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Introduction

Let X be a compact Kahler manifold of dimension n provided with a Kahler
metric ωx and let E be a holomorphic line bundle on X. E is said to be numerically
effective, "nef" for short, if the real first Chern class cRjl(E) of E is contained in
the closure of the Kahler cone of X. If X is projective algebraic, then E is nef if and
only if C E = Jc CR^(E) > 0 for any irreducible reduced curve C of X (cf.[13],
§2 and [1], §6).

If E is nef, then for a fixed smooth metric hE of E and a given sequence
of positive numbers {εk}k>i decreasing to zero, there exists a sequence of real-
valued smooth functions {ψk}k>i such that every form ΘE + ddcψk + ε^x yields
a Kahler metric. Here ΘE is the curvature form of E relative to KE defined by
ΘE = ddc(—log HE) with dc = y/^Λ(B — d)/2. Normalizing φk in such a way
that sup x ψk = 0, we can show that ψk converges to an integrable function φ^
on X so that ΘE + ddcφoo is a positive current (cf. §2, Proposition 2.5). Such an
integrable function φ^ is said to be almost plurisubharmonίc. In general φ^ has
singularities and e~φ°° is not integrable on X (cf. [11], [18]), which implies that
the nefness is strictly weaker than the semi-positivity of line bundle in the sense
of Kodaira (cf. [4], Example 1.7). Hence we can define a coherent analytic sheaf
of ideal T(ψoo) associated to φ^ whose zero variety (possibly empty) is the set
of points in a neighborhood of which e~φ°° is not integrable. The sheaf T{ψoo)
is called the multiplier ideal sheaf associated to ψoo and we obtain the canonical
homomorphism iq{ψoo) : iΓ^pΓ, J(y?oo) ®^χ(E)) —> Hq(x^x(E)) induced by

Though ψoo can not be uniquely determined generally, the study of Hq(X,
)(£)Ω3c(E)) ^s deeply related to several interesting problems in analytic and

algebraic geometry (cf. [2], [3], [11], [12], [18]). Nevertheless not much is known
about the cohomology group except a vanishing theorem for multiplier ideal sheaves
associated to nef and big line bundles by Nadel (cf. [11]). We study the cohomology
group by establishing a certain harmonic representation theorem. In particular we
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can determine the structure of lma,geiq(φoo). As a consequence we can get the
following Lefschetz type theorem (cf. [5], Theorem 0.3).

Theorem 1. Let X be a compact Kάhler manifold of dimension n provided
with a Kάhler metric ωx and let E be a nefline bundle on X provided with a smooth
hermitίan metric HE- Let φ^ be an integrable function determined as above i.e.,
ΘE + d^ψoo is a positive current on X, and letX(φoo) be the multiplier ideal sheaf
associated to φ^. Then the homomorphism

Lq : Γ(X,I(φoo)(g)Ωn

χ-
q(E)) — Image iq{Ψoo) C Hq(X^x(E))

is surjective and the Hodge star operator relative to ωx yields a splitting homomor-
phism

δq : Image iq(Ψoo) — Γ(X,I(φoo)(g)Ωn

χ-
q(E))

with Lq o δq = id for any q > 1.

The theorem was formulated and proved by Enoki in the case where E is semi-
positive, in which case the zero variety defined by X(</?oo) is empty and Lq(ψoo) is
isomorphic. Furthermore we can obtain certain injectivity and vanishing theorems
for the cohomology groups, which are weaker than the semi-positive line bundle
case and are closely linked together to study a Kawamata-Viehweg type vanishing
theorem on compact Kahler manifolds (cf. §4, Theorems 4.2 and 4.3). Actually the
following vanishing theorem holds (cf. [5], [9], [10], [15], [17], [19]).

Theorem 2. Let the situation be the same as in Theorem 1. Then if q >
n — κ*(E)

ι*{φoo) : H"(X,T^)® ίln

x(E)) -

is the zero homomorphism. Especially if iq{ψoo) is surjective (resp. injectίve) and
q > n — κ*(E), then

Hq(X,Ωx(E)) = 0 (resp. Hq(X,I(φoo)(g)nx(E)) = 0),

where κ*(E) is the numerical Kodaira dimension of E defined by

:=max{Z : Λ cRΛ[E) φ 0 G H2l(X, R)}.

REMARK. The above vanishing theorem is a variant of Kawamata-Viehweg's
vanishing theorem for nef line bundles on projective algebraic manifolds (cf. [9],
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[19]). We do not know whether Kawamata-Viehweg's vanishing theorem still holds
on any compact Kahler manifold even if E is nef and good (cf. §3, Comment and
§4, Remark 2).

1. Harmonic representation theorem for cohomology groups of multiplier
ideal sheaves

1.1. Let X be a complex manifold of dimension n and let T be a d-closed (1,
1) current on X. Setting dc = >/—ϊ(# — d)/2 we suppose that T is decomposed as
follows :

T = θ + ddc

φoo

for a d-closed smooth real (1,1) form β and a locally integrable function φ^ on X.
In this article we represent the positivity of T in the sense of current by the notation
"T > 0" and the semi-positivity (resp. positivity) of θ by the notation " θ > 0"
(resp. " θ > 0"). A function ψ on X is said to be almost plurisubharmonίc if ψ is
locally equal to the sum of a plurisubharmonic function and of a smooth function
(cf. [1], §1). If T > 0 and dθ = 0, then locally there exist a plurisubharmonic
function ψ and a smooth function ft such that T = ddcψ, θ = cfdcft and ft- + <̂oo is
equal almost everywhere to ψ. Hence the function φ^ is almost plurisubharmonic.
The representation φ^ = ψ — ft is not unique. However if φ^ = ψ — ft = /0*~ft* with
θ = ddch*, then Ψ — Ψ* is pluriharmonic. In particular ^ is determined uniquely
whenever ft is fixed. Therefore we can define the following :

DEFINITION. The multiplier ideal sheaf Ti^poo) C Oχ associated to φ^ sat-
isfying with T = θ + ddcφoo > 0 is the sheaf of germs of holomorphic functions
/α € Oχ,x such that |/|2e~^°° is integrable with respect to the Lebesgue measure in
a local coordinates around x for any point x of X.

It is known that X(</?oo) is a coherent analytic ideal sheaf of Oχ (cf. [11, 1.2]
and [3, Lemma 4.4]). The zero variety V{X{φoo)) oίΐ(φOQ) is the set of points in a
neighborhood of which e~φ°° is not integrable.

1.2.

DEFINITION. A holomorphic line bundle E on X is said to be pseudo effective
(resp. semi-positive, positive) if there exists a smooth hermitian metric ft# and an
almost pluri-subharmonic function φ^ (resp. a smooth hermitian metric ft#) such
that ΘE + ddcφoo > 0 (resp. θ # > 0, ΘE > 0) on X for the curvature form ΘE

relative to hE defined by ΘE — ddc{— log hE).
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EXAMPLE. Let D — Y^^=1 rrijDj be an effective divisor on X with irreducible
components Dj and non-negative integers rrij, and let [Dj]. be the line bundle corre-
sponding to each Dj. Then one can verify that the line bundle F := (£)1*=1[Dj]®mj

is pseudo effective by the Lelong-Poincare formula. If D is a divisor with only
normal crossings, then one can take a smooth hermitian metric hF and an almost
plurisubharmonic function φ^ such that ΘF -f ddcφoo > 0 and X(<̂ oo) = Oχ(F*),
where F* is the dual line bundle of F (cf. [3], §5).

1.3. To study the cohomology groups of multiplier ideal sheaves of pseudo
effective line bundles we need the following Dolbeault's lemma which is formulated
for our purpose (cf. [2, Proposition 4.1] and [3, (5.3) Corollary]).

Theorem. Let S be a Stein manifold of dimension n provided with a Kάhler
metric ωs defined by ωs := ddcΦ by a smooth strictly plurisubharmonic function
Φ > 0 on S. Suppose E (resp. F) be a pseudo effective (resp. positive) line bundle
provided with a smooth metric hE and an almost plurisubharmonic function φ^
(resp. a smooth metric hF) such that ΘE + ddcφoo > 0 (resp. ΘF + ddcΦ > 0). Set
(G, hG) = (E®F,hE® hF). Then for any u e L?£(S, G), q > 1, with du = 0 and

ί
Js

c»

there exists v e ^^(S, G) with dv = u and

Q ί \v\2

Ge-φ--2φdvs < ί \u\2

Ge-φ~-2φdvs.Js Js

1.4. Let X be an n dimensional complex manifold provided with a hermitian
metric ωx. Let E be a pseudo effective line bundle provided with a smooth metric
hE and an almost plurisubharmonic function φ^ with Θ + ddcφoo > 0 and let
^(^oo) be the multiplier ideal sheaf associated to φ^. Let F be a holomorphic line
bundle provided with a smooth metric hF and set (G,hc) = (E (g) F,hE ®hF).
We denote || H^ the L2-norm of G-valued forms relative to ωx and hGe~φ°°, and
denote Tq the sheaf of germs of G-valued (n, q) forms u with measurable coefficients
such that both u and du are locally square integrable relative to || ||oo. By applying
1.3, Theorem to arbitrary small balls one can see that the complex of sheaves {J70,
d} provides a fine resolution of the sheaf X(^oo) <8>Ω3.(G). Hence letting Γ(X,J7q)
be the space of global sections with values in Tq and seting T~γ — 0, we obtain
the following :

H (X,l(φoo)($Ωx(G)) = { v e Γ ( χ ^ q ) : υ = Bw w i t h w

for any q > 0.
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1.5. Let Cq(U,S) be the space of q co-chains associated to the locally finite
Stein open covering U of X with values in the sheaf S := X{φoo) (g)Ω^(G). Com-
bining 1.3, Theorem with the above Dolbeault's theorem in 1.4 the Cech cohomol-
ogy group H9(U,S) defined by the complex {C*(U,S),S} with the co-boundary
operator δ is isomorphic to the Dolbeault cohomology group H*(X,S) in view
of Leray's theorem i.e., the two complexes {Γ(X, ^Γ*),5} and {C*(U,S),δ} are
quasi-isomorphic. In particular if X is a compact complex manifold, then the Cech
cohomology group H*(U,S) has finite dimension and so it is a separeted Frechet
topological vector space (cf. [7], Appendix B, 12. Theorem).

1.6. From now on we assume that X is a compact complex manifold. Let
L™(X,G) (rsep. L™(X,G)) be the ZΛspace of G-valued square integrable (p, q)
forms provided with the inner product ( , ) (resp. ( , )oo) relative to ωx and hG

(resp. ωx and hGe~^). We denote ΰ : L™(X,G) -> LP^'^X.G) the adjoint
operator of the closed densily defined operator d : L™(X,G) -> L™+1(X,G)
relative to ( , ). Since φ^ is bounded from above, L™(X, G) can be regarded as a
subspace of LVΆ(X, G). We denote the restriction of the operator d : Ln>q(X, G) —>
Ln'«+1(X, G) onto L^q(X, G) by <9(oo) whose domain Dora (<9(oo)) coincides with
Γ{X,Fq) C L^(X,G). We claim the following.

Lemma. <5(oo) : L^q(X, G) —> L^9 + 1(X, G) is a closed densily defined oper-
ator.

Proof. By Demailly's regularization result for almost plurisubharmonic func-
tions on compact complex manifolds (cf. [1, Main Theorem 1.1]), there exists a
sequence of smooth functions {ψk} on X and an analytic subset A of X such that
ψk decreases to φ^ on X as k tends to infinity and e~2φ°° is locally integrable
outside A Set ( , ) * : = ( , e~φk) and let L%q(X, G) be the ZΛspace relative to the
inner product ( , )k for any k. Let C^q(X \ A, G) be the space of G-valued smooth
(n,q) forms with compact support in X \ A. Take a sequence {WJ} in 00111(5(00))
such that Wj and d^^Wj converge strongly to w and v respectively. By the decreasing
property of φk, Bw = v in L^'g+1(X, G) for any k. For any u <G C^q+1(X \ A, G),
(v,u)Ge~φ°° and (dw,u)Ge~φ°° are integrable on X by Schwarz's inequality. Hence
by Lebesgue's dominant convergence theorem we obtain :

(v,u)co= lim (υ,u)k = lim (dw,u)k = (dw.u)^.
fc-^oo fc->oo

Since C^q{X \ A, G) is dense in L^q(X, G), <9(oo) is densily defined and the above
equality implies d^w = v in L^ 9 + 1(X, G); i.e., the closedness of <9(oo). D

Hence the adjoint operator tf^) := (̂oo)* of d ^ ) can be defined and has the
same property as d^) with d^ = d^**. The domain of ^ ( ^ is defined in the
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following way.
n, q

v G Dom (#(oo)) if and only if there exists a positive constant C such that

|(v,c?(oo)w)oo| < ClÎ Hoo for any w <E Dom (d(θo)).

For a given linear operator T acting on the Hubert spaces ZΛ*(X, G) and
L^ (X,G), we denote JV ' (Γ) (resp. R^9(T)) the null space of Γ (resp. the range
of T). Setting L ^ p ^ G ) = {0} and Ln'-\X,G) = {0} respectively, we define for
any q > 0

iJn'^(X, G) :=Nn>q(5) Π 7Vn'9(tf) and H£q(X, G) :=Nn>q(8(oo)) Π A^n'g(^(oc)).

Hn>q(X,G) is the E'-valued (n, q) harmonic space which is isomorphic to
Hq(X,Ω%(G)). Usually the following weak decomposition of L^q(X,G) holds
(cf. [8]) :

^q{ΰ{oo))} for any q > 0,

where [ ] means the closure of space in L^q(X,G). Since X is compact, for any
q > 0 we note that

Rn'q(d(oa)) = dΓiX,^-1) and [Rn'q(d(oo))} C JV" «(a(oo)) = Γ(X,J")nKerd.

In view of the compactness of X, it is natural to claim the following strong decom-
position.

Proposition.

LnJ{X,G) = Rn>«(d{oo))@H^(X,G)q}Rn>*(ΰ{oo)) for any q > 0.

Proof. Since the closedness of Rn'q(d^oo^)) is equivalent to the one of
iZ 7 1 ' 9 " 1 ^^)) (cf [8, Theorem 1.1.1]), we have only to see that [&Γ(X, JP?-i)] =
dΓ(X,Γq-λ). Let v G [dΓ{X,Tq-1)) and let {a(oo)^}fc>i be a sequence in
dΓ(X,Fq-1) such that ||t; - d{oo)wk\\oo -> 0 as /c -> oo. We must find it; G
Γ(X, Jrq~1) with v = <9(oo)W. Let ZY be a finite Stein open covering of X taken as in
1.5. Combining the L2-estimate in 1.3, Theorem with the quasi-isomorphism theo-
rem in 1.5, there exists a q cocycle σ(υ) G Zq(U,S) and a sequence of q — 1 cochains
{τ(wfc)}fc>i C Cq~1(U,S) such that σ(i ) — δr(wk) tends to zero with respect to the
uniform convergence topology. From the separability of Frechet topology induced
on Hq{U,S), there is a q - 1 cochain τ(w) G C 9 " 1 ^ , ^ ) with 5τ(w) = σ(v) which
implies the conclusion by the compactness of X and the quasi-isomorphism theorem
(cf. [17, Proposition 4.6]). •
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1.7. We obtain the following theorem from the above observations :

Theorem. Let X be a compact complex manifold of dimension n provided with
a hermitian metric ωx and let E be a pseudo effective line bundle on X provided
with a smooth hermitian metric hE and an almost plurisubharmonίc function φ^
with ΘE + ddcψoo >0 on X for ΘE = ddc(-loghE). Letl{φoo) be the multiplier
ideal sheaf associated to φ^. Then for any holomorphic line bundle F provided with
a smooth hermitian metric hp on X and q>0, the space

) := {u e Dom(a ( o o ))nDom(^ ( o o )) : 3{oo)u = 0 and ϋ{oo)u = 0}

defined in L^q(X, E®F) satisfies the following :

and

Furthermore the following diagram is commutative :

where i^ andiq (resp. Hn'q) are isomorphisms (resp. the orthogonal projection from

2. A smoothing of almost plurisubharmonic functions associated to nef line
bundles on compact Kahler manifolds

Let X be a compact Kahler manifold of dimension n provided with a Kahler
metric ωx and let E be a holomorphic line bundle provided with a smooth hermitian
metric hE on X.

DEFINITION 2.1. (£7, hE) is said to be nef if for any ε > 0 there exists a smooth
function ψε on X such that ΘE + ddcψε + εωx yields a Kahler metric for ΘE :=
ddc{-\og hE).

The above definition depends on the choice of neither hE nor ωx and is equiv-
alent to that the real first Chern class cRjl(E) of E is contained in the closure of
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the Kahler cone of X (cf. [13], §2). If E has a smooth metric whose curvature is

semi-positive, then E is clearly nef. However the converse is not true in general even

if X is projective algebraic (cf. [4, Example 1.7]).

We begin with the following lemma suggested by [6], Lemma 2.1 and [18],

Proposition 2.1 (compare [2, Lemma 6.6]).

Lemma 2.2. Let (X,ωx) be a compact Kahler manifold of dimension n and

let Θ be a d-closed smooth real (1,1) form on X. Let V(Θ) be the set of real-valued

smooth functions ψ so that Θ + ddcψ > 0 and sup x ψ = 0. Then any sequence

{Ψk}k>i> Ψk £ V(Θ), contains a Cauchy subsequence in L1{X).

REMARK. The existence of an L1 Cauchy subsequence in {ψk}k>u Ψk

is not trivial because a local version of such a property is never true (cf. [18, p.238,

Remark] and Remark 2 below).

Proof. Let {φk}k>ι be a sequence belonging to V(Θ). Setting τx =

ωx~
ι/{n — 1)! and dvx — ωx/n\, there exists a positive constant C(θ,ωχ) not

depending on k such that

0 < / e^kdφk Λ dcψk Λ τx = - / e^kddcφk A τx by Stokes7 theorem
Jx Jx

= - ί e^{ddcψk + θ}Λτx+ [ e^kΘArxJx Jx

\Tr&ce(Θ,ωx)\dvx < C(θ,ωx) < oo.[
x

Since {e^fc/2} and their first derivatives are bounded in L2(X) from the above

inequality, {e^fc/2} has a Cauchy subsequence in L2(X) in view of Rellich's lemma.

On the other hand there are three positive constants Cj such that C\ωx <

CWx + Θ < Csωx. Hence by [18], Proposition 2.1, there exist positive constants a

with 0 < α < C l and C* not depending on ψ G V(θ) such that

(2.3) / e~aφdvx < C* < oo
Jx

for any ψ G V{β). For any β > 0 by Schwarz's inequality we obtain

O r \ 2 / r 2 \ / r \

x e VX) \Jχ 'β 6 ' VX) \Jχe VX) '
Taking 2β = a the right hand side converges to zero from the above observation

and (2.3). In particular we get

(2.4) / dvx —>• 0 as j and k —> oo.
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Here we may assume Vol(X, ωx) = 1 and use the following notation :

log+ t = log max{ί, 1} and | log t\ = log+ t + log+ ( - ) for t > 0.

By setting 7 = 1/β and the concavity of logarithmic functions we obtain :

/ \ψj -φk\dvχ
Jx

f f Ί I

1 Jx °g\e Jl

= 7 / (log+ e^~^ + log+ e ^ " ^ W

( / r r N N λ / / * r Ί \ Ί
S 7 1 O S Λ \ I max s e y, l > α?;χ I I / m a x <e J y, l > α^χ I >

I V^x L J / \Jx L J / J
Finally our assertion follows from the above inequality and (2.4). •

Proposition 2.5. Let (E, HE) be a nef line bundle on a compact Kάhler
manifold (X,ωχ). For a given sequence of positive numbers {ηk}k>i decreasing to
zero, let {φk}k>i be a sequence of smooth functions on X such that

(2.5) ΘE + ddcφk + ηk^x > 0 on X and sup^fc = 0,
x

where ΘE = ddc(— log hE).
Then there exist an almost plurisubharmonic function φ^, a sequence of smooth

functions {ψk}k>i on X, and a sequence of positive numbers {sk\k>i decreasing to
zero such that
(i) ΘE + ddcψoo > 0; i.e., E is pseudo effective on X
(ii) ΘE + ddcψk + ε^ωx > 0 and ψoo < ψk < 1 on X for any k > 1
(iii) ψk converges to φ^ in Lλ(X) and almost everywhere on X.

Proof. By applying Lemma 2.2 to ΘE + Vk^x, if necessary, taking a subse-
quence, there exists a limit φ^ G Lλ{X) such that {Φk}k>i converges to φ^ in

). If necessary, taking a subsequence, we may assume that :

(i) WΨk - ψooWmx) < -^

(2) ΘE + dd^oo > 0.

(2) follows from the weak continuity of dd and (2.5) immediately. Locally ωx can
be written ωx = ddcΦ by a smooth strictly plurisubharmonic function Φ. By (2.5)
(resp. (2)) — loghE + ηk& + Φk (resp. — \oghE + ^c») defines locally a smooth
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plurisubharmonic function θk (resp. a plurisubharmonic function floo). For every k
we put

Then Xk satisfies the following properties for any k > 1 :

(3) Hλ

(4) ΘE + ddc\k + ηkωx > 0.

(3) follows from (1) and (4) follows from the following local equality :

Xk = loghE -

because max{^, θ^-^ηkΦ} is plurisubharmonic. Since λk is locally bounded, the Le-
long number of λk is zero at any point of X. Therefore by Demailly's regularization
result for almost plurisubharmonic functions (cf. [1], §3. the proof of Propositions
3.1 and 3.7), there exist a sequence of smooth functions {φk}k>i and a sequence of
positive numbers {δk}k>ι decreasing to zero such that

(5) (̂ oo < λk < φk < 1 on X

(6) ΘE H~ ddcφk + {τjk + δk)ujχ > 0 on X

(7) \\φk-XkhHx}<lk

for any k > 1. Setting εk := ηk + 2δk and if necessary, taking a subsequence, we
obtain the desired sequence {φk}k>\. This completes the proof of Proposition 2.5.

D

3. On cohomology groups of nef line bundles tensorized with multiplier ideal
sheaves on compact Kahler manifolds

Let X be a connected compact Kahler manifold of dimension n provided with a
Kahler metric ωx. Let E (resp. F) be a nef (τesp. semi-positive) line bundle provided
with a smooth metric HE (resp. hp with <9i? = ddc(— loghp) > 0) on X. Let (/?oo be
an almost plurisubharmonic function on X with ΘE + ddcφoo > 0 determined in
Proposition 2.5 and let T(ψoo) be the multiplier ideal sheaf associated to ψoo. For
(£>oo we fix a sequence of smooth almost plurisubharmonic functions {φk}k>ι taken
as in Proposition 2.5. We set :

and he k — hcG~φk
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for any k with 0 < k < oo. Here if k = 0, then we set ̂ Ξ O and do not specify it

in the notations below.

Lv^q(X, G) be the L2-space of G-valued square integrable (p, q) forms provided

with the inner product ( , ) k relative to ωx and hc,k, and let || \\k denote the

norm defined by the inner product. L™(X, G) can be regarded as a subspace of

L%q(X, G) for any k with 0 < k < oo. Let ϋ^ denote the adjoint operator of 8

in L™(X,G) (cf. 1.6). The space N^q(8) of null solutions for 8 in L%q(X,G) is

decomposed strongly as follows :

(3.1) N£'q(8) = R

where H^q{X,G) := {u e L^q(X,G) : 8u = ϋ{k)u = 0} for any q > 1 and
0 < k < oo. We denote H%'q the orthogonal projection onto H^'q(X,G) for every

k with 0 < k < oo.

Setting K^q(X,G) := Kernel{Hn^ : H^(X,G) -+ Hn*(X, G)} (cf. 1.7, The-
orem), we define a subspace W^9(X, G) of H^q(X, G) by the following orthogonal

decomposition relative to ( , )oo :

H£q(X, G) = H^iX, G) 0 K£?{X, G).

Since /C^(X, G) = ̂ S g ( ^ , G) Π i?n ' 9(a), the space 7ί^ 9(X, G) is characterized as

follows.

(3.2) u e n^q(X, G) if and only if u e N^φ^) and (u, dw)^ = 0

for any w e L^^iX.G) with dw e L^9(X,G).

We define a homomorphism

by the composition of the homomorphism

induced by the ς-times left exterior product by ωx with the orthogonal projection

fτom Nn'i(B(oo)) to H%?(X,G).

The following lemma is very useful (cf. [3, (4.10)]).

Lemma 3.3. Let W be a holomorphic line bundle on X provided with a smooth

hermitίan metric hw> Let Θ be a smooth real (1,1) differential form on X and let

{Xj} be the eigen-values ofθ relative to ωx with λi < λ2 < , . . . , < λ n (which are
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continuous functions on X) i.e., θ(x) = V—ΪΣ™=1 λj(x)dzj A dzj with ωχ(x) =

λ / ^ Ϊ Σ ^ i dzj Λ dzj, x eX. Then ifv(x) = ΣvAn,BqdzA™ Λ dzB* G Cn'q(X, W)

with q>l, the following holds

(Σ
\An\=n,\Bq\=q

In particular setting δq := ΣQj=i ^j w^tn Q ̂  1 the following holds

(3.4)

The nefness of E enables us to show the following theorem.

Theorem 3.5. £ ? x is surjective and the Hodge star operator * relative to ωx

yields a splitting homomorphism

with ^ΛχΛ ° δ?, = id. Furthermore ^? 0 0 ) = Lq on Imaged? , for any q > 1.

Proof. If H^q(X, G) = {0}, then we have nothing to prove. Hence we assume

n^{X,G) φ {0} and take u G Ή^q{X,G) with ||w||oo = l We claim that *u G

Γ ( X , X ( ( ^ o o ) 0 Ω ^ " g ( G ) ) , which implies that Cq

{oo) = Lq is surjective by Lq o * =

c(n, g)id on the space of (n, g) forms for the uniquely determined complex number
c(n,<l) Φ 0 We have only to define δ q , := c(n, g)" 1 *.

We note that u has the following orthogonal decomposition by (3.1) :

(3.6) u = Bwk + # £ ' » , \\8wk\\k and | | ^ 9 H | | f c < 1

for any k with 0 < k < oo. Setting ix̂  := H^q(u), we may assume life / 0 for

any k. From ||ιzfc|| < e||ίZfe||fc < e, taking a subsequence, {uk} has a weak limit

^oo G L n ' 9 (X,G) with <9uoo = 0. {5iί;fc} also has a weak limit ί;^. Since Rn>q(d) is

closed, there exists w* G Ln ' ς f~1(X, G) with t^o = dw*. Therefore we obtain

(3.7) u = dw*+u00 in Ln>q(X,G).

We show that ^u^ G Γ{X,l{φoo)^Q^q{G)) and ̂ oo G 7V^q{X,G), which im-

plies δit;* = 0 by (3.2); i.e., Uoo = u.

By Calabi-Nakano-Vesentini's formula on compact Kahler manifolds (cf. [14,

Proposition 1.2]), we obtain the following integral formula :

\\dv\\l + \\0(k)v\\l = \\Ml + (e(θG+ddcφk)Λv,v)k
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for any G-valued smooth (n, q) form v on X, ΘQ := ΘE + Θp and k > 1. Since

gIMIfc = (LΛϋ,υ)fc, by Proposition 2.5, (ii) and the semi-positivity of ΘF (cf. (3.4)),

we obtain the following inequality :

(e(ΘG + ddcφk + εkωx)Λuk,uk)k

> (e(ΘG + ddcφk + ε/e^x)^^, ifcfc)fc > 0.

Therefore when k tends to infinity, we obtain

\\$uk\\2

k < εkq\\uk\\2

k < εkq ^ 0.

By ΰ = — * <9* and ||<9 * tifc||2 < | | ^ f c | | | , i ^ satisfies 5 * u^ = 0 in the sense of

distribution. Therefore ^u^ e Γ(X,Ω,7^q(G)). Setting uk = uke~φk/2 and, if neces-

sary taking a subsequence, ufc converges weakly to u°° £ Ln'q(X,G) by \\uk\\k < 1.

Let V be the analytic subset (might be empty) defined by X(φoo). Since e~φ°° is

locally integrable on X \ V, e~φk converges to e~φ°° in LX{K) for any compact

subset K in X \ V by ^oo < </?£ and Lebesgue's dominant convergence theorem.

For every unvalued smooth (n, q) form v with compact support in X \ V, by setting

K := Supp(τ ) and denoting \V\G the pointwise length of v relative to ωx and ho,

we obtain from (3.6) :

lim < lim sup M
k—> oo

< esup V\G
k—+oo

Here we have used : (α — 6)2 < α2 — b2 if α > b > 0. Hence we get :

(u°°,υ)= Km(uk,v)= lim (uk,υe-φoo/2) = {uooe'^12,v).
k—>-oo k—> oo

This implies u°° = Wooe"^/ 2 on X\V as current and so u^ G ̂ ς ( ^ , C?) because

^oo G Ln>«(X,G). Therefore we get *Uoo e Γ(X,X{φoo)(^^n

χ-
q{G)).

Furthermore if w G L ^ - i ^ G ) with <9w G L ^ ( X , G), then w G L ^ ' 9 " 1 ^ , G)

with dw G L^'ς(X, G) for any k with 1 < k < oo because (̂ ^ is smooth. Therefore

by ϋkuk = 0 and Lebesgue's dominant convergence theorem, we obtain :

k—•oo

e-'e- - e-<P*}\dw\%\\LHX) = 0.

Therefore ux e H^q(X,G) by (3.2). This completes the proof of Theorem 3.5.

D
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P r o p o s i t i o n 3 .8. Every u e W^q(X, G) with q>l satisfies the following :

(3.9) (e(ΘG + ddcφ)Λu, u)^ = 0

for any smooth real-valued function φ on X.

Proof. By the equations du = ϋu = 0, we get BUQU = e(0G)Au and

de(dφ)*u = t(ddcφ)Λu by [14], Propositions 1.2 & 1.5. Since ΘG and ddcφ are

smooth on X, we obtain dϋGu and de{βφ)*u G L^q(X,G) by Lemma 3.3. The

conclusion follows from (3.2). •

In view of the L2-estimate (3.9), we can show the following vanishing theorem

for «£.*(*:, G).

Theorem 3.10. If q > n - πmx{κ,*(E),κ*(F)}, then H^q(X,G) = 0, where

κ*(E) is defined by «*(£?) : = max{ I : Λ cRiι(E) / 0 G H2l(X, R)} and so on.

Proof. By (3.9), if u e n^q(X, G), then for any smooth real-valued function

φ on X and ε > 0 we obtain

(3.11) 0 < (e(ΘG + ddcφ + εωx)Λu,u)oo = qεWuWoo

and particularly

(3.12) (e(θF)Λu,u)oo = 0.

If q > n — κ*(F), then the integrand of (3.12) is non-negative on X and positive

at least one point of X by (3.4) (cf. [16], p. 277, Fact 2.7). Therefore u should vanish

on X identically because *u is holomorphic and X is connected.

Assume q> n- κ*(E) and u^O e H^q(X, G). For any ε > 0 we set :

p(ε) := / (ΘG + εωx)
n I I ωx .

Jx I Jx

Since E is nef, for any ε > 0 there exists a smooth real-valued function φε on X

so that ΘG + ddc(/?ε + εu;χ is a Kahler metric. Furthermore by [21], there exists a

smooth real-valued function ψε on X such that ηε := ΘG + ddc(φε + ̂ e) + ε α ; x i s

a Kahler metric on X with

(3.13) 7^=p(ε)α/\

Let {λε?j} be the eigenvalues of ηε relative to ωx and let δε^μ be a continuous

function defined as in Lemma 3.3 relative to {λejJ } for any ε > 0 and 1 < μ < n.
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Set U(ε) := {δε,q < 2qε} for any ε > 0. By applying φε -f ψε to (3.11), and Lemma
3.3 we can show

U(ε)

This implies U(ε) Φ φ for any ε > 0. We claim that there exists a positive constant
C\ not depending on ε such that J^, , dvx > CΊ > 0 for any ε > 0. If J^, , dυx

converges to zero, then fu(ε) \u\2e~φ°°dvχ also tends to zero because |w|̂ e~^°° is
integrable. However this contradicts to the above inequality.

Furthermore since $x*(Ίε)ωtχ~1 = fχe(Θc + εωχ)ω7^1 is non-negative and
bounded from above, there exists positive constant C2 and C3 not depending on ε
such that 0 < δε,n < C2 on an open subset Q(ε) C U(ε) with fQ,ε\ dvx > C3 > 0.
Hence we obtain

n

(3.14) Y[ λεJ < (2q)qC™-qεq on Q(ε) for any ε > 0.

On the other hand since P(ε) = Π n = i λεj is a polynomial in ε of degree n and E is

nef, letting P(ε) = Σ™=0 CLi£ι we obtain : ai > 0 if i > n — K and a^ = 0 i f z < n — K

by the definition of K = κ*(E) and (3.13). This implies that

n

(3.15) α n _ κ ε " - κ < Γ J λ e j on X

By (3.14) and (3.15) we can get an-κε
n~κ < (2q)qC^~qeq, which is a contradiction

as ε tends to zero because q > n — K. The idea of this proof is due to Enoki [5].
This completes the proof of Theorem 3.10. •

Next we show the following injectivity theorem.

Theorem 3.16.
(i) If the j-times tensor product E®j ofE admits a non-trivial holomorphίc section

σ with

C(σ) : = ess. sup \(j\2

E®je~^φ<x> < 00
x

then the homomorphίsm

induced by the tensor product with σ is well defined and particularly injectίve
for any q > 0, i and j > 1.
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(ii) If the k-times tensor product F®h ofF admits a non-trivial holomorphic section
θ, then

induced by the tensor product with θ is well defined and particularly injective
for any q>O,j and k> 1.

Proof of (i). For u e n^q{X,E^ (g) F), setting v = σ ® u we have
only to show (v.dw)^ = 0 for any w e LΊ^q~1{X, E^+rt ® F) with dw G
L ^ ( X , E ® ( i + ^ ® F ) . Since dυ = ΰυ = 0, and <9F is semi-positive, by Calabi-
Nakano-Vesentini's formula, Lemma 3.3 and Proposition 3.8, we can conclude :

ddcφk + εfcα;x) + β F ) ^ , υ)k

) \\u\\l) \\u\\lo -»• ° a s k^1 )

Hence by Lebesgue's dominant convergence theorem we have

(υ, Bw)^ = lim (υ,dw)k = lim (ΰ^v,w)k = 0.
k-^-oo k—+oo

Proof of (ii). Since the length of 0 is bounded, the proof can be done similarly.
This completes the proof of Theorem 3.16. •

REMARK. If the almost plurisubharmonic function φ^ is determined inde-
pendently of the choice of {εk}, then from the above proof it can be verified that
H^q(σ) : H%?(X, E®1 ® F) —• H^q(X, E^+V ® F) is well defined.

Comment. In the situation of this section, setting F = the trivial line bun-
dle, Enoki claims that Hn'q(X,E) = 0 if q > n - κ*(E), which implies that
Hq(X,Ω^(E)) = 0 if q > n - κ*(E) (cf. [5, Theorem 0.1]). His idea of the proof
consists of two parts i.e., an L2-estimate for the harmonic forms in Hn>q(X, E) and
the argument used to show Theorem 3.10. In fact he claims the following L2-estimate
(cf.[5, Proposition 3.1]) :

Let E be a holomorphic line bundle provided with a smooth hermitian metric hE

on a compact Kάhler manifold X of dimension n provided with a Kάhler metric ωx.
Then for any real-valued smooth function φ on X and u e Hn>q(X, E) with q > 1,
setting η := eφ the following inequality holds

(ηe(θE + ddcφ)Λu,u) < 0.
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Here we should note that any specific condition for the curvature of (E, HE) is not
assumed to show the above inequality in his proof. However the sign of the left
hand side can not be always determined in the following sense.

First for any £"-valued smooth (n, q) form v on X we can obtain the following
integral formula (cf. [17, §1, Proposition 1.11]) :

\\y/η{β + e(dφ))v\\2 + I I V ^ H I 2 = \\y/η@ " e(d<p)*)v\\2 + (ηe(θE + ddcφ)Λv, v).

Hence if u G Hn'q(X,E), by setting w — *it and using e(dφ)* = *e(d<p)* we can
verify the following from the above formula :

ddcφ)Λu,u) = -\

e(5φ))w\\

Here we note that dw is primitive i.e., Λdw = 0 by du = 0 and ΰ = —\/—l[d,Λ].
For any £"-valued smooth (n — g, 1) form α, let a = ot\ +0.2 be the primitive decom-
position of the form i.e., Aoc\ — 0 and a.2 — l/(q+l)LΛa (cf.[20, Chap.V, Theorem
1.8]). Here the coefficient l/{q + 1) of 0:2 is crucial. Since e(dφ)* — y/—l[e(dφ), A],
by applying the decomposition to a := e(dφ)w and the above equality it can be
verified that

(ηe(θE + ddcφ)Λu, u) = -\\y/η(dw

and

a2 = 0 if and only if e(dφ)u = 0.

Therefore if u G Hn>q(X,E) satisfies the equality

{ηe(θE + ddcφ)Λu,u) = -\\y/η(dw + αi) | | 2 < 0

for any real-valued smooth function φ on X as he claims (see the last line of his
proof of Proposition 3.1 in [5]), then by the above observations an E* (the dual
of i£)-valued harmonic (0,n — q) form *(hu) satisfies the 8-Neumann condition on
every open ball with smooth boundary contained in any local coordinate neighbor-
hood of X. Hence such a form should vanish on it in view of the solvability for
8 on open balls and its boundary condition (cf.[17, §4. Theorem 4.3, (iv)]), and
so identically on X by a unique continuation property for harmonic forms, which
implies Hq(X,n^(E)) = 0. However Hq(X', Ω£(E)) does not vanish without any
specific condition in general.

4. On cohomology groups of nef line bundles on compact Kahler manifolds

First we state the following Lefschetz type theorem (cf. [5, Theorem 0.3]).
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Theorem 4.1. Let X be a connected compact Kάhler manifold of dimension n
provided with a Kάhler metric ωx. Let E (resp. F) be a nef(resp. semi-positive) line
bundle provided with a smooth metric hE {resp. hF with ΘF = ddc{— log hF) > 0) on
X. Letψoo be an almostplurisubharmonίc function with ΘE+ddcφoo > 0 determined
in Proposition 2.5 and letl(φoo) be the multiplier ideal sheaf associated to φ^. Then
for any q> 1 the homomorphism

Lq : Γ(X,I(φoo)(g)Ωn

χ-
q(E(g)F)) —> Imaged(φ o o) C Hq(X, Ωx(E(g)F))

is surjective and the Hodge star operator relative to ωx yields a splitting homomor-
phism

δq : I m a g e d * , ) —+ Γ(X,X(<Poo) ( g ) Ω Γ " ( ^ ® F))

with L* o 6« = id, where tq(φoo)
ΩX(E (g)F)) is the canonical homomorphism induced by ι : Z(φoo)
<-+ Ωx(E(g)F).

Proof. The conclusion follows from Theorem 3.5 because the image ofiq(φ00)
can be identified with H^q(X, E(g)F) by the commutative diagram in 1.7,Theorem.

D

We denote ^((^oo) the compact analytic subset of X defined by the multi-
plier ideal sheaf X(φ<χ>) and define d{φoo) := maxjdimc V{φoo)Cί : V{φoo)Oί is
any irreducible component of V{φoo)} (we set d{φoo) = —1 if V{φoo) = φ i.e.,
X{φoo) = Ox). It is clear that d(jVoo) < d{kφoo) if 1 < j < k, and £9(< ôo) is bi-
jective (resp. surjective) if g > cί (y?oo) + 1 (resp. q > d{φΌO)). If the Lelong number
of ψoo is less than one everywhere on X, then d{φoo) = —1 (cf. [3, (5.6) Lemma]).
Under the hypothesis of Theorem 4.1, by Theorem 3.10 we can obtain the following
vanishing theorem immediately (cf. [5], [9], [15], [19]).

Theorem 4.2. Suppose q > n — max{/ί*(El), κ*(F)}. Then

iVoo) :

is the zero homomorphism. Especially the following assertions hold :
(i) If iq(ψoo) is surjective {resp. injective) and q > n — max{/ί*(E), «*(F)}, then

= 0 {resp. Hq{X,I{Ψoo) <g)Ω£(£®F)) = 0)

(ii) Ifq > max{n — maxj/ ί^) , κ;*(F)}, d{φoo)}, then

where κ*{E) {resp. κ*{F)) is the numerical Kodaira dimension ofE {resp. F).
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REMARK 1. The homomorphism ι9(<poo) is not always injective (cf. [4, Exam-

ple 1.7]).

At last we can get the following theorem from Theorem 3.16 (cf. [5, Theorem

0.2] and [10, Theorem 2.2]).

Theorem 4.3. Under the hypothesis of Theorem 4.1 the following assertions

hold:

(i) Suppose a non-trivial holomorphic section σ of E®j satisfies ess. s u p x H^®.,-

xe-jVoo < QQ and q > d((i -h j)ψoo) + 1. Then the homomorphism

Hn>q(σ) : ̂ ( I , Ω ^ ( ^ ( g ) F ) ) —•* Hq(X, Ω£

induced by the tensor product with σ is injective for any i and j > 1.

(ii) Suppose θ is a non-trivial holomorphic section of F®j and q > d(φoo) + 1.

Then the homomorphism

Hn>q(θ) :

induced by the tensor product with θ is injective for any i and j > 1.

REMARK 2. Theorems 4.2 and 4.3 yield us an indication about Kawamata-

Viehweg type vanishing theorem for nef line bundles on compact Kahler manifolds

i.e., Hq(X, Ω^-(L)) = 0 if a holomorphic line bundle L on a compact Kahler

manifold X with dime X = nis rce/and good; i.e., κ(L) = «*(L) and <? > n—«*(L),

where «(L) is the Kodaira dimension of L. In this situation by replacing X by a

bimeromorphic Kahler model of X there exist a surjective morphism π : X —> Y"

with connected fibres from X to a projective algebraic manifold Y with dime Y =

κ+(L) and a nef-big Q-divisor β o n F such that (i) L = π * 5 , (ii) kB = A + D

with a very ample divisor A and an effective divisor D on Y for k > 0 (cf. [13,

§2, Proposition 2.14]). This implies that L®k is written by the tensor product of

a semi-positive line bundle π*[A] and a pseudo effective one π*[£>], and admits a

non-trivial section θ which vanishes along π*D (cf. Theorem 4.3 and [17, §6]).
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