

Title	On R-algebras which are R finitely generated
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1964, 1(2), p. 231–237
Version Type	VoR
URL	https://doi.org/10.18910/8558
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON R-ALGEBRAS WHICH ARE R FINITELY GENERATED

MANABU HARADA

(Received November 5, 1964)

Let K be a field and R a ring with 1. We know several conditions under which an R-algebra is a finitely generated R-module. In [6] Rosenberg and Zelinsky obtained, for a K-algebra A, those conditions in a case where $A \bigotimes_{\kappa} A^* / N(A \bigotimes_{\kappa} A^*)$ is Artinian, where A^* is an anti-isomorphic algebra of A and $N(^*)$ is the radical of *.

In §1 we shall study a similar problem in a case where $A \bigotimes_{\kappa} A^*$ is Noetherian and obtain, for an algebraic algebra A over K such that A/N(A) is a semi-simple ring with minimum condition, that $[A:K] < \infty$ if and only if $A \bigotimes_{\kappa} A^*$ is right Noetherian.

In §2 we consider a primitive K-algebra with minimal one sided ideals. We give a condition that the associated division ring is of a finite K-dimension.

Finally we consider a separable R-algebra A which is a submodule in a free R-module. If R is Noetherian, then we show that A is Rfinitely generated as R-module.

1. Algebras of finite type

In this paper we always assume that K means a field and R a commutative ring with 1.

Let $A_2 \supseteq A_1$ be *R*-algebras. Then we have a natural homomorphism $\Phi: A_1 \bigotimes_R A_1^* \to A_2 \bigotimes_R A_2^*$. We denote also the image of Φ by $A_1 \bigotimes_R A_1^*$ if there are no confusions. Furthermore, we have a natural right $A_i \bigotimes_R A_i^*$ -homomorphism $\varphi_i: A_i \bigotimes_R A_i^* \to A_i$ by setting $(a \otimes b^*) = ba$. We denote its kernel by J_i .

The following lemma is based on a suggestion of M. Auslander.

Lemma 1. Let A_3 be an R-algebra and $A_2 \supseteq A_1$ proper R-subalgebras contained in the center of A_3 . We assume that A_{i+1} is A_i -projective for i=1,2. Then $J_3 \supseteq J_2 A_3^e \supseteq J_1 A_3^e$, where $A_3^e = A_3 \bigotimes_p A_3^*$.

M. HARADA

Proof. We consider a natural A_3^e -homomorphism $\alpha_2 \colon A_3 \bigotimes_R A_3^* \to A_3 \bigotimes_{A_2} A_3^*$. If $\alpha_2(J_3) = (0)$, then we obtain easily $A_3 \bigotimes_{A_2} A_3^* = A_3$. Let \mathfrak{p} be a prime ideal of A_2 . Then $A_{\mathfrak{sp}} \bigotimes_{A_{\mathfrak{sp}}} A_{\mathfrak{sp}}^*$. Since $A_{\mathfrak{sp}}$ is $A_{2\mathfrak{p}}$ -projective, $A_{\mathfrak{sp}}$ is a free $A_{2\mathfrak{p}}$ -module by [5], Theorem 2. Hence $A_{\mathfrak{sp}} = A_{\mathfrak{p}}$ for every prime ideal \mathfrak{p} , which is a contradiction. On the other hand $\alpha_2(J_2A_3^e) = (0)$. Therefore, $J_2A_3^e \cong J_3$. Next we consider a commutative diagram :

From the above argument we know that $\beta(J_2)=(0)$. Since A_2 , A_3 are A_1 -projective, β' is monomorphic. Therefore, $\alpha_1(J_2)=\alpha_1\Phi(J_2)=\beta'\beta(J_2)\pm(0)$. On the other hand $\alpha_1(J_1)=(0)$. Hence we have $J_2A \cong J_1A_3^e$.

Corollary 1. Let A be an R-projective R-algebra. We assume that $A \bigotimes_{R} A^*$ is right Noetherian (resp. Artinian). Then a length of ascending (resp. descending) chain of R-projective, R-separable algebras in the center of A is finite, (cf. [7], Theorem 2).

Proof. From a fact for a separable R-algebra C that R-projective C-module is C-projective, we have the corollary.

Corollary 2. Let A be an extension field of K. Then A is a finite type, i.e. A is generated by a finite number of elements if and only if $A \otimes A$ is Noetherian, (cf. [1], p. 99).

Proof. If A is a finite type, then A is an algebraic extension of a rational function field $K(x_1, x_2, \dots, x_t)$. It is clear that $K(x) \underset{\kappa}{\otimes} K(x)$ is Noetherian. Since $A \underset{\kappa}{\otimes} A$ is a finitely generated $K(x)^e$ -module, A^e is Noetherian. The converse is clear from Lemma 1.

REMARK 1. Lemma 1 is valid in a case where A's are division rings. Because, we may take $A_2 \otimes A_2^*$ in a place of $A_2 \otimes A_2$ and so on.

Lemma 2. Let A be a right Noetherian, algebraic algebra over a field K. Then the radical of A is nilpotent.

Proof. By the assumption and [4], p. 212, Proposition 3, the radical

N is nil. Furthermore, since A is Noetherian, N is nilpotent by $\lceil 4 \rceil$, p. 199, Theorem 1.

Proposition 1. Let A be a commutative algebraic algebra over a field *K*. Then the following conditions are equivalent.

- a) $\lceil A:K \rceil < \infty$,
- b) A⊗A is Noetherian,
 c) A⊗F is Noetherian for any algebraic extension field F of K.

Proof. First, we assume A^e is Noetherian. Since A^e is algebraic over K, its radical $N(A^{e})$ is nilpotent by Lemma 2. Similarly we know that N = N(A) is nilpotent. Hence, if we show $[A/N:K] < \infty$, then by the standard argument we obtain $[A:K] < \infty$ (cf. the proof of [3], Theorem 1). Therefore, we may assume that A is a semi-simple ring in a sense of Jacobson. From [4], p. 210 we know that A is an I-ring, namely every non-nilpotent ideal contains an idempotent element. Hence, since A is a commutative Noetherian semi-simple ring, every ideal is generated by an idempotent element. Therefore, A is a semi-simple ring with minimum conditions. Hence, we may assume that A is a field. Then $[A:K] < \infty$ by Corollary 2. By the similar argument as above, we obtain $[A:K] < \infty$ if A satisfies c).

Theorem 1. Let A be an algebraic algebra over a field K. We assume A/N is a semi-simple ring with minimum conditions, where N is the radical of A. Then we have the following equivalent conditions:

- a) $[A:K] \leq \infty$,
- b) A⊗A* is right Noetherian,
 c) A⊗F is right Noetherian for every algebraic extension field F of K.

Proof. In both cases b) and c) we know that N is nilpotent by Lemma 2. Hence, we may assume that A is a division algebra over K. Let L be a maximal subfield of A and Z the center of A. Let $A = \sum \bigoplus Lu_i$ and $A^* = \sum_{\kappa} \bigoplus_{i=1}^{k} L^* v_i$. Since $A \bigotimes_{\kappa} A^* = \sum_{i=1}^{k} \bigcup_{j=1}^{k} L^* (u_i \otimes v_j)$ is right Noetherian, so is $L \bigotimes_{\kappa} L^*$. Hence $[L:K] \leq \infty$ by Proposition 1. If we consider A as a left A- and right L-module, A is a right $A^* \bigotimes_{\kappa} L$ -module. Since $A^* \bigotimes_{\kappa} L$ is a simple ring with minimum conditions and A is a simple faithful $A^* \bigotimes_{\kappa} L$ -module, A has a finite right base over $A^* \bigotimes_{\kappa} L$ -endomorphism division ring of A, which is equal to $V_A(L) = \{a \in A \mid al = la \text{ for all } l \in L\}$. Since L is a maximal subfield of A, $V_A(L) = L$. Therefore, $[A:K] < \infty$.

M. HARADA

Corollary 3. Let A be an algebra over a field K. L_1 is an algebraic closure of K and $L_2 = K(x)$ a rational function field over K. Then $[A:K] < \infty$ if and only if $A \bigotimes_{K} L_i$ (i = 1, 2) is right Artinian, ([3], Theorem 1).

Proof. By the same reason as in the proof of Proposition 1, we may assume that A is a division ring if $A \bigotimes_{K} L_{i}$ is right Artinian. Furthermore, it is clear that A is algebraic over K. Hence $[A:K] < \infty$ by Theorem 1.

Proposition 2. Let A be a division algebra over a field K. If $A \bigotimes_{K} A^*/N(A \bigotimes_{K} A^*)$ is right Noetherian, then the center Z of A is of a finite transcendental degree over K and A is a finite type over Z, (cf. [7], Theorem 2).

Proof. By the proof of [2], Lemma 4, we have $N(A^e) = \mathfrak{a}A^e$, where a is an ideal contained in the radical $N(Z^e)$ of Z^e . Since there is a lattice isomorphism between two-sided ideals of A^e and Z^e by [4], p. 114, Theorem 1, $Z^{e}/N(Z^{e})$ is Noetherian. We shall show that the transcendental degree of A over K is finite. We consider again an exact sequence as in Lemma 1. $0 \rightarrow J_i \rightarrow L_i \bigotimes L_i \rightarrow L_i \rightarrow 0$, where $L_i = K(x_1, \dots, x_i)$ and the x's are indeterminants in Z over K. Then we shall show that $J_i Z^e +$ $N(Z^{e}) \neq J_{i+1}Z^{e} + N(Z^{e})$. Otherwise, for any element j in $J_{i+1}(Z^{e})$, we have $j=y+r, y \in J_iZ^e, r \in N(Z^e)$. Since $N(Z^e)$ is nil ([1], p. 85, Proposition 4), $j^n \in J_i Z^e$ for some integer *n*. Therefore, $(x_{i+1} \otimes 1 - 1 \otimes x_{i+1})^{n'} = x_{i+1}^{n'} \otimes 1 - 1 \otimes x_{i+1}$ $n'(x_{i+1}^{n'-1} \otimes x_{i+1}) + \dots + (-1)^{n'}(1 \otimes x_{i+1}^{n'})$ is contained in $J_i Z^e$. On the other hand, $J_i Z^e = \sum \bigoplus u_{\alpha} J_i (L_{i+1} \otimes L_{i+1})$, where $\{u_{\alpha}\}$ is a basis of Z^e over $L_{i+1} \otimes L_{i+1}$ and we assume $u_1 = 1 \otimes 1$. Extending $x_{i+1}^k \otimes x_{i+1}^l$, $k, l = 0, 1, \cdots$ to a basis $\{x, v\}$ of $L_{i+1} \bigotimes_{K} L_{i+1}$ over $L_i \bigotimes_{K} L_i$, $J_i Z^e = \sum \bigoplus (x_{i+1}^k \otimes x_{i+1}^l) J_i \bigoplus \sum \bigoplus v J_i \bigoplus$ $\sum_{\alpha=1} \bigoplus u_{\alpha} J_i(L_{i+1} \bigotimes L_{i+1}).$ Hence J_i must contain 1, which is a contradiction. Therefore, the transcendental degree of Z over K is finite. From the assumption, it is clear that $A \otimes A^*$ is right Noetherian. Hence by Lemma 1, A is a finite type over Z.

REMARK 2. The following example shows that A is not a finite type even if A is algebraic commutative field over K and $A^e/N(A^e)$ is Artinian.

Let $A = \bigcup_{x} K(x^{1/p^n})$, where K is a field of characteristic $p \neq 0$ and x is an indeterminant over K. Then it is clear the $N(A^e) = J_A$ and $A^e/N(A^e) = A$.

2. Primitive algebras

Let A be a simple algebra over K with minimum conditions. Then it is clear that $[A:K] \leq \infty$ if and only if $N(A^e)$ is nilpotent and $A^e/N(A^e)$ is Artinian. We shall generalize this property as follows:

Theorem 2. Let A be a primitive K-algebra with minimal one-sided ideals and Δ its associated division ring, (see [4]). Then $[\Delta:K] \leq \infty$ if and only if the radical $N(A^e)$ of A^e is nilpotent and $N(A^e)$ is the intersection of a finite number of primitive rings with one-sided ideals.

Proof. We assume $[\Delta:K] \leq \infty$. Let I and r be minimal left and right ideals in A, respectively. Then $\mathfrak{r}_{K} \mathfrak{l}^{*} = \sum_{\alpha} \mathfrak{l}(x_{\alpha} \otimes y_{\alpha}) \Delta^{e}$ is a faithful $A \bigotimes_{\kappa} A^*$ -module, and $A \bigotimes_{\kappa} A^*$ is a dense ring in the Δ^e -endomorphism ring $M_I(\Delta^e)$ of $\mathfrak{r} \bigotimes_{\mathfrak{r}} \mathfrak{l}^*$ by [4], p. 113, Theorem 1. By the assumption, the radical $N(\Delta^e)$ of Δ^e is nilpotent. We consider a factor module of $\mathfrak{r} \underset{\kappa}{\otimes} \mathfrak{l}^*$ by its radical: $\overline{\mathfrak{r}_{\kappa}} = \mathfrak{r}_{\kappa} \mathfrak{l}^* / N(\mathfrak{r}_{\kappa} \mathfrak{l}^*) = \sum \bigoplus (x_{\alpha} \otimes y_{\alpha}) \Delta^e / N(\Delta^e)$. By a well known theorem, the radical $N(M_I(\Delta^e))$ of $M_I(\Delta^e)$ is contained in $M_I(N(\Delta^e))$, and since $N(\Delta^e)$ is nilpotent, $M_I(N(\Delta^e))$ is equal to $N(M_I(\Delta^e))$. We can easily show that $M_I(\Delta^e)/N(M_I(\Delta^e)) = M_I((A_1)_{n_1}) \oplus \cdots \oplus M_I((A_r)_{n_r})$, where the A's are division algebras over K. Furthermore, it is clear that $\overline{\mathfrak{r}\otimes \mathfrak{l}^*}$ is a faithful $M_I(\Delta^e)/N(M_I(\Delta^e))$ -module. On the other hand, we have $\overline{\mathfrak{r}}_{\kappa} \underbrace{\mathfrak{l}^{*}}_{\kappa} = \sum_{i} \sum_{\alpha} \sum_{j=1}^{n_{i}} \bigoplus (x_{\alpha} \otimes y_{\alpha}) \mathfrak{b}_{i,j}, \text{ where the b's are irreducible left ideals in}$ $(A^*)_{n_i}$. Put $L_i = \sum_{\alpha} (x_{\alpha} \otimes y_{\alpha}) \mathfrak{b}_{i,1}$, then $\sum_i \oplus L_i$ is a faithful $M_I(\Delta^e) / N(M_I(\Delta^e)) - M_I(\Delta^e)$ module. By the above argument, the L's are also A^{e} -irreducible modules. Hence $N(M_I(\Delta^e))$ contains $N(A^e)$. Since $N(M_I(\Delta^e))$ is nilpotent, we have $N(A^e) = N(M_I(\Delta^e)) \cap A^e$. Therefore, $\sum_i \oplus L_i$ is also a faithful $\bar{A}^e = A^e/N(A^e)$ module. Furthermore, $N(\mathfrak{r}\otimes \mathfrak{l}^*) = (\mathfrak{r}\otimes \mathfrak{l}^*)N(M_I(\Delta^e)) \subseteq A^e \cap N(M_I(\Delta^e)) = N(A^e)$, and since we can represent r and I by eA and Ae', where e, e' are primitive idempotents in A, then $(\mathfrak{r} \otimes \mathfrak{l}^*) \cap N(A^e) = (e \otimes e'^*)A^e \cap N(A^e) = (e \otimes e'^*)N(A^e)$ Hence, we have a monomorphism of $\overline{\mathfrak{r}} \otimes \mathfrak{l}^*$ $=(\mathfrak{r} \bigotimes_{r} \mathfrak{l}^*) N(A^e) \subseteq N(\mathfrak{r} \bigotimes_{r} \mathfrak{l}).$ into \overline{A}^{e} . Therefore, \overline{A}^{e} has a faithful complete reducible module $\sum \oplus L_{i}$. Let a_i be the annihilator ideal of L_i in \overline{A}^e . Then \overline{A}^e/a_i contains $L_i + a_i/a_i$. Since L_i is irreducible and \bar{A}^e is semi-simple, $L_i + \mathfrak{a}_i / \mathfrak{a}_i \approx L_i$. Hence $\bar{A}^e / \mathfrak{a}_i$ is a primitive ring with minimal one-sided ideals. Furthermore, we have $\bigcap \mathfrak{a}_i = (0)$, which proves the first half of the theorem. Let e be an idempotent. They by [4], p. 48, Proposition 1, $N((e \otimes e^*)(A \otimes A^*)(e \otimes e^*))$ M. HARADA

 $=(e \otimes e^*)N(A \otimes A^*)(e \otimes e^*)$, and hence, $N(\Delta^e)$ is nilpotent, where $eAe = \Delta$. Let p_i 's be a primitive ideals with the property as in the theorem. Then by [2], Lemma 1, $(e \otimes e^*) \mathfrak{p}_i(e \otimes e^*)$ are primitive ideals in $(e \otimes e^*)A \bigotimes A^*(e \otimes e^*)$ with the same property as above. Furthermore, if $\bigcap \mathfrak{p}_i = N(A^e), \text{ then } \bigcap (e \otimes e^*) \mathfrak{p}_i(e \otimes e^*) = N(\Delta^e). \text{ Let } Z \text{ be the center of } \Delta.$ Then by [4], p. 114, Theorem 1, there is a lattice isomorphism between two-sided ideals of Δ^e and those of Z^e . Put $q_i = (e \otimes e^*) \mathfrak{p}_i(e \otimes e^*)$. Then there exist ideals b and c in Z^e which correspont to q_i and an ideal s in Δ^e such that $\mathfrak{s} \supseteq \mathfrak{q}_i$ and $\mathfrak{s}/\mathfrak{q}_i$ is the socle of Δ^e/\mathfrak{q}_i . We shall show that $\overline{Z}^e = Z^e/b$ is a field. Since \overline{c} is a unique minimal ideal in \overline{Z}^e , \overline{c} is contained in $N(\overline{Z}^e)$ if $\overline{c} \neq \overline{Z}^e$. $\overline{g} = \overline{g}^2$, $\overline{c} = \overline{c}^2$. Hence \overline{c} is generated by idempotent element, which is a contradiction. Therefore, \overline{Z}^e is a field. Hence, $\Delta^{e}/\mathfrak{q}_{i}$ is a simple ring. Since $\Delta^{e}/\mathfrak{q}_{i}$ has the socle, $\Delta^{e}/\mathfrak{q}_{i}$ satisfies the minimum conditions. $\bigcap q_i = N(\Delta^e)$ implies that $\Delta^e/N(\Delta^e)$ is a semi-simple ring with minimum condition. Therefore, $\lceil \Delta : K \rceil < \infty$ by $\lceil 7 \rceil$, Theorem 7.

3. Separable algebras

Let R be a Noetherian ring and α an ideal in R. For any finitely generated R-module E and its submodule F, there exists an integer r such that $\alpha^n E \cap F = \alpha^{n-r}(\alpha^r E \cap F)$ for all n > r by the Artin-Rees theorem. Thus we shall call an R-module E "an Artin-Rees module with respect to α (briefly A-R module)", if for any finitely generated R-submodule F in E, there exists an integer r such that $F\alpha^n \cap F \subseteq F\alpha^{n-r}$ for n > r.

By definition we have the following lemmas:

Lemma 3. If E is an A-R module, then any submodule of E and any quotient module of E with respect to a finitely generated submodule of E are A-R modules.

Lemma 4. Every submodule of a free R-module is an A-R module.

Lemma 5. If a is contained in the radical of R and E is an A-R module, then $\bigcap Ea^n = (0)$.

Proof. Let x be in $\bigcap_{n} Ea^{n}$. Then $xR = xR \cap Ea^{n} \subseteq xRa^{n-r}$, and hence xR = (0).

Proposition 3. Let α be an ideal contained in the radical of R. For any A-R module E, if $E/E\alpha$ is finitely generated then so is E.

Proof. If E/Ea is finitely generated, then we have a finitely generated R-submodule F such that E = Ea + F. Let $\overline{E} = E/F$, then \overline{E} is an A-R module by Lemma 3. Hence $(0) = \bigcap \overline{Ea}^n = \overline{E}$ by Lemma 5.

Corollary 4. Let R and a be as above. If R is not complete with respect to $\{a^n\}$, then the completion \hat{R} of R is not contained in a free Rmodule, (cf. [1], p. 95).

Proof. If \hat{R} is contained in a free *R*-module then \hat{R} is an *A*-*R* module by Lemma 4. Furthermore, $\hat{R}/\hat{R}a \approx R/a$, and hence \hat{R} is a finitely generated R-module by the proposition. Then since $\hat{R} = R + \hat{R}a$, $\hat{R} = R$ by Nakayama's Lemma, which is a contradiction.

Lemma 6. Let S be a multiplicative system consisting of non-zerodivisors in R (not necessarily Noetherian) and E a submodule of a free *R*-module. If $E_s = E \bigotimes_{n=1}^{\infty} R_s$ is finitely generated R_s -module, then E is contained in an finitely generated R-module.

It is clear.

Theorem 3. Let R be a Noetherian ring and let A be a separable R-algebra such that A is contained in a free R-module. Then A is a finitely generated R-module.

Proof. Let S be the set of all non zero-divisors in R. Then A_s is separable R_s -algebra and is contained in a free R_s -module. Hence, we may assume by Lemma 6 that R is semi-local. Let p be a maximal ideal in R. Then $A/A\mathfrak{p}$ is a separable algebra over R/\mathfrak{p} , (it may be zero). Hence, A/Ap is a finitely generated R/p-module by [6], Theorem 1. On the other hand, $A \otimes R_{\mathfrak{p}}/(A \otimes R_{\mathfrak{p}}\mathfrak{p}) = A/A\mathfrak{p}$ and $A \otimes R_{\mathfrak{p}}$ is an A-R module by Lemma 4. Therefore, $A \otimes R_p$ is finitely generated R_p -module, and hence A is a finitely generated R-module by the simple argument.

OSAKA CITY UNIVERSITY

References

- [1] N. Bourbaki: Algebre, VIII, 1958.
- [2] M. Harada and T. Kanzaki: On Kronecker product of primitive algebras, J. Inst. Polyt. Osaka City Univ. 9 (1958) 19-28.
- [3] M. Harada: On homological theorems of algebras, ibid, 10 (1959) 123-128.

- [4] N. Jacobson: Structure of Rings, Amer. Math. Soc., 1956.
 [5] I. Kaplansky: Projective modules, Ann. of Math. 68 (1957) 372-377.
 [6] A. Rosenberg and D. Zelinsky: Cohomology of infinite algebras, Trans. Amer. Math. Soc. 83 (1956) 85-98.
- [7] --: Tensor products of semi-primary algebras, Duke Math. J. 24 (1957) 555-560.