was constructed for the data set, which then could
be used to identify interesting camera placements or to determine compression strategies
for saving data to permanent storage.

Some data sampling and summarization methods [10, 11] use importance based on
entropy metrics to prioritize the reduction of unimportant data. Here, reduced subsets of
the simulation data are saved to permanent storage for post-hoc analysis; more than 99%
of simulation data is removed in some applications [10]. Data sampling methods are not
suited for applications that operate on lossless simulation data. Moreover, these methods
do not support use cases that require custom metrics to define important data.

Table 2.1 shows a qualitative comparison to related work. Here, we specifically
compare features related to the use case considered in this work. Method [5] is processed
post-hoc, whereas methods [6-9] have no defined behavior of how to use the calculated
importance values to compress unimportant data. Out of the methods used for comparison,
only related work [4, 10, 11] explore using the data importance to prioritize compression
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Table 2.1: Comparing features of related work [4—11] to this work.

Method

This work  [4] [5] [6] [7-9] [10, 11]

Processing approach In-transit  In-situ Post-hoc In-situ In-situ In-situ

Supports custom importance metrics v v v v

Decisions based on multiple metrics v v

Tracks time-varying data v v

Used to compress unimportant data v v v
lossless/lossy lossy lossy

Multiple compression methods v — —  —

or reduction of unimportant data. However, in contrast to our work, none of the methods
support lossless compression or simultaneously using multiple compression and reduction
methods. In addition, there is no defined behavior of how to use the methods for in-transit
co-processing. A quantitative comparison is difficult, as each work has a different feature
set and use case. We, therefore, chose to evaluate our method independently, as was also
done in related work [4-6].

Many visualization and analysis techniques have been proposed for in-situ and in-transit
co-processing. Some aim to batch-render images of each time step of the simulation from
multiple viewpoints, thus allowing researchers to interactively explore different regions of
the simulation post-hoc [29, 39]. Other techniques focus on extracting features, metadata,
or samples of the simulation [13, 40—42]. Using many different types of visualizations and
analyses would generally be desired to extract as much information from the simulation
as possible. However, each additional task would increase the execution time. The logical
approach would be to use in-transit co-processing in such a scenario due to the often limited
time available to perform such computations in-situ. To make in-transit co-processing a
viable option, we need new techniques to achieve faster data transfers between simulation
and transit nodes. Many researchers have developed methods to lower the data transfer
time required to perform in-transit co-processing [16, 43—45]. Most works have focused
on uniformly reducing or compressing data [16, 43, 44]. Although efficient, regions of
interest within the data are reduced to the same extent as unimportant regions.

Lossy compression methods such as zfp [46] and an extension of SZ [47] strive to
lower the compression error by analyzing the entropy of the data. Data sets are split into
blocks of size 4 X 4 x 4 and 6 X 6 X 6, respectively. A function is then used to predict a
suitable level of compression for each block, based on the estimated compression error.
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These lossy methods have proved to achieve good performance [46, 47]. However, the
fact that they are lossy makes them unusable in many use cases. We also note that these
methods are unable to determine the importance of regions of data and that although the
level of compression varies, they ultimately use the same lossy compression method on the
whole data set. Both of these compression methods can be integrated into the proposed
approach, as presented in Section 2.3, to be used on a subset of the available data blocks.

In summary, effectively performing in-transit co-processing of data generated by sci-
entific simulations remains an important research topic in the field of high-performance
computing. Many methods which uniformly reduce or compress data have been proposed.
However, the characteristics of the simulation data can vary substantially depending on
the current time step, meaning that the need for compression and analysis also can vary.
Some techniques which analyze the characteristics of the data also exist. However, one
of the most commonly used techniques, AMR, is often unable to efficiently calculate
individual block importance because of the different data access pattern. Although alter-
natives [4-6, 10, 11] have been proposed, they are generally limited in scope or in their
ability to perform multiple analyses to determine block importance or characteristics of
different parts in the studied simulation data. Our work improves upon this related work
by efficiently handling multiple importance analyses and by adaptively utilizing multiple
different compression and reduction strategies.

2.3 Adaptive In-Transit Co-Processing

In this section, we present the proposed method and an approach to accelerate in-transit
co-processing. To the best of our knowledge, this is the first work to accelerate in-transit
processing by simultaneously using more than one compression method based on multiple
importance analyses of the underlying simulation data. The workflow of the approach is
shown in Fig. 2.1.

The approach consists of three distinct stages:

1. Thein-situ stage (Sections 2.3.1-2.3.4), which consists of the proposed method. The
block importance is calculated, and which compression method to use is determined
on a per-block basis.

2. The distribution stage (Section 2.3.5), where data is compressed, load balanced, and
transferred over the network to the transit nodes.

3. The in-transit stage (Section 2.3.6), where compressed data is decompressed and
restructured on the transit nodes.
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Figure 2.1: Typical in-transit workflow using the proposed approach. 3D data sets are
partitioned into blocks, analyzed, and compressed in parallel on the simulation nodes.
The blocks are then transferred to the transit nodes, where they are decompressed and
reconstructed into the original data sets. The in-situ stage consists of the proposed method.
The proposed approach requires additional operations (highlighted in gray) compared to
a typical in-transit workflow that uses a single compression method.

2.3.1 Calculating Importance

Calculating block importance has been a time-consuming task in many related works, even
for relatively small data sets. Because of this reason, the block importance in related work
has generally been calculated using one or a few importance measurements. However,
simulation data often contains many different types of regions of interest. Furthermore, the
best compression algorithm might differ based on the entropy of the data in the different
regions, meaning that there are many situations in which using multiple importance
measurements would be preferable. Typically, the computation time would increase
proportionally to the number of used importance measurements. However, in our solution,
we strive to minimize this increase in computation time. In addition to performing
importance calculations on a block’s complete simulation data, we also support using a
random sample of a block’s data. That is to say, importance calculations can either be
performed on the entire simulation data of a block or a smaller, random sampled subset

13



of a block’s data. Using only a sample of the simulation data can result in a significant
speedup. The calculated importance would not be entirely accurate, which might be an
issue in specific applications. However, sampling could still be useful in most cases. For
example, random sampling could be used to identify blocks that appear only to contain
homogeneous space, i.e., blocks in which all values are identical. A non-sampled analysis
of the data could then be performed on the subset identified by the sampled importance,
which substantially could reduce the total computation time.

A key issue when calculating the importance is the time it takes to access data. The
simulated region is typically allocated in contiguous memory space. However, a block
makes up a 3D subset of the simulated area, which leads to low cache hit rates, especially
for small block sizes. Using multiple importance metrics or metrics that utilize advanced
data access patterns further complicates this issue. Some related work [4] has solved this
issue by assuming the simulated region is allocated on a per-block basis. However, we feel
that this is too limiting. Our solution is to dynamically allocate and deallocate a separate
buffer for a block or a block sample when it is analyzed. All relevant importance analyses
are then applied in sequence on a per-block basis, which leads to higher cache hit rates and
a low memory overhead. Furthermore, this approach ensures that simulation data of each
analyzed block only needs to be allocated and copied once, minimizing the computation
time overhead introduced by this step. Operating on a separate buffer of a block’s subset
of the simulated area leads to higher cache hit rates, which means that multiple importance
calculations can be performed at a lower computational cost.

A pipeline consists of a list of filters, which are executed in sequence. Filters contain
probes, which are functions that analyze the data on a per-block basis. An overview of a
pipeline’s block importance analysis scheme is provided in Algorithm 1.

A filter contains zero or more probes, which are used to analyze each block in sequence.
Each probe executed by a filter is assigned a custom weight (by default, 1). Given a block
b, a filter f, and a set of probes for filter f, P, the resulting importance of block b, iy,
after a filter has been applied is

= pb) 2.1

w
pePf p

where w), is the weight of probe p and p(b) is the function by probe p to calculate the
block importance of block b. A filter also contains an action, a condition, and a scope. An
action specifies how a block should be handled during the data transfer stage. By default,
a block has no specified action. However, a block’s action can be changed by a filter to, for
example, use a specific reduction strategy during the data transfer stage. Whether a block
should assume a filter’s action depends on if the block’s importance fulfills the filter’s
condition. The condition returns either true or false depending on a block’s importance;
for example, a condition could specify i, > 0.8, in which case all blocks with importance
higher than 0.8 will assume the filter’s action. The scope, a set of one or more actions,
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Algorithm 1 Scheme used to calculate the importance of all blocks. The importance is

used to determine the action of each block.
Input:
B={1,2,...,N}: setof all N blocks
¥ set of all active filters in pipeline
W = {wp}: set of weights, where w), is the weight of probe p

Output:
I ={iy,is,...,in}: set of importances, where i}, is the importance for block b € B
A ={ai,as,...,an}: setof actions, where ay, is the action for block b € B
1: for each block b € 8 do
2 ip < 0; > Importance initially set to zero for block b
3 ap «— NONE; > Action initially set to NONE for block b
4 for each filter f € ¥ do
5: if a;, is in the scope of f then > Each scope is a set of zero or more actions
6 for each probe p of filter f do > p € { Mean, Range, SD, AVGSEQ, Distinct, Entropy }
7 if p analyzes a sample which is not allocated then
8 allocate sample of block b;
9: if p analyzes a block which is not allocated then
10: allocate block b;
11: ip =ip +p(b)/wp; > p(b) calculates the importance for probe p on block b
12: if i}, satisfies the condition of filter f then
13: ap < action of filter f; > ap € { NONE, Skip, RLE, LZ77, HOMO }
14: Free the allocated memory of block b;

15: return 7, A;

determines which blocks should be processed by a specific filter. For a filter to be applied,
the block’s action needs to match one of the scope’s actions. This structure makes it
possible to target specific subsets of blocks to perform further analysis and importance
calculations.

Data is analyzed by using probes. Probes are short functions that analyze and output
the importance of each block, based on the full content or a sample of a block. That is to
say, the output of a probe calculating the mean value of a block is computed by iterating
through each element in the block and then calculating the average value. In our testing,
six different probes were used. The six probes are defined as follows:

Mean. Calculates the mean of all values in a block.

Range. Calculates the range of the values in a block.

SD. Calculates the standard deviation of the values in a block.

AVGSEQ. Calculates the average sequence length of identical values in a block.
This probe is only used on non-sampled data, as sampled data would not retain
enough information about the average sequence length.
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* Distinct. Calculates the number of distinct values compared to the total number of
values in a block.

* Entropy. Calculates the entropy of a block [4].

2.3.2 Block Actions

Block actions consist of three stages: initialization, pre-processing, and post-processing.
Block actions can act as tags for a wide variety of acceleration purposes and can be seen
as the action that has been taken for a specific block, based on its importance and the used
filter conditions. However, we consider actions as tags for different types of compression
methods. The initialization stage can be used to initialize resources and to specify the
estimated compressed data size. Such information could be used to, for example, improve
load balancing. The pre-processing and post-processing stages can be used to compress
and decompress a block’s data, respectively. Five different actions are used in our testing:

* No Action (NONE). No reduction or compression is performed. Blocks have this
action set by default. This action is mainly useful for blocks where the time overhead
introduced by compression outweighs the speedup of data transfers.

» Skip. Blocks with this action are never allocated or sent to the transit nodes. This
action is useful if, for example, a region of the simulated grid is not of interest. Using
the Skip action can, as such, substantially reduce the data transfer and co-processing
times in some scenarios.

* Run-Length Encoding (RLE). Blocks with the RLE action are compressed using
RLE. Both the compression and decompression of data can be completed in one
pass.

» LZ77. Blocks with this action are compressed using the LZ77 compression algo-
rithm [48]. Compared to the RLE compression method, LZ77 can be used to more
effectively compress repeating sequences of data. This means that its usefulness
differs depending on the simulation as well as on each block.

* Homogeneous (HOMO). Blocks that are Homogeneous are allocated as a single
value. Similar to the Skip action, it can dramatically reduce the data transfer time.
This action is useful for empty or homogeneous space, and can also be used to reduce
regions that are not of interest. The main benefit that the Homogeneous action has
over other types of compression and reduction algorithms is the compression time,
which has a time complexity of O(1).

We note that although these compression and reduction methods are used in the context
of this chapter, the proposed approach can be used in combination with any existing
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compression and reduction methods, including lossy methods like zfp [46], SZ [49], and
its extension [47].

2.3.3 Adaptive Condition Window

The time required to perform importance calculations and data transfers largely depends on
the filters and the target block actions, which are based on the specified filter conditions.
Setting static filter conditions, i.e., each condition has a non-changing, constant value,
could work in some situations. However, simulation data is rarely the same between any
two time steps. As such, the execution time and memory usage could vary substantially.
Instead, it could be preferable to adaptively change the parameters of the filter conditions
based on some criterion. This criterion could be based on, for example, the execution
time, memory usage, or the remaining allocated time on a compute cluster. We refer to
this kind of filter condition as an adaptive condition.

In our approach, we have to consider multiple filters, all of which could include adaptive
conditions. The key issue is how to adaptively modify the conditions without affecting
the intended flow of the analysis. Our solution is to use an adaptive condition window, w,
by which multiple adaptive condition values can vary predictably. The condition window
is a value that slides between 0.0 and 1.0, at 0.05 intervals. The condition window can
slide one interval towards 0.0 or 1.0 after each time step. All filters have a defined range
(upper bound u and lower bound /) for their condition value. The filter condition values
are reevaluated after each executed time step based on input to the program, using the
expression

l+(u-1)- w. (2.2)

The upper and lower bounds can be set to the same value, in which case the condition
value of that filter is constant.

For example, a researcher could determine that as much important data as possible
should be saved to permanent storage after each time step. However, there is a strict time
limit for the length of the I/O operation. The researcher would first decide on probes and
filters that accurately can identify important data for the specific use case. The / and u
variables would then be set to 0.0, 1.0, respectively. Initially, w is set to 0.0. However,
after each time step, w can increase by 0.05 based on if the I/O time exceeds the specified
time limit. Over time, w moves to the highest value possible such that the I/O operation
does not exceed the time limit. As a result, the researcher can maximize the amount of data
that can be stored for each time step. This behavior further scales to work with multiple
probes and filters, meaning that many decisions can be made about different aspects of the
simulation data.

The adaptive condition window ensures that the condition values of all filters can be
modified in a controlled manner, thus retaining the intended analysis flow. One condition
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window is used per pipeline, meaning that different condition windows can be used for
different data sets if required.

2.3.4 Advantages of the Pipeline Structure

The proposed structure facilitates pipeline construction in practical applications. Specif-
ically, the pipeline has three key advantages compared to alternative structures (e.g., a
directed acyclic graph (DAG) or a decision tree approach [50] that calculates an impor-
tance metric on each branch node):

1. Ease of use. Using the structure of the proposed pipeline, each component (e.g., a
filter or probe) is categorized and serves a clear purpose. In practice, it is easy to
construct and understand the structure of the proposed pipeline. In contrast, some
structures (e.g., decision trees) would not be intuitive without a visual interface.

2. Gradual refinement. A new action can be assigned to a block after each filter has
been applied. As filters are applied in sequence, this behavior enables a gradual
refinement of the importance analysis. More advanced or time-consuming analyses
can be limited to the relevant subsets of the simulation data. Although this behavior
can be mirrored by other structures (e.g., a DAG or tree structure), it would be more
complicated to create.

3. Reusability. It is easy to reuse parts of a pipeline (e.g., filters or probes) in other
applications as all parts of the pipeline are compartmentalized.

2.3.5 Data Distribution

Load balancing blocks of 3D data sets has been the focus of extensive research [4, 22—
26, 31]. A load balancing technique can either create a static distribution of the data or
dynamically change the distribution based on some variables. Typically, dynamic load
balancing techniques strive to minimize either the difference in computation time or the
difference in memory usage on each process.

Scientific simulations often generate large quantities of data, meaning that memory
usage is of primary concern. Therefore, we currently consider a static and a dynamic
different load balancing technique. The static technique is based on the initial distribution
in a k-d tree [27], which distributes blocks to all processes on the transit nodes. However,
some blocks may have been removed using the Skip action. As such, using this technique
could result in a memory imbalance on the transit nodes. The dynamic technique partly
resolves this issue by rebalancing the k-d tree. Let B, be the list of blocks on transit process
t, i the average number of blocks per process, and n the number of transit processes. The
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goal is then to minimize

n B _
Z H z|n ﬂ, (2.3)
=1

i.e., the difference in allocated memory on each process on the transit nodes.

Blocks sent to a specific process on a transit node make up a contiguous and convex
subset of the original 3D data set. They can, as such, be decompressed in parallel and
combined to reconstruct a single region in 3D space. This step is essential to perform cer-
tain types of analyses and visualizations efficiently. For example, many volume rendering
engines utilize internal block structures to perform empty space skipping [51] and opti-
mization techniques such as early ray termination [52, 53]. Prematurely partitioning the
3D data set into multiple blocks can negatively affect the effectiveness of such techniques.

At the start of the distribution stage, we utilize distributed filters to apply filters that
require information about blocks from multiple processes. For evaluation, only one
distributed filter is used, Filter Borders. The Filter Borders distributed filter attempts to
identify blocks of a specific action on the border of the 3D data set. If a slice of border
blocks can be identified, their action is changed to the target action specified by the filter.
For example, this distributed filter can be used to identify slices of homogeneous blocks
along the border of the 3D volume, and then exclude them from the in-transit rendering
process by changing the action to Skip.

2.3.6 In-Transit Co-Processing

Blocks transferred to processes on transit nodes might have been reduced or compressed
during the in-situ stage. To perform any visualization or analysis of the data, the blocks
first need to be decompressed. Blocks are decompressed based on the used compression
algorithms. Because blocks on a specific process make up contiguous and convex regions
in 3D space they can also easily be aggregated into a single block, which significantly can
improve the performance of the co-processing process.

The content of the co-processing is not part of our proposed approach. Instead,
the approach only handles data decompression and data reconstruction on the transit
nodes. Analysis and visualization can be performed in a normal fashion according to
the researcher’s needs, without any need to integrate existing tools and software with our
approach.

2.4 Experimental Evaluation

To evaluate the proposed method and the approach to accelerate in-transit co-processing,
we have run a series of tests on two different compute clusters, cluster A and cluster B
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Table 2.2: Test environments. Each cluster system has Infiniband EDR as its interconnec-
tion.

Cluster A Cluster B
Simulation node Transit node Simulation node Transit node
CPU Xeon Xeon Silver Xeon Gold Xeon Gold
E5-1650 v4 4110 6126 x2 6126 X2
6 cores 8 cores 12 cores X2 12 cores X2
Memory (GB) 128 96 192 192
Node count 16 2 32 4
Processes 16 2 64 8
Software GCC version 7.3.0 ICC
OpenMPI version 3.1.0 Intel MPI version 18.0.3

(Octopus) [54], at different resolutions using up to 864 cores. Information about the test
environments is detailed in Table 2.2.

2.4.1 Experiment Description

We used the RMI simulation data to evaluate the performance of our proposed approach.
The RMI test-case set-up, as well as numerical methods considered, are similar to previous
work [18, 19]. However, here, the effect of the membrane mesh separating the two gases
1s modelled in the simulations according to well-defined modes combined with random
perturbation components [1, 55].

To mimic a realistic co-processing scenario, we used up to three different variables in
each analyzed time step: the mass fraction (MF) and two axes of the momentum (MY and
MZ). The data of these variables were analyzed, compressed, and transferred to the transit
nodes using the proposed approach. On the transit nodes, data decompression and data
reconstruction were also performed. However, no additional co-processing was included
as part of the testing.

A grid resolution of 1601 x 401 x 801 was used on cluster A, resulting in 11.5 GB of
data spread over three variables, each time step. Similarly, the grid resolution on cluster B
was set to 2401 x 601 x 1201, resulting in 38.7 GB of data for the three analyzed variables.

We chose to perform co-processing for time steps at a Se-5 second interval (simulated
time). In practice, this amounts to approximately 1 out of every 127 and 1 out of 193 time
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(a) (b) (©)

Figure 2.2: Visualization of the MF data set generated by the RMI simulation at time
(a) 0 ms, (b) 2 ms, and (c) 4 ms; blue represents pure air, red represents pure sulfur-
hexafluoride (SFg), while yellow represents the binary mixture comprising of the two
miscible components.

steps, respectively. The simulations ran for 10,292 time steps on cluster A and 15,653
time steps on cluster B, out of which 81 were analyzed. That is to say, up to 0.91 TB
(cluster A) and 3.06 TB (cluster B) of data were analyzed. It took a total of 117.5 hours
on cluster A and 100.9 hours on cluster B to run the simulations.

The data was loaded into memory as 64-bit floats during the testing. Figure 2.2 shows
a visualization of the MF data set, using the OSPRay rendering engine [37], version 1.7.3.

The proposed approach can utilize a combination of existing compression methods,
and its performance depends on the performance of the used methods. We, therefore,
chose to compare the approach to uniformly applying each compression method used by
the approach on the full data set. Those methods consist of RLE, LZ77, and HOMO, as
specified in Section 2.3.2.

2.4.2 Block Size

Analysis operations are heavily dependent on the size of each block. Appropriate block
sizes for volume rendering have been investigated in related work [22], which found that
blocks with a 64 X 64 X 64 resolution achieved the best result in their use case. A similar
block resolution has been used in research related to this work [4], although with no
motivation. We analyzed five resolution to determine an appropriate block resolution
for our use case: 50 x 50 x 50, 50 x 50 x 100, 50 x 100 x 100, 100 x 100 x 100, and
100 x 100 x 200.

Tests were performed on cluster A using the MF data set and a Mean probe. As per
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Figure 2.3: The average time required to perform the importance analysis for the MF data
set on cluster A. The error bars display the standard deviation of the computation times.

the results, shown in Fig. 2.3, a block size of 50 x 50 x 100 or 50 x 100 x 100 achieved the
fastest computation time. We chose to use the block size of 50x 100 100 in all successive
tests on cluster A presented in this chapter. The simulation resolution and the number of
processes on cluster B differ from that of cluster A. As a result, it was not possible to use
the same block size. Instead, we set the block size on cluster B to 75 X 75 x 75, which was
the closest alternative.

2.4.3 Performance of the Proposed Method

The computation time varied between different probes, as shown in Fig. 2.4. For sampled
probes, we used a block sample size of 2390 and 2387 for the two respective resolutions.
All sampled probes were consistently faster; the best example being the Distinct probe,
which on average took 1.19 seconds to complete on cluster A. In comparison, the sampled
Distinct probe only required 0.02 seconds of computation time (a speedup of 61.14).
Similar results were obtained on cluster B.

We observe that the sampled probes generally were able to achieve more significant
speedups on cluster A. This is primarily because of two reasons. First, simulation processes
on cluster A had to process more data than the processes on cluster B. Second, simulation
processes on cluster B could more efficiently calculate the importance due to having
access to more cores. Calculating the importance of sampled blocks is limited by the time
required to complete the initial data access, which is similar on both clusters.

As discussed in Section 2.3.1, one of the goals of the proposed method was to minimize
the computation overhead of utilizing multiple probes. As seen in Fig. 2.5, the compu-
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Figure 2.4: The importance calculation times on (a) cluster A and (b) cluster B using the
MF data set. The y-axis has a logarithmic scale.

tation time increased linearly when using multiple non-sampled Mean probes. However,
increasing the number of probes from one to four and eight only increased the computation
time on cluster A by 2.28x and 4X, respectively, and 2.24x and 3.96X on cluster B, as
compared to the expected 4x and 8x. Similarly, the increase was only 1% and 3% for
the sampled Mean probes on cluster A, whereas all results were within the margin of
error on cluster B. By preprocessing the block data and using the block-based importance
calculation process described in Section 2.3.1, the importance calculation time is not di-
rectly proportional to the number of used probes. This is especially the case for sampled
probes, where the increase in computation time was negligible in our tests. The initial data
reorganization required to achieve this performance results in some overhead, increasing
the computation time for a probe with a simplistic data access pattern. However, as seen
in Fig. 2.5, the performance is better when using multiple probes or probes with more
advanced data access patterns as a result of the improved cache hit rate. The performance
of our method is directly affected by the data access pattern of the used probe(s). Intu-
itively, probes with advanced data access patterns should benefit more from the higher
cache hit rates. A one-pass algorithm, such as the Mean probe, should as such represent a
worst-case scenario.

The accuracy of the sampled probes depends on the sample size as well as the used
probe algorithm. Table 2.3 shows the absolute error, E, of the sampled probes using the
MF data set on cluster A at time step 80. E is equivalent to x; — x, where x; and x are the
measured and true values, respectively. Using the Mean or SD sampled probes resulted
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Figure 2.5: The average importance calculation times using up to eight Mean probes on
(a) cluster A and (b) cluster B for the MF data set. The error bars display the standard
deviation of the computation times.

in all blocks having an importance value within 0.01 of the correct importance value.
However, The Range and Distinct sampled probes were not as accurate as the Mean, SD,
and Entropy probes. In some scenarios, the calculated importance of these probes depends
on a small subset of the data. For example, by changing a single data value in some blocks,
the importance calculated by the Range probe can increase from O to 1.

In summary, the importance analysis scheme could successfully improve the perfor-
mance when using multiple probes. Sampled probes could achieve a high accuracy and
further accelerate the importance analysis computation.

2.4.4 Evaluating the Proposed Approach

In this section, we evaluate the performance of the approach used to accelerate in-transit
co-processing.

Compression Performance

Intuitively, different probes should reflect different information about the underlying block
data. It should then be possible to use this information to, for example, select the best
compression technique for a specific use case. Figure 2.6 shows the relation between
the RLE-, HOMO-, and LZ77-compressed block sizes and the importance calculated by
the used probes. The Distinct probe provided an almost linear relationship between the
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Table 2.3: Accuracy of the sampled probes. Percentage of all sampled block importance
values which absolute error is less than 0.001, 0.005, 0.01, 0.05, and 0.1. Tests were run
on cluster A, using the MF data set and time step 80. The AVGSEQ probe is not included,
as it is only used on non-sampled data.

<le-3 <0.005 <0.01 <0.05 <0.1

Mean 71.9 98.5 100 100 100
Range 72.9 75.0 76.4 86.4 95.1
SD 71.9 99.4 100 100 100
Distinct 51.2 60.1 63.9 82.2 98.3
Entropy 50.2 56.4 61.3 85.4 99.7

importance and the compressed data size, as seen in the figure. Similarly, the AVGSEQ
and Entropy probes had clear connections between their calculated importance and the
compressed block sizes.

The compressed data size achieved by using RLE compression was generally smaller
than when using LZ77. This trend was caused by the entropy of the used data set, which
does not contain many repeating sequences of values. Similarly, the effectiveness of the
RLE compression is linked to the many homogeneous regions in the investigated data set.
However, as seen in Fig. 2.7 and Fig. 2.8, the performance of the various compression
methods vary throughout the simulation. The initial data set, at time step 0, contains many
homogeneous regions. Consequently, the initial compressed data size is minimal. As the
simulation progresses, the homogeneous regions become smaller and disappear, which
increases the compressed data size. The total compressed data size remains lower than
that of the uncompressed data throughout the simulation. However, as seen for the RLE
and LZ77 methods in Fig. 2.6, compressing some blocks actually increases the block size
(an uncompressed block has a size of 3906 kB on cluster A). It is better to not use these
compression methods when transferring such blocks. This further reinforces our notion
of selectively choosing which compression method to use on a per-block basis for each
time step.

Assessing the Execution Times of the Proposed Approach

Pipelines should be devised based on the needs of the researcher and the nature of the
used simulation. It is not possible to create a pipeline that is optimal in all scenarios.
Furthermore, which compression methods to use also depend on the specific use case. We
designed two advanced pipelines: one lossless and one lossy that uses a condition window
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Figure 2.6: The compressed block sizes compared to the calculated importance for the
MF data set using the Mean, Range, SD, AVGSEQ, Distinct, and Entropy probes. Tests
were conducted on cluster A at time step 80.

to reduce the least important data adaptively. Both pipelines used a distributed filter to
remove homogeneous border blocks (i.e., blocks which are not of any significance to the
analysis of the simulation data). Furthermore, the pipelines were evaluated using both no
load balancing (static) and a k-d tree load balancing technique (kd) to equalize the data
distribution after the use of the distributed filter.

Pipeline 1 is structured as follows. Initially, all blocks are sampled using the Range
probe. Blocks with an importance of 0 have their actions set to RLE. A non-sampled
Range probe is then used on all blocks with action RLE. If the importance is 0, the action
is set to Homogeneous. By initially using a sampled probe, the non-sampled probe only
has to operate on a subset of all blocks, which reduces the computation time. Finally, the
third filter uses a sampled Distinct probe to change the action of blocks with the NONE
action and an importance < 0.9 to RLE. The value 0.9 is based on previous experiments
to evaluate the compressed block sizes, displayed in Fig. 2.6. Using the Distinct probe,
having importance lower than approximately 0.9 resulted in a lower block size than the
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Figure 2.7: The total compression, load balancing and data transfer times on (a) cluster A
and (b) cluster B, using the MF, MY, and MZ data sets. The error bars display the standard
deviation of the computation times.

original non-compressed data. Intuitively, blocks with many distinct values might also be
more time-consuming to compress and decompress, further increasing the data transfer
time. We chose to use a sampled version of the Distinct probe to accelerate the in-situ
computation time. Note that the resulting compression of Pipeline 1 is lossless.

The idea behind Pipeline 2 is to reduce the most unimportant data (in this case,
the blocks containing the lowest amount of distinct values) on the fly to achieve a total
compressed data size of between 1200 to 1600 MB (cluster A) and 4000 to 5400 MB
(cluster B) for each data set (i.e., using all three data sets, up to 4.69 GB and 15.82 GB of
data for each time step on clusters A and B, respectively). We use a range rather than a
specific threshold to reduce the volatility of the compressed data size between each time
step. The initial three filters of Pipeline 2 are identical to those of Pipeline 1. However,
Pipeline 2 includes a fourth filter that utilizes a condition window. The filter uses a Distinct
sampled probe and targets blocks with the RLE or NONE actions. The condition value
range is set as [0, 1.0], with an initial value of 0. If the condition of the filter is fulfilled,
the action is changed to Homogeneous.

The data size of homogeneous blocks using the Homogeneous compression method
was almost the same as when using RLE compression. This can be seen in Fig. 2.9,
where the compressed data size of Pipeline 1 is almost identical to when utilizing an RLE
compression. However, Pipeline 2 achieved a significantly lower data size because of the
additional adaptive (lossy) reduction filter. Noteworthy is that Pipeline 2 never reached
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Figure 2.8: The size of the compressed data transferred during the distribution stage on
(a) cluster A and (b) cluster B, using the MF, MY, and MZ data sets.

the upper limits of 4.69 GB and 15.82 GB. This is because the compressed data size of at
least one data set remained below the specified upper data size threshold.

The impact of the proposed approach on the entire simulation time widely depends on
the used simulation and co-processing. For example, the simulation time of a single time
step, detailed in Section 2.4.1, and the in-transit co-processing time can vary by orders of
magnitude depending on the simulation, the specified simulation parameters, and which
types of analysis and visualization tasks are performed during the co-processing stage.
Furthermore, co-processing could be performed for each simulated time step or for a small
fraction of time steps. As such, we chose to focus the evaluation exclusively on the actual
performance of the three main stages of the proposed approach, i.e., the co-processing
stage only consists of data decompression and data reconstruction. The average execution
times of each stage are shown in Fig. 2.10. The importance calculation of the RLE,
HOMO, and LZ77 tests used for comparison consisted of a single Mean probe.

Out of the lossless compression methods used for comparison, RLE achieved the best
performance. For the total execution time, the RLE compression method achieved a
speedup of 1.26x (cluster A) and 1.3x (cluster B) compared to using no compression.
The lossless Pipeline 1 achieved an even more significant speedup; 1.62x on cluster A
and 1.55x% on cluster B. Compared to RLE, Pipeline 1 could speed up the execution time
by up to 1.29% and 1.19% on the two respective clusters. Similarly, Pipeline 2, which
reduces unimportant data, achieved total speedups of 1.69x and 1.52x compared to the
RLE method. Table 2.4 summarizes the average speedups of the total execution time for
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Figure 2.9: Size of the transferred compressed data using the MF, MY, and MZ data sets
on (a) cluster A and (b) cluster B. The results of the RLE and Pipeline 1 tests overlap.

Table 2.4: Relative speedups of the total execution time for Pipeline 1 and Pipeline 2
compared to the other evaluated methods.

Cluster A Cluster B
None RLE HOMO LZ77 None RLE HOMO LZ77

Pipeline1 1.62 129  0.55 3.51 1.55 1.19  0.26 2.98
Pipeline2 2.13 1.69  0.72 4.60 198 152 033 3.81

both pipelines compared to the other evaluated methods.

In more detail, both Pipeline 1 and Pipeline 2 achieved significantly better performance
for the data distribution and co-processing stages than the NONE, RLE, and LZ77 methods.
The execution time of the co-processing stage for Pipeline 1 was similar to the RLE
test when using static load balancing. The uneven load caused this; although multiple
transit processes achieved significantly lower computation time than when using only
RLE compression, the total execution time is dependent on the slowest process. Using a
k-d load balancing technique solved the uneven load on the transit nodes. On cluster A,
Pipelines 1 and 2 achieved speedups of 1.91x and 1.94x of the co-processing stage as
compared to using RLE compression, and speedups of 1.32x and 1.33x compared to using
no compression. Similarly, on cluster B the two pipelines achieved speedups of 2.00x
and 1.99% as compared to an RLE compression. Compared to using no compression, the
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Figure 2.10: Average time step execution time for the three main stages using all three
data sets on (a) cluster A and (b) cluster B. The error bars display the standard deviation
of the computation times.
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speedup of the co-processing stage was 1.05x and 1.04x for the two respective pipelines.

Utilizing dynamic load balancing significantly improved the execution times of the
co-processing stage. However, the load balancing only determines where data is sent. The
compression time and the amount of data that needs to be transferred from each simulation
process do not change. Using a dynamic load balancing technique did not improve the
execution time of the data distribution stage to the same extent. On cluster A, the two
pipelines achieved speedups of 1.17x and 1.70x as compared to an RLE compression
and speedups of 1.83x and 2.65x compared to using no compression. On cluster B,
the pipelines achieved speedups of 1.14x and 1.58x compared to RLE compression and
speedups of 1.77x and 2.44x compared to no compression.

Interestingly, the lossless Pipeline 1 was able to achieve better performance in all
aspects (the compressed data size and the compression, data transfer, and decompression
times) than the other lossless compression methods. This results from the fact that both
of the pipelines scale with the utilized compression methods; in this case, using NONE,
RLE, and HOMO. This scaling can be seen in Fig. 2.9, where the compressed data size of
Pipeline 1 closely follows that of the RLE compression. This behavior should extend to
other compression methods as well.

2.5 Conclusion

We have presented a method to efficiently determine the importance of regions of interest
of simulation data, with an emphasis on using multiple importance metrics. In addition,
we have presented a use case where the method was used to accelerate the in-transit
co-processing of an RMI simulation by lowering the data transfer time. The approach to
accelerate in-transit co-processing uses the importance of regions of interest to determine
how to best combine the usage of multiple different compression methods on different
subsets of the simulation data. Simulation data is analyzed to determine the importance of
all regions of the 3D data sets, which is then used as a basis to utilize multiple compression
and reduction methods adaptively.

We have evaluated the performance of the proposed method and approach by con-
ducting tests on two different compute clusters, using multivariate data from an RMI
simulation. Our proposed method was able to expeditiously calculate block importance,
even when multiple data probes were used. The above was especially the case for probes
using sampled data, which could calculate accurate importance values at a much faster
rate. The proposed method was also able to adaptively identify regions of important data in
areliable manner. The excellent scalability when using multiple data probes and low com-
putation times also make the method viable to be used in many other in-situ and in-transit
scenarios, such as: guiding the simulation; saving important data to permanent storage;
or in tandem with additional analysis or visualization software. As for the approach,
we were able to achieve better performance in all aspects (the compressed data size and
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the compression, data transfer, and decompression times) than the compression methods
used for comparison. Compared to an RLE compression, using the proposed approach
in a lossless scenario resulted in a speedup of up to 1.29% for the overall execution time,
and 2x when performing data decompression. We conclude that the proposed approach
significantly can accelerate the in-transit co-processing process.

In future work, we will investigate how the proposed method can be used for other use
cases. Furthermore, we plan to extend the proposed approach to work better with in-situ
co-processing workflows.
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Chapter 3

Memory Efficient Load Balancing for
Distributed Large-Scale Volume
Rendering Using a Two-Layered Group
Structure

3.1 Introduction

The capabilities of modern supercomputers enable the simulation and visualization of
large-scale data sets with high precision and detail. Data sets generated by scientific
simulations, often multivariate and spanning multiple time steps, can consist of terabytes
of data. Using a sorting scheme called sort-last [30], the data can be partitioned and
distributed among available processes. The distributed data volumes can then be visualized
in parallel by utilizing ray-casting based volume rendering [56]. Partial images from all
processes then need to be composed based on their position and distance from the camera
in the volume [3].

The rendering times can vary between processes based on many factors, e.g., used
optimization techniques or the characteristics of the data sets. If there are any substantial
rendering time imbalances, dynamic load balancing techniques can be used to effectively
reduce the total rendering time during in-situ visualization or post-hoc exploration. How-
ever, dynamically redistributing data can result in large memory imbalances between pro-
cesses. Some processes might run out of memory when handling large data sets, making
many dynamic load balancing techniques unsuitable for large-scale visualization [57, 58].

Commonly used dynamic load balancing techniques are based on tree structures, e.g.,
a k-d tree [27]. In the k-d tree structure, the original volume is represented by the root
of the tree, as illustrated in Fig. 3.1. For each new depth in the tree, the volume is split
in two on either the x, y, or z-axis. The two resulting volume blocks are then separately
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held in two child branches. Each process that participates in the rendering stage is given
ownership of a branch (and all of its child branches) in one of the levels of the tree. For
example, if 2, 4, or 8 processes are used, each process is given ownership of a branch at
depth 1, 2, or 3, respectively. Data can be load balanced between children of the same
branch in the tree, as shown in Fig. 3.1. The load-balanced data consists of a slice of blocks
that border both branches, ensuring that each process still only holds a contiguous and
convex partition of data in object space after the load balancing has been completed [22].
Utilizing this structure and ensuring that each process only renders contiguous data results
in two positive aspects:

1. A simple compositing order for partial images rendered by each process. The
k-d tree structure enables processes to composite all partial images generated by
its blocks during the rendering stage, without any external communication. Next,
the partial images on each process are composited in an inter-process compositing
stage. Finally, the remaining partial images can be gathered and merged to create
an image of the full volume.

2. A low scheduling complexity. The strict k-d tree load balancing scheme limits
between which processes load balancing can take place. This limitation significantly
simplifies the load balancing algorithm.

If data needs to be transferred between two processes that have ownership of branches
on opposite sides of the tree structure, it is impossible to transfer the data directly between
them. Instead, load balancing has to be performed multiple times between the upper
branches of the tree, meaning that many processes have to participate in the load balancing
stage. The upper branches of the tree are responsible for larger regions of the volume; the
amount of data that is transferred increases by 100% in each level. This does not only
result in many redundant data transfers, it also means that using the k-d tree structure
can lead to a significant memory load imbalance [26]. This behavior should scale with
the number of processes, meaning that it could be of greater concern in large-scale
visualization. An example of a k-d tree memory imbalance is shown in Fig. 3.2, where
the main computational load is focused on the upper quadrant of the volume. Equalizing
the rendering times also results in one process holding a substantial part of the volume in
memory.

The worst-case memory usage of a single process when using the k-d tree structure
is O(v), where v is the number of voxels in the volume. The risk that a high memory
imbalance occurs limits the use of k-d tree-based dynamic load balancing in large-scale
applications, where even small imbalances can result in some processes running out of
memory [58].

There is a need for a dynamic load balancing technique that does not adhere to the
existing limitations of hierarchical tree structures. We propose a technique for distributed
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Figure 3.1: k-d tree data distribution and load balancing. Circles represent branches in
the tree, whereas blocks are represented by cuboids, each of which results in a partial
image when rendered. Branches that can load balance are connected via dotted lines.

Figure 3.2: 2D representation of a k-d tree block distribution between four processes, in a
worst-case scenario where the main computational load is focused on the top left quadrant
of the volume. Volume blocks are represented as squares, whereas the color distinguishes
different processes.

volume rendering of rectilinear grids by which processes can render data from non-
contiguous regions of the volume, contrary to k-d tree techniques. By having a non-
hierarchical, less restrictive structure, it is possible to prioritize load balancing blocks
with high rendering times. This would lead to a lower worst-case memory usage and
fewer redundant data transfers. However, rendering data from non-contiguous regions
1s not without its drawbacks. In a naive implementation, it would not be possible to
compose partial images on each process during the rendering stage. Partial images, each
representing a single block, would instead have to be composed during the inter-process
compositing stage, greatly increasing the total compositing time.

The contribution of this chapter is a novel compositing pipeline and a load balancing
technique that utilizes a scalable non-hierarchical group structure to effectively allow
a single process to render data from non-contiguous regions of the volume. Through
this technique we also enable the use of custom load balancing schemes, meaning that
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the algorithm effectively can be tailored according to the needs and constraints of the
researcher. The main goal of the two-layered group technique is to resolve existing
limitations of tree-based hierarchical structures, thus reducing the worst-case process
memory usage, without negatively affecting the total rendering time. A secondary goal
is to lower the number of redundant data transfers, which unnecessarily burdens 1/0
functionality. We demonstrate the effectiveness of the group technique as compared to
a k-d tree technique and a static distribution by conducting a series of experiments on a
cluster using up to 32 processes, each of which has a dedicated graphics processing unit
(GPU).

The structure of this chapter is organized as follows. Related work is presented in
Section 3.2. The compositing pipeline and the load balancing technique are described in
Section 3.3. The technique is then evaluated in Section 3.4. Lastly, our conclusions are
presented in Section 3.5.

3.2 Related Work

k-d trees and similar tree structures have been used extensively in many related works to
achieve dynamic load balancing [22-26]. The rendering time of the previous frame is often
used as aload balancing heuristic [22, 23]. Commonly, uniformly-sized blocks are stored in
the k-d tree [22, 25]. Other works have explored using variable block sizes to achieve finer
granularity [23]. However, variable block sizes would require extensive preprocessing,
and that the volume is static. Others have utilized machine learning and performance
modeling as a load balancing heuristic, though still using a k-d tree structure [25].

Zhang et al. [26] proposed a constrained k-d tree structure to achieve dynamic load
balancing for parallel particle tracing. They strove to achieve a balanced particle load
by redistributing particles among processes based on a k-d tree structure. However,
they recognized that particles can be condensed in a small region of the volume, thus
requiring some processes to hold large sections of the volume in memory. Constrains were
introduced on the k-d tree data partitioning to sidestep this issue, thus limiting the number
of voxels held by each process. Although this approach ensures that processes can hold
their respective regions of the volume in memory, it fails to guarantee an even distribution
of particles. The authors note that the only way to ensure an optimal distribution is to
allow processes to hold the complete volume in memory [26].

Utilizing dynamic load balancing techniques tends to result in an uneven data distri-
bution among processes. Data sets may consist of multiple terabytes of data in large-scale
applications; even small-scale data transfers can be time consuming and result in some
processes running out of memory. As such, many large-scale visualization projects have
utilized static load balancing [58, 59] or limited load balancing to equalizing the data
distribution, rather than explicitly lowering the total rendering time [4, 24].
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3.3 Two-Layered Dynamic Load Balancing Technique

To lower the memory usage and redundant data transfers compared to k-d tree techniques,
we propose a load balancing technique with a non-hierarchical structure by which processes
can render blocks from non-contiguous regions of the volume. Rendering non-contiguous
blocks can lead to a complicated irregular compositing order, as noted in Section 3.2.
We introduce a two-layered group structure and a compositing pipeline to lower the
complexity of the compositing stage. In this section, we provide an overview of the
technique, followed by detailed information about all included functionality: how the
two-layered group structure is formed, how efficient load balancing is accomplished, and
how the compositing pipeline simplifies the compositing stage. Lastly, the memory usage
of the group technique is analyzed.

3.3.1 Opverview of the Technique

We coin the terms full sets, a number of sets which contain the initial static collection of
contiguous blocks delegated to a process, and working sets, the sets of contiguous blocks
being rendered by a process during a specific frame. Each process is responsible for two
operations: (1) rendering all blocks present in its working sets and (2) compositing all
partial images of blocks in its full sets.

Figure 3.3 depicts the execution flow of the presented technique, whereas Fig. 3.4 shows
an example where a block is load balanced to another process. As illustrated in Fig. 3.4b,
the rendered partial images from load-balanced blocks are returned asynchronously to
the original owner during the rendering stage. Each process can as such compose partial
images from blocks in its own full sets (Fig. 3.4c), leading to a correct compositing order
even if processes are rendering blocks from different regions of the volume. Utilizing this
compositing pipeline means that only a single partial image from each process needs to be
composed during a final inter-process compositing step (Fig. 3.4d). To summarize, two
distinct compositing steps are required in the group technique: one to compose partial
images of blocks in each process’ full sets and one to compose the resulting image from
each process.

3.3.2 Two-Layered Group Structure

Instinctively there are two scalability-related concerns coupled to the group technique:
* Finding an adequate load balance for a large number of processes is time consuming.

* The introduced first compositing step can be time consuming if many processes are
involved.
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Figure 3.3: Program execution flow of the two-layered group technique. Initially, pro-
cesses are partitioned into groups and the full sets are distributed to processes. The
rendering stage and an initial compositing step are then performed by each process. The
remaining images are composed in an inter-group fashion in a second compositing step.
Lastly, load balancing is performed within each group before the next frame can be
rendered.

These factors can result in excessive communication and time-consuming computa-
tions if many processes are utilized. To improve the scalability of the technique, processes
are distributed into one or more distinct and autonomous groups and limited to load bal-
ancing with processes within the same group. Load balancing and the first compositing
step (Fig. 3.4a—c) have in such a scenario no inter-group dependence, meaning they can be
performed in parallel within each group. By limiting the number of processes that can in-
teract we lower the communication and algorithm complexity, thus effectively eliminating
many scalability-related concerns.

We define a group as a non-empty static set of processes, whereas each process is a
member of a single group. Processes are partitioned into groups in a round-robin fashion
at the start of the program, which ensures that the blocks held by the processes in each
group are not concentrated in the same region of the volume. By scaling the number of
groups relative to the number of processes we can ensure that the number of processes in
each group remains constant. An example group structure is displayed in Fig. 3.5.

3.3.3 Intra-Group Load Balancing

Load balancing can be performed between any pair of processes within the same group.
Although this approach is more flexible than k-d tree techniques, it also means that the
load balancing scheme is NP-Hard if no limitations are set. To lower the load balancing
time complexity we utilize a greedy load balancing algorithm to determine between which
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OProcess Block Partial Image

Figure 3.4: Example of how a load-balanced block is rendered and composed. (a) A
block is load balanced between two processes in the same group. The load-balanced
block makes up a new working set on the receiving process. (b) Each process renders its
working sets, starting with blocks belonging to other processes. Images of working sets
not present in a process’ full sets are returned to the original owner asynchronously during
the rendering stage. (c) Each process composes images from blocks in its full sets. (d)
Inter-group image compositing takes place to compose the final image.

processes load balancing takes place and what data is transferred. An example of the data
distribution using the group technique in the scenario presented in Fig. 3.2 is shown in
Fig. 3.6.

We utilize f = 4 full sets on each process, created by splitting the initial contiguous
collection of blocks in half on the y- and z-axes. Slices of blocks can be load balanced from
both the positive and negative direction on the x-axis, as illustrated in Fig. 3.7. However,
we limit load balancing to a single process at a time in each direction on the x-axis for
each full set. For example, if process 1 load balances a slice of blocks from the positive
direction on the x-axis of the first full set to process 2, no other process can receive blocks
from the set’s positive direction until process 2 has returned all load-balanced blocks to
process 1. This means that a process is simultaneously only able to delegate blocks to 2 f
other processes. Limiting load balancing to a single process in each direction for each full
set has one key benefit: if a pair of processes consecutively performs load balancing, all
transferred blocks are from a contiguous region in object space. They can as such be put
in the same working set on the receiving process, resulting in a single partial image which
asynchronously can be transferred back before the end of the rendering stage.
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Figure 3.5: An example structure containing two groups. Processes are partitioned into
groups in a round-robin fashion. Processes within the same group can freely perform load
balancing amongst each other, as illustrated by the dotted lines.
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Figure 3.6: 2D representation of a block distribution between four processes using the
two-layered group technique, in a worst-case scenario where the main computational load
is focused on the top left quadrant of the volume. Volume blocks are represented as
squares, whereas the color distinguishes different processes.

After each frame, the average rendering times are calculated in each group. Processes
of which the rendering time deviates from the average are sorted into one of two lists
depending on if the rendering time is lower or higher. Historical data transfers and current
process rendering times are then used to dictate which processes in the two lists perform
load balancing. This functionality helps reduce the unnecessary spread of blocks, resulting
in fewer image transfers. The load balancing algorithm is shown in Algorithm 2. Once
a process has performed load balancing it is excluded from subsequent load balancing
events during the same frame to limit the amount of data that can be transferred before the
next rendering stage.

The goal of the load balancing algorithm is to equalize the rendering time among all
processes. However, it also strives to minimize the spread of blocks to lower the amount of
communication and data transfers during the compositing stage. For this purpose, in the
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Full Sets

Figure 3.7: Slices of blocks can be load balanced from both directions of the x-axis.
However, load balancing for each full set can only be performed with a single process in
each direction. Having four full sets on each process means that blocks can be delegated
to eight other processes simultaneously.

first operation of Algorithm 2, each process that has a lower-than-average rendering time
recalls a previously load-balanced slice of blocks, if possible. Similarly, in the second
operation, each process with a higher-than-average rendering time attempts to return a
load-balanced slice of blocks to another process. These operations ensure that a process
never delegates blocks to other processes whilst simultaneously rendering blocks it does
not own. If such operations are not possible, each process with a lower-than-average
rendering time attempts to perform load balancing with processes from which it already
has been delegated blocks. Transferred blocks can be put in an already existing working
set, meaning that there is no extra overhead during the first compositing step. However,
for this operation to be possible it requires that at least one such process has a higher-
than-average rendering time. Finally, if none of the previous operations are possible, each
process with a lower-than-average rendering time is delegated a slice of blocks from a
process with a higher-than-average rendering time, which then has to be put into a new
working set. Processes with lower-than-average and higher-than-average rendering times
are iterated starting with the lowest and highest rendering times, respectively. As such,
the process with the lowest rendering time performs load balancing with the process that
has the highest rendering time.

All four operations have a clear block transfer order. In the first and second operations,
slices of blocks are returned in a LIFO (last in first out) order between all pairs of blocks
to ensure that working sets only render contiguous data. In the third operation, a slice
of blocks is taken from the same full set and direction as previously transferred blocks
between the two processes. For the fourth operation, the slice of blocks is taken from the
full set on the sending process with the highest rendering time that currently has delegated
blocks to fewer than two other processes. A slice of blocks is then load balanced from the
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Algorithm 2 Intra-group load balancing algorithm executed after each rendered frame

Input:
L: Processes that have a lower-than-average rendering time; > Sorted based on lowest rendering time
H: Processes that have a higher-than-average rendering time; > Sorted based on highest rendering time
S {st,....,sph > Dictionary of type {process, set of processes from which the process has been delegated blocks}
E—{el,....,ep}s > Dictionary of type {process, set of processes that the process has delegated blocks to}
T e—{ti,....tp}; > Set containing the total rendering time of each process

Output:
S, &;

1: 8 {b1,..., by b > Set containing all processes that have not performed load balancing this frame

2: foreacht € LN B do
3: if e; # © then

4 set g where g € e, N B such thatt, > t;, Vi € e, N B; > ¢ has the highest rendering time in e; N B
5: recall load-balanced slice from g to 7;

6: B« B\{t,q}; > Exclude ¢ and g from other load balancing events
7: if |load-balanced blocks from 7 to g| = 0 then

8 e —e\{q};

9 Sq <_Sq\{t}§

10: foreacht € HN B :do
11: if s; # @ then

12: set g where g € s; N B suchthatz, <t;, Vi € s; N B; > g has the lowest rendering time in s; N B
13: recall load-balanced slice from ¢ to g;

14: B B\{t,q}; > Exclude ¢ and g from other load balancing events
15: if |load-balanced blocks from ¢ to ¢| = O then

16: se — se\gh

17: eq —eg\{t}h

18: foreachr € £ N B do
19: if H N's; # @ then

20: set g where g € HNs; N B suchthatz, > ¢, Vi e HNs, N B; > g has the highest rendering time in H Ns; N B
21: load balance slice from ¢ to #;
22: B — B\{t,q}; > Exclude ¢ and g from other load balancing events

23: foreacht € £L N Bdo
24 if H # @ then

25: set ¢ where g € H N B such thatz, > #;, Vi € HN B; > g has the highest rendering time in H N 8
26: load balance slice from g to t;

27: B« B\{t,q}; > Exclude ¢ and g from other load balancing events
28: sy — st U{q};

29: eq —eqU{th

30: return S, &;

positive direction of the x-axis, or the negative direction in case another process already
has been delegated blocks from the positive direction.

3.3.4 Image Compositing Pipeline

As described in Section 3.3.1, two compositing steps are required when using the group
technique. In the first step, all processes compose images of blocks in their full sets. This
operation is strictly performed within each group and involves partial images from all
load-balanced sets being transferred back to the owning process. As each process can load
balance blocks to eight other processes, a maximum of O (p) partial images are transferred
during this step, where p is the number of processes. This operation can be performed
in parallel in each group; here, the maximum number of partial images transferred within
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a group is O(p/g), where g is the number of groups. The first compositing step can be
asynchronously performed during the rendering stage, resulting in minimal time overhead.

In the second compositing step, all remaining partial images are composed to form
the final image that represents the full volume. It is as such performed in an inter-group
fashion, and is identical to a k-d tree’s or static technique’s compositing stage.

We maintain the same resolution for all images generated and used in the two com-
positing steps. However, we note that utilizing various compression strategies [60] or
variable image sizes could lower the compositing time; especially in the first compositing
step where the partial images in many cases only portray a small subset of the volume.

3.3.5 Process Memory Usage

Using dynamic load balancing, the achieved load depends on the contents of the visualized
data set; as such, without knowledge about the underlying data, it is not possible to predict
the benefits of using the proposed group technique. However, it is possible to estimate the
worst-case memory usage.

Given a volume of v voxels, if the group technique is used each process has to keep its
full sets in memory, resulting in a memory usage of v/p. Furthermore, in the worst-case
scenario, a specific process’ full sets consist of blocks with near-zero rendering times. The
process is then delegated blocks so that its rendering time matches that of the rest of the
processes in the group. The absolute worst-case memory usage is as such v/g. However, as
described in Section 3.3.3, the load balancing algorithm prioritizes load balancing blocks
with high rendering times, ensuring that the process memory usage will remain lower than
2v/ p other than in extreme scenarios.

3.4 Experimental Evaluation

In this section, we evaluate the group technique by comparing it to a k-d tree technique
as well as a static distribution. Load balancing, data transfers, and compositing can
potentially be performed asynchronously during the rendering stage depending on the
used rendering pipeline. As such we chose to evaluate the process rendering times, the
process memory usage, the amount of transferred data, and the effect of utilizing multiple
groups separately to provide a broader overview that is not tied to a specific rendering
pipeline. We also provide a separate overview of the computation times for all stages of
the pipeline.

3.4.1 Experiment Description

We performed a series of tests on a GPU cluster using 8, 16, and 32 processes. Each node
was equipped with an Intel Xeon E5-2643 v4 CPU (6 cores), 128 GB of memory, and two
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Figure 3.8: Data sets used for evaluation: (a) a CT scan of a porcine heart, (b) a time step
of an RMI simulation [1], and (c) a CT scan of a Spathorhynchus fossorium [2].

Nvidia GeForce GTX 1080 GPUs. Nodes were interconnected via EDR InfiniBand and
used GCC version 7.3.0, CUDA version 9.2 [61], and Open MPI version 3.1.0 [62]. Up to
two MPI processes were run on each node, each of which was allocated a dedicated GPU.

We chose to rotate the camera 360 degrees around the y-axis to measure the rendering
time and memory usage of each process at different viewing angles. The image resolution
was set to 10242, which commonly is used for this type of testing [32]. The used test
case and image resolution should represent an average-case scenario for the examined load
balancing techniques. To test our technique in a wide range of scenarios we used three
different data sets, each of which has its own unique characteristics.

The first data set is a computed tomography (CT) scan of a porcine heart [2] (Fig. 3.8a).
The second data set is of an RMI simulation [1] (Fig. 3.8b). The third data set is a CT
scan of a Spathorhynchus fossorium [2] (Fig. 3.8c). The three data sets consist of 2048 X
2048 x 2612 voxels (43.8 GB), 2048 x 2048 x 1920 voxels (32.2 GB), and 1024 x 1024
x 750 voxels (6.3 GB), respectively. The third data set is substantially smaller than the
other two and can be visualized on a single machine using modern hardware. As such, the
computation times of the compositing and load balancing stages will constitute a higher
percentage of the total rendering time as compared to the other two data sets. However, it
is still of interest to evaluate the achieved load balance and the amount of transferred data.

Performance variations due to different block sizes have been investigated in related
work [22], which found that blocks of 643 voxels provided the best balance between fine-
grained load balancing and extra overhead. These block dimensions are still used in some
modern applications [4]. Based on this information we chose to partition the data sets
into same-sized blocks consisting of around 643 voxels: 64 X 64 x 82, 64 x 64 x 60, and
64 x 64 x 47 voxels for the three respective data sets. As such, the two first data sets were
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partitioned into 32, 768 blocks whereas the third data set was partitioned into 4096 blocks.

The k-d tree technique used for testing follows the definition in related work [22]. The
initial block distribution produced by the k-d tree is used as the initial block distribution
for the three examined techniques.

We developed a custom distributed volume rendering application to use during testing,
which seamlessly can support the structures required by the k-d tree and group techniques.
Volume data was stored in the float format, which is used internally by the developed
rendering application. Rendering was carried out exclusively on GPUs using CUDA,
whereas inter-process communication was performed using Open MPI. We used the binary
swap [3] strategy in the IceT compositing framework [63] to compose images in the final
compositing step of all evaluated techniques. Rudimentary empty space skipping [S1] was
used to avoid rendering empty blocks.

3.4.2 Performance Benefits of the Two-Layered Group Technique

We performed each test for multiple iterations on the three evaluated data sets. The per-
formance difference between each run was negligible; constantly being less than 1%. An
overview of the computation times of all stages of the pipeline is displayed in Fig. 3.9.
Process Rendering Time represents the rendering time of the slowest process, excluding
compositing, data transfers, and load balancing. First Compositing and Second Com-
positing represent the total time required to perform the first and second compositing
steps, respectively. Load Balancing represents the time required to load balance blocks,
including data transfers.

The memory usage was measured by tracking the highest number of blocks held in
memory by a single process for each test, shown in Fig. 3.10. Using eight processes did not
result in any substantial differences between the two dynamic techniques. For example,
when using the porcine heart data set the highest recorded number of blocks was 5568
for the group technique and 5168 for the k-d tree technique, i.e. 35.9% and 26.2% higher
than using a static distribution, respectively. Using the RMI data set in an eight-process
configuration resulted in both dynamic techniques running out of memory, and is as such
not included in the test results.

Increasing the number of processes to 32 resulted in the k-d tree technique having
the highest memory usage in all tests. For the porcine heart data set the k-d tree and
group techniques reached a memory usage of 2376 and 1792 blocks, respectively; 132.0%
and 75.0% higher than using a static distribution. The biggest difference between the
two dynamic techniques was observed for the Spathorhynchus fossorium data set, where
the k-d tree and group techniques held 162.5% and 68.8% more blocks in memory than
the static distribution, respectively. The group technique consistently achieved a lower
memory usage than the k-d tree technique as the number of processes increased. As such,
we conclude that the group technique has a lower memory usage.

Figure 3.11 shows the average process rendering times for the three data sets. Both
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Figure 3.9: Overview of the computation and communication times of the various stages
in the rendering pipeline, including the process rendering time, the two compositing steps,
and load balancing. The displayed values are the average of all frames using the (a)
porcine heart, (b) RMI, and (c) Spathorhynchus fossorium data sets. group[1], group[2],
and group[4] represent the group technique using 1, 2, and 4 groups, respectively.

evaluated dynamic techniques achieved lower process rendering times than the static dis-
tribution in all tests, clearly demonstrating the benefits of utilizing dynamic load balancing
during large-scale visualization. However, as the number of processes increased, the group
technique was able to achieve a lower rendering time than the k-d tree technique.

Using 8 or 16 processes resulted in similar process rendering times between the two
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Figure 3.10: The highest number of blocks held in memory by a single process using the
(a) porcine heart, (b) RMI, and (c) Spathorhynchus fossorium data sets on 8, 16, and 32
processes. Only one group is used in the case of the group technique.

dynamic techniques; the biggest difference was observed when using the Spathorhynchus
fossorium data set, where the group technique was 12.3% faster. Increasing the process
count to 32 resulted in the group technique consistently achieving the lowest rendering
time; between 33.1% (Fig. 3.11c) and 9.5% (Fig. 3.11a) lower than the k-d tree technique.

The k-d tree technique transferred more blocks than the group technique in all test
cases, as seen in Fig. 3.12. The gap widened as the number of processes increased, which
validates our claim that the k-d tree technique induces an abundant amount of redundant
data transfers. Using 32 processes resulted in the k-d tree technique transferring 227.1%
(Fig. 3.12a), 52.9% (Fig. 3.12b), and 260.0% (Fig. 3.12c¢) more data than the group
technique for the three data sets. As an example, for the porcine heart data set 12,981
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Figure 3.11: Average process rendering times using the (a) porcine heart, (b) RMI, and
(c) Spathorhynchus fossorium data sets on 8, 16, and 32 processes. Only one group is
used in the case of the group technique.

blocks were transferred when using the k-d tree technique. That amounts to 39.6% of the
whole volume. All data sets used for evaluation were static, meaning that most of the load
balancing occurred during the first few frames of the visualization to resolve the initial
load imbalance. During in-situ visualization the volume can change considerably at any
time in the simulation, meaning that using a k-d tree technique could significantly affect
I/O functionality. Furthermore, transferring too much data during the same frame could
prove to be time consuming.
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Figure 3.12: The total number of transferred blocks using the (a) porcine heart, (b) RMI,
and (c) Spathorhynchus fossorium data sets on 8, 16, and 32 processes. Only one group
is used in the case of the group technique.

3.4.3 Utilizing Multiple Groups

To evaluate the scalability of the group technique’s first compositing step we performed
tests using down to eight processes per group, shown in Fig. 3.13. We observe that the
first-step compositing times are similar for all three data sets and that they do not increase
linearly with the number of processes. The highest increase was observed when going
from 16 to 32 processes using the Spathorhynchus fossorium data set (Fig. 3.13c). The
compositing time increased from 11.3 to 18.7 ms when using one group; a 64.5% increase.

The recorded fist-step compositing times are sufficiently low to be performed asyn-
chronously during the rendering stage, thus not resulting in any time overhead. Increasing
the number of groups generally lead to a lower compositing time. Although seemingly
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Figure 3.13: The first-step compositing times for the group technique using the (a) porcine
heart, (b) RMI, and (c) Spathorhynchus fossorium data sets on 8, 16, and 32 processes. In
each test, the group technique is evaluated using as few as eight processes per group.

not required in a 32-process configuration, we believe that utilizing multiple groups can
lead to a large performance increase if more processes are involved.

Decreasing the number of processes also limits between which processes load bal-
ancing can take place, resulting in higher rendering times. Figure 3.9 also includes the
process rendering times for the group technique when using multiple groups; down to eight
processes per group. Utilizing multiple groups sometimes results in a higher rendering
time due to having too few processes in each group, which increases the chance of a high
inter-group load imbalance.
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3.5 Conclusion

We have presented a dynamic load balancing technique for large-scale volume rendering
by which processes can render data from non-contiguous regions of the volume. By
utilizing a two-layered group structure and a novel compositing pipeline we are efficiently
able to resolve many scalability-related concerns that normally would arise with this type
of design.

The effectiveness of the two-layered group technique was displayed by comparing it to
a k-d tree load balancing technique in a variety of scenarios. The group technique proved to
have a lower worst-case process memory usage, while simultaneously achieving similar or
higher render performance. In addition, using the group technique significantly decreased
the number of redundant data transfers. These results were consistently obtained using
three distinct data sets, indicating that similar results can be expected in other applications.
We believe that the presented technique has the potential to be used in large-scale and
memory-limited scenarios where k-d tree techniques currently do not suffice.

Next, we would like to evaluate the technique using more compute nodes to more
accurately assess the benefits of utilizing multiple groups during large-scale visualization.
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Chapter 4

Accelerating Multi-Image Compositing
Using Dynamic Image Resolutions

4.1 Introduction

In sort-last parallel rendering [30], a data set is partitioned into multiple contiguous
and convex blocks, and these blocks are distributed and rendered in parallel by multiple
processes. The resulting images present on all processes then need to be composited, i.e.,
the images and pixels must be merged based on their distance to the camera, to generate a
single image of the entire data set. In the context of scientific simulations, visualization is
often performed in-situ [4, 6, 13, 14, 40] or in-transit [17, 20, 21, 34] as the simulation data
is generated. Multiple images are often produced to represent different viewing angles,
variables, and time steps. Certain tools [28, 29] can automate this process by generating
thousands to millions of images at regular intervals around the studied phenomenon in
3D space. Such in-situ visualization tools can reduce the stored data size by orders of
magnitude, while still allowing for post-hoc analysis of the data. In this chapter, we
specifically consider the usage of a visualization tool like Cinema [28].

Here, consider several images, each representing a specific simulation variable or
unique camera position. In such a case, each image is typically rendered and composited
in sequence (Fig. 4.1); however, this type of image generation pipeline induces substantial
overhead, primarily as a result of synchronization and communication that occur during
rendering and compositing between different processes. Such overhead can be reduced
by rendering and compositing images in batches [32]. In addition, combining batches of
images into multi-images can further accelerate the compositing process.

An example of the multi-image pipeline is shown in Fig. 4.2. Here, multiple images
are rendered in sequence on each process, and then a number of images (determined by the
researcher) on each process are combined into a multi-image, which can be composited
to generate images of the visualized data. In the example shown in Fig. 4.2, the first
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Figure 4.1: Traditional rendering and compositing are performed in sequence until all m
images have been generated.
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Figure 4.2: Example of batch compositing using a multi-image. In this example, four
images are rendered consecutively on each process per batch (labeled 1-4). The images
can, for example, represent different variables of a simulation or different camera positions.
Images are then combined into a multi-image on each process (two images on each axis if
each batch contains four images). Then, the multi-images are composited by the compute
processes to produce a final image for each of the four partial images. Multiple batches
are processed until all m images have been generated.

image is set to the top-left quadrant of the multi-image, the second image is set to
the top-right quadrant, and so on. The output of the compositing stage is a multi-
image that contains all of the final images, which otherwise would have been composited
sequentially via multiple compositing stages. Thus, the synchronization overhead is
reduced by compositing multiple images at once.

Using multi-images changes some typical characteristics of composited images. As
shown in Fig. 4.3a, single images are prone to have large areas of blank pixels. Typically,
the camera is focused on the studied phenomenon, making such empty space more common
toward the outer regions of the image. This leads to redundant computations and load
imbalances between processes, which has spawned many optimization techniques for
single-image compositing, e.g., interlacing [64] and bounding box [3] techniques. By
contrast, as shown in Fig. 4.3b, blank pixels in multi-images are spread fairly evenly
throughout the multi-image, thereby making techniques like the bounding box technique
significantly less effective.

The amount of data generated by scientific simulations is expected to increase by
orders of magnitude in the future because of increased computing capabilities and more
detailed simulations. Distributed rendering and compositing of large quantities of images
is sure to become an essential method to analyze large-scale simulations. Therefore, it
is important to develop new techniques to accelerate the compositing process and, more
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Figure 4.3: Example of (a) an image and (b) a multi-image (two images on each axis)
using the bounding box technique. Pixels outside the region outlined by the bounding box
can be ignored during the compositing stage.

specifically, utilize the unique characteristics of multi-images.

In this chapter, we present the dynamic image resolutions (DIR) technique to accelerate
multi-image batch compositing. The DIR technique generates a bounding grid (BG)
for each process; a low-resolution 2D grid that maps the regions of blank pixels in the
process’ multi-image. These grids can be used to avoid compositing blank pixels of a k X k
resolution in the multi-image. Note that this functionality can be compared to empty space
skipping [51], which is used in a similar manner to accelerate volume rendering of 3D
data. The generated grid is then used to relocate parts of the multi-image and dynamically
reduce the resolution of the multi-image through some of the image compositing steps.
Here, the regions of pixels are relocated to a subset of the image based on the output of
a recursive algorithm in a manner that does not compromise the fidelity or result of the
compositing. Reducing the image size results in less computation and faster data transfers,
which yields faster compositing times.

The remainder of this chapter is organized as follows. Related work is presented in
Section 4.2, followed by a detailed description of the proposed technique in Section 4.3.
The proposed technique is evaluated and compared to existing techniques in Section 4.4.
Finally, the chapter is concluded in Section 4.5, including a summary of potential future
work.
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4.2 Related Work

Distributed sort-last image rendering and compositing is a widely researched field of study.
As aresult, many compositing methods exist [3, 31, 63—68]. Binary swap [3] is an efficient
divide and conquer method that has been used in a wide variety of applications since its
creation. The binary swap method has also served as a basis for many extensions and
derivations [64, 65, 67]. We use the binary swap method with the proposed DIR technique
for evaluation purposes. Other distributed compositing methods that use a tree order (e.g.,
the Radix-k [67] method), optimization techniques, and compression methods [60] can
also be used in tandem with the proposed DIR technique.

Distributed image compositing involves compositing partial images, often generated
from blocks of 3D data sets spread over multiple processes. Using the binary swap
method, compositing consists of log p steps, where p is the number of processes. In
each step, partial images are split in half, and then compositing is performed in pairs of
processes that share the same image region. As a result, the number of processes that can
perform compositing with any given process is reduced by 50% after each compositing
step. An example of the distributed compositing process is shown in Fig. 4.4. We employ
Z-buffering to manage the depth and how to composite pixels. Using Z-buffering, for
each pair of pixels at index i, 0 < i < n, where n is the number of pixels, the pixel
with the shortest distance to the camera is composited on top of the other pixel. After
all compositing steps are completed, the remaining partial images must be gathered and
merged into a final image.

Multi-images were investigated by Larsen et al. [32], who explored two different
multi-image strategies. However, these two strategies only differ in how the composited
images are saved to permanent storage. The multi-image is set up by concatenating 10x 10
images of a 1024 x 1024 resolution. Distributed rendering could be sped up because of two
reasons. First, multi-image compositing is a type of batch-processing of images, meaning
that the inter-process synchronization and communication times during rendering and
compositing can be reduced by processing multiple images simultaneously. Second, using
a multi-image can potentially improve the cache-hit rate and reduce overhead induced
by data transfers, because all image data is allocated to a continuous memory region.
Our work expands on this research by introducing a novel optimization technique that
dynamically can reduce the resolution of the multi-image in a lossless manner.

4.3 Dynamic Image Resolutions

The DIR technique uses BGs and exploits the typical pattern of blank pixels in multi-
images to reduce the image resolution dynamically during the compositing stage. Here,
non-zero grid cells, and the pixels they represent, are reorganized to fit in the smaller
image. This size reduction is achieved with no loss of detail.
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Figure 4.4: Example distributed image compositing between four processes using binary
swap [3]. In each compositing step, images are split in half as indicated by the dotted
lines. The end result is a fully composited partial image on each process that covers a part
of the image domain. The compositing method works for both multi-images and single
images.

4.3.1 Overview of the DIR technique

An overview of the DIR technique is shown in Fig. 4.5. The DIR technique consists
of six stages. In stage 1, a BG is generated for the partial multi-image present on each
process. Then, in stage 2, the grids are used to determine the order of operations required
by the DIR technique. The order of operations is determined by an algorithm (described
in Section 4.3.6). This algorithm uses the BGs to analyze the multi-images recursively to
find the smallest image resolution that can be obtained with no loss of data (constraints
explained in Section 4.3.4). The order of operations is then used in stage 3, where the non-
blank regions of pixels are reorganized to fit in an image of smaller size (Section 4.3.7).
In stage 4, compositing is performed using the reduced resolution as specified by the
order of operations. Then, the multi-images are restored to their original resolution in
stage 5, i.e., they stop using the smaller image size and relocate the non-blank pixels of
each multi-image to their original positions.

Note that the reduced resolution cannot be used in all compositing steps in some
cases (Section 4.3.5). In such cases, additional compositing steps are performed using the
original resolution in stage 6.
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Figure 4.5: Overview of the DIR technique.

4.3.2 Bounding Grids

A BG is a low-resolution grid (i.e., a 2D array), where each cell in the grid represents k
pixels on each axis in the original image, for a total of k X k pixels per grid cell. Figure 4.6
shows an example grid. The BG can identify blank pixels in multi-images more efficiently
than a bounding box technique (Fig. 4.3). Whereas a bounding box can identify blank
pixels in the outer regions of an image, a BG can identify blank pixels throughout the
whole image. Note that BGs also work with single images (not only multi-images).

Before compositing the image, the grid is initialized by iterating through each pixel
of the image. Here, for each grid cell, the cell’s value is set to O if all k X k pixels it
represents are blank; otherwise, the cell’s value is set to the index of the cell (starting from
1). After each compositing step, a new image is created on each process by compositing
two images. The BG of the new image can be updated using the data from the grids of
the two composited images. Note that the resulting time complexity to update the grid is

O(n/k?).

At the start of each compositing step, the grid is used to construct a bounding box for the
image to exclude blank pixels at the outer regions. Throughout the compositing process,
the grid is continuously checked to verify if an area of the image contains any non-blank
data. If not, all pixels in the area can be skipped, which reduces the computational costs.

Given an image, a BG comprises n/k? grid cells. Thus, smaller k values increase the
memory usage and time required to iterate the entire grid, and larger k values result in
reduced memory usage and accelerate the grid iteration speed. However, smaller k values
increase the grid resolution, which enables more fine-grained identification of blank pixels.

Similar to the bounding box technique, the time complexity to calculate the initial
state of a BG is O (n); however, the time complexity of updating the BG after compositing
two images is O(n/k?), which is greater than the O(1) of the bounding box. By setting
k = Q(+/n), the time complexity can be regarded as O(1) instead of O(n/k?).
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Figure 4.6: Example of the BG of a multi-image. The 8 X 8 grid keeps track of which
image regions that contain non-blank pixels. Empty grid cells (represented by white cells)
do not contribute to the final image; thus, pixels represented by empty grid cells can be
skipped during the compositing stage.

4.3.3 Order of Operations

The DIR technique is executed through a sequence of operations. Here, three operations
are used to realize the specified functionality of the DIR technique.

1. Reorg. This operation specifies the new image dimensions (determined by the
recursive algorithm) and a grid that specifies the new index of each non-zero grid
cell (k X k image region).

2. Restore. This operation restores the image to its original size and all pixels to their
original positions.

3. Composite. This operation specifies a pair of processes that are to share images
and perform compositing.

By executing the sequence of operations, stored as a list on each process, we can ensure
correct functionality. Note that the Reorg and Restore operations only are executed once
for each composited multi-image.

4.3.4 Constraints of the Lossless Image Reduction

To facilitate the explanation of the image reduction constraints, we introduce the term end
ID,end ID € {1,2,..., p}. For each cell, the end ID specifies which process the pixels
represented by the cell are located on after the final compositing step that uses the reduced
image resolution. To demonstrate an example using binary swap, assume that the DIR
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technique is employed in Fig. 4.4. Here, in the final result, the top-left quadrant of the
original image is present on process 1, i.e., grid cells representing pixels in the top left
quadrant would have an end ID of 1. Note that the end ID calculation depends on the
employed compositing method, n, k, p, and the resolution of the reduced image.

There are three constraints when reducing the image size and reorganizing non-blank
pixels. These constraints ensure that the data relocation and the reduced image resolution
do not affect the output of the compositing stage; thus, existing compositing methods
can be used without modification. First, the new image (of reduced size) must be able
to store all relevant data (non-blank pixels). Second, the DIR technique cannot change
which pairs of pixels perform compositing. Pairs of pixels in the reorganized images
can only be composited if they come from the same index i, 0 < i < n, in the original
image. Specifically, for p multi-images (one on each process), if on process 1 a pixel
is relocated from index i to index j, the other p — 1 processes must perform the same
relocation. Third, after the final compositing step using the reduced image resolution, a
process’ partial image cannot contain a grid cell (nor the pixels it represents) that, if not
for the reorganization and resolution reduction, would be located on a different process.

The first constraint can be satisfied by ensuring that the number of non-zero grid cells
with a specific end ID does not exceed the maximum (M) that can be stored.

The second constraint is satisfied by ensuring that, when any two pixels are composited,
the values of the grid cells they belong to are identical, i.e., the grid cells they belong to
had the same index in the original image.

The third constraint is satisfied if each grid cell, when relocated, is moved to an index
of the grid with the same end ID the cell had before the relocation. As a result, the pixels
represented by the cell are located on the same process after compositing is completed,
regardless of whether the DIR technique is used. In contrast, if the end ID is different, the
cell’s pixels end up on a different process once the compositing stage has finished, thus
not satisfying the third constraint.

The third constraint limits how pixels can be reorganized in the smaller image, and
this constraint is the primary reason the DIR technique works well with multi-images. As
described in Section 4.1 and illustrated in Fig. 4.3b, blank pixels are fairly evenly spread
throughout a multi-image, i.e., the number of non-zero grid cells for each partial image
should be similar at the end of the compositing stage. In most cases, this is not true when
using single-image compositing; the non-blank pixels would instead be skewed toward a
specific end ID, i.e., it would be harder to satisfy both the first and third constraints when
reorganizing pixels to the smaller image.

4.3.5 Assigning Colors

Through testing, we discovered that increasing the value of p occasionally made it difficult
to achieve any substantial reduction to the image resolution, as the non-blank pixels from
the p multi-images could not fit in a smaller image. To make the DIR technique usable

60



Algorithm 3 CAN_ADD: determine if process 4 can be assigned color w. The algorithm
checks whether the current level allows all non-zero grid cells to be stored.

Input:
p: number of processes;
ri: BG for process h; > h is the process to be added
by: BG for color w; > w is the target color
[: level,
c: number of colors;
Output:
True or False; > Whether & can be added to w
1: fori < 1topdo
2: Eli] « 0; > Keeps track of the number of non-zero grid cells in every end ID
3: for i « 1 to sizEOF(r;) do > Iterate through all cells
4: if r,[i] # 0 or by [i] # O then
5: J < GET_END_ID(i); > End ID for i
6: Eljl < Elj]1+1;
7: if S[j] > (s1zEOF(ry,) - ¢) /(p - 2') then > M
8: return False; > Cells exhausted

9: return True;

in large-scale environments, we assign a color to each process (¢ colors, where ¢ > 1).
Then, processes are partitioned into p/c independent sets based on the assigned colors.
When compositing, communication is initially limited to processes within the same set.
Thus, p/c processes communicate, reduce their image resolution, and composite images
within each set. The number of multi-images (and processes) participating in these
compositing steps is p/c, down from p, making it easier to reduce the image resolution
with no loss of detail. Then, the original image resolution is restored, and the remaining
log p — log(p/c) = log c compositing steps between processes assigned different colors
can be performed normally (not using the reduced image size of the DIR technique). Here,
the benefit is that the image resolution can be reduced also in large-scale environments.

To satisfy the first and third constraints, we must ensure that the number of non-zero
grid cells belonging to the processes in a color’s set do not exceed the maximum amount
for any end ID. This verification process is described in Algorithm 3. The maximum
number of non-zero cells for each end ID, M, is (n/k*-c) /(p - 2') for each process,
where [ indicates a resolution level; how many times the resolution of the multi-image can
be successfully reduced by 50%. For example, in Fig. 4.7, if n/k* = 64 (number of grid
cells), ¢ = 1, and p = 2, the maximum number for each end ID is 16 and eight for / = 1
and [ = 2, respectively.

Increasing the number of colors also increases the computation time required to de-
termine the order of operations and reduces the number of compositing steps that use the
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Figure 4.7: Example of data reorganization and size reduction for / =0,/ =1and [ = 2,
with p = 2. For any level, the number of pixels in the reduced image, ’, is equal to n/2!.

smaller image size. Thus, the maximum number of colors, MAX_COLOR, is limited to at
most log p.

4.3.6 Image Size Reduction Method

The recursive Algorithm 4 shows how the order of operations is calculated (initially called
from Algorithm 5). Here, given a number of processes p, p multi-images of n pixels (one
on each process) and their BGs, R « {ry,...,r,}, Algorithm 4 attempts to reduce the
multi-image resolution as much as possible with no loss of detail. The output is the order
of operations of each process.

To determine the reduced image resolution, the number of colors, and the pixel reorga-
nization, we recursively try multiple / and ¢ values in a bottom-up fashion. A maximum
resolution level was determined through testing, and MAX_LEVEL = 4 (16X size reduction)
was never exceeded in any tested configuration for non-empty images.

Given [ and ¢, Algorithm 4 attempts to assign colors to processes such that exactly
p/c processes are assigned to each color. Each color iterates through the list of available
processes and adds the first process that can be added while satisfying the constraints
(determined using Algorithm 3). Then, if any process has not been assigned a color, either
c or [ is updated to make partitioning easier. Algorithm 4 first attempts to increase the
number of colors, because decreasing the level doubles the number of pixels in the smaller
image. If the level is decreased, the number of colors is reset to 1. The order of operations
can be generated once a successful partition has been found.

The first generated operation is always the Reorg operation, and then composite oper-
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Algorithm 4 GET_OP_ORDER: a recursive function that produces the order of operations
for each process. Operations concerning other processes are ignored during program
execution.
Input:
p: number of processes;
H: List of all processes, sorted by the number of non-zero grid cells;
R:A{r,....rp}; > Contains a BG for each process
[: resolution level;
c: number of colors;
q: index of the compute process;
Output:
D: order of operations;

1: U — H, > Save copy of original list
2. G—{91,...,9:}; > Set of ¢ colors, Vg € G,g «— @
3: B {by,...,b:}; > BGs for all colors
4: fori < 1to p do
5: w <« [ mod c;
6: for j < 1 to sizeor(H) do
7: he—HIjl;
8: if cAN_ADD(p, 1y, by, [, ¢) then > Algorithm 3
9: Add & to gy
10: Remove A from H;;
11: Update b, to include all non-zero cells in r;
12: break
13: if sizeor(H) > O then > Color partition unsuccessful
14: c—c-2;
15: if ¢ > MAX_COLOR then
16: c—1;
17: l—1-1;
18: return GET_OP_ORDER(p, U, R, L, c, q);
19: else > Color partition successful
20: Init order of operations O with Reorg operation for process g;
21: Add intra-color Composite operations to D;

22: Add Restore operation for process g to D;
23: if ¢ > 1 then
24: Add inter-color Composite operations to D;

25: return D; > Finished

ations between pairs of processes of the same color are appended. Here, all compositing
pairs belong to the same color; thus, the reduced image resolution can be used with no
loss of data. Given log(p/c) intra-color compositing steps and p/2c¢ pairs of processes
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Algorithm 5 Calculates the order of operations on all p processes (function is called in
parallel by each process).

Input:
p: number of processes;
M: p multi-images of n pixels; > One on each process
[: MAX_LEVEL;
c: MAX_COLOR;
g: index of the compute process;
Output:
D: order of operations;

s H—[1,...,p];
R~ {r,...,rphs > Set to store the p BGs
: fori < 1topdo
r; < the BG for the i-th multi-image M |i];
Sort H by the number of non-zero cells in each BG in R (descending order);
return GET_OP_ORDER(p, H, R, [, ¢, q); > Algorithm 4

SANR AN S

for every step, a total of log(p/c) - p/2c compositing operations are performed within
each color’s set of processes. Then, as no more compositing steps can be completed using
the reduced image resolution, the Restore operation is appended, to restore the images
to their original resolution and all pixels to their original indices. Finally, the remaining
log(c) - p/2 composite operations between pairs of processes assigned different colors are
appended. After the operations have been executed, each process is left with a part of the
final image.

4.3.7 Pixel Reorganization

We use the grid of each multi-image to reorganize different regions of pixels; i.e., k? pixels
are relocated to the smaller image at a time. Figure 4.7 shows an example of the pixel
reorganization process. As shown, each grid cell whose value is not zero is relocated to
the smallest unoccupied index for its end ID, which satisfies the third constraint. This
approach can potentially improve the efficiency of skipping the compositing of empty grid
cells because all non-zero cells are concentrated in the same area of the grid. When a
grid cell is relocated, the cell’s value is still set to the original grid index it had before the
reorganization. The index can then be used at the end of the compositing stage to relocate
the cells (and the pixels they represent) to their original position in the multi-image. The
pixel reorganization is identical for all processes assigned the same color, satisfying the
second constraint.
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4.3.8 Theoretical Performance Analysis

Maintaining the BG increases the memory usage by bn/k* on each process, where b
determines how many bytes can be used by each grid cell to record the indices used by the
Reorg operation. The best b value depends on the resolution of the multi-image and the k
value. The Reorg operation also stores a grid containing bn/k? elements. As a result, the
memory usage is increased by at most 2bn/k>. For example, if b = 2, n = 204802, and
k = 64, the memory usage would only increase by 0.1%.

To facilitate understanding of the theoretical analysis, we first show the total time for
a basic method before that of the DIR technique. The basic method here simply uses the
binary swap method, with no optimization techniques applied. We define the total time T
as a function of the number of pixels (n). Because the basic method consists of a sequence
of compositing steps followed by a gather step, the total time can be given by:

log p

n n
T(n) = Z Tstep (F) + Tgather (W) > 4.1)
i=1

where #4ep 1S the time required to process a compositing step in the binary swap method
and Zgaher 18 the time required to merge the partial images after all compositing steps have
completed. The number of compositing steps and the image size for each step i depend
on the used compositing method; using binary swap results in log p steps. As the number
of pixels in an image is halved after each step, the number of pixels at step i is equal to
n/21,

The time #4ep, can be further detailed as follows:

Istep(n) = teomm (1) + Leare () + tsync(”)’ 4.2)

where fcomm, fcalc,» and fgyyc are the inter-process communication time, the compositing
computation time, and the inter-process synchronization overhead for each compositing
step, respectively.

We next analyze the total time for the DIR technique. There are three differences
compared to the basic method. First, for each compositing step, additional computation
and inter-process communication are required to update and transfer the grid between
processes. Let these actions be done in #g:iq. We then have

t;tep(n) = tstep(n) + tgrid(n/kz)’ 4.3)

where 7., is the time required to process a compositing step in the DIR technique. Second,
as a result of the dynamic image size reduction, the number of elements is reduced from n
to n’ = n/2! for the first log(p/c) steps. Third, using the DIR technique, the BGs must be

generated, called fge,. In addition, the DIR technique involves the computation times of
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the Reorg and Restore operations, feorg and Zreqt, respectively. As a result, we obtain the
following function 7” for the total time:

log(p/c) ’ log p
’ ’ n ’ n
T'(n) = Z Lstep (F) + Z Istep (F)
i=1 i=log(p/c)+1 “4.4)
n n
+ Zgather (m) + Zgen (ﬁ) + treorg(”) + trest(n).

The phases specific to the DIR technique (Zgen, freorg, and frest) all depend on n rather
than p. As a result, the proposed technique should be more effective in large-scale
environments, as the number of pixels typically remains constant; in such scenarios, t;tep
is bound to account for a greater proportion of the total execution time.

4.4 Evaluation

To evaluate the proposed technique, we ran tests on a 16-node cluster (Table 4.1). Ren-
dering was performed using the OSPRay rendering engine [37], version 1.7.3, and com-
positing was implemented in C++ and accelerated using OpenMP [69]. The multi-image
size was set to 100 (10 images per axis), same as in related work [32]. However, we used
an image resolution of 2048 x 2048, resulting in a resolution of 20480 x 20480 (1.67 GB)
per multi-image, for a total of 26.84 GB of data spread across 16 nodes.

The camera was moved along a spherical spiral around each data set to ensure all
images were rendered from different viewing angles and positions. We evaluate the
following techniques, all of which use the binary swap method:

1. Single. Traditional single-image compositing.

2. Basic. Multi-image compositing with no optimization techniques.
3. BB. Multi-image compositing using a bounding box.

4. DIR. Multi-image compositing using the proposed DIR technique.

We used the traditional image compositing method shown in Fig. 4.1 in the single tech-
nique to demonstrate the differences in rendering times between the traditional approach
and batch rendering.

Two data sets were used for testing purposes; referred to as data set 1 and data
set 2. Data set 1 is a time step of the mass fraction of a Richtmyer—-Meshkov Instability
simulation [1], at a 2048 x 2048 x 1920 resolution (64 GB). Data set 2 is a time step of the
pressure field of a forced isotropic turbulence simulation [70], at a 4096 x 4096 x 4096
resolution (550 GB). Figure 4.8 displays a visual representation of the two data sets.
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Table 4.1: Cluster specifications. The cluster system consists of p = 16 nodes.

CPU Xeon E5-1650 v4 6 cores

Memory 128 GB

Interconnect InfiniBand EDR

Software GCC 7.3.0, OpenMPI 3.1.0, and OSPRay 1.7.3

(@) (b)

Figure 4.8: Visualization of (a) data set 1 and (b) data set 2.

4.4.1 Selecting the Grid Size

To evaluate the effect of using different k values in the DIR technique, we ran tests for k
values of 16, 32, 64, and 128. The results for data set 1 are shown in Fig. 4.9, which breaks
down the compositing times according to the phases outlined in Section 4.3.8. Similar
results were obtained for data set 2.

A k value of 128 resulted in a coarse-grained grid, that failed to reduce the resolution
of the multi-image to the same extent as lower k values. As a result, the 7y, phase was
more time-consuming than the k = 32 or k = 64 cases. Note that decreasing the value
of k further instead made the grid more fine-grained; however, the extra overhead from
the Zep, frest» and Zreorg phases introduced by increasing the number of cells negated the
benefits of the proposed DIR technique. Based on these results, we used k = 64 for all
subsequent tests.
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Figure 4.9: Compositing times using different k£ values on 16 processes (k = 64 achieved
the fastest compositing time).

4.4.2 Overall Speedup

The total execution times (rendering and compositing) are shown in Fig. 4.10. Using batch
processing proved to improve the execution time significantly. The biggest difference was
observed between the single and DIR techniques, where speedups of 1.32x and 1.27x
were observed on the two respective data sets. In addition, speedups comparing the DIR
to the basic technique were 1.12x and 1.07X, respectively. Using batch processing sped
up the rendering times by 1.2x on both data sets, which suggests that the performance
benefits of rendering images in batches are independent of the size of the data set.

Rendering made up 77% of the total execution time on data set 1 and 85% on data set 2
for the basic technique. Using the DIR technique, the improvements to the overall execution
times seem limited, as rendering is more time-consuming than compositing. However,
increasing the p value increases the amount of compositing time compared to rendering;
indeed, compositing is considered to be a significant bottleneck when performing large-
scale visualization [63]. As a result, evaluating the compositing times independently
of other computation tasks provides a better understanding of the speedup in different
scenarios; such as when using smaller data sets or larger-scale systems.
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Figure 4.10: Total execution times (rendering and compositing times) of the evaluated
techniques on 16 processes.

4.4.3 Compositing Performance

The compositing times of the evaluated techniques are presented in Fig. 4.11. In line
with expectations, the bounding box technique did not achieve any significant speedup as
compared to basic multi-image compositing (1% slower on both data sets). This result
confirms that some common optimization techniques for image compositing are not as
effective on multi-images. Using a multi-image was faster than single-image compositing.
The basic technique achieved speedups of 1.11x compared to the single technique on both
data sets. The proposed DIR technique achieved significant speedups of the compositing
stage; 1.82x on both data sets compared to the basic multi-image technique. Similarly,
the DIR technique achieved speedups of 2.02X compared to single-image compositing.
On both data sets, we observed a 75% size reduction ([ = 2) in our testing of the DIR
technique (1.67 GB to 0.42 GB per multi-image).

Figure 4.12 shows a breakdown of the compositing times based on the phases outlined
in Section 4.3.8. Using the DIR technique, freorg and fres together account for 12—13%
of the total compositing time. However, these operations depend on the resolution of the
multi-image (rather than p). As a result, the execution times of these operations should
decrease in proportion to the total compositing time as p increases.

The 4, phase was significantly faster using the DIR technique than all other evaluated
techniques, which is consistent with the theoretical performance improvements outlined
in Section 4.3.8. Compared to the basic technique, the proposed DIR technique sped up
the 7gep phase by 2.38x and 2.43% on the two respective data sets. Even when accounting
for the extra computation required by the DIR technique (Zgen, freorg, and fres), speedups of
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Figure 4.11: Compositing times using the evaluated techniques (p = 16).

1.97x and 2.00x were achieved on the two data sets. Based on these results, we conclude
that using the DIR technique can accelerate multi-image compositing significantly.

To evaluate the scalability of the proposed DIR technique, we measured the composit-
ing times using 2, 4, 8, and 16 processes (Fig. 4.13). We make two observations; first, the
DIR technique achieves a greater speedup compared to the techniques used for comparison
as we increase p. This relative improvement is a direct result of the reduced image size.
For example, going from p = 4 to p = 16, the #4e, execution time of the basic technique
increased by 25% on data set 1; compared to an increase of only 4% when using the
DIR technique. Second, #4ep constitutes a greater proportion of the execution time of the
DIR technique as the p value increases, consistent with our discussion in Section 4.3.8.
Table 4.2 summarizes the execution time of each phase compared to the total compositing
time on data set 1. Here, 45% of the compositing time initially consists of #yep, when p = 2.
Overhead induced by the #;e5 and 7reorg phases makes the DIR technique less efficient; only
a 1.16x speedup over the basic technique. As the value of p increases, the tye, phase
accounts for a greater proportion of the execution time (over 70% when p > 8). The
proposed DIR technique specifically accelerates the #4ep, phase, meaning that it should be
able to further accelerate the compositing stage when the 7y, phase constitutes a greater
portion of the compositing time; in our case, a 1.82X speedup compared to the basic
technique for p = 16 on both data sets. We conclude that the DIR technique scales better
than the techniques used for comparison and that it is especially well-suited for large-scale
visualization.

70



Time (s)

Single Basic BB DIR Single Basic BB DIR
Data Set 1 Data Set 2

Figure 4.12: Breakdown of the compositing times of the evaluated techniques (p = 16).
For the BB technique, 7g, represents the time to calculate the bounding box.

Table 4.2: Time spent by the DIR technique on each phase compared to the total com-
positing time on data set 1.

t step ! gather Trest 4 reorg 3 gen

45% 20% 16.3% 16.2% 2.5%
62.4% 15.8% 10.3% 9.3% 2.3%
722% 13.7% 3.9% 7.8%  2.3%
6 70.5% 14.8% 6% 6.1%  2.6%

T
I
— 00 N

4.5 Conclusion

In this chapter, we proposed the DIR technique to accelerate multi-image batch com-
positing. Compared to existing multi-image compositing techniques, our contribution is
twofold. First, the proposed technique maintains low-resolution grids that track empty
regions in the composited multi-images, which can be ignored during the compositing
process to reduce the computation time. Second, the grids are analyzed by a novel algo-
rithm, whose output can be used to reduce the total image size in a lossless manner, which
can lower the compositing time significantly.

The proposed DIR technique realized a 2.02x speedup of the image compositing stage
as compared to traditional single-image compositing and 1.82Xx compared to existing
multi-image techniques. Similar results were obtained using multiple distinct data sets,
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Figure 4.13: Breakdown of the compositing times of the evaluated techniques on (a) data
set 1 and (b) data set 2 using 2, 4, 8, and 16 processes. For the BB technique, 7, represents
the time to calculate the bounding box. Note that no results are presented for the case
using two processes on data set 2; the processes ran out of memory and were not able to

render the images.
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meaning that the performance benefits of the proposed technique should not be limited to
this application. We also showed that the DIR technique can accelerate the compositing
for computing clusters of different sizes consistently. Moreover, we observed that the
proposed technique achieved greater speedups as the number of processes increased.
Thus, we conclude that the presented technique can accelerate the batch compositing of
images and that the technique is especially suitable in large-scale cluster environments
where extensive visualization is needed. The speedup compared to related techniques is
excellent; using the DIR technique can potentially reduce the compositing time by up to
45% 1in large-scale applications.

In future work, we plan to continue improving the DIR technique to further accelerate
the compositing process. In addition, we plan to investigate how multi-image compositing
on GPUs can be accelerated by using different scheduling techniques and data structures.
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Chapter 5

Conclusions

Here, we present a summary of the dissertation and discuss future work.

5.1 Summary of Work

In this dissertation, we identified and addressed three challenges facing large-scale co-
processing of simulation data: (1) how to identify essential simulation data, (2) how to
perform memory-efficient load balancing, and (3) how to accelerate multi-image batch
compositing. These challenges were addressed in Chapter 2, Chapter 3, and Chapter 4,
respectively.

In Chapter 2, we proposed a method that efficiently can identify important regions
of simulation data, and then used the proposed method to combine the usage of multiple
compression methods. Using a data-driven approach, we could successfully accelerate
data transfers and data compression in an in-transit setting; achieving an overall speedup
of 1.29x compared to using RLE. The proposed approach significantly accelerated the
in-transit co-processing and should be usable in many in-transit applications.

In Chapter 3, we presented a dynamic load balancing technique by which processes
can render data from non-contiguous regions of 3D data sets. We were able to reduce the
amount of transferred data in large-scale environments by 72.2% and lower the highest
observed memory usage compared to a typical k-d load balancing technique by 35.7%,
while not negatively affecting the rendering performance. Similar performance benefits
were shown for the three distinct data sets used for evaluation, meaning that similar results
should be obtained in other applications. The technique has the potential to be used in
large-scale or memory-limited scenarios where other dynamic load balancing techniques
do not suffice.

In Chapter 4, we presented a technique that dynamically can reduce the size of multi-
images with no loss of data, thus able to accelerate the image compositing process sig-
nificantly. We were able to display excellent scalability compared to other techniques,
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and achieved a speedup of 2.02x compared to traditional image compositing and 1.82x
compared to existing multi-image techniques on two distinct data sets. Based on the
evaluation results, the DIR technique can reduce the compositing time by up to 45% in
other applications.

Summarizing the work of this dissertation, we successfully addressed three time-
consuming challenges facing large-scale co-processing of scientific simulations, finding
novel solutions that function at scale in distributed settings. We believe that the novel
techniques and findings presented in this work can be applied to many applications that need
to expeditiously process simulation data on the fly. We also believe that our techniques will
perform even better in the future thanks to the excellent scalability shown in our testing.

5.2 Future Work

In future research, we would like to investigate how these applications can be used in
combination to accelerate all stages of the visualization pipeline. The memory-efficient
load balancing technique can be used to dynamically balance the computational load
during the rendering stage, the DIR technique can accelerate the compositing stage, and
by identifying essential data, we can prioritize different types of co-processing tasks at
interesting time steps, compress data, and save important simulation data to permanent
storage.

We also detail three topics of future research that build on the applications presented
in this dissertation. First, we would like to further explore how identifying important
simulation data can be used to accelerate and improve the co-processing process. In
addition to many time-saving measures, we believe that many simulation-specific tasks
can be automated; for example, the calculated importance can be used to determine which
time steps to analyze. Second, continue work on developing new optimization techniques
for batch image visualization using multi-images. Third, investigate how dynamic load
balancing can be improved by knowing the importance of different data regions.
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