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Abstract
Consider a nonlinear system of two Klein-Gordon equations with masses

and . We construct a solution whose amplitude is modulated bythe nonlinear inter-
action when = or = 3 , whereas, when = and = 3 , the influence of
the nonlinearity is negligible and the solution behaves like a free solution as .

1. Introduction and the main result

We are concerned with the Cauchy problem for

(� + 2) = ( )
(� + 2) = ( )

0 R(1.1)

with sufficiently small, smooth, compactly-supported initial data. Here� = 2 2, ,
are positive constnats, , are smooth functions of unknowns and they are cubic

nonlinear terms in the sense that

( ) + ( ) 3 if

for some constants and 0. Though it is possible to consider much more general
situations (including derivative nonlinear or quasi-linear cases), we do not go into such
directions for the sake of simplicity.

Recently, much efforts are made for study of the large time behavior of solu-
tions to the Cauchy problem for the systems of critical nonlinear Klein-Gordon equa-
tions with possibly different masses ([8], [6], [7], [2], [3] etc). According to [6],
the Cauchy problem (1.1) admits a unique global classical solution which tends to a
free solution as if ( )( 3 )(3 ) = 0. On the other hand, it
turns out that the case ( )( 3 )(3 ) = 0 is much more delicate and
the previous works leave the problem open except a few partial results. In [3], some
structual condition on the nonlinear terms is studied in one-dimensional cubic quasi-
linear case under which the solution exists globally and it has a free profile even if
( )( 3 )(3 ) = 0 (see also [2] for the corresponding result in thecase of
two-dimensional quadratic nonlinearity). We do not state their condition precisely but
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only point out that their condition is not satisfied if the nonlinear terms do not contain
the derivatives of unknowns. In particular, the system of type (1 1) does not satisfy
their condition if ( )( 3 )(3 ) = 0.

In the present paper, we concentrate our attention on the following example:

(� + 2) = 4

(� + 2) = 3 0 R

( ) =0= ( 0 1 0 1) R

(1.2)

where R, 0 is a small parameter, and0, 1, 0, 1 0 (R). We will
find the large time asymptotics for the solution of (1 2) to show that, as , the
amplitude of is modulated by the long range interaction when= or = 3 ,
whereas, when = , = 3 , the influence of nonlinearity disappears eventually
and behaves like a free solution in the large time. More precisely, we will prove the
following:

Theorem 1. For any 0, 1, 0, 1 0 (R), there exists 0 0 such that(1 2)
admits a unique global classical solution if ]0 0]. Moreover, the following asymp-
totics is valid as , uniformly with respect to R:

( ) =
1

Re ( 2 2)1 2
+ + O( 1+ )

( ) =
1

Re log + ( 2 2)1 2
+ + O( 1+ )

Here ( )+ = max 0 , = 1, is an arbitrary small positive number, ( ), ( )
are C-valued smooth functions which vanish when 1, and ( ) is given by

( ) =

8 3
(1 2)1 2

+ ( )3 if = 3

3

8 3
(1 2)1 2

+ ( ) 2 ( ) if =

0 if = 3 =

REMARK. It is interesting to compare this result with the corresponding one to the
scalar case

(� + 1) = 3 0 R(1.3)

This has been extensively studied by Delort [1] in much more general situations in-
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cluding quasi-linear case. According to his result, has thefollowing asymptotics:

( ) =
1

Re exp 2 2 1 2
+ + log

+ O( 1+ )

with

( ) =
3

8
1 2 1 2

+ ( ) 2

Roughly speaking, this shows that the long range character of nonlinearity appears at
the level of thephaseof oscillation of the solution for the scalar equation (1 3),while
our main result claims that the long range character appearsat the level of theampli-
tude of the solution for the system (1 2).

We can obtain the similar results for a bit more general systems, such as

(� + 2
1) 1 = 1( )

(� + 2
2) 2 = 2( )

(� + 2
3) 3 = 3( )

(� + 2
4) 4 = 1 2 3 + 4( )

0 R(1.4)

with the initial data

( ) =0= ( 0 1 ) = 1 2 3 4(1.5)

Here = ( )1 4, = ( ), R and ( ) = ( 4 + 4) near ( ) =
(0 0). When we put

:= ( 1 2 3) 1 3 : 4 = 1 1 + 2 2 + 3 3

the corresponding result to Theorem 1 is stated as follows:

Theorem 2. For any 0 , 1 0 (R), there exists 0 0 such that(1 4)–(1 5)
admits a unique global solution if ]0 0]. Moreover, the following asymptotics
is valid as , uniformly with respect to R:

( ) =
1

Re ( 2 2)1 2
+ + O 1+ = 1 2 3

4( ) =
1

4
Re log + 4

4( 2 2)1 2
+ + O 1+
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Here, is an arbitrary small positive number, ( = 1 2 3) are C-valued smooth
functions which vanish when 1, and ( ) is given by

( ) =
8 1 2 3

(1 2)1 2
+

( 1 2 3)

( 1)
1 ( ) ( 2)

2 ( ) ( 3)
3 ( ) if =

0 if =

where (+1)( ) = ( ) ( 1)( ) = ( ).

REMARK. This is an extension of the previous result [7, Theorem 2.1], where
only the simplest case (1 = 2 = 3 = 4 = 0) is treated by using the explicit repre-
sentation of the free solution.

2. Reduction of the problem

In this section, we perform some reduction following the idea developed by [1],
[2], [3]. In what follows, we fix 0 so that

supp( 0 1 0 1) R :

Also we fix 0 max 1 2 . We begin with the fact that without loss of generality
we may treat the problem as if the Cauchy data is given on the upper branch of the
hyperbola

( ) R1+1 : ( + 2 )2 2 = 2
0 0

and it is sufficiently small, smooth, and compactly supported. (This is a consequence
of the classical local existence theorem and the property offinite propagation speed.
See [1, Proposition 1 4], [2], [3] and [5], [4, Chapter 7] for detail.) Next, as in [1],
[5], we introduce the hyperbolic coordinates ( ) in the interior of the light cone,
i.e.,

+ 2 = cosh = sinh for + 2

so that

= (cosh )
1

(sinh )

= (sinh ) +
1

(cosh )

� + 2 =
2

2
+

1
+ 2 1

2

2

2
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and

= ( + 2 )2 2

We also introduce the new unknowns (˜ ˜) as follows:

( ) =
˜( )

1 2 cosh
( ) =

˜( )
1 2 cosh

where 0 is a parameter which is determined later. Roughly speaking, measures
the decay of the solution outside the light cone because (cosh ) 1 (1 )+ +

1
2
. Now, let us derive the equations which ( ˜ ˜) satisfies when ( )is a solution

of (1 2). Since

4 = 2(cosh ) 4 ˜4

and

(� + 2) = 1 2(cosh ) 1(�̃ + 2) ˜

we have

(�̃ + 2) ˜ =
3 2(cosh )3

˜4

where

�̃ =
2

2

1
2

2

2
+

2 tanh
2

+
1
2

1

4
+ 2 1 2(tanh )2

In the same way, we see that ˜ satisfies

(�̃ + 2) ˜ =
(cosh )2

˜3

Summing up, the original problem (1 2) is reduced to the following Cauchy problem:

(�̃ + 2) ˜ =
3 2(cosh )3

˜4

(�̃ + 2) ˜ =
(cosh )2

˜3

0 R(2.1)

with the initial data

( ˜ ˜ ) = 0 = ( ˜0 ˜1)

( ˜ ˜) = 0 = ( ˜0 ˜1)
(2.2)



70 H. SUNAGAWA

Our strategy is to prove global exitence and uniqueness of the solution to (2 1)–
(2 2) (see Proposition 3 below), find the asymptotics for ( ˜ ˜ )as (see (4 2),
(4 3) in §4), and finally return to the solution of the original problem.

In the next section we shall prove the following proposition. In what follows, we
denote by (R) the standard Sobolev space for N0 = N 0 .

Proposition 3. Let 0 and let be an integer larger than1 + 4 . For any
( ˜0 ˜1), ( ˜0 ˜1) 2 (R ) 2 1(R ), there exists 0 0 such that the Cauchy
problem (2 1)–(2 2) admits a unique global solution

( ˜ ˜ )
1

=0

0 ; 2 (R )
1

=0

0 ; 2 (R )

if ]0 0]. Moreover, we have

1 + 2 ˜ ( ) (R )
( 4)+ 2

1 + 2 ˜ ( ) (R )
+( 4)+ 2

for each0 1, 0 1 + 2 1, and for arbitaray small 0. Here is a
positive constant independent of .

REMARK. Consequently we have

˜( ) (R )(2.3)

˜( ) (R )(2.4)

for any 0.

3. Proof of Proposition 3

This section is devoted to the proof of the Proposition 3. Theproof is done by
means of the contraction mapping principle. For this purpose, we prepare a version of
the energy estimate for (�̃ + 2), which is essentially due to Delort–Fang–Xue [2]
(see also [3]). We state and prove it here with minor modifications.

Let us define

( ) ( ) :=
R

( ) 2 +
1
2

( ) 2 + 2 ( ) 2
1 2

for smooth function and positive constant . We start by the following basic esti-
mates.
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Lemma 4. For 0, 0, N0 and for smooth function ( ), we have

( ) 2
( )

2
( ) 2

( ) +
2

=0

( ) 2
( )

+ ( ) ( ) (�̃ + 2) ( ) 2(R )(3.1)

and

( ) 2
( ) 2

+1

=0

( ) 2
( ) + ( ) ( ) (�̃ + 2) ( ) 2(R )

(3.2)

provided that the right hand side is finite. Here is a positiveconstant depending
only on , , .

Proof. In what follows, we denote by various positive constants which might
be different line by line. We first show the case where = 0. As inthe standard energy
integral method, we start from the following calculations

( ) 2
( ) = 2

R

( )( 2 ) +
1
2
( )( ) + 2 ( )

1
3

2

2
R

( ) 2 1
2

2 + 2

= 2
R

2 tanh
2

( )( )

1
2

1

4
+ 2 2 2(tanh )2 ( ) + ( )(�̃ + 2)

4
2

R

+
2

( ) 2
( ) + ( ) ( ) (�̃ + 2) 2

The inequalities (3 1)=0 and (3 2)=0 follow from the fact that the first term in the
right hand side is dominated by

2
( ) 2

( ) and
2

2
( ) 2

( ) +
1

2
( ) 2

( )

respectively. Next, we consider the case where 1. Using (3 1)=0 with replaced
by , we have

( ) 2
( )

2
( ) 2

( ) +
2

( ) 2
( )

+ ( ) ( ) (�̃ + 2) ( ) 2
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+ ( ) ( ) (�̃ + 2) ( ) 2

On the other hand, we have the following commutation relation:

�̃ + 2 =
1
2

=0

( )(3.3)

with appropriate coefficients ( ) satisfying , from which it follows
that

(�̃ + 2) ( ) 2

1
2

=0

( ) 2
2

=0

( ) ( )

Summing up, we obtain (3 1). In the same way (3 2) follows.

Next, we show the following energy inequality, which is the main tool for the
proof of Proposition 3.

Proposition 5. Let be a smooth function of( ) [ 0 [ R, and let
0, 0, 0, 1, 2 N0. If 1 4 , we have

sup
0

1

1=0

2

2=0

( + 1 4) 1+ 2 ( )
( )

( 0) 1+ 2+1 + ( 0) 1+ 2

+
1

1=0

2

2=0 0

( + 1 4) 1+ 2(�̃ + 2) ( ) 2(R )

provided that the right hand side is finite. Here is a positiveconstant independent
of , 0.

Proof. We first note that we can choose some constant 1 so that

1E ( )
=0

( + 4) ( )
( )

E ( )

holds, where

E ( ) :=
=0

(2 + 2) ( )
2

( )

1 2
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Straightforward calculation yields

E 1( )2 =
1

=0

(2 + 2) ( )
2

( ) 2 +
2

(2 + 2) 1 ( )
2

( )

1 1

=0

(2 + 2) ( )
2

( ) + (2 + 1 2) 1 ( )
2

( )

2 + 1

2
(2 + 1 2) 1 1 ( )

2
( )

Using Lemma 4 and the relation (2 +1 2) 2 , we have

E 1( )2

1 1

=0

(2 + 2)
2

+1

=0

( ) 2
( ) + ( ) ( ) (�̃ + 2) ( ) 2

+ (2 + 1 2) 2
1 ( ) 2

( ) +
2

1

=0

( ) 2
( )

+ 1 ( ) ( )
1(�̃ + 2) ( ) 2

2 (2 + 1 2) 1 1 ( ) 2
( )

=
2

1 1

=0

+1

=0

(2 + 2) ( ) 2
( ) +

1

=0

(2 + 1 2) ( ) 2
( )

+
1

=0

(2 + 2) ( ) ( ) (�̃ + 2) ( ) 2

=: 1 + 2

To estimate 1, we note the following relation:

1 1

=0

+1

=0

(2 + 2) ( ) 2
( ) = 1 2

1 1

=0

+1

=0

( +1 ) 2 (2 + 2) ( ) 2
( )

1 2
1

1

=0

(2 + 2) ( ) 2
( )

= 1
1 2E 1( )2

This relation gives us

1 2 1
1 2E 1( )2 + E 1( )2

3 2
E 1( )2
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As for 2, the Cauchy-Schwarz inequality implies

2

1

=0

(2 + 2) ( ) 2
( )

1 2
1

=0

(2 + 2) (�̃ + 2) ( )
2

2

1 2

E 1( )
1

=0

( + 4) (�̃ + 2) ( ) 2

Summing up, we obtain

E 1 ( )
3 2

E 1( ) +
1

=0

( + 4) (�̃ + 2) ( ) 2

which implies

E 1( )
1 2+ 1 2

0 E 1( 0)

+
1

=0 0

1 2+ 1 2 ( + 4) (�̃ + 2) ( ) 2

Using the fact that 1
1 2 1 2

0 for any 0 1, we obtain the
desired inequality with 2 = 0. Concerning the case of2 1, we have only to use the
commutation relation (3 3) and the Gronwall inequality.

Now, let us introduce the function space

:= = ( 1 2) 0
0 ; 2 (R; R2) 1

0 ; 2 1(R; R2) :

0 2 1 0 s.t.

1( ) ( )
(1 4)( )+

2( ) ( )
+(1 4)( )+

equipped with the norm

= sup
0

1

1=0 2=0

1 4 1+ 2
1( ) ( ) + ( + 1 4) 1+ 2

2( ) ( )

Here, ]0 1 10] and 1 + 4 . We denote by ( ) the closed ball in of
radius centered at the origin, i.e.,

( ) := :
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For = ( 1 2) , let ( ) be the solution = (1 2) to the Cauchy problem

(�̃ + 2) 1 =
3 2(cosh )3

4
2

(�̃ + 2) 2 =
(cosh )2

3
1

0 R

( 1 2 1 2) = 0
= ( 0̃ 0̃ 1̃ 1̃) R

We shall show that becomes a contraction mapping on ( ) when wechoose 0,
appropriately. Then we can apply the fixed point theorem to obtain Proposition 3.

Let = ( 1 2) ( ). It follows from Proposition 5 that

( ) +
0

( )

where

( ) =
1

1=0 2=0

( +1+ 1 4) 1+ 2
1( )3

2(R )
+ (3 2+ 1 4) 1+ 2

2( )4
2(R )

Since [( 1 + 2) 2] + 1 [ 1 2] + 1 = , the Leibniz formula and the Sobolev
imbedding yield

1+ 2
1( )3

2
1( ) 2

[( 1+ 2) 2]

1+ 2

=0

1( ) 2

1( ) 2
1+ 2

=0

(1 4)( 2)+

3 1 4

Here [ ] stands for the integer part. Similarly we have

1+ 2
2( )4

2
2( ) 3

1+ 2

=0

+(1 4)( 2)+

4 4 + 1 4

Therefore we obtain

( ) +
0

3 (1+ ) + 4 (3 2 4 )

+ (1 + ) 3

0

(1+ )
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+
(1 + ) 3

Note that 1 + 3 2 4 since 1 10. When we take0 := 2 and choose
0 so small that (1 + )2 2, we have

( )

provided that ]0 0].
Next, we put ˜ = ( ) ( ) for = ( 1 2) = ( 1 2) ( ). Then

˜ = ( ˜1 ˜2) satisfies

(�̃ + 2) ˜1 =
3 2(cosh )3

( 4
2

4
2)

(�̃ + 2) ˜2 =
(cosh )2

( 3
1

3
1)

with the initial data

˜1 = ˜2 = ˜1 = ˜2 = 0

at = 0. Using Proposition 5 again, we have

˜
1

1=0 2=0 0

1 2( )

where

1 2( ) = ( +1+ 1 4) 1+ 2
1( )3

1( )3
2(R )

+ (3 2+ 1 4) 1+ 2
2( )4

2( )4
2(R )

In the same way as before, we have

1 2( ) 2 (1+ + 1 4)
1+ 2

=0

1( ) 1( ) 2

+ 3 (3 2 3 + 1 4)
1+ 2

=0

2( ) 2( ) 2

2 (1+ )
1+ 2

=0

(1 4) 1+( 2)+

+ 3 (3 2 4 )
1+ 2

=0

(1 4) 1+( 2)+
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(1 + ) 2 (1+ )

Therefore, if is chosen so small that ( + 1) (1 + )2 2 holds, then we have

( ) ( )
2

0

(1+ )

1

2

This completes the proof of Proposition 3.

4. Proof of the Main Theorem

In what follows, we only treat the case where = 3 . The other cases can be
treated in the same manner.

First, we rewrite (2 1) as

( 2 + 2) ˜ =
1

3 2 4 1

( 2 + 2) ˜ =
(cosh )2

˜3 +
1
2 2

where

1 =
(cosh )3

˜
4

+
1

1 2+4
L ˜ 2 = L ˜

with

L = 2( 2 �̃ ) = 2 2 (tanh )
1

4
2 + 2 2(tanh )2

It follows from (2 3), (2 4) and the Sobolev imbedding that

sup
0

1( ) (R ) + 2( ) (R )

Next, we put

˜ = ( ) ˜
˜ = ( )˜

Note that ˜ and˜ satisfy

˜ = ( 2 + 2) ˜ =
3 2 4 1
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and

˜ =
(cosh )2

+ ˜+ + ˜

2

3

+
2 2

=
8 3(cosh )2

3

=0

3 (3 2 )

( ˜+)3 ( ˜ ) +
2 2(4.1)

We are going to find the asymptotics of ˜ ,˜ as . It is easy to do it for ˜ .
Indeed, since

˜ ( ) 3 2+4 1 2+4

we have

˜ ( ) = ˜ ( ) +O( 1 2+4 )(4.2)

where

˜ ( ) := 0 ˜0( ) ˜1( ) +
0

3 2 4 1( )

To get the asymptotics of̃ , we use the following lemma.

Lemma 6. Let R and let ( ) ( = 1 2 ) be smooth functions
which satisfy

( ) 0 ( ) 0

for some constant 0 0 . Then we have

=1

( ) =
=1

( ) + O min 2 1+

for R 0 , while

1

=1

( ) = (log )
=1

( ) + O log

Proof is quite simple. Indeed, using the relation

=1

=
=1

1

=1
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we have

=1 =1

1
2

=1

+
1

=1 =

0
2

+ 0
1+

The other one follows similarly from the relation

1

=1

= (log )
=1

(log )
=1

Applying the above lemma to (4 1), we obtain

(˜ ) = +
2 2

where

+( ) = (log )
˜+( )

3

8 3(cosh )2
+ O( 1) ( ) = +( )

and

+( ) = O( 3 2+4 log ) ( ) = +( )

From this it follows that

˜ ( ) ( ) ˜ ( ) ( ) + 2( )
2

1 2+5

where

˜ ( ) := 0 ˜0( ) ˜1( ) ( 0 ) +
0

( ) +
2 2( )

Therefore we obtain

˜ ( ) = (log )
˜ ( )

3

8 3(cosh )2
+ ˜ ( ) + O( 1 2+5 )(4.3)

as , uniformly with respect to R.
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Now, we are going back to the original variables. Remember that

( ) =
˜+( ) + ˜ ( )

2 1 2 cosh

( ) =
˜+( ) + ˜ ( )

2 1 2 cosh

= ( + 2 )2 2 =
1

2
log

2 + +

2 +

and 1, + 2 . Using the relations ˜ =̃+ , ˜ = ˜
+ and

cosh (cosh )

+ 2

= 1
+ 2

2

for 0, we have

( ) = Re
( )

+ 2
˜̃ ( ) + O 1+4(4.4)

( ) = Re
( )

+ 2 8 3
˜̃ ( )

3 log ( )

cosh ( )
+ ˜̃ ( )

+ O 1+5(4.5)

where

˜̃ ( ) =
(cosh )1 2˜+ ( )

cosh
˜̃ ( ) =

(cosh )1 2˜
+ ( )

cosh

Next, we put

( ) :=
2 1 2 ˜̃ 0( ) if 1

0 if 1

( ) :=
8 3

(1 2)1 2
+ ( )3

( ) :=
2 1 2 ˜̃

0( ) + ( ) log 1 2 if 1

0 if 1

with

0( ) =
1

2
log

1 +

1
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Note that the following estimates are valid (cf. [1, p.58–59]):

( ) (1 ) 2 1 4
+

+ 2
1 1

+
+

1 2 5 4

1 1 ( +2 ) 2 1 2 1 1
+

+
1 1 2

+

These relations give us

1 ( +2 ) 2

+ 2 + 2

2 2

1

+ 2 + 2
+

1

+ 2

1

+
1 1 ( +2 ) 2 1 2

3 2 1
+

+
1 2 5 4

+ 3 2 1
2 1 4

+

+ 3 2 1
+

+
1 2 1 4 1 2

3 2

provided that 5 2. Summing up, we have

( )

+ 2
˜̃ ( ) =

1 ( +2 ) 2

+ 2 + 2

=
2 2

+ O( 3 2)

Substituting it for the first term of the right hand side of (4 4), we obtain the asymp-
totics of . In the same way, the first term of the right hand sideof (4 5) can be writ-
ten as

Re
2 2

log + + O( 3 2 log )

which yields the asymptotics of . This completes the proof ofTheorem 1.
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5. Concluding remarks

(1) We can prove the analogous result for two-dimensional case, such as

(� + 2) 1 = 3
2

(� + 2) 2 = 2
1

0 R2(5.1)

where R, or

(� + 2
1) 1 = 1( )

(� + 2
2) 2 = 2( )

(� + 2
3) 3 = 1 2 + 3( )

0 R2(5.2)

where = ( )1 3, = ( 1 2), R and ( ) = ( 3 + 3) near
( ) = (0 0) ( = 1 2 3). For the solution2 of (5 1) (resp. 3 of (5 2)), the long
range effect as in Theorem 1 (resp. Theorem 2) is observed if and only if = 2
(resp. 3 = 1 1 + 2 2 for some 1 2 1 ).
(2) One might expect a result similar to Theorem 1 for one-dimensional cubic homo-
geneous case, such as

(� + 2) = 3

(� + 2) = 3
(5.3)

However, it seems still open whether this holds true or not. The main reason is that
Lemma 6 is not effective for (5 3). Indeed, we can not regardO( log ) as the re-
mainder term in this case since it is impossible to take greater than 1.
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ADDITIONAL REMARK. After submitting this paper, the author was informed of the
following paper:
D. Fang and R. Xue:Global existence and asymptotics behavior of solutions fora res-
onant Klein-Gordon systems in two space dimensions, preprint (2003),
where analogous problems in two space dimensions are discussed.
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