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ON ALGEBRAS OF 2-CYCLIC REPRESENTATION TYPE
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By

Tensuo YOSHII

§1. Let A be an associative algebra with a unit and of finite dimen-
sion over an algebraically closed field K and A=31>" Ae¢;; be a decom-
D

position of A into a direct sum of directly indecomposable left ideals
where Ae, ;= Ae, ,=Ae, and let N be its radical.

Now if an A-left module (or an A-right module) m is a homomor-
phic image of one of Ae; (or ¢;A) we call m a cyclic module and if an
arbitary indecomposable A-left or right module is the sum of at most
n cyclic modules we call A an algebra of z-cyclic representation type.
It is known that A is generalized uniserial if and only if A is of 1-cyclic
representation type®.

In this paper we study the structure of an algebra of 2-cyclic repre-
sentation type. In order to make the description short we give the next
definitions and notations.

(i) If a module or an ideal has only one composition series then
we call it uniserial.

(ii) If Ne, and Nf 2 (e,==e,) have simple components isomorphic
Ne, N?e,
to each other then we call such a component a vertice component and
i ir . . . i g
{N,]le‘ , N f’} is called a chain if, A{Vel” and %
N11+lel Nirt e, Nov+ e, Nyt €y
(v=1, -+ ,—1) have simple components isomorphic to each other and
. Ae, .,

Ae, is not isomorphic to any composition factor of

va+1‘f'v+‘ev,‘,l-
(jv+12jv)~
(iii) The largest completely reducible part of an A-left (or A-right)
module m is denoted by s(m).

1) See [I] and [II].
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Moreover in this paper we shall assume that Ax is a cyclic left
ideal or a cyclic A-left module.

The main result is as follows :

An algebra A is of 2-cyclic representation type if and only if A
satisfies the following conditions.

(1) Let p be an arbitrary left ideal of Ne. Then s(%) is a direct

sum of at most two simple components and if it is a direct sum of two
simple components then they are not isomorphic to each other except the
case where Ne=Au,+ Au, and there is an integer A\ such that N*u,=Auu,

where N*'u,=Au,=2Au,N Au, and Au, has no composition factor
o Au,n Au,
isomorphic to Ae.

(2) (i) Assume that Ne,=Au-+ Av (or Ne,= Au) and ‘1 u . Ne, (e,=Fe,)

where b, is a left subideal in Au containing Aun Av and p, a left subideal

in Ne,. Then there exists no composition factor of Ne, isomorphic to
2

a vertice component except a simple component of 11\\[’262 .
(]
(i) If Ne—Au,+Au, then at least one of A% _ (;_1,2) has
u,N Au,

no composition factor isomorphic to a vertice component.
(38) Assume that Aw is a cyclic subideal in Ne. If Nw=Av,+ Av,
then Awv, " Av,= Nv,= Nv,.

(4) Assume that {%pfl -, A%{TY?} (p=1, ---,t—1, v=0) are chains.
ey, rile,

(i) At least one of Ae, or - Ae, is uniserial.
N'e, Nitve,
(ii) If v=0 and Ne,=Au, + Au, where Aﬁ;z—g—? then
(P

() Awu; (i=1,2) are uniserial and Awu, " Au,= Nu,
. Ne Au
Nu,=Aw, + Aw,, Aw,=Au,"Au, and - 2 ~ 272 ___|
or (B) Nu=duw,+Aw A N'e,  Aw, + Nuw,
(5) The similar four conditions for right ideals as above are also
satisfied.

§ 2. In this chapter we assume that A is of 2-cyclic representation
type unless otherwise stated and we shall prove that A satisfies five
conditions in §1.

[2.1] The followings are the consequences of the results in (IV).
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Lemma 1. 1—1\\7,2?“ is the divect sum of at most two simple components
e
and if it is the dirvect sum of two simple components then they are not
isomor phic to each other.

Ne,'

Lemma 2. If {-Ne' Ne,

Ne' N } is a chain then at least one of
e e
(i=1,2) is simple.” ' ’

Nei
28;
@=2, - ,7) then r<2.

Lemma 3. If SAu; (=1,-,7) and Aw,=Au, for all i

This lemma is a consequence of the Lemma 1. Hence this is a conse-
quence of the first half of the condition 1.

[2.2] Lemma 4. If s<%):;1\u: 6}--{921;; for an arbitrary left ideal
Y in Ne then r<2.

(This is the first half of the condition 1.)

F3
Proof. The dual module <f%)-e> of Ae is also directly indecompo-

*
sable and (f;ﬁ) is the sum of 7 cyclic modules. Hence if =22 then

A is not of 2-cyclic representation type.

Corollary 1. If the first half of the condition 1 is satisfied and

Ne=Au,+ Au, then Aw, Au,

— = and —2 — are uniserial.
Au,N Au, Au,N Au,

Proof. If there is a left ideal p in Awu, such that p 2 Au,N Au, and
s(‘%) is not simple then s(%) is the direct sum of at least three
Née

simple components. Next since it is proved by Kothe® that Nt is the
itlg

direct sum of simple components not isomorphic to each other, we have

Nie

Nitle

Corollary 2. is the dirvect sum of at wmost two simple com-

ponents not isomorphic to each other.

. 2) This is also the consequence of the first half of the condition 1.
3) See [III].
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[2.3] Assume that %—_ Au

where Au is a subideal in Ne' (e==¢)

which is not contained in N?%’ and b and b, are subideals in Ne and Au.

Now if ;\;’ffpp AuleBAu2 and p_ Nit'e then s(l\;qel) is the direct

sum of at least three simple components, but by the first half of the

condition 1 this is a contradiction. Hence if Neetp =Au, P Au, then

Nitle+p
P Né+'e and N6 — A, @ Aw,. Similarly if Y %+P _ 7y @ v, where
Nitle Néu+p,
%z;ﬁ; ({=1,2) then »,C Niu and A;[_lu =AZ®E);. Hence by the
‘u

Au

1

following lemma 5 1;/;8 and are uniserial.

Lemma 5. Assume that Aul Ne', LC N (e=!=e/) and there exists

an integer @ such that N ¢ —~Aw,EBAw2 and JX[ ~GBZv: where

Awl Av1 and sz_sz Then A is of unbounded representation type.

For the proof of this lemma, see [V] or [VI].
From the lemma 5 we have

Corollary 3. Assume that Aw; (i=1,2) are cyclic,

Aw, Aw,
Aw,NnAw,  Aw,N Aw,

Aw _
ym sz(’ 1,2)

Then Aw,N Aw, is uniserial.

are simple and

Proof. Assume that Aw,=~A¢’ and Aw,=~A¢” (¢ ==¢’). Then
there exist p, and p, such that Nw, = ]Xe, and NwzzN e”.

1 2

(i) If Aw,nAw, is cyclic and there is an integer »==1 such that

—ZZ\%:A_&@E and %zA_EZEBA—é‘Z where N'+'¢’ >p,, N**e¢” Dp,,

AE, =~ AE, and A, = AL, then by the lemma 5 A is not of 2-cyclic repre-
sentation type.

() If Aw,

Ne and Ne’

NZ 24
=AE,P AL, where AE =~ AE, and Af, =~ A¢,. Hence this contradicts the
lemma 2.

The necessity of the condition 2 follows from the following lemmas.

Lemma 6. Assume that Ne,=Au,+Au,. Then at Ileast one of
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Au Au . . . .
! and z have no composition factor isomorphic to a vertice
Au,N Au, Au,N Au,
component.

In order to prove this lemma we shall prove the following lemma 7.

Lemma 7. Assume that m=Aem,+ Aem,+Aem, is an A-left
module such that e =Fe,=e,, s(Ae;m,)N s(Aem,) = Aum,=Aum,==0 and
s(Ae,m,) N s(Aem,) = Av,m, = Avgm, 0.

If wym;=0 and vy;m;=0 for v;m; € Neym; then m is directly inde-
composable.

Proof. We can put wm,=aum, and vm,=Bvm, (&, B€ K). Now
suppose that m is directly decomposable. Then m=Aen,+ Aen,+ Aen,
and some Aem; is a direct summand of m. Now let n;=«a;m,+a;m,
+am, (1=1,2,3).

Then «; € ¢;Ae;, ¢e;Ne; and «;; € ¢;Ne; (1= 7).

Hence wumn,=a,um,, wun,=aum, vn,=a,w,m, and vmn,=a,vm, where
a=a;+7;, a; €K and 7;€e;Ne;. Therefore Aumn,=Aum,, Aun,=
Aum,, Avn,=Avm, and Avmn,=Avgn,. Thus Aemn;N(Ae;n;+ Aeyng)==0
for {7, 7, k} ={1, 2, 3}. But this is a contradiction.

The proof of the lemma 6.

Au;

By the corollary 1 Aulf\'A‘uzﬁAu (=1, 2) are uniserial. Now we

Nz, and - N*q,
NP+, N* i,
A Ad
and L and i
N*a, N*q,
component. From now on we assume that Aw,NAu,=0.
(i) Assume that p=p=0. Then there exist Ae, and Ae, (¢,5=¢,, ¢,)

may assume that are isomorphic to vertice components

have no composition factor isomorphic to a vertice

such that Au;’v Nfz and Au, . Ne, since Au, (=1, 2) are isomorphic
Nu' N, Nu, N2 Nu;
to vertice components.
Now if e,=e, then Au, gi‘l—“i. But this contradicts the lemma 1
Nu, Nu,

or the corollary 2. Hence ¢,==¢,5-¢,. Then {Nea Ne, Nea} is a

N%, N?, N,
chain and this contradicts the lemma 3.
(i) Assume that p >0 or ux >0.

If N*” u1~Aez and N*- u2~Ae then there exist Ae, and Ae, such

N*u, N*u,
that { Nezﬂ N_eé} and {va? N€3} are chains where Net and Nes
N%, N%e N?%, N-* WA N?e}
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are assumed to be simple by the lemma 2. Now we construct an A-left
module m=Aem, + Aem,+ Ae;m, in the following way ;

(@) N°*"'um,=N""u,m,=0,

@) if xf; is simple then N?m,=0 and if Ne,=Av,+Av, and
Av, =~ N% then Nom, = Avym,=0.
N’e,
(v) if ]Z\\rff; is simple then N?%.,m,=0 and if Ne,=Aw,+Aw, and
A‘wlzy—eé then Nw,m,= Aw,m,=0

and () Nesm,=N°um, and Nejm,=N"u,m,.
(From now on we assume that Ne,=Av, and Ne,=Aw,.)

Then N*ur,m,N?e,m,=0 and N*u,r,m,_ N*e,m,=0 for ,€ Ne,. Similary
Nuym, N’eam,=0 and N*u,,m, N?e;m,=0 for 7, Ne,.

(1) Assume that p=0 and x>0. Then e¢t=e¢,. If et==¢, then ¢,5-¢,,
vr’'m,=vr"m=0 and wr'm,=wyr"m,=0 for ' € Au, and " € Au,. Hence
by the lemma 7 m is directly indecomposable and this is a contradiction.
If ef=e¢, then e¢,=e¢,. Hence u,=w, and if we put N* 'u,=Av" then N"u,
=Av,p’ and by the assumption Ax, have no composition factor isomorphic
N¥ 'y,
N*u,

Now suppose that m is directly decomposable. Then m=Aen, + Aen,
+Ae,n, and some Aemn; is the direct summand of m. Now let »n;=«a;m,
+a;m,+o;m, (6=1,2,3). Then a,,, a,,€e,Ae,, &eNe, a,ceAe,, ¢e,Ne,,
o, d,€e¢,Ne and «,, a,ce,Ne,.

Hence wmn,=a,w,m,+a,wm, (&;=a;;+7;;, a;; € K and r;;€e;Ne;), vv'n,
=aq,0v'm, (since vv'm,=0), wmn,=a,wm +a,wm, and vn,=a,wV'Mm,
+ Ay M

Therefore a,wn, — a,wn, = (A0, — Q) WM, = (A0, — G,0;) 0 0'M, =
Gl — Iy vy, and v, =200, + ayom, = L1 o,0'n, + Gl = G, WM,

a, a, a, (a,,a,,—a,a,,)
Thus Aen,N(Aen,+ Aen,)==0, Aen,N(Aen,+ Aen,)==0 or Aen,N(Aemn,
+Aem,)==0. But this is a contradiction.

If p>>0 and =0 then similarly as above we can show that this
lemma is true.

(2) Assume that p_>0 and #_>0. Then we can assume that e, =-¢,,

/
eév es) €s3.

to Ae, and Ae, except
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(2.1) Assume that e,==e% (accordingly es==e¢,) and ej==e5. If
ZV‘U——IZ{1
Nu,

=~ Ap,. But this contradicts the assumption since e,=-€}

vrym, =0 for 7, € Au, then there exists an integer » such that

-—_ v
=~ Ae, and A: Zf‘
N u,

and v==p. Hence vrm,=0. Next if vrm =0 for »,€ Au, then there

V-1
exists an integer v such that u?'vAez and Nu, ~Av1 But if
Nﬂlu NV 1
2

= then this contradicts the assumption and if v=p then es=e,. But
this contradicts the assumption. Thus vz,m,=0 for 7,€ Au,.

Similarly w,#’m,=0 for ' € Ne,. Moreover N°u,r,m, N *"'um,=0 for
7, € Au, and if Nur,m,==0 for r,€ Au, then N°u,»,m,=N*uym, and e;=e;.
But this is a contradiction. Thus N*u7,m,=0. Similarly N*uz'm,=0
for 7’ € Ne,. Therefore by the lemma 7 m is directly indecomposable
since e,==¢,7=¢,.

(2.2) Assume that e,=ej (accordingly e,=ej). Then there exist
7,€ Au, and 7, € Au, such that N°u,m,=Aw,rm, and N*um,=Avr.m,. In
this case Nuym =0 (r€ Ne,) and N*upy'm,=0 ('€ Ne,) since e;==e;s.
Now suppose that m is directly decomposable. Then m=Aen,+ Aemn,
+Aemn, and some Aem; is the direct summand of m. Now let

n; = &um, +0,m,+ Qm, (Z = 1» 21 3) .

Then «;; €e;Ae;, ¢e;Ne; ann «;; €e;Ne; (1==7) since e,=Fe,==¢,.

Now N°um,=N*u,m, and N*umn, = N*u,m,. Next v,m,=a,v.m,+ a,v,v,m,
(r,€ Au,, a,,, a,€ K). Then Aem,N Aemn,=+=0 since vm, e N°um,=N"un,
and ov,7,m, € N*um, = N un,. Similarly Aem,NAen,=+=0. But this is a
contradiction and m is directly indecomposable.

(2.3) Assume that ej=e4 (accordingly e,=e¢, add v,=w,). Then we
can assume that there exists » € Au, such that N*u,m, = N°urm,. There-
fore N*uy'm, C N*'um, =0 for »' € Au, since u==p. Moreover v,rm,=0
and w,»'m,=0 for 7, ' € Ne, since e,=-¢5 and e;-l=e,.

Now suppose that m is directly decomposable. Then m=Aemn,+ Ae.n,
+ Aemn, and some Ae;n; is the direct summand of m. Now let

n; = &;m, +&;;m,+;m, (Z: 17 2’ 3) .

Then «; €eAe,, £eNe, a,, a,cede, ¢eNe, a;ceNe; and @; €e;Ne,
(j==1). Now NP°umn,C N°um,+ N*um, and N*umn,=N*um,. Next ovmn,
=a,,0,m,+ a,yv,m, and v,n,=a,w,m,+avm, (a;; € K).

Aoty — AV g D, — AV — AV My e Belills — Qs Vi
2 2sT173 A 271 .

Hence v,m,=
(azza% aazazx) (azzaas - azzasz) (dzzdzs - aza“m)
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A5V My — G5V Mg

(a22a33 a32a23

vym, € N°um, and N°u,m, C N un, + N um, = N°un, + N un, .

Therefore Aemn;N(Aem;+ Aeyn,)=+0. But this is a contradiction.
By this lemma 6 we have

€ N*yn, since wv,m, € N*u,m, and € N'un,+ N*u,n, since

Ne,
)
Ne,

Corollary 4. If { } is a chain then r=2.

b

NZ

Proof. Assume that r—3. If V¢ SAu; (i=1,2,3) and Au, = Au,

Ne;
=~ Au, then this contradicts the lemma 3 and if Nfz
€,

Ne,
2

€,

=Au, P Au,, Au, is

isomorphic to a simple component of and Au, is isomorphic to a

Ne,
‘e,

then this contradicts the lemma 6.
Ne,, Au

simple component of

Lemma 8. Assume that where Ne,=Au+ Av (or Ne,= Au),

1

(e,==e,), P, is a left subideal in Ne, anc p,is a left subideal in Au which

contains Aun Av. Then Ne, :Zf\?e/l has no composition factor isomorphic to
1

a vertice component except Ne .
N %e,

Ne,

1

is uniserial. From now on we

P+1
assume that p,=0 and p,=0. Now suppose that _Z]:; Hfl
1

morphic to a vertice component. Then there exist Ae, and Ae; such
Ne, Ne;) . . Nej . . NPe o

that { 3 3} is a chain (7 2 is assumed to be sim 1e>, “1~ Aej
Ne, N'eh N, A R
dingly Ve Nes) N t N°te,—Au,, N'u=Au,, N
accordingly Note, Nz oW we pu e,=Au,, N'u=Au,, Ne,
=Aw (or Ne,= Aw+Aw’) and Net=Aw”. Then Awu,=Aw”’uw where N’e,
f Nzel

NP+e,

Proof. By the corollary 1,

(p=1) is iso-

=Au'’. Moreover we may assume that any composition factor o

is not isomorphic to a vertice component.
Now we construct an A-left module m = Ae,m, + Ae,m,+ Ae;m, in the
following way :

4) We can get NPuym; C NPuyn,+ NPu,m, from NPun, C NPuym,+ N¥u,m, since NPu,m, is
simple,
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(@) N**e,m,= N**'um,= N’e;m,=vm,=0.
(If Ne,=Aw+ Aw’ then Nwm,=Aw'm,=0.)
(B) N*+'e,m, = N°um,= Ne;m,.

(1) Assume that e,==e¢, and e¢,==e¢,. Then N*"‘erm, C N°*’em,=0
for » e Ne,, N**e'm, _ N°**'um,=0 for »’ € Ne,, N*"'ey" " m, _N°*e;m,=0
for »” € Ne,, N°upm, C N***e;m,=0 for p€ Ne,, N'up’'m,  N°* 'um,=0 for
p' € Ne,, and N°up’m,N°+'e;m,=0 for p” € Ne,. Next Ne,pm,=0
(p€ Ne,) and Ne,p'm,=0 (p’ € Ne,) since e,==e¢,, e,==e, and YVN"—?‘ZQ—lm has

1 1
no composition factor isomorphic to a vertice component. Then by the
lemma 7 m is directly indccomposable.

(2) Assume that ¢,=e¢,. Then Ne,m,=Awm,, Awm,=N""'em,= Num,
and we put N**'em,=Aum, and N°um,=Au,m,.

Now suppose that m is directly decomposable. Then m = Aen,+ Ae,n,
+ Ae;n, and some Aemn; is the direct summand of m. Now let n;=a;m,
+a,m,+a;m, (1=1,2,3). Then a,,, a,, €eAe, ¢eNe, a,c€e,Ae,, ¢e,Ne,,
a,, a,€ee,Ne, and «,, a,ceNe,. Now wumn =a,um, and wun,=a,u.m,
(a;;€ K) since e,=Fe, and p>1. Next wn,=a,wm,+a,wm, and wn,
=a,,Wwm, +a,;wm; .

Hence wm, = %M — %M anq = QM — G - Thyg @ullfls = doli,
A3Q13— Gy, 033 Q1,033 — Ay, A1 Gy — Q1303
=u—:ﬁz%ﬁz. Therefore Aen, N (Aen,+ Aen,)==0, Aen,N (Aen,+ Aen,)==0

11 22
or Aemn,n(Aemn,+ Aen,)==0. But this is a contradiction. If e¢,=e, then
similarly as this we can show that this is true.

By the condition 1 and 2 we have the following corollary.

Corollary 5. Assume that Ne=Au,+Au, and Awu,NAu,=+=0. If

Au, N Au, C NE;, TN?E; where AE;C Au; (i=1,2) then AE 2 AE,.
ops . Au,'

Proof. By the condition 1 (accordmg_li by —tlie corollary 1) A, Au,
(=1, 2) are uniserial. Now suppose that A, = AE,. If we put N*u,=A§,
and N*u,=AE, and assume that N, N*u, then A, (=~ AE) is iso-

N*u, N*u,

morphic to a vertice component but this contradicts the condition 2.
Au, __ N*"u,
NMY, — Nety,

Thus we may assume that

p—A—1 R 2N
Next if —N_—uzé’;Ae then N*""u, is isomorphic to a vertice com-

N¥"u, Ny,
p-A-1 -
ponent but this contradicts the condition 2. Therefore %;T%’Ae'
uZ
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Hence ?’1476 is homomorphic onto N**'y,. If u,N**'u,==0 then N* *u,
2

=A¢ +A¢, where A¢,=Au,n Au,. Hence N**'u,=AE, and AE = AE,

=~ Ae. But in this case similarly as above we can see that this is a

contradiction. Therefore N*t'w,=0 since —
N 'y, N*'u,

=Au,N Au,.” !

[2.4] In order to prove that the rest conditions are satisfied we shall

prove the following lemmas.

Au - N }\uz and N}\llul

Lemma 9. Assume that there exist p, and b, such that s(‘;lael)j;l\’m,

1

s(%));l\z;z and Eflz;&\u’z where p; (1=1,2) are left subideals in Ne;

and 36 Ao, If there exist Aw; (i=1,2) which are left subideals in
Ne; (i=1,2) such that Au;C Nw;, < N'w; (i=1,2) and the isomorphism
Au, = Au, cannot be extended to any homomorphism of Aw, onto Aw, and

of ;174)/2 onto /’i;(),1 then é:“jl_gi‘}:”jz.
Nw, Nuw,

Proof. Suppose that %z%zﬂ If Nw,—Auw, and Nw,= Au,
Nw, Nuw,

then this is a contradiction since Awlszz;ﬁv’z. If Nw,=Av, P Au, and

—~

Nw,=Au, then this is a contradiction since ’—4/3—1%14%. If Nw,=Av,®

Av,

Au,, Nw,= AUZEBAu2 and Av (z-l 2) are s1mple then this is a contradic-
tion since Awlrz—sz. If Nw,:AvléBAul, Nu)z:szEBAuz and there

exists p’ (Av such that sz——‘%i/)~ then this is a contradiction since

— Aw
Aw,=~ "2,

By this lemma we can see that these ;l\u-: ({=1, 2) are isomorphic to
a vertice component.

Next let A be an algebra (not necessarily of 2-cyclic representation
type) satisfying the condition (1) and (2).

5) In this corollary if Af, = Af, and Awu,~Au,==0 then no composition factor of __Aw
Auy,Au,
Au,

(The proof is as similarly as above,)
A, Au? :

is not isomorphic to any composition factor of



ON ALGEBRAS OF 2-CYCLIC REPPESENTATION TYPE 81

P Py
]Z\X’fll ]f[\irv“ } (P 1 1’ UzO)

are chains. If there exist Au; (i=1,2) such that Au,C_N*7'e,, {_Nte,,

_ Au Au .
A Nt=vle,, TN e d L =~ 2 then th t Aw;
u, e,, L ., an Au " No - Au AN, en there exist Aw

(CAe) (i=1,2) such that %&)M)ZJI, Ae, )AwZDAuZ, Aw,C
el

Corollary 6. Assume that {

Ne,, {_N?,, Aw, _N**'e,, {_N" %, and the homomorphzsm of Aw1 onto

;1;)/2 (or of 21741: onto 12174//1) is the extension of the isomorphism ;E;%’;IZ

Proof. Let Aw] and Awj; be maximal subideals in Ae, and Ae,

such that AEZ)Z{I , @Z)AE and A;Z (:=1,2) are uniserial. If /1\7;1

~—

S~ —~— ~— —~—
=Aw] and N**'e,= Awj then this is trivial. Now assume that Ne,= Aw?

————
;1;7{, /]\7;2:,@12, :Iu::m and @::M N:f); is not isomor-
o~ NPwj
phic to N/_\Zf)l then Au1 is isomorphic to a vertice component. Now

Nle — o~

NPZ—I / N)\l—lwlll

assume that there exists an integer A, such that =,
N"zwz N wy

Otherwise Aw?y

Awy Jﬂ’@_}
Nw{  N'wj
has a composition factor isomorphis to a vertice component but this con-
v+1
tradicts the condition 2. Now from the assumption that {ﬁed’ N »f?}
N?e, N
Ae,
N\I+l

Then there exists an integer px such that

is a chain Ae, is not isomorphic to any composition factor of

Awl/
Hence ——
Nuwy

Thus Aw! == Awj; and this isomorphism is the extension of Aw, = Au,.

is a vertice component. But this contradicts the condition 2.

If Ne,—Aw,+Aw!, Ne,—Aw, and Aw,nAw{—Au,, then by the

same way as above Awj]==Awj; and this isomorphism is the extension of

Au, =~ Au,.
Next assume that Ne,=Aw, Nw=Aw; EBAw Ne,=Aw; and Awj

I~ o~
—~ ¢-1 —~ /
xAw;. If we put U =~ Ae¢ and assume that Awi = Aw

Nw NPw;,

and
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N"2wj =~ N"wj then there exists a subideal p in Ne’, such that —— ~;1\v’1 D

sz, Avl = Aw1 and sz sz In this case N®w,=< Au, and N*"w, = Au,.
But this contradicts the condition 2 since Awu, (= Au,) is isomorphic to
a vertice component.
If Ne,=Aw,2 Aw;+ Aw! and Ne,=Aw, X Aw};+ Awy where Au, C Aw}
and Au, Awj then similarly as above we can see that the corollary holds.
As we can see from the proof of this corollary there does not exist

any homomorphism of Ae, into Ae, which is the extension of the iso-

morphism Zi\z:lg%
Now let A be an algebra (not necessarily 2-cyclic representation
type) satisfying the condition (1) and (2). Then we have

Nre,
N" u y "t Nj'+1€,

Lemma 10. [If { } is a chain then r=2.

7=V T2V, F3=v .
Proof. Suppose that =3 and { N’ f‘ , NZ fz , Nav fa} 1S
N7 =Vt~ N727vtle, N7s~Vte,

not a chain for all »=20.

N, N/ "ze2 T Nise,
(1) Assume that Ny ) u,, Novig Au,, vty )Aua, and Au

Au2 Au Then Au1 is assumed to be isomorphic to a vertice
component.

N7, N'i™%; } (=2, 3) is not a chain for

(Namely we assume that { - )
Nh—v+1el Nii —*u+1e

all ».)
(1,1) Assume that {

A‘]f\zz_;:‘fzz, ]fXZ::el;} is not a chain for all ».
If there exist & (i=1,2,3) such that Aw,c NE and ¢ N, (i=1,2,3)
then by the lemma 9 A£; (1=1,2,3) are not isomorphic to each other.
]V—eg1 ]_V?gi ]Veg3
Nzegl, Nzegz’ N26§3

If we put A,,—Aeg then { } is a chain but this con-

tradicts the corollary 4.

(1.2) Assume that /i;): and /E): are the largest left subideals of

Ze:= Ae,

Natig, and Aeszﬁ’?3 ii such that the homomorphism of Aw; onto
2tle, e,

/1171:- (¢, j=2,3) is the extension of the isomorphism 2172%,@; Then
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—~

by the lemma 9 A—/ﬁ”} is isomorphic to a vertice component.
Nw,

1.2.1) If ;1;0/2 is uniserial or /%)%@m where ;1\7;/2>;1\z¢: then
this contradicts the lemma 8.

(1.2.2) Assume that Aw, SA»,+ A7, and An,nAz,>Au,. If we
take /A\}E/z and nga such that @(1’\7’5’2, C[sz and Aw3<N>3, Cl:l\’/?é::,
then by the assumption the isomorphism of :4\1;2%' Au, cannot be extended
to the homomorphism of Zéf:z onto Zéi (or of EE/S onto Zé-:;) and by the
lemma 9 AEZ XAES .

NSZ N#E3
Now from the assumption there exist Ap, and A®} such that Aw,C

Ap,+ Aps, @n@i)ﬁz and the homomorphism of Ap, onto Az, (or
of Az, onto ;12;3) and that of ffr;z onto A7;$ (or of Az: onto Agpji) are

the extension of the isomorphism Au2 Auq Then by the following
lemma 11 this is a contradlctlon

N, Nize, 7~ 7=, Noe,
(2) Assume that Ny >A u,, Nfz+1e2_Au2@Au2’ Nove, )Aua,

/Tzzes;lz and A.\u-;%'-’Aua. Similarly as (1) we can assume that Au1 is

isomorphic to a vertice component. If Au, and Auj are isomorphic to
vertice components then this contradicts the lemma 6. Hence we assume

that fiz\vlz and A?vl are the largest left subideals in ’A\e/z and A’Z such that

the homomorphism of A—;Z onto A?x)_; (or of A;u_; onto Aw,) is the exten-

—~

sion of Au,=~ Au,. Hence Aw, is isomorphic to a vertice component.
Nw,

If /IJZC;I\JZ then by the same way as (1) this is a contradiction.
If Aw, b Au, then Aw,Au,=0 and this contradicts the lemma 6.

Lemma 11. Assume that s(%)),:l\u:, s(i%))% and z’é_l;:gﬁ;;
where each p, (=1, 2) is a left subideal in Ae; and there is no homomor-
Dhism of b into Ae, (01’ of Ae, into %ﬁ) which is the extension of the

Ae) ;. -
t) is simple,
P )

1 2 2 1

1Somor phism //l\z;z;l\z;z Then at least one of s
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Ae,

Proof. Assume that s(%€> Au EBAv1 and s( " ;1\1:269;1‘11/2

2

Now we construct an A-left module m = Aem, + Ae,m, where pm;=0 and
u,m,=u,m, and suppose that m is directly decomposable. Then m=Aen, P
Aen, where n;=a;m, +a;;m, (1=1,2). Now we may assume that en;=n;,
a;€e;Ae;, ¢e;Ne; and «;;€e;Ne; for i==j. Then um =0 and vm;50
since by the assumption that there does not exist any homomorphism of
Ae, into Ae, and of Ae, into Ae, which is the extension of Tmz%,
1 2 2 1

there does not exist € Ne, or 7 € Ne, such that w,=uy or u,=uyr’.
Hence Aen,~Aem, and Aemn,~Aem,” Now if #; is the length of the
composition series of Ae;m; then the length of mis #+#—1. But from
m=Aemn, P Aemn,, the length of m is #+¢, and this is a contradiction.
Therefore m is directly indecomposable and s(m) is the direct sum
of at least three simple components. Thus the dual module m* of m is
directly indecomposable and is the sum of at least three cyclic 1ight
modules and A is not of 2-cyclic representation type. Hence this is a

contradiction and at least one of s(é@> is simple.

From the lemma 10 we have the following lemma 12.

1g, Nize, | . . . .
Lemma 12. If {N’ N}é‘lez} s a cham. for a p.azr of integers
(71> J») then there does not exzst Ae, such that {—NieL, N 'SQ‘L} is a chain
Nitle,” Nistle,

for any integers i, and i,.

Nize, Nize,
Nizte, Niste,
this contradicts the lemma 10. Hence we assume that i,==j,. Moreover
similarly as the lemma 10 we can assume that the simple component
;1\1;1 of Jfr\;:iel;z which is isomorphic to a simple component Avl of ]ff\’] lljel,
is isomorphic to a vertice component.

Proof. Suppose that { } is a chain. If i,=j, then

Next we can assume that the simple component Aw, of Ajy lief
22 ez
Nise,

which is isomorphic to a simple component Aw3 of N_Tﬂ’ is also iso-
€3

morphic to a vertice component. If it is not isomorphic to a vertice
component then we can extend this isomorphism to the homomorphism

6) By the condition (1) and (2) we can see that the kernel of the homomorphism Ae;~ Ae;n;
is NPw,+ N*w, where Ne;=Aw,+ Aw,.
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AE, onto A%, (or of AE, onto ;12*;) such that iiz— is isomorphic to a
NE,

vertice compount and we may only take it instead of ;1\1;2 Therefore
by the same way as the lemma 10 this is a contradiction.

[2.5] Now assume that %—Ng N+e2} (»=0, p=1,--,¢-1) are

NPTI NP+v+ig

chains.

(1) First we shall show that if »=0 then at least one of Ate;
é;
(i=1, 2) is uniserial. By the lemma 2 we can assume that ]]\\]f f‘ is simple
el
and —j]\%‘i is not simple. If Ne, is not simple then s Ae, ) is simple.
2 el

Hence if Ne,=Aw,+ Aw, then N’,=Nw,=Nw,. Now we assume that

A7 - _ Ne Ne’ . . Ne'
Aw, = A¢’ and Aw,= Aeﬁ:']vzé . Then N is not simple and {W,
//
Tl\fv%} is a chain. Hence by the following lemma 13 we can show that
e
2
this is a contradiction. Thus N 361 is simple and in this way we can
€,
show that Nf‘ is uniserial.
€
P —~— —~—
Lemma 13. Assume that N f‘ = b Au,, Ne, ts  uniserial,
NPte, N'e,
M1
/N\ez/ ~Au2 and N62~Nel (e,=t=e,). Then Ae2~%7w é or p=1.
N}ul pz Aul el
w-1 -1
Proof. Assume that x==1 and AeZEN %. Now if we put N""e,
N'e, Nte,
2,/
= Ae} and we take Ae! instead of Ae, then %zgé Hence we may
2 Au,

assume that p=2.

Next assume that _j]v\/el =~ Ae,. Then there exists a subideal p, in
el
Ne, such that Aey #;\;
bs Au,+ Nu,
. NP—163 ~ —~ . ,
Now if we put ———*=Aw, ® Aw, then there exist r¢€ Ne,, ¢ N’

N’e,

such that #,= wlr and #,=w,r and by the assumption Aw,p,.
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In order to show that this is a contradiction we construct an A-left
module m=Aem, + Ae,m,+ Ae;m, in the following way and show that
this is directly indecomposable.

@) N°t'em, = N°e;m, = pm, = 0
(or N°vm, = N°e;m, = p;m, = 0).

2 wm, = um, and Aum, = N°'em,.

Now suppose that m is directly decomposable. Then m=Aemn,
+Aen,+ Aen, and some Aemn; is a direct summand of m. Now let
n;=0o;m, +&m,+c;;m, (=1,2,3).

(i) Assume that e¢,=e,=¢,. Then q;; € ¢;Ae;, ¢e;Ne; and «;; € ¢;Ne;
(E=F1).

Now wu,,,m, € N°e;m,=0 and wu,a,m, € Negn,_p,m,=0 since Ae, is not
isomorphic into Ae, and into Ae,.

Next if rueeNe1 then wyr,m, € N°"'eim =0. Thus wun =a,um, (a, € K).
Similarly u.n,=a,u.m,.

Next Nfenrm, C N 'em,=0 for », € Ne, since

Nfel X Ae, and N’eym,c
1
N*t'egm,=0 for 7»,€ Ne, and N’ex,m,€ N "'e;m,=0 for »,€ Ne,. Hence
Nfen,=NPe,m, and s(Aen,) N s(Aemn,)==0
Lastly we shall show that if w,n,=0 then w,n,==0.
Now suppose that wn,=0 and w,,=0. Then wa,m, +w,a,m,=0 and
w,m, +w,m,=0 since w,x,m,<€ N°e;m,=0 for «,,€e,Ne, Now from
the assumption w,x,m,=0. Hence w,x,m =0. If «a, € Ne,, ¢ N’,, then
w,m ==0. Thus w,a,m,=0. But this is a contradiction. Hence w,n,==0
or w,n,==0. Now assume that wm,=1-0. Then wmn,=w,x, m, =um, -0
and WA 1y = Gy Wy 1 +w2a31a13m3:|:0. But WLy X 5, € Np+lesm3:0 since
w,,, € NPe,. Thus w,a,m =um, = szaalnl and wmn,= a1 W, N,
11 all

_ 1 . If =0 then wmn,=w,o,m, +w,cm,=a,wrm,+ awm

all uznl I w1n3 1773 1+%31 1 1+*33 3 31 1 1 33"¥1 3

aSl + a33

= Ay U, + At 1, = (A, + Q) Uy, = um, (a;;€ K). Therefore s(Aemn,)

a;
Ns(Aenm,) =4=0. Thus Aemn;N(Ae;n;+ Aewn,) =0 where {7, j, k} = {1, 2, 3}.
But this is a contradiction and m is directly indecomposable.
(ii) Assume that e,=e¢,. Then «;;€¢;Ae;, €e¢;Ne;, &, €e,Ne, and

a, €e,Ne,. Now if we put N°'¢,=Av then Au2 Av and u,m, =ovm,.
Similarly as (i) wn,=a,um, (i=1,2). Next on,=a,vm, +a,vm, (a;; € K)

since Ae, =~ Z\f~el—_ﬁ:\_1¢le1 On the other hand won,=a,om,+a,vm,. Hence
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a a,on, — aun
wn, =a, om, + a, u.m, =a,om, + —2un, and om,= L—”ﬁ. Moreover
1 6111
a a,on, — aun
VR, =AU, + Ay, = A, om, + —2-um, and vm, = 21572 72720 (g == 0),

a,, a8

(If @,=0 then vn,= %2 ym, and Aemn,n Aen,=0.)
11
ayon, — a,,Un, __ A, UN, — QU N,

Thus a%l allazl
as (i) s(Aem,)Ns(Aem,)==0 and Aemn;N(Aem;+ Aem,)==0. But this is a
contradiction and m is directly indecomposable.

(iii) Assume that e¢,=e,. Then Ne, is uniserial and this is a con-
tradiction. This lemma is equivalent to the condition (4, ii, «).

The following lemma is necessary for the proof of the condition

4, ii, B).

and (sAemn,)Ns(Aemn,)==0. Similarly

pP—1 —~ —~— —~
Lemma 14. Assume that Ne,=Av+ Aw, N = L. b Au,, Au,
v
—_— p-2 ATV -1, e
=N'w and % p_lvxu . Then there does not exist Ae, such that — N'e,_
v N ‘w N#+1ez
o~ P-2, m—1 —~
= Au, and N v;Niez where Ne,= Ne, is uniserial (b is a subideal in
Nf"'v NV, b
Ne,).

—~—
Proof. (i) Assume that there exists Ae, such that N—/\%—%’Auz
N**e,

where Nezz%?2 is uniserial. But this con-

N°~% N“ ‘eng w

ATP-1,,
and N*'w Nz, Nw
tradicts the lemma 3.
;/.71
(i) Assume that there exists Ae, such that /N\ez/ ~Au2 and ]Y\fz
N¥te, N¥e,
/E/ —~—— pP-2 —~
z!y W where Nezzj—\% is uniserial. Now we put x 5 lvae3 and
—— - v

N'w ‘
Ne,= Aw,+ Aw,. Then there exists € N°"?% such that w,y»=wu, and
wy=u,. Now we construct an A-left module m=Aem,+ Ae,m,+ Aem,
in the following way :

1) Num, = Num, = N*"e;m, = Aw,m, = Nwm, = 0.
2) wm, = um, and Au,m, = N“e,m,.

Then by the same way as the lemma 13 m is directly indecomposable.
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Ae, and Ae,

Next we shall show that if v==0 then at least one of
Nte, Nttve

is uniserial.
Assume that v==0 and Ne,=Aw,+Aw,. Then s(i—) is simple

by the lemma 11 where S(NV ? )“’Aw2

(@) We assume that Ne,=AE + A&, A5, NAE,=N""e, and N*"e, is
simple. ‘2
A&

(i) Assume that S(AE )g <A§ ~AE)" If we put s m)
~ A¢ and s<*fi Ne , Ne” , Ne’}
A& N AE, N?' N?%"’" N,

is a chain. But this contradicts the lemma 11.

.. AE, N AE, N™E ~ N%E,
(ii) Assume that S(AEIHAE): S<Ar§1f\A§2>' If AEAE AE.AE,

and N, x N*", then N* (z—l 2) are isomorphic to a vertice
A& NAE, T AE N AE, NU &,
component but this contradicts the lemma 6. Thus there exists an integer

AE, N*'E,
h that =
po SHCR ThAL AE A A, AE ~AE,
_1§2§Ae Then NS, and A¢, are isomorphic
N*E - NFHE, '
N*E,

to a vertice component but this contradicts the lemma 6. Hence NE
52

~Ae,. Thus N“6,=Afn, and &7,=0 since if £7,-=0 then A&z,
=AE N AL, and A& n,.n AEn.S= A5, N AE, but this contradicts the above
assumption.

)er” then ¢'==¢”’==¢, and {

Next assume that

Moreover if §A§A £ has a composition factor isomorphic to AE,
£
then AFA—AF has a composition factor isomorphic to Ae, but similarly
ENAS,

as above this is a contradiction. Hence A& N A£,=0. But this con-
tradicts the assumption.

Thus Ne, is simple.
N’e,

(B) Next assume that Ne,=AE + A%, A§, N AE,=An=Ne, and

N7y =~ Aw, where Ne,=Aw,+ Aw, and An2% Ae,.

NZ

Afl ~ A Afz ~ 77 / 7 lvi
(i) I s<A§ Ag) Ae,s<m>=Ae and ¢/~ then 12

2N . . Ne’  Ne” .
<or N—2’7> is isomorphic to a vertice component since No No 1S
e
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a chain and N'e <or N'e”
N3 I N38//

2,77
{%, %} is a chain. But this contradicts the lemma 8.
1

(ii) Next if S<Aﬁfi}flfl§>gs<j4ﬁAr§i4 §> then similarly as above this

contradicts the corollary 5. Hence we can see that the condition (4, i)
is true.
Next we shall show that the condition (4, ii) is true. Now assume

NPe N’e . Ne, . .
that { L, 2 } =1, .-, f—1) are chains and z is uniserial.
vaﬂe1 NP+162 (P ) Ntez

(i) Assume that Ne,=Awu,+ Au, where Aw; ({=1,2) are uniserial,

Au, = Ne, and _Au,
N, Au,N Au,

then NZ,= Avf since Au,=~ AE. Now we put Au,=Ae¢’, Au,~Ae” and Avu,
=~ A¢’”’. Then ¢==¢” and ¢”’N=vA. If ¢’N=vA+v'A and v'e=v' then
e=F¢” (ve”=v). Hence Ne=Av' + Aa and Av' = AvE. Therefore Af and
AvE are isomorphic to vertice components. But this contradicts the
lemma 8. Next ¢”’N°=vu,A+vEA and ¢N=u,A where ¢A2zvA and
vu,A=u,A. But this contradicts the lemma 14. Thus Aw,N Au,= Nu,.

) is isomorphic to a vertice component since

is not simple. If we put Nu,= Avu, and Ne,= A&

ReMARK. From this result we can see that the following two cases
are equivalent.

(1) Ne, = Au,+ Au,, Nu,d_ Au, and Ne, . Au, (e,=Fe,) .

N, N?u,
Ne, . . Ne . Ne
2 1 le, N’,=Au,+ Au,, —22¢ Ae, d Au,~ 2
@) N, is simple u,+ Au, Nzelg ¢, an u N,

(ii) Assume that Ne,=Au,+ Au, where N*u,=Aw,+ Aw,. Then
Aw,C Au, (or Aw,C Au,) and s( Au, )%s(—AL> since Au,N Au,

Au, N Au, Au,N Au,
==0. Hence similarly as (i) each composition factor of _ Au, is not
u,N Au,
isomorphic to any composition factor of ——AL
Au,N Au,
.. Ne, _ Au, s
Now if —2 = where N°u,S= Au,N Au, then there exists p such
N'e, N’u,
— 4
that Aw, = Ne, (or Aw, = N’e, > But this contradicts the lemma 13
NP+1 NPJ
since Ne, o=l Au,

N2,  Nu,
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Next if Nex~ Aw (or Ne, z,,é%_) then #=3. But
Nte, Aw,+ Nw, Nte, Aw,+ Nw,
this contradicts the first half of the condition (4, ii). Since similarly as
. .. Ne Au ;
if =22 ~_ 2" and £=3 then there exist A¢’ and A¢” such that
® Nte, Aw,+ Nw, na = . xS
Ne”

Ne' s simple, N’ = Au,+ Au,, ¢ 2 A¢" and Au, ~ d this con
N7 is simple, = Au, + Au,, Ne ¢’ an uZINe” an is -

tradicts the first half of the condition (4, ii). Hence Ne, . Aw
N, Aw,+ Nw,
< or Ne, .  Au,

N :NT) and x=1. Thus the condition 4 is true.
e, w, + Aw,

[2.6] Next we shall prove that the condition 3 holds. For that purpose
we shall prove the following lemma 15.

(2.6.1) Lemma 15. Assume that {Nie_. j\lfvf} (=1,2) are
1+lel i 162

chains, _]]VV:L is uniserial and if theve exists Ae, such that Ne,= Aw -+ Aw’
el

then N'w2 AwnAw'. [f Ae, (or Ae,) is homomorphic onto Aw where
Nw_% Ne, then N*w=0.

Nw NP,
Proof. Assume that Nw==0.
. Ne, . N Ne Ne
Assume that z rial and Ae,~Aw. Th 1wl -2,
(i) sum Ne, is uniserial and Ae w en Ne o Nee,
Now we put —Zygl-—z?l?, Lva—e“zA—eT, Ne,= Au,, Ne,—Au,, Ne,= Aw and
Ne, Ne,
Ne'=Av. Then N?,=Avu, and N?e,=Avu,. If Ae,  Ne, then Ne,
N?e, N'e,
=Au,w and N’e,=Avu,w.
(If Ne,= Aw-+ Aw’ and de,  Aw then Nw=Au,w and N’w=Avuw.)
N?e, Nw

Now by the condition 2 we can see that ¢ ==¢”, e,==¢/, ¢,5=¢/, e,=-¢,
and e,==e,.

If ¢,=¢, e,=¢, ¢,=¢, or ¢;=e¢, then ¢'=¢” and Ne, and Ne,
Ne, N’e,
isomorphic to a vertice component and this contradicts the condition 2.
Now we construct an A-left module m=Aem, + Aem,+ Ae;m, where
Néem,= Neym,= N'egm,=0, (if Ne,=Aw-+Aw’ then N3wm,=w'm,=0)
um,=um, and vum,=vu,m,=vu,wm, and suppose that m is directly
decomposable. Then ni=Aemn, + Aen,+ Aen, and some Aen; is a direct
summand of m. Now let

are

n; = &um, +Qm, - Qm, (Z = 1, 27 3) ’
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where em;=n;. Then «;ce;Ae;, ¢e;Ne; ‘and «;;€e;Ne; for i==j. First
of all w,wn,=uwc, m +uwd,m,+uwdgn,. But wwa,m € Neym,=0 and
u,wot,m, € N°m,=0 and wwxm,=0 for x> Ne, since Aw?2s Ae,.

Hence wun,=a uwm, (,=a,+7,, a,€ K and 7, € Ne,).

Next u,a,;m,=0 and wu,@,m,=0 since ¢ ==e¢, and ¢,=~¢, and u.xm,=0
for x € Ne, since e,==¢’==¢”’. Therefore un,=a,um, (a, € K).

Lastly assume that #,n,=0. Then u,&,m, +u,0,m,+u,0,;m,=0. Simi-
larly as above wu,m,=0. If w,t,m,==0 then w,,m,=a,uwm, (a,€ K)
since Ae,= Aw. Thus a,um,+ a,u,um,—0 since u,a,;m,=a,um, (a,, < K).
But from the assumption that Aw,m,== Au,wm, this is a contradiction.
Thus wum,==0 and wumn,=a,um,+ au,wm, and Aumn,C Aum,+ Auwm,
= Au,m, + Auwm, = Aun, + Au,wn,. Hence Aen;N (Aen;+ Aegn,)==0 where
{¢, 7, B} ={1, 2, 3}. This is a contradiction. Hence we can see that m
is directly indecomposable.

(ii) Assume that Ne,=Au,, NZe,=Avu,=Avwu,+ Avu,, Ne,=Au,,

Nu,
Au, =~ Au,,
“ “ N?u

L~ Apu, and Ae,=~ Aw. Now if we put Ne,=Aw and

1

assume that Aez-—N~ then N’,=Awu,w and N’¢,= Av,u,w -+ Av,u,w.
Ne,

(If Ne,=Aw-+ Aw’ then %g?fej and Nw=Awuw and N?w=Avuw
+ Av,uw.)
If —Nfe‘ =~ A¢’ and %zfél—g’ then similarly as (i) we can see that

¢ =¢"’, ¢ e, ¢=Fe,, ¢,7=¢, and e¢,-+e¢,. Now we construct an A-left
module m = Aem,+ Ae,m,+ Aegm, where Nle,m,= N°e,m,= N ‘e;m,=0, v,u,m,
=vuwm=0 (if Ne,=Aw+ Aw’ then N’wm,=w'm,=0), um, =u,m, and
vum, =v,um,=v,u,wm,. Then similarly as (i) we can see that m is
directly indecomposable.

(iii) Assume that Ne,= Au,+ Au, and Au, ~ Ne, . Then by the con-
e,
dition (4, ii) Aw,NAwu,=Nu,. If Ne,=Aw-+Aw’ and Ae,~ Aw then Nw

=Auw. If Auw=-0 then s( ]1\}783> is the direct sum of at least three
“w

simple components and this contradicts the condition 1 since Awu,w=-0
and N*w DOAw+ Aw’. Hence w,w=0 and N°w=Nwuw=0. Thus if Ne,
= Aw+ Aw’ then we assume that Ae, =~ Aw.

(iii. 1) Assume that Ne,=Aw and Ae,~ Aw. Now we put Ne,= Av,,

Av,~ Au, = Ae/, Ne'=Av and Nie, . Nuv _ 7,7 Then N?e,= Avv,,
N, Nzu1

Au,N Au,= Avu,, N%e,=Auw+ Auw and N¢,= Avu,w. Now similarly as
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(i) we can see that ¢'==¢”, e,=¢, ¢,7=¢/, ¢,=~¢, and e¢,==¢, and we con-
struct an A-left module m=Aem,+ Ae;m,+ Ae;m, where N’e,m,=N’e,m,
=N'e;m,=0, vm,=um, and vvm,—vum,=vuum,. Then similarly as (i)
m 1is directly indecomposable.

(iii. 2) Assume that Ne,—Aw-+ Aw’. Then Ae,=~ Aw. Now we put

Ne,= Av,, Av, = Au, = A/, Nf‘ g%er”, Ne’=Av. Then N, = Awv,,
N, N%u,

Au,N Au,= Avu,, Nw=Av,w and N?w=Avvw. Now similarly as (i) we
can see that ¢'==¢”, ¢,==¢, ¢,=+¢' ¢,==¢’ ¢,5e¢, and e,=+e¢, and we con-
struct an A-left module m= Aem, + Ae,m,+ Ae;m, where Nlem,=Nlem,
=Nwm,=w'm,=0, vym,=um, and ovvm =vum,=vvwm,. Then m is
directly indecomposable.

2

(iv) Assume that Ne,=Au,, N’¢,=Avu,+ Avu,, Ne, . Avu, and

1

Ae~Aw. Now we put Ne,=Au,. Then Nu,=Avu,, Nw=Auw and Nw
=Av,uw. Hence if we construct an A-left module m=Aem,+ Ae,m,
+ Ae;m, where Nle,m, = Nv,u,m,= Av,u,m,= Nwm,=0 (if Ne,= Aw + Aw’ then
Nwm,=w'm,=0), um,=um, and vum,=vu,m,=v,uwm, then similarly
as (i) m is directly indecomposable. Thus this is a contradiction.
Therefore N?*w=0.

(2.6.2) Now we shall show that if WN‘L is simple and N = Au,
e

+ Au, then Aulf\Au2 Nu,=Nu,. For that purpose assume that Nu,=2 Au,

N Au,. First Fer. If ZC’[e =~ Ae then Ne is uniserial. Hence we
%e
put 1]\\; = Ae (e==¢).
(@) Assume that Awu, = ]ZJZ “: . Now we construct an A-left module
U,

m=Aem,+ Aem,+ Aem, where Num;=N?um;=0 (i=1,2,3), Au m1 Nu,m,
and Awum,=Nu,m,. Then wuyrm;N'em;=0 for r e Ne since F_X\_Ae
e

and Nuy'm; N'em;=0 for '€ Ne. Thus by the lemma 7 m is directly
indecomposable and this is a contradiction.
(8) Assume that Au, g Nu, . Now we put Ne=Aw, Au,=Avw,

N¥u,
Au,=Av,w and Nu,=Nvw=Avv,w @w=v,) where TvNifXAe Ne' = Av,
%e

+ Av,, Au,=Ae,, Nzuz =~ Ae, and Au, == Ae,.
NZu.
Npe//

(i) Assume that there does not exist Ae¢” such that {NT""
e
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sz—v

Np Vi,

into Ae¢” ‘(or Ae). Then e N=v,A. If eN=v,A+v/A and v/f=v/ then

{Ne Nf } is a chain. Hence {l\/’_zei’ M} is a chain. But this con-
N*f N’e  N°f

tradicts the above assumption. Similarly as this, e,N’=vwA, ¢, N=0v,A,

} (»=0, p=1,2,3) are chains and Ae (or A¢”) is not homomorphic

e N’ =v,wA, ¢e,N=vA, ¢,N°=vv,A and ¢,N°’=vv,wA. Hence &N eN3
e,N* eN
and ed _ eN . But this contradicts the lemma 15.
e,N 3 e,N*
P/ P
(ii) Assume that there exists Ae¢” such that {%67, —Z%}

//

(p=1,2,3). Then by the condition 4 1‘34 — is uniserial.

2,17
(ii.1) Assume that A:)zw g&e_. If we put Ne”=Aw’ then NZ’¢”
Nww N'e”
=Avw’ and N’"=Avvw’. Then eN=v,A, e,N*=vwA, e, N=0,A, ¢,N*
=v,wA+ovw' A, e, N=vA, e,N*=vv,A and eN°’=vvo,wA+vv,w’A. Hence

2 —
eesjl\\][zg elllvvg’ gaxazvzwA and e%%’:‘;}f But this contradicts the
3 el 3 eZ 1
lemma 15.
2
(ii. 2) Assume that x—s—/f Avw. Now if we put Ne”=Aw’ then

N’¢’"=Avw'. Hence e, N=vA, e,N’=vwA+ovw' A, e N=0v,A, e, N°=v,wA,
e,N=vA, e,N*=v,A and e,N’=vv,wA. Therefore v,A=vA, v,wA=vwA

and <= A = eZN. But this is a contradiction.
e, N e N* e,N*
p 7/ Pl—l
(iiiy Assume that there exists Ae¢” such that { 19{ gt %p—ﬂ-—}

(p=1, 2) are chains. But this contradicts the lemma 14.
Ne//
NZe//
we put Ne’’=Av' then e, N=v'A+vA, vN=wv,A, vN*=vvwA W ANvA
vN?), e N=0v,A, e,N°=vwA, e,N=0v,A and e,N*=v,wA. Hence N . eN
e,N* ¢eN°?
and eljvqs o~ v;és . But this contradicts the lemma 15. Thus Nu, Au,
e, v
N Au,. Similarly as this Nu,C Au,n Au,. Therefore Au,N Au,=Nu,=Nu,.
.. Ne
if =
e

(iv) Assume that there exists Ae¢” such that =~ Avv,w. Now if

Generally is uniserial and Nfe=Aw,+ Au, then Awu,N Au,=Nu,

= Nu,.
(2.6.3) Next we shall show that if Ne=Awu,+ Au, and N°u,=Aw,
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+ Aw, then Aw,N Aw,=Nw,=Nw,. For that purpose we assume that
Nw, € Aw,N Aw,.

(i) Assume that Au, N Au,= Aw,+ Aw,. If S<AuA:i4u )g S(Auéil;lu )

then this contradicts the corollary 3.
If N°u,=Aw,+ Aw,, N*u,= Aw,+ Aw, and p=px=1 then similarly as above
this contradicts the corollary 3 since Aw,2c Aw, by the lemma 1. Hence

we assume that p==1 or x==1. Then if p==1 and Au, = Ae¢’ then N°¢

Ae’

=;1?4)/{ +A/z7)-£/ where A¢’ = v = Au, (9’ is a subideal in Ae¢’) and Aw,-zzzl—z?)z

Ne'
NP
Thus Aw,N Aw,= Nw,= Nw,.

(i) Assume that N°u,= Aw,+ Aw, and Au, > Aw,. By the result of
(i) we can see that p=1 and Au, is uniserial. Hence Aw,=N"u,.

s Au, - Au,
(ii.1) Assume that s(m) ~s<m> Then similarly as

(2.5) we can see that Au,N Au,=0
(ii.2) Assume that s< Au, )2’;3( Au, ) Now if we put

(f=1,2) and - is uniserial. Hence by (2. 6. 2) M f\[l&v/; :1\717{ :1\7;2

Au,N Au, Au,N Au,
Au,~ Ae’ and I\JIV"T‘%%,W then ,]\72::471):+E); where Ae = éf; ~ Au,
u,
(v’ is a subideal in A¢’) and Av;= Aw; (i=1, 2).
From now on we assume that p’=0.
i pr NP+ve
() Assume that there does not exist Af such that {W, W}

(»=0, p=1,2,3) are chains. Now we put Nu,=Avu,+ Av,u, where

vu,=w, and vu,=w,, Nv,u,=Awou,, N'u,=Av'u,, vu,=v'u,, Av u,=Ae,,

Avvu, =~ Ae, and Avu,—Av'u,~= Ae,. Then similarly as (2.6.2) e,N=wA,

e,N*=wv,A, e,N’=wovu,A, eN=vA, eN°’=vuAd, eN=v,A+v'A, eN°*
N _e¢A eN _ v,A

—vu A=v'u,A. Thus &2 ~ 44 a4 —2- _ But this contradicts
o : e,N* ¢N°? e,N°  o,N*

the lemma 15.

(8) Assume that there exists Ae¢’ such that Ne Au,

N  Aw,+Nw,
we put w,=v,u,, w,=v,u, and Ne’=Aw’. Then N? =Av,uw’. Hence simi-
larly as above ¢, N=wA, e,N*=wv,A, ¢,N°=wv,u,A, e N=v,A, e, N*=v,u,A,

e, N=v,A+v'A and v,N=v,w, A+vu A (vu,=v'u,). Thus e . ad and

e,N* eN’

Now
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eNV v,A
e N? va+vzuN

(y) Assume that there exists Ae¢’ such that

But this contradicts the lemma 15.

Ne'  _ Au, . But
Nt N ‘u,

this contradicts the condition (4.ii.8).

Ne' N, (=1

(6) Assume that there exists Ae¢’ such that W’v]\/“ -

and Ae¢'2z Au,. Now if we put Au,= A¢” and Au,=~ A¢"’ then {

sze// Nj3e/// ] ) . . .
N Nivignf 1S @ chain. But this contradicts the lemma 11.
Ne’ Au,

¢) Assume that there exists A¢ such that = —
© N3  Avu,+ Nvu,

N7e'
Niiie”’

(¢’==¢). But this contradicts the condition (4.ii.a).

Ne' Ne'
~ Avu, or ———

N N

=~ Awvu,. Then Avu, or Awv,u, and Av,u, are isomorphic to vertice

components since Ae¢’ 22 Au, (or A¢'2c Avu,) and Au, ’:\“5 N*"u.  But this

uz
contradicts the condition 2. Thus Nw,C Aw,N Aw, Similarly as this

Nw,C Aw,N Aw,. Generally if Ieff
e

(@) Assume that there exists Ae¢’ such that

is simple then it is clear by (2. 6. 2)

and if Ne=Au,+ Au, then Au; (1=1,2) are uniserial or N°u,=Aw,+ Aw,.
If N°u,=Aw,+ Aw, then Aw, Au, and Au, is uniserial since the

first half of the condition 1, the condition 2 and the condition 4 are

true. Hence we can reduce to the above case (2. 6. 3).

Therefore we can see that the condition 3 is true.

[2.7] Lastly we shall show that latter half of the condition (1) holds.
(2.7.1) Assume that Ne=Auw,+Au,. If Au, is not isomorphic to

Au,

u,N Au,

position factor of — A% _ ang N o N Ny — 4y A Ay, and
Au,N Au, N°*"', N,

N 'u, > Au,N Au,) (p=21, H;l) then Z\Zf\‘{ffl
NP 'u, . N*'u,

Nu = N*u,
(N’“‘"u2>Au1r\Auz) and Aux, is not isomorphic

NF'u,  ——— N* 'y
2~ Ae. If e
N“uz ug

any composition factor of , Au, is not isomorphic to any com-

is isomorphic to a vertice

component since we may assume that

Next if Aw, ~
N*+y

to any composition factor of 1‘\;1”2 then Ae
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.
(e==¢’) then % is isomorphic to a vertice component since
U,

R () M—1 -
Au, = N ?2 . But this contradicts the condition 2. Thus u%Ae.
N¥ 'y, N*u,

Now we put N*'uw,=Aw. Then Nw=Auw or Auw since Au, s

Au,N Au,
uniserial. If Nw=Awuw then Auw = Au, and Au,2c Auw. But this con-
. [
tradicts the assumption that Aulzﬁj\ifz . Thus Nw=Auuw.
uZ
Therefore if there does not exist an integer wx or p such that N*u,

Au, and Au,
Au,N Au, Au,N Au,
factor isomorphic to each other.

(2.7.2) If there exists an integer p or u such that N°u,=Auw or

N*u,= Auw’ then there exists a left subideal p of Ne such that s(%)

=Auw or N°u,=Auw’ then have no composition

is the direct sum of two simple components isomorphic to each other.
Conversely if there does not exists p or p such that N*u,=Auw or
N*u,=Auw’ then Au, and Au,
Au,N Au, Au,N Au,
isomorphic to each other.
(«¢) Assume that Au, and Au, are uniserial. Then an arbitrary left

ideal p of Ne is N*u,+ N"u,. Hence s<%> is the direct sum of two

have no composition factor

simple component not isomorphic to each other.
(8) Assume that Nu,= Aw, + Aw, and Aw,=N*u,. Then by the con-
dition 3 Aw,N Aw,=Nw,=Nw,. Hence an arbitrary left ideal p of Ne is

N'u,+ N*u,. Hence s(%) is the direct sum of two simple components

not isomorphic to each other.
Thus we proved that if A is of 2-cyclic representation type then
five conditions of §1 hold.

§ 3. In this chapter we shall show that if A satisfies five conditions
in §1 then A is of 2-cyclic representation type.

First if A satisfies five conditions in §1 then the following results
are proved to be true in the same way as in §2.

(a) If Ne=Au,+ Au, then Zuﬁ\LlAuz (i=1,2) are uniserial.

(This is the corollary 1 and a consequence of the condition 1.)
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(b) ]]\;[‘-:er is the direct sum of at most two simple components not
it

isomorphic to each other.
(This is a consequence of the condition 1.)
(¢ If s< Aw, )_i\_s —AWZ—) where Aw; (=1, 2) are uniserial
Aw, N Aw, Aw,N Aw,
subideals in Ne then Aw,N Aw, is uniserial.

(This is a consequence of the condition (4.1i).")

(d) Assume that s<p ))Au,, s(‘z%))/’l\u: and Ez% If

1 2

%(NZ}I;, 4" N*w; ({=1,2) and this isomorphism /Tu-: gzl\u: cannot be

extended to any homomorphism of Aw, into Aw, and of Aw, into Aw,

Aw‘ pa =t sz and Au is isomorphic to a vertice component.
Nwl Nw2
(This is the lemma 10 and a consequence of the condition 1.)

(e) The condition 3 is equivalent to the lemma 15.
(The proof is as same as [2.6].)

(f) The condition (4.ii.«) is equivalent to the first half of the
lemma 14.
(The proof is as same as [2.5.])

71 Iy,

(g) If { 1\1/\:1 +‘f;1,--- , z\zr\irrj;r
(The proof is as same as the lemma 11 and this is the consequence of
the condition 1 and 2.)

(h) If { ]\Zf\f[ :jf;l, Z\]f\fr':f;} is a chain then there does not exist Ae,
Nize,  Nise,
Niz+1e2’ Nistle,

then

} is a chain then »=2.

such that { } is a chain and at least one of NAe (i=1,2)

is uniserial.
(The proof is as same as the lemma 13 and this is the consequence of
the condition 1 and 2).

(i) Assume that ﬂ(s(%), @(s(%) and Au~ Au where

s<i4p—e) and s(%f/> are simple. If this isomorphism Au= Au’ cannot be

extended to any homomorphism of Aw ()Zz;) into Aw ()x’fl\u/’) and of
AZ)” into ;4\1(/1 then it is not true that there exist Ax, Ay Ae and

7) cf. Lemma 6 or Corollary 3.
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Ax’, Ay T Ae¢ such that AxnAy=Au and Ax’'NnAy =Au. If Auw NV
and {CN*' and there exist Ax and Ay such that AxNAy=Au and

(Ax);‘?(Ay) then by (g) or (h) Av ~s<’2x> or Av ~s<jy>. But
this contradicts the assumption that the isomorphism A#x =~ A«’ is not

extended to any homomorphism of Aw(™ Au) into Aw'(D Aw’) and of
Aw’ into Aw.

Now assume that s(Ax) <§y> Then there exists Ae’ such that
Au Au
, . Auw)\ _ (Ax Au,\ _ (Ay
Ne'=Au,+ Au,, Au,N Au,=As, S<As> S(Au) and S(As> == <Au)

Hence by the condition 1 N*u,=Auwp where N°'u,=Av and Au,N Au,
AulgI_V_"@. If ov==0 then N*'uv==0 since Av=N’""u,
As As
But #0=0 since N°u,=Awuwp and A¢’~N*"'u,. Hence N 'up=0 and
v*=0. Thus Asv=Asv*=0 and As=0. Therefore Au,N Au,=0.

Next we shall consider indecomposable modules which are the sum
of at most two cyclic modules
[3.1] First Aem has one of the following structures:

(3.1.1) Assume that Nem is simple.
N’em

= As= Asv since

(i) Nem is uniserial.

(i) If N°em=Aum+ Au,m (p==1) then by the condition 3, N**'em
=Num=Num and by the condition 1 Aumc Au,m. Hence by (c)
Aumn Au,m is uniserial.

(3.1.2) Assume that Nem=Aum-+ Au,m. Then similarly as above

if Augmn Augm=-0 then S<Au 2’/‘\1% m)gs(Au 7’27\%&) and Aumn

Au,m is uniserial.

(i) Aum ((=1,2) are uniserial.

(i) Num=Avum+ Av,um, Aum is uniserial, Awu,m DO Av,um and
N?um=Nv,um=Nv,um. Hence we put N'u;m=Av,um. Now assume
that Num=Avum+ Avyum. If Aum DO N'um then this contradicts (c)
(accordingly the condition (4. i)) since s( Aum >§s< __Aum m)

Aumn Au,m Aumn Au,
Hence we may assume that Av,umC Aum and Av,umd” Aum.

Next assume that Awm= Ae¢’ and Au,m= A¢’. Then there exists

[P N4
Nﬁ";}” 7\%{—,—/} is a chain. Hence by (h)
e e

is not uniserial. Thus Av,um=N"um.

an integer # such that {

Ne’
NP+

NP'+1 4
is uniserial since
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N*""um _ A"

NYu,m

then Ae¢’” is not isomorphic to any composition factor of Aw,m from the

NZeI Ne///

Naé?’ Nze//}
2,/

the condition (4.ii. ®) since N% is not simple. Thus p=1.
¢

Moreover assume that p==1 (p=2). Now if we put

assumption and { } is a chain. But by (f) this contradicts

Lastly by the condition 3 NZum= Nv,um=Nv,um=N""u,m.
[3.2] Assume that m=Aem,+ Ae,m, is directly indecomposable and take
m, and m, such that /(Aem,)+1(Ae,;m,) is minimal where /(Aem;) is the
length of composition series of Aem;. Then Aem, N Ae,m,==0 and there
exist Awm, and Au,m, such that s(Aem,) > Aum,, s(Ae;m,) D Au,m, and
Au,m, = Au,m, where um,=cum, (&€ K)).

(3.2.1) Assume that s(Aem;) (i=1,2) are simple. If there exists
a homomorphism of Aem, into Aeym, which is the extension of the
isomorphism of Awu,m, =~ Au,m, then there exists v€ Ne, such that
um,=PBuwm, (B K). Now if we take n,=m,—aBvm, nstead of m, then
Aumn,=0. But this contradicts the assumption on /. Similarly there
does not exist a homomorphism of Ae,m, into Ae;m, which is the exten-
sion of the isomorphism Aw,m, =~ Au,m,. Hence by (d) Ne,m, and Ne,m,
have composition factors isomorphic to vertice components and by (h)
we may assume that Ae,m, is uniserial.

(i) Assume that Aegm, is uniserial.

Then by the condition 3 (accordingly the lemma 15) Ne,m, ( N ezmz)
Niem, NZe,m,
.. . . NPem N¥e,m
is isomorphic to a vertice component or if Y 1 ( or — 22
p p N, (p ) Netiem,

(=2 1)) is isomorphic to a vertice component then NP*'em,=0 (or

N¥**'e,m,=0). Hence Aem,N Ae;m,=N%em,=N%e,m, where Nem, = Ne,m,
p-1
e
or Aem,N Ae;m,= N e,;m,= N"e,m, where N 2 m‘EN em, and N°*'e,m,
Nfe,m, N¥e,m,
=N""e,m,=0. In the first case if we put N* 'em, = Au'm, and N* 'e,m,
= Au,’m, then N(u/'m,—u,’m,) =0 since Nu/'m,=Nu,'m,.
(i) Assume that Nem, = Au,/m,+ Au,’m, where Au;/m, (i=1,2) are
Ne,m N'u,/m 4 ¢
uniserial and o o L (»=0) or N elzmz g.i‘lflz,m‘.
N?e,m, NYV'u,/m, N¢*te;m, Nu,'m,
Au/m,N Au,/m,==0 since s(Ne,m,) is assumed to be simple. Moreover by
Au'm, ) ~ s( Au,’m,
Au/m,N Au,/m, Au/'m, N Au,'m,

Now

the same way as (i) s( > Hence if we
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Nu,/m,
N 'u,/'m,
component and similarly as (i) N°*"'u,’m,=0.

Next if Ne,m,= Au,/m, then by the condition (4.ii.a) Au,/m,N Au/m,
=Nu,m, since e¢,=Fe,. If N¥em,=~ Au/m, (p==1) then N*"e,m,=Nu,m,
=0. If Neym,=N"u,/m, (p’=1) and N*”u,/m,=2Au,/m,N Au,/m, then this
N*'- u,m Sy v , Ne' _
———2 "1 A¢’ then ¢'=¢, and ~— = Ne,m,
N*"u,'m, y’

4
(¢’ is a subideal in Ne¢’) and —]%f— has two composition factor isomorphic

put Au/m,N Au,/m,=N°"u,’m, then is isomorphic to a vertice

contradicts (h) since if we put

4
N u,/m, and Nu,'m,
/ 4
NP u,/my N u,'m,

to vertice components since are isomorphic to

vertice components.

u'm P
If Ne,m,=~= N°u,’m, and we assume that s(!,—A—l—‘—f) =~ Ae¢” and
Au/m, N Au,/m,

s(———AuZIL ) =~ A¢’ then { Ne' = Ne” = Ne, } is a chain but this con-
Au/'m,N Au,’m N? N?%"’ N,

tradicts (g). Thus in this case by the same way as (i) if Au,/m,~ N%.,m,
(p=1) then Aem,N Ae;m,=Au,m,, Nu,m=N?*"em,=0 and if Au,/m,
= Ne,m, then Aem,N Ae,m,=Au,'m,=Ne,;m, or Aem,N Ae,m,=Nu,m,
=N?e,m, and N?u,’m,= N’e,m,=0.

(iii) Assume that Nem, = Au'm, + Au/m,. If Nu/'m,= Avu’'m,
+Av,u/m, then similarly as (3.1.2, ii) we can see that p=1, Aov,u’'m,
=N*u,/m, and Avu’'m,N Avu'm,=Novu'm = Novu'm =N""u/m,. Hence
by the condition (4. ii. 8) Negm, Au,'m,

Nde,m,  Avu/m,+ Nvu'm,
Av,u/m,N Avu,’m, = Nov,u,'m,= Nvu,'m,.

(iv) Assume that N°em,=Au’m,+ Au,/m, (p==1). Then by the con-

dition 3 Awu/m,N Au,’m,= Nu,/m,=Nu,m,. In this case Ne,m,= Au,’m, or

by the condition (4. ii. @) %"LzNézmz. If Ne,m,= Au,/m, then N’e,m,

ul ml
_1\_72&@ is isomorphic to a vertice component. If Ne,m, =~ Ne,m, -
e,m, Au'm,

then N°*e,m,=0.

(3.2.2) Assume that s(Aem,)=Au,m, and s(Aem,)=Av,m, D Aum,.

(i) Assume that there exists a homomorphism of Ae,m, into Aem,
which is the extension of the isomorphism Aw,m, = Au,m,.

If Aem, is homomorphic onto Aemm, then u,=u, and if we take
n,=m,—am, instead of m, then Aw,n,=0 and this contradicts the assump-
tion on /. Similarly as this if there exists a homomorphism of Aem,

into Ae,m, which is the extension of the isomorphism Au m, ~ Au,m,

and N’e,m,=0 since

=( since
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then this is a contradiction. If —A%”ﬁ is simple then by the condition 3
My
"
s(Ne,m,) = N*e,m,= Av,m, D Aum,, Nf 1" is uniserial and AezmzzN—eL"l1
NPe,m, Av,m,
Ae,

(p==p). Hence there exists a left subideal p, in Ne, such that

2
—~

=~ N*em,. Then we can assume that 8(14;2>::4\v:69;1\u/2 and —2- is
2 s(Ae,)

Ae,
%

Now by the assumption v,m,=0 and there exists w¢€ Ne, such that
v,=yv,w and u,=0u,w (v, 6€ K). Thus in this case we can see that m
is directly indecomposable.

Now suppose that m=Aen, G Ae,n,. Then n;=a,m,+a;,m, where
a; €ehe;, ¢eNe;and «;;> N (¢==7) since ¢, ==e¢, similarly as the lemma 14.

First if #n,=0 then w«, m,+uc,,;m,=0. But wpr,m, € N em,=0 for
rn€eNe, and wud,m,€ N°e;m,=0 since N'em,=0. Thus a,um =0
(a,€ K) but this is a contradiction. Therefore #n,==0. Similarly as
this o,z,==0.

Next we shall show that um,==0 or v,n,5=0. Now suppose that
umn,=0 and ovm,=0. Then v, m +v,a,,m,=0 but vam,=0. Hence
v, m=0. Thus ua,m =0 and w.,m,=0 since u,n,=0. But this is a
contradiction. Therefore u,n,==0 or v,#,9-0 and if we consider about
the length of the composition series it is a contradiction that Aemn,N Ae,n,
=0. Thus m is directly indecomposable.

Next assume that Nem,=Awm, P Aw,m, and Aum,C Awm,. If
Ae,m,= N*w,m, then there exists v € Aw, such that #,=uw. Hence if
we take n,=am,—vm, instead of m, then u#mn,=0 and the length of Aemn,
is smaller than that of Ae,m, since Aw,m, is uniserial, and this is a
contradiction. -

Lastly assume that Nem,=Aw,m,+ Aw,m, and Aw,m,N Aw,m==0.
Then by the same way as (3. 2.1) s(Aw,m,)=Nw,m,= Av,m, D Aum,, Au,m,
=Aw,m,N Aw,m, and Aw,m, is uniserial.

If AezmzfAZU;Zzl then by the same way as above m=Aem,+

1 1
Ae,m, is directly indecomposable but if Aem,~ N w,m, then m is
directly decomposable similarly as above.

(ii) Assume that there does not exist any homomorphism of Aem,
into Ae,m, and of Aeym, into Aem, which is the extension of the iso-
morphism Awu,m, = Au,m,. Then by the same way as (3.2.1) Aem, is

uniserial where Ae,=
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uniserial and Ae,m, has one of the following types:
(a) s(Aem,)=N'em,= Av,m, P Aum, and flpe‘m‘ is uniserial.
em,

(b) Nem,= Aw,m, P Aw,m, where Aw,m, D Aum,.
(¢) Nem,= Awm,+ Aw,m,, Nwm,= Aum,+Avm,, Aw,m, > Aum,
and Aw,m, is uniserial.

In the case (a) by the condition (4. ii. «) Ne,m, =~ Ne,m, and Ae,m,

My

N Ae;m,= Aum, = Au,m, and s(Aem,+ Ae,m,) = Av,m, D Aum, .

In the case (b) if z% ;‘lizi’h (u=1) or Tf/vv% v=1) is isomorphic
to a vertice component then N““ezmz—O or N*'wm,=0. Thus unless
Aw,m, = Ne,m, then Ae,m,N Ae,m,= Au,m,= Au,m, is isomorphic to a vertice
component.

If Aw,m, = Ne,m, then Aem,N Ae;m,=Nwm,=N*"e,m, and if we put
N¢ wm, = Au,'m, and N¢e,m,=Au,/m, (p=21) then N(u/m,—&u,'m,)=0.
In the case (c) Nezngé% and N*wm,=0. Hence Aem,N Ae;m,
1 1
= Aum, = Aum, and s(Aem, + Ae,m,)= Av,m, D Aum, .

(3.2.3) Assume that s(Aem,)=Av,m, P Au,m, and s(Ae,m,)= Av,m, P
Au,m, and Aum,= Au,m,. If there does not exist any homomorphism of
Aem, into Ae,m, and of Aeym, into Aeym, which is the extension of the
isomorphism Awu,m, =~ Au,m, then this contradicts the condition (4. i).
Hence there exists a homomorphism of Aem, into Ae,m, (or of Ae;m,
into Aeym,) which is the extension of the isomorphism Awum, = Au,m,.
Therefore there exists v€ Ne, (or € Ne,) such that #,=wup (or u,=uyp).
Then if we take n,=m,—avm, instead of m, (or n,=am,—vm, instead of
m,) then un,=0 (or um,= O) and this contradicts the assumption on /.

[3 3] Assume that m= Z Z Aeym;; is directly indecomposable and
2 S; ~s>3

i=1

Now if /;; is the length of the composition series of Aegm;; then
we assume that >3 /;;=/ is minimal and we put m=Ae,m, ;,+m’ where
i,J

m’ is the sum of s—1 cyclic A-left modules Ae;m;; (== Aeym, ,,) and it
is the direct sum of p directly indecomposable modules which are shown
in (3.2) since >'/;;=/ is minimal.*’

8) If M=) Ae;m;; is the direct sum of directly indecomposable modules shown in (3.2)
and we put »n;j=m;;+ Z‘rénmh then the length of Ae;n;; is larger than that of Aem;;.
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(3.3.1) We assume that s(Aeum,;,) is simple and put s(Aeum, ;,)

= AUy 5, oMr s, Where e iu;;, = t;j, .
Then Un spaMr s\ = 2 ;Ui j4M; 5 (aij €k) (I)
G DFASD

since Ae,m, ;,"m’==0 and we may assume that the number of u;;,m;;
of (I) is minimal. Now if Aeym,,+ Ae,m,s, is a direct summand of m’
and @y Mg and @gryugrysmgyry do not appear in (I) then this is a con-
tradiction since Aeum, ;,"m’=4=0 and Aeym,,+ Aeymyys is a  direct
summand of m’.

(@) If Au;jm;;dCs(Aesm;;) then there exists Aeymy s such that Ae;m,;;
+ Aeymyr i is  directly indecomposable and Aegm;; N Aeymy ir = Nuyj m;;
:Nu,'/j/mm;/j/ where N'(a,-ju,-,-,,m,-j—a,-/j/u,-/,-/a,m,-/j/):0. Hence by (3. 2) N-e;m;j
C—V—=Ne,~/m‘-ljl or Au,-]-m,-jglv,‘/m;lj/ where Ne,-m;,-:Au;jm,-,-—i—Av,-jm,-j, Au,-jm,-j
is uniserial and Auw;;m;; O Au;;um;;. If there exists v;;, € Ne; such that
Uijo=Uy s\ oVijn then there exists vy, € Ney such that uy,=u, s, i\
Hence if we take m, ,,=m s, —a;0;0m;;—ayyVyynmyy  instead of
my, sy then U sx,aPlh spa= 2 2 GgUgame, and S(Aeimij+Aei/mi’j’)n

D G
G’
(Aeyny 5\ + <lf;>¢ (‘Zj) Aegme,) = 0. If w;;,my; + Yy my s = by s\tha syalta, sy
G’
+ (21;* (,Z,) bgytgnae, then Uijali; + YU My 1 = b)\,s;\u)\,s)\waijuijmmij
G’

- b)\,s)\aijuijaﬁmij - b)\,s)\ai,f,u"/f/d’m"/f/ + Z bEnuEﬂmev and bA,sAu}\,sA,wm)\,sx
= (ba,sx@j + Dtijamij + (Ox 53@ir; 1+ VUt jraiirjs — 23 beghgnaiig, - Hence

by sa@ij+1 by syairjr+v b .

U, sx,aM sp = (_—,_—> UijolMij 3 Ui/ j Myl 51— Z muﬁnwm§n and
by syai;+1
b)\,s,\
tradiction.

Next if there exists v, , ;€ Ne, such that u, ;, ,=u;;40s 5, i Or Ne;m;;
= Au;;m;;+ Av;m;; (1=X)), and we take n;;=a;;m;;—v, 5, M, s, instead of
m;; then Nu;,-mn,-,' = N(uijwmij - uijwv}\,s)\,imk,s)‘) = N(uijmmij - un\,sk,wm)\,s,\)
= Nu;;m;; = Nuyjgmyy.  Thus  wgm;+ D5 30 ageamy, =0 and

b}\,sA b)\,sk

1
=a;;. Thus @i+ T = and =0 but this is a con-
A, SA

b:\,sk

@&m - G
(€58
s(Aeymy,, )N (Aen;;+ >0 3 Aegmy,)=0 by the same way as above.
EM - G
[@XP]

But this is a contradiction. Therefore m is assumed not to have such a
direct summand and we may assume that Au,;;,m;;Cs(Ae;m;;) for each
(¢, 7). Hence we can assume that Nu;;,m;;=0 for each (i, 7).

(b) Assume that there exists v;;, € Ne; such that u;;,=u, ;, 40:;x and
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s(Ae;m;;) is simple. If we take N, ,,=m, , —a;jv;;;m;; instead of m, ,,

then u, , 0 o= > > agUg,,Me,. But this is a contradiction since
&y G

s(Ae;m; ;) N (Aen, s, + 52 S Aegme,)=0 similarly as above.
C

F G,
Moreover if Negm;;=Au;m;; D Av;;m;; then similarly as above we
can see that this is a contradition:
Next if there exists v, ,, ;€ Ne, such that u, , ,=#;;,=1;;0s 5, ; and
Ae;m;; is a direct summand of m’ then similarly as above this is a
contradiction. ®
Thus we can assume that m’ is the direct sum of the following
directly indecomposable modules.
1) Aem, + Aeymy, where Aegmg N Aeymyy = Aty gy = Aty Mgy
and there does not exist v,, € Ney such that u,,,,=u.0x s, s
for each u,.

(2) Aeym,, where s(Ae,m,,) = Nw, s(Ae,m,g) = Al pgqM pq D Ath popgtyg
(a==PB) and there exists v,, € Ne, such that u,,,=us 5 ¥par-

(3) Aeym,,+ Ae,m,, where Ae,m,, has the type (2), Ae,my,N Ae,m,,
= Au oMy = Att,im,; and there exists a homomorphism of
Ae,m,; into Aeym,, which is the extension of Au,.,m,,
= Aty s My -

(4) Aeymy, where there exists v, € Ne,y such that wu,,,

=uy0 s for each wuyy,.

(i) Assume that m’ has a direct summand Ae;m;;-+ Ae;m; ;7 where
Ae;m; ;N Aeymy jr = Au;jomy; = Ay rgmyr . and Augjm;; is isomorphic to a
vertice component.'” In this case by the condition (4. ii. @) if Au,;,m;; C
N?¢;m;; then s(Ae;m;;) is simple. Now we say that this module is of
type (1,).

First assume that m’ is the direct sum of directly indecomposable
modules of type (1,). Then there exists Ae;m;; such that wg,,=u,;ve,;
for each (&, n) (ve,; € Neg) since there exists Ae; such that it is homo-
morphic into Aegmg, for each (£ 7). Hence if we take wn;;=a;;m;;
+ DT 3 Qg leiMe, — Vs, i sy instead of m;; then u;;,n;;=0 and this

T
contradicts the assumption on /. Therefore we assume that m’ is the
direct sum of directly indecomposable modules of the type (1,) and (4).

If m’ has at least two direct summands of type (4), Aeym,, and
Ae,m, s, then from the assumption Aesm,, of each direct summand
Aem,, + Aegymyy of MU is homomorphic to a submodule of Ae,m,, and

9) We have only to take n;;=a;jm;j—0x, sp;Mx,sp instead of m;;.

10) From this result we have s( éeimr;;— %s( AAue,"'/m;;lj'/ /).
ijami;! 7 amy
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M pg =yt pg + " r/§(p ,, Yenln Mty instead of m,, then wu, o.M\ s)=UpsaMpa
A5

and @l s g,/ s = G pglh pqM g = U pg ot pg — " MZ@ " ag,ueme,. Hence if we

take n, = a,om,y — Uy My, instead of m, then nm,y

= @ nfgp o Qg Ug,sMg, and S(Aepmpq + Ae,myrr) N (Aeyny+ 30 20 (Aegmy,

+ Aeymy./))=0. But this is a contradiction.

If m’ is the direct sum of modules of the type («,) and («,) then
by the same way as this we can see that this is a contradiction.

(3.3.2) Assume that s(Aewm, s,) = Athr s\atn sy D At s 6M00 s, If
Neymy, s, = Aw,, s,my s, D Aw; s,m, 5, then similarly as (3.3.1) we can see
that this is a contradiction.

Next assume that Ne, has the type (3.1.1, ii) or (3.1.2, ii). If
there exists Aeym;; in m such that s(Aegm;;) is simple then we have only
to take Ae;m;; instead of Aeum, s, .

Otherwise by the same way as (3.3.1) we can see that this is a
contradiction.

Thus we have the main theorem.

Theorem. A is of 2-cyclic representation type if and only if A
satisfies five conditions in §1.

OsakA UNIVERSITY.
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Ae,mm,ry. Hence by (g) and (h) #,//q =,70,0 44, (OF Uy/st =1,/ 110,75 ) SINCE
Augryrymyy is isomorphic to a vertice component. Thus if we take #,//=
[ WO S I YNNG | instead of m,’,s (or Npla =AMy g+ Ay 0, s M
instead of my,) then wy, i, =a, /sty s+ 35 3 gylhgname, (OT
EMH (77,5
UnsraMlas) = Aylg/Up'g'allp/d’ + 23 D) Qe Ue,aMe,) and this is a contradiction.
[€XIENe XL

Therefore we assume that m’ is the direct sum of directly indecom-
posable modules of the type (1,), Aegmy, + Aegmy,,, and a directly
indecomposable modules of the type (4) Ae,ym,,’.

Now similarly as above there exists Aegm;; such that Ae;m;;+ Aeymy
is a direct summand of m’ and wg,,=#;;,0s,; for each (&, ) (v, € Neg)

and if we take w;;=a;;m;;+ 2, Qg VaMe, — Uy aMa, s, instead
EDF 7,4 ‘ ’ ’

of my; then wu;;m;; = uygamyy. Hence a;uyymyy = @i jaMi; = W;ja0ij

— 21 2 Qg + Up s M, and from the assumption #,7,
EDE ") ’ ’

=uyyr0yq7 Wyoi? € Ney). Therefore if we take nyj/=a;;myy—vyqmyy
instead of myy then wuyymyy=uy umy s,— D) 2 Qg e,Me, and this
CEMF 7,47

is a contradiction. 5 _

Next if m’ has a direct summand of the type (2), Ae,m,,, and of
the type (1,), Ae;m;;+ Aeym; s, then by the condition (4.ii. @) Ne,m,,
= At pg oM pg D Athpggm e But in this case #,;,=u,0,0;;, and this con-
tradicts the assumption.

(ii) Assume that m’ has a direct summand Aem;;+ Aesmy ;7 where

Ne;m;;

Au;om; =~ Neymy (S(Neimij) = Auija,mij @Auijsmij)-
Moreover we may assume that Auw,;;m;;N’e;m,;;. We say that this
modnle is of type (1,). Therefore if m’ has at least two direct sum-
mands of the type (1,) Aem;;+ Aeym;;r and Aeymy,+ Aeymyy then i=k
and /=F. Hence similarly as (i) we may assume that m’ has at most
one direct summand of the type (1,). In this case if m’ has a direct
summand of the type (4) Ae m,, then by the condition (4. ii. &) we can
see that p=A=17 but this contradicts the assumption.

(iii) Assume that m’ has a direct summand of type (3), Ae,m,,
+ Ae,m,,. Then similarly as (i) and (ii) m’ has no direct summand of
the type (1,). Hence m’ has a direct summand of one of the following
types.

() Aeymy,+ Ae,m,y where this is of the type (3), #,00="1ux, s)a¥par
and Un, sxa = Ur/s’aUx, spr/ -

(«,) Aeym,, where this is of the type (2) and w4, =% p0u¥si,-
If m’ is the direct sum of modules of the type («,) then there exists
Aemy,+ Ae,sm,r such that ug,,=u,g,0;,, for all (&, 7). Now if we take

N.e;m,'j = Ne;/m,-/j/ or





