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Abstract
Let G be a finite group,H a normal subgroup o6& andb and c block idempo-
tents of OG and OH respectively. Under the assumption ti@a§(R) C Oy, p(H) for
a Sylow p-subgroupR of Oy p(H) andc is also a block idempotent a@ Oy (H),
we give two equivalent conditions about whérGb and OHc are natural Morita
equivalent of degree (see Theorem 1.5).

1. Introduction

1.1. Fix a prime numbem. Let O be a complete discrete valuation ring with a
residue fieldk of characteristicp. Let G be a finite group,H a subgroup ofG andb
and ¢ block idempotents of9G and OH respectively. In terms of the terminology of
A. Hida and S. Koshitani [5]0Gb and OHc are said to be naturally Morita equivalent
of degreen for a positive integer numban if there exists an unitary)-subalgebraS
of OGb such thatS is a full matrix algebra ove® of degreen and the map

OHc®p S— OGh, XQ® Yy Xy

is an isomorphism of)-algebras. WherH is normal inG and O = k, this definition
is firstly due to B. Kilshammer [6].

1.2. For our guestion below, now we make the additional assumptiat the
characteristic ofO is zero, the quotient fieldC of O is big enough for all algebras
involved below, the residue fielld is algebraically closed an#l is normal inG; the
assumption will also be kept throughout this paper. As a egusnce of [13, Theo-
rems 2 and 3], we can easily conclude that the following tloemditions are equiva-
lent:

1.2.1. the mapOGb — OHc, x +— xc is an O-algebra isomorphism;

1.2.2. the restriction fronG to H induces a bijection between the sets of all non-
isomorphic simple modules @Gb andOH c and the quotient grou/H is a p’-group;
1.2.3. the restriction fromG to H induces a bijection between the sets of all non-
isomorphic simple modules dfGb and KHc.
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2 Y. FAN, Q. YANG AND Y. ZHOU

Noticing that Condition 1.2.1 is actually saying thi@Gb and OHc is naturally Morita
equivalent of degree 1, we ask ourselves a question: carstitisment above be gen-
eralized to natural Morita equivalences of degrée In this paper, we investigate the
question.

1.3. Now we begin with some preparations in order to state our ntz@orem.
Let M be anOG-module andN an OK-module. We denote by R%(SM) the restric-
tion of M from G to K and by In(ﬁ(N) the induction of N from K to G. Given
a positive integer numben, we denote bynM the direct sum ofn copies of M.
Obviously the producb - M of b and M is an OG-submodule ofM and b acts on
b. M as the identity homomorphism. Whdn. M = M, then we say that th€© G-
module M is associated to the block of OG. We denote by IBHf) the set of all
non-isomorphic simpl€)G-modules associated tm All notations above except B}
can be slightly modified to apply t&#G-modules. In general, we denote by by(the
set of all non-isomorphic simpl&£G-modules associated to Given a positive integer
numberm, vy(m) denotes the largest non-negative integer nuntbguch thatp' | m.

1.4. Assume thatbc # 0 andb and ¢ have a common defect grouP. Since
bc # 0, it is well known (refer to [3]) that there exist block ideotpntsbp and cp
of kCg(P) and kCy(P) such thatbp Br&¢(b) = bp, cp Br&"(c) = cp and bpcp #
0. SinceP is a defect group ob andc, bp and cp have defect grouZ(P), thus
kCs(P)bp andkCy (P)cp are nilpotent (refer to [10]) and have only one simple mod-
ule, sayVy, andV.,. SinceH is normal inG, so isCy(P) in Cg(P); then by Clifford
theory, we can conclude that the dimension d¥g,) of V., over k divides the di-
mension dim(Ve,) of V. over k. Note that @, bp) and (P, cp) actually are max-
imal Brauer pairs ofo and ¢, which are unique up td&s- and H-conjugation (refer
to [1]). Therefore the quotient digfVy,)/dimk(Ve,) is independent of the choices of
bp and cp. We denote this quotient bg(b, ¢). Note that by [10, 1.4.1]n(b, ¢c) =
/dimg(kCg (P)bp)/dimg(kCr (P)cp); even in order to computa(b, c), it suffices for
us to choosebp and cp of kCg(P) and kCy(P) such thatbp Br&¢(b) = bp and
cp Bréf(c) = cp.

Theorem 1.5. Let G be a finite group and H be a normal subgroup of G such
that Cy(R) C Op,p(H) for a Sylow p-subgroup R of ©,(H). Let b and c be re-
spective block idempotents 6fG and OH and let n be a positive integelf c is also
a block idempotent 0© Oy (H), then the following conditions are equivalent
1.5.1. OGb andOHc are naturally Morita equivalent of degree n
1.5.2. for any simpleOG-module S associated tq there exists a unique simpl8H-
module § associated to ¢ such th®es(S) = nS; and b-Ind$(Sy) = nS the cor-
respondencéBr(b) — IBr(c), S+ Sy is a bijection and n< n(b, c).

1.5.3. vp(|G : H|) = vp(n), for any simpleXG-module V associated to, bhere exists
a unique simplelCH-module V; associated to ¢ such tha&es;(V) = nVy, and the
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correspondencérr(b) — Irr(c), V — Vy is a bijection and n< n(b, c).
Moreover in this casen is equal to b, c).

REMARK 1.6. 1. Conditions 1.5.2 and 1.5.3 both imply thatind c have the
same defect groups, sgb, c) makes sense. For details, refer to the proofs of Theo-
rems 3.6 and 3.7.

2. Whenn =1, by [4, Chapter IV, Theorem 4.5], it is easily checked thandi-
tions 1.5.2 and 1.5.3 both imply that the quotient gr@gipH is a p’-group; in addition
n < n(b, c) automatically holds. Therefore the theorem above coJeeseguivalences
between Conditions 1.2.1, 1.2.2 and 1.2.3.

3. There are examples to explain why the conditiog n(b, c) is necessary.

2. Fong’s reduction

In this section, anD-algebraA that is involved is always associative, unitary and
O-free of finite rank as ar®-module; A* and J(A) denote the multiplicative group
of all invertible elements ofA and the Jacobson radical &f respectively. Occasional-
ly, in order to avoid confusion, we denote by bf the identity element ofA. A
homomorphismf : A — B betweenO-algebras is an embedding ff is injective and
f(A) = f(1a)Bf(1n).

2.1. Let K be a finite group anK be ak*-group with thek*-quotient K en-
dowed with the homomorphism: k* — K. By K, we can construct twd*-groups:
the groupK endowed with the group homomorphiski — K sendingi onto p(1 %)
and the opposite grougK(° with the group homomorphism; in order to differ from
the k*-group K, we denote the firsk*-group by K°. But the twok*-groups are iso-
morphic: there is an isomorphism &f-groups (2)" - Ke°, x> xt (refer to [9]).
For any subgroup. of K, we denote byl its inverse image inK and for any el-
ementx € L, by % a liting in K of x. When L is a p-group, L can be uniquely
decomposed as the direct productx L (refer to [9, Lemma 5.5]) and thus we al-
ways regardL as a subgroup oK. Let K be anotherk*-group with thek*-quotient
K. Then the central product & and K over k* defines ak*-group K ® K with the
k*-quotient isomorphic toK x K and we identify thisk*-quotient with K x K. We
also identify K with the diagonal subgroup i x K and denote by K the inverse
image inK ® K of K. ThenK x K is a newk*-group with thek*-quotientK .

2.2. Obviously the surjective homomorphisti — k induces a surjective group
homomorphismO* — k*; sincek is algebraically closedk is perfect and thus by [14,
Chapter II, Proposition 8], there exists a unique seckbr> O* of this group homo-
morphism. Through this section, we can regétdas a right module over the group al-
gebra ofk* over O. Let K be a finite group an be ak*-group with thek*-quotient
K. Obviously the inclusiork* c K induces a leftok*-module structure on the group
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algebra®K of K over ©. Now we consider the tensor produbt® oi- OK and define
a distributive product or® ® - OK by the equality

@®x)(b®y) =ab® xy

for a,b e © andx,y € OK. Then the tensor produc® ® ox- OK with the above prod-
uct becomes a®-algebra; we call it the twisted group algebra Kfover © and de-
note it by O, K. Obviously thek*-group isomorphismK)° 2 K°, x — x~! induces an
isomorphism of(-algebras from the opposite ring)(K)° to ©,K°; moreover since
the map?,(K ® K°) - 0,K ®0 O,K° sending I (x®y) to (1 X) ® (1®y) for

Xx®ye K ®K®° is an isomorphism, we can define a 1€, (K ® K°)-module struc-
ture onO,K by the equality X ® y)a = xay™* for x,y € K anda € O, K. The tensor
product ®o O,K is also what we are concerned below and we denote ileE(.

2.3. Recall that an®-algebraA is called aK -interior algebra (see [9, 5. 10]) if
there exists a group homomorphism K — A*. For anya € A and liftings X, ¥ in K
of x, y € K, we will write ¢(X)ap(y) as Ray for convenience. Obviously whef =
%1, the productkak ! is independent of the choice & in K and therefore we also
often write it asa* . Moreover the mapx: A= A a— a*" is an automorphism,
the mapK — Aut(A), X — ¢ is a group homomorphism, thus is a K-algebra. Let
C be anotherK -interior algebra; ar®-algebra homomorphisnf : A — C is called a
homomorphism ofK -interior algebras iff (Ra) = & f(a)y for anya € A and liftings
%,y in K of x,y € K. Let K be anothek*-group with thek*-quotientK and A’ be a
K -interior algebra; then th& -interior algebra structure oA and theK -interior alge-
bra structure onA’ determine aK ® K -interior algebra structure on the tensor product
A®o A, which, by restriction, induces K * K -interior algebra structure cA®p A'.

2.4. Let A be aK-interior algebra andP a p-subgroup ofK. We denote by
AP the subalgebra consisting of af-fixed elements ofA. Clearly AP is a Cy (P)-
interior algebra with the homomorphis@y (P) — (AP)*, % — X1, whereC(P) is
the centralizer ofP in K. For any subgrou of P, we denote by 'lg the relative
trace mapA® — AP and by Ag its image. We definéA(P) to be the Brauer quotient
k®o (AP/ Y5 AZ), whereS runs over the set of proper subgroupsRf and denote
by Bré the Brauer homomorphis/” — A(P). Note that A(P) # 0 forcesP to be
a p-group. WhenA = O.,K and P is a p-subgroup ofK, by [11, Proposition 2.2],
Bré induces an isomorphismk.Cy (P) = A(P); in this case, we always identifA(P)
with k.Cy (P) through this isomorphism.

2.5. In this paragraph, we generalize the definitions and natatin Introduction
to twisted group algebras. L&t be a subgroup oK ande andg be block idempotents
of O,K and O, L respectively.0,Ke and O, Lg are said to be naturally Morita equiv-
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alent of degreen for a positive integer numbaer if there exists a unitary)-subalgebra
S of O,.Ke such thatS is a full matrix algebra ovet? of degreen and the map

O*I:g®@ S— 0,Ke, X ® Y > Xy

is an isomorphism of)-algebras. LetM be an®,K-module andN an O, L-module.
We denote bynM the direct sum ofm copies of M for a positive integer numbem,

by Re%(M) the restriction ofM from O,K to O, L, and by Inc]‘f(N) the induction of

N from O,L to O,K. Leti be an idempotent of,K. We denote by -M the product
of i and M. Note that ifi commutes with a unitary subalgebi of 0.K, then the
O, K-module structure orM induces aB-module structure ori - M. Soe- M is an
O, K-module structure and whem- M = M, then we say that th&, K-module M is
associated to the block of O,.K. We denote by IBK) the set of all non-isomorphic
simple 0, K -modules associated ® All notations above except IBg[ can be slightly
modified to apply tokC,. G-modules. We denote by le) the set of all non-isomorphic
simple K, K -modules associated ®

2.6. Let K be a finite group,K a k*-group with thek*-quotientK, L a normal
p’-subgroup ofK and f a K-stable block idempotent aP,L. ThenK acts on the full
matrix algebra®, L f over © and thus by the Skolem—Noether theorem, there exists a
group homomorphism

p: K = Aut(O,L f) = (O0,L f)*,0".

We denote byK the set of all elementsc(x) such thatp(x) is the image ofc in
(O,L )*/O*, wherec € (O,L f)* andx € K. Obviously K is an O*-group with the
O*-quotient K with the homomorphisnO* — K, A — (&, 1), the mapL — K, R
(%, x) is an injective group homomorphism and its image is norm& j in this sense,
we identify L with a normal subgroup oK.

2.7. Now we claim that there exists a subgrodpof K which is ak*-group of
k*-quotient K and containsl. Consider the quotient grouf /L. Obviously LO*/L
is a central subgroup ok /L isomorphic to 1+ J(©) and K/L)/(LO*/L) =~ K/L,
thus we can regarK /L as a central extension df/L by 1+ J(O). Let P be
a Sylow p-subgroup ofK. Sincel is a p’-group, the image ofP in K/L is iso-
morphic to P; so we identify P with its image inK/L. Again sincel is a p'-
group, it is well known that, L f is a full matrix algebra ove® and has th&)-rank
prime to p, thus the action of? on O,L f can be lifted to a group homomorphism
P— (O*I: f)* (see [10, Paragraph 6.2]). This implies that there existsoapghomo-
morphismé: P — K /L such that for anyu € P, the image of(u) through the surjec-
tive homomorphisnK /L — K /L is u. Since 1+ J(O) is a p/-divisible group, the sur-
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jective homomorphisnK /L — K /L splits and thus has a sectist/L — K /L. Then
the inverse image of the image &f/L in K/L in K is just the desiredk*-group K.

2.8. Consequently we have a group homomorphigmK — (O,L f)* and thus
O.L f becomes & -interior algebra. Consider thie*-group K = K % K°. Obviously
L = L« L° has a normal subgroufk ® X! | x € L} isomorphic toL; we still denote
this group byL. We claim thatL is normal inK. Indeed, for anyy ® ¥ € K and
x@Xtel, wehae {@NERXHNPI®N T =FNERXHP @Y =
991 @ yx1y~1 = &V ® (RY )~ since theK - and K -conjugation induce the same
action of K on L. Setlz = K /L. Then we obtain ek*—grouplé with the k*-quotient
K /L. Through the surjective group homomorphigtn — Ié we endow the twisted

group algebra®,K of K over © with a K-interior algebra structure.

Theorem 2.9. Keep the notations as iRaragraphs 2.6, 2.@nd 2.8. Then there
exists an isomorphism df -interior algebras

(2.9.1) O.Rf=0,lfg00.K.

In particular, the functors U—i-U and Vi 0,Li ®- V are inverse isomorphisms

between the categories of finitely generatedK f- and O, K-modules where i is a
primitive idempotent of), [ f.

The above theorem is also called the second Fong’s redutiieorem.
Proof. SinceO,L f is a full matrix algebra ovel®, by [8, Proposition 2.1],
the map

O.Lf ®0 Cp g (O.LT)=OKF, x®YH> Xy

is an isomorphism of)-algebras, Wherélo*kf(o*li f) is the centralizer o, Lf in
0O.K f. Let R be a set of representatives of cosets afl K and writeQO, K f as the direct
sumP,r(O:L f)X. Sincel is normal inK, it is easily computed that,, ¢ ;(O.L f)
is equal to the direct SU@XERC(O*I:U)A((O*I: f). For anyx € R, sincex and ¥ (X)
have the same action afi,L f by conjugation, %9 (x™2) € C(O*ﬁf),((O*I: f); moreover
by comparing theD-ranks, it is not difficult to findO%¥ (x~1) = C(O*tf)f((o*ﬁ f) and
thusC@*Rf((’)*E f) = P, OX¥(X71). Finally it is easily checked that the map —
Co.ks (O*I: f))*, KX — k¥ (X~ 1) is a group homomorphism with the kerrelin par-

ticular, the group homomorphism induces an isomorpr([srPE ~ CO*Kf(O*I: f). O

2.10. Keep the notations in Theorem 2.9. LBt be a subgroup oK contain-
ing L, N the quotient group oN in the quotient groufK = K /L, N, N and N the



NATURAL MORITA EQUIVALENCES OF DEGREEN 7

inverse images oN in K, K and K respectively, and<| the inverse image oN in
K. Consider®,L f as anN-interior algebra through the restriction of the strucktura
homomorphism of theK -interior aIgebraO L f to N and O, N as anN-interior al-

gebra through the homomorphishi — N C (O, N)* Then the isomorphism (2.9.1)
induces anN-interior algebra isomorphism

(2.10.1) ONf=0.Lf®00N.

In particular, the functorsX — i - X andY — O,Li ®c Y are inverse isomorphisms

between the categories of finitely generat®gN f- and O*ﬁl-modules. Leth be a
block idempotent of©,K such thathf #£ 0, h the corresponding block idempotent

of (’)*Ié determined byh through the isomorphism (2.9.1), a block idempotent of

O.N and[ the corresponding block idempotent 6%, N determined byl through the
isomorphism (2.10.1). Then by the isomorphisms (2.9.1) @t0.1) and the definition
of natural Morita equivalences of degree we can easily verify the following:
2.10.2.0,Kh and O.NI are naturally Morita equivalent of degreeif and only if

O.Kh and O, NI are naturally Morita equivalent of degree

2.11. Finally we claim the following:
2.11.1. for anyO*K -moduleV, O,Li ®o ReéS(V) Re% (0,Li ®p V), and for any

O,N-moduleY, O,Li ®0 IndE(Y) >~ IndE(O*Ll R0 Y).
The first isomorphism is obvious, so the rest is to prove tleorseé equality. We con-

sider O*Iz as a subalgebra aP,K f through the isomorphism (2.9.1) and th@sﬁ
is also a subalgebra @, N f. We claim that the map

(2.11.2) 0.Li ®0 Indf (V) - Ind (0. Li ®0 Y)

sendlngx®(y®z) to y®(x®2) is an isomorphism ob, K -modules, wheres € O, Li,
y € O, K andz e Y. Note that any element of Ir'fo{@ Ui ®o Y) can be written as

a sum of elements liky ® (X ® z), wherex € o,Li, y € (’)*K and z € Y; that
implies that the homomorphism (2.11.2) is surjective. Tier'i ®o Indg(Y) and

Ind,'g(O*I:i ®o Y) having the same&-rank forces (2.11.2) to be an isomorphism.

2.12. As consequences of Statement 2.11.1, we have the followings
2.12.1. If Sis a simpleO,Kh-module andSy is a simpleO, NI-module such that

Re%(S) =n§
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andh-lndﬁ(SN) =~ nSfor a positive integer numban, then Re% (i-9=n(-S) and
_ R N~ i

h- Indﬁ(l -§)=n(-S). A )

2.12.2. If W is a simpleX.Kh-module andW is a simpleX,.NI-module such that

Re< (W) = nw
for a positive integer numbenm, then Re%(i -W) = n(i - Wy).

Lemma 2.13. Keep notations as abovef O,Kh covers®,NI and ©,Kh and

0.NI have common defect grouptien O.Kh coversO, NI, ©.Kh and O, NI have
common defect groupsind n(h, 1) = n(h, I).

Proof. By the choices df andh, the isomorphism (2.9.1) induces an isomorphism
of K-interior algebrag?,Kh = O0,L f ®, O.Kh. Let P be a defect group df. Then

it follows from [12, Corollary 3.3] that the image d? in K, which is isomorphic to
P and we still denote byP, is a defect group ofi, O,L f has aP-stable basis and
(O*I: f)(P) # 0. So we can use [10, Proposition 5.6] to obtain the follow@)gy(P)-
interior algebra isomorphism

(2.13.1) k.Cy (P) Br&- (h) = (O.L f)(P) & k.Cg (P) Brg*é(ﬁ).

Fix a block idempotenhp of k,Cy (P) such that BS*K(h)hp = hp. Since O,L f)(P)
is a full matrix algebra ovek, there exists a block idempotenp of k.Cz (P) such that

Brg*K(ﬁ)ﬁp = hp and the isomorphism (2.13.1) induces an isomorphism

(2.13.2) k.Cg (P)hp = (O.L f)(P) ®« k.Cp (P)hp.

Since we are assuming that,Kh and O, NI have common defect group® is also
a defect group of),NI. Then similarly, we can find block idempoteris andip of

k.Cq(P) andk,C(P) respectively, such that BrN()lp = Ip, BION({)ip = Ip and
there is an isomorphism

(2.13.3) k.C(P)lp = (0. L f)(P) @k k.C (P)lp.

Finally since we are also assuming tl@tK h coversO, NI, (’)*Iéﬁ covers(’)*lill_ and
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thusn(h, 1) andn(h, I) make sense; by isomorphisms (2.13.2) and (2.13.3), we @an ¢
clude that

_ [dim(k.C¢(P)hp)
nh )= \/ dim (k. Co(P))

dimy(k.Cg (P)hp) oG D). -

‘J dimi(k.Cg(P)p)

3. Proof of Theorem 1.5

Lemma 3.1. Let K be a finite group and H a normal subgroup of Ket K
be a K-group with the k-quotient K and e and f block idempotents ®fK and
O, H respectively If O,Ke andO,H f are naturally Morita equivalent of degree,m
then for a common defect group P of e and tliere exists block idempotents and
fo of k.C¢(P) and kCy(P) such thatBr&-X(e)ep = ep, BIS-"(f)fp = fp and
k.Cg (P)ep and k.C,(P) fp are naturally Morita equivalent of degree m too

Proof. SinceO,Ke and O, H f are naturally Morita equivalent of degree, by
definitions, there exists a unitary subalgelsraf ©,Ke, which is a full matrix algebra
over O of degreem, such that the product i, K induces an isomorphism

0,Kex~S®p O, Hf.

This isomorphism implies thaP acts trivially on S by conjugation and then by [10,
Proposition 5.6], we obtain an isomorphism

k.Cg (P) Br&-K(e) = S(P) @ k,.Cyy (P) Br&-H(f).

Fix a block idempotenep of k.Cy (P) such that Bf*R(e)ep =ep. SinceS(P) =2 k®o

S, ep determines a unique block idempotefit of k.Cp(P) such that Bf*ﬁ(f) fp =
fp andk.C (P)er = (k®0 S) Q« kiCp(P) fp. O

3.2. Let H be a finite group andR a subgroup ofH. We denote by QH)R the
subalgebra of alR-fixed elements ofOH. Recall that a pointed group, on OH is
a pair (P, y) consisting of a subgrou® of H and a (OH)P)*-conjugate clasy of
primitive idempotents of @H)P. Another pointed grougR. is contained inP, if R <
P and there exist§ € ¢ andi € y such thatji =ij = j. P, is local if BrQH(y) # {0}.
Let ¢ be a block idempotent oOH. Then {c} becomes a point oH on OH. We
say thatP, is a defect pointed group ofc} or simply c if P, is a maximal local
pointed group contained il with respect inclusion. By [8, Theorem 1.2H acts
transitively on the set of all defect pointed groupsHy,. Fix i € y and set OH), =
i(OH)i. Then (OH), is called a source algebra ¢f; or simply c.
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3.3. Let P, be a defect pointed group of a bloclkof OH and denote by (P, ) the
stabilizer of P, in H and by (OH)(P,) the simple factor of @H)" such that the image of
y through the surjective homomorphisi®)” — (OH)(P,) is not zero. The obvious
action of Ny (P,) on (OH)® induces an action dfi;(P,) on (OH)(P,). By the Skolem—
Noether theorem, we have a group homomorphjsmNy (P,) — Aut(OH)(P,)) =
((OH)(P,))*/k*. We denote b)KIH(P,,) the set of all elementg(x) such thato(x) is the
image ofc in ((OH)(P,))*/k*, wherec € ((OH)(P,))* andx € Ny (P,). ThenNH(Py)
is ak*-group with thek*-quotientNy (P,) with the homomorphisnk* — IQIH(PV), A
(A, 1), and the ma@PCy(P) — NH(P},), X = (X, X) is an injective homomorphism,
whose image is normal iﬁJH(Py) and intersect&* trivially. We identify PCy (P) with
a normal subgroup olQIH(PV) through the injective homomorphism and then the quo-
tient NH(P},)/PCH(P) is ak*-group with thek*-quotientNy (P,)/PCy(P). Let G be
a finite group containindd as a normal subgroup ar€;(P,) be the stabilizer oP, in
Cc(P). Thenitis very obvious that the conjugation actiorGef(P,) on H induces an ac-
tion of C¢(P,) on Ny (P,) and actions o€¢(P,) on (OH)(P,) and (OH)(P,))*/k* and
that the homomorphism: Ny (P,) — ((OH)(P,))*/k* and the surjective homomorphism
((OH)(P,)* — ((OH)(P,))*/k* preserve the correspondifi (P, )-actions. SCg(P,)
acts onNH(Py)/PCH(P).

Lemma 3.4. Let H be a finite group fulfilling that ¢(Op(H)) C Op(H), P be
a Sylow p-subgroup of H antl be a K-group with the K-quotient H Then the unit
elementl of O, H is the unique block idempotent 6f,H and Ry is a defect pointed
group of Hy;.

Proof. Consider the Brauer homomorphisnﬁﬁi,): (0, H)% M) 5 k,C (Op(H)).
Since Cy(0p(H)) € Op(H), C4(Op(H)) = k* x Z(Op(H)) and thusk,Cy;(Op(H)) =
kZ(Op(H)). On the other hand, sind@,(H) is normal inH, Ker(Brg:{,)) € J(0.H)N

(0, H)O M) c 3((0, H) M), Thus{1} is the unique local point 0®,(H) on O, H and
then the lemma follows. O

Let G be a finite group,H a normal subgroup o6, G a k*-group of thek*-group
G and c a G-stable block idempotent ab,H. We denote byG[c] the group of all
g € G such that there exists somg € (O, Hc)* fulfilling a9 = a% for anya e O, Hc.
By [2, Proposition 2.7 and Theorem 3.5f[c] is normal inG andb € (9*@[?].

Lemma 3.5. Let G be a finite group H a normal subgroup of G such that
Ch(Op(H)) < Op(H) and P a Sylow p-subgroup of .HLet G be a K-group and
assume that?),G has a block with P as a defect grauphen 1] = Cg(P)H.

Here 1 is the block idempotent @, H (see Lemma 3.4).
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Proof. We firstly proveCg(P)H C G[1]. By [9, Lemma 5.5], there exists a
finite subgroupG’ of G such thatG = k*G’; moreover if we letZ’ be the inter-
section ofk* and G/, H’ the intersection ofG’ and H and: the central idempotent
1/|1Z'1'Y ,c7 2t of OG', by [9, Theorem 5.15], the inclusio®’ C G induces an
isomorphism of(O-algebras

(3.5.1) 0G'1 = 0,6,
whose restriction taH’ induces an isomorphism
(3.5.2) OH't = O,H.

SinceCy(Op(H)) € Op(H), by Lemma 3.4,c = 1 is the unique block idempotent of
O.H and y = {1} is the unique local point o on O,H, thus: is a block idem-
potent of OH’, y’ = {1} is the unique local point o on OH’. and the P-interior
algebraOH’t with the homomorphismP — (OH'))*, u — w is a source algebra
of «. For anyx € Cg/(P), we consider the automorphisgy on the source alge-
bra OH’t induced byx. Clearly Cg(P) stabilizesP,, thus Cg/(P) stabilizesP,, and
then Cs/(P) acts on thek*-group NH/(PV/)/PCH/(P) (refer to Paragraph 3.3). But
it follows from Cy(Op(H)) C Op(H) that (CO*FI)(PV) =k, (OH")(P,) = k and thus
N (P,)/PCh/(P) 2 k* x Ni/(P,.)/ PCyy.(P); on the other handCg (P) acts trivially
on the groupNy/(P,/)/PCy/(P). ConsequentlyCe/(P) acts trivially on thek*-group
NHV(P;/)/PCH/(P). Therefore by [9, Proposition 14.9}y is induced by some ele-
menta’ € (OH’))*; in particular, this shows that the automorphism ©pH induced
by x € Cs(P) is induced by some € ((’)*I:|)*. Thus x € G[1].

In order to proveG[1l] = Cg(P)H, now we assumés = G[1] without loss of
generality. SetK = Cg(P)H and letb be a block idempotent 0D, G with P as a
defect group ance be a block idempotent 0®,K such thatbe # 0. Obviously e
also covers the unique block 1 @.H and thusP is also a defect group of. By
[6, Theorem 7],O*éb and O,H are naturally Morita equivalent of degreefor a
positive integer and?,Ke and O, H are naturally Morita equivalent of degree for
a positive integer. We claim that is equal tom. Indeed, sincebe # 0 and G D
HCg(P), 0.Gb and O,Ke at least have a common block idempoteinof k,.Cs(P)

such that BE*®(b)f # f and B*"(e)f # f. Then by Lemma 3.1n is equal to
m; in particular, this shows thab,Ke and ©,.Gb have the sam&@-rank. SinceP is
a Sylow p-subgroup ofH, by Frattini argument, we hav& = Ng(P)H. ThusK is
normal inG[1]. Then by [6, Theorem 1]k® O.Ke andk®o O, Gb are isomorphic.
Finally by [5, Corollary 4.5],G[1] = Cgy3(P)K = Cs(P)H. ]

Theorem 3.6. Let G be a finite group and H a normal subgroup of G such that
Ch(R) C Oy, p(H) for a Sylow p-subgroup R of ©p(H). Let G be a K-group with
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the K--quotient G b and ¢ block idempotents 6?,G and O, H respectivelyand n a
positive integerIf c is also a block idempotent d’r)*o/p/—(ﬁ), then the following two
conditions are equivalent
3.6.1. 0,Gb and O, Hc are naturally Morita equivalent of degree n
3.6.2. for any simple®, G-module S associated tQ there exists a unique simpte, H-
module § associated to ¢ such theRe\{% (S =ng; and b- Indg(Sq) >~ n§ the cor-
respondencéBr(b) — IBr(c), S+ S is a bijection and n=< n(b, c).

Moreover in this casen = n(b, c).

Proof. By [5, Proposition 2.6] and Lemma 3.1, Condition B.énplies Condi-
tion 3.6.2. Now we assume that Condition 3.6.2 holds. By gwmiorphism (2.9.1)

applied to 0, Gc and O, Op(H)c we can find ak*-group G with the k*-quotient
G = G/Op(H) such that there exists an isomorphism@finterior algebras

(3.6.3) 0,Gcx 0,0,(H)c®0 0,6
which, by restriction to®, Hc, induces an isomorphism df -interior algebras
0,Ac = 0,0, (H)c®0 O, H

where H is the inverse image oH = H/Op(H) in G.
Since O*O/p/(?)c is a full matrix algebra ovel© and bc = b, b determines a
unique block idempoteri of ©,G through (3.6.3) such that

(3.6.4) 0,8b= 0,0, (H)c ®0 O,Gb.

But notice that 1 is the unique block idempotent mﬂ since we are assuming
Ch(R) C Oy, p(H) for a Sylow p-subgroupR of H and thusC;(O,(H)) C Op(H)
(see Lemma 3.4). Let be a primitive idempotent OO*O/,J/(?)C. Since we are also
assuming that there exists a unique sim@leH-module S associated ta@ such that
Reﬁ (S =ng; andb- Indﬁ: (S3) = nSfor any simpIeO*é-moduleS associated td
and that the correspondence IBr& IBr(c), S+— Sy is a bijection, it follows from
Statement 2.12.1 that we have equalities;'RésS) = n(i - S;) and b- Indé (i-Sy) =
n(i-S) and from Theorem 2.9 that the map the correspondenc®)IB#(IBr(1), i-S+

i -(Sy) is a bijection; here in order to avoid confusion, we remihdttIBr(1) is the

set of all simple®, H-modules. Finally by our hypothesi®, and ¢ have common de-
fect groups (refer to [7, Chapter 4, Lemma 3.4] and [4, ChaptelLemma 4.6]), so
n(b, ¢) makes sense and so doet, 1); by Lemma 2.13, we have(b, c) = n(b, 1).

If we can prove thatO, Gb and O, H are naturally Morita equivalent of degree
n, by Lemma 2.10.2, so ar®,Gb and O,Hc. So in order to prove the theorem,
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we can assum€y(Op(H)) C Op(H). Let P be a common defect group &f andc.
Since H is normal inG and H and G act transitively on the sets of defect groups
of ¢ and b, by Frattini argument, we have& = Ng(P)H. Now consider the obvious
normal subgroupk = Cg(P)H of G and lete be a block idempotent o, K such
that be £ 0 # ce. Then P has to be a defect group & By Lemma 3.5 and [6,
Theorem 7],0,Ke and O, Hc are naturally Morita equivalent of degree: moreover
by Lemma 3.1 and the definition af(b, c), m = n(b, c) > n. 0

Let S be a simple®.Gb-module. Sincebe # 0 # ce and Reg(S) =nS,, by
Clifford theorem, there exists a simpt, K e-module S; such thatS; is a direct sum-
mand of Reg(S) and S; is a direct summand of RE$S{). Since 0, Ke and O, Hc

are naturally Morita equivalent of degreg by [5, Proposition 2.6], Rééf(Sg) =mS,.

Then the inequalitym > n shows that di(S«) > dimg(S), thus Reg(S) = & and
m = n; in particular, this also implies tha® stabilizese and thusbe = b. By Lem-
ma 3.5 and [6, Corollary 4]b € O,K and thusbe = e. Thereforeb = e. That O, Ke

and O, Hc are naturally Morita equivalent of degree also impliesb - IndE(Sq) =
nS; (refer to [S5, Proposition 2.6]). We rewrite - IndE(Sn) as Incg(b- Ind'é'(Sq)) =

G _ Gla. ; Gra.y _ _ G
IndK(nS{) =n IndK(SAK). Then the equalityn Indk(3<) = nS forces S = IndK(&).
But we also have R%{S) = § and thereforeG has to be equal td.

Theorem 3.7. Let G be a finite group and H a normal subgroup of G such that
Ch(R) C Oy, p(H) for a Sylow p-subgroup R of ©,(H). Let G be a K-group with
the k-quotient G b and ¢ block idempotents @,G and O, H respectively and n
be a positive integeif ¢ is also a block idempotent aﬂ?*O/,;\(I-D, then the following
two conditions are equivalent
3.7.1.0,Gb andO,Hc are naturally Morita equivalent of degree n
3.7.2.vp(|G : H|) = vp(n), for any simplekC,G-module V associated to, there ex-

ists a unique simpléC, H-module 4 associated to ¢ such theﬂeﬁ (V) = nV,, the
correspondencérr(b) — Irr(c), V — Vp, is a bijection and nb, c) > n.
Moreover in this casen = n(b, c).

Proof. By [5, Proposition 2.6] and Lemma 3.1, Condition B.implies Condi-
tion 3.7.2. Now assume that Condition 3.7.2 holds. Note thatfirst three statements
imply thatb andc have common defect groups (refer to [4, Chapter IV, Theorés}).4
Then by the first and second paragraph in Theorem 3.6, in dod@rove 3.7.1, we
can assume&y (Op(H)) C Op(H) without loss of generality. LeP be a common de-
fect group ofb andc. SinceH is normal inG and H and G act transitively on the
sets of defect groups af and b, by Frattini argument, we hav® = Ng(P)H. Now



14 Y. FAN, Q. YANG AND Y. ZHOU

consider the obvious normal subgrop= Cg(P)H of G and lete be a block idem-
potent of O, K such thatbe # 0 # ce. Then P has to be a defect group @& By
Lemma 3.5 and [6, Theorem 7{).Ke and O.Hc are naturally Morita equivalent of
degreem and by Lemma 3.1 and the definition ofb, c), m = n(b, ¢) > n. O

Let V be a simplek,Gb-module. Sincebe # 0 # ce and Reﬁ| (V) = nVy, by
Clifford theorem, there exists a simplé, K e-moduleVy such thatVy is a direct sum-
mand of Re%(V) andV, is a direct summand of R§$VK). SinceK,.Ke and K, Hc
are naturally Morita equivalent of degreg by [5, Proposition 2.6], Rééis(vk) =mVy.
Then the inequalitym > n shows that din(Vg) > dime(V) and then ding(V¢) =
dimi(V), thus Reg(V) = Vi andm = n; in particular, this also implies tha® sta-
bilizes e and thusbe = b. By Lemma 3.5 and [6, Corollary 4]p € O.K and thus
be = e = b. Moreover it is easily checked that the map— V; is a bijection be-
tween the sets of all simpl€,.Gb- and K, Ke-modules; in particular, this implies that
0,Gb and O,Ke have the sam&-rank. But obviously thed-rank of O,Gb is equal

to the product oflG : K| with the O-rank of O, Ke too. SoG is forced to equal to
K. We are done.

3.8. Proof of Theorem 1.5. It suffices for us to takes and H to be G x k*
and H x k* and then Theorems 3.6 and 3.7 imply Theorem 1.5. 0
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