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Abstract
Let G be a finite group,H a normal subgroup ofG and b and c block idempo-

tents ofOG andOH respectively. Under the assumption thatCH (R) � Op0 , p(H ) for
a Sylow p-subgroupR of Op0 , p(H ) and c is also a block idempotent ofOOp0 (H ),
we give two equivalent conditions about whenOGb and OHc are natural Morita
equivalent of degreen (see Theorem 1.5).

1. Introduction

1.1. Fix a prime numberp. Let O be a complete discrete valuation ring with a
residue fieldk of characteristicp. Let G be a finite group,H a subgroup ofG and b
and c block idempotents ofOG andOH respectively. In terms of the terminology of
A. Hida and S. Koshitani [5],OGb andOHc are said to be naturally Morita equivalent
of degreen for a positive integer numbern if there exists an unitaryO-subalgebraS
of OGb such thatS is a full matrix algebra overO of degreen and the map

OHc
O S! OGb, x 
 y 7! xy

is an isomorphism ofO-algebras. WhenH is normal inG andO D k, this definition
is firstly due to B. Külshammer [6].

1.2. For our question below, now we make the additional assumption that the
characteristic ofO is zero, the quotient fieldK of O is big enough for all algebras
involved below, the residue fieldk is algebraically closed andH is normal in G; the
assumption will also be kept throughout this paper. As a consequence of [13, Theo-
rems 2 and 3], we can easily conclude that the following threeconditions are equiva-
lent:
1.2.1. the mapOGb! OHc, x 7! xc is anO-algebra isomorphism;
1.2.2. the restriction fromG to H induces a bijection between the sets of all non-
isomorphic simple modules ofOGb andOHc and the quotient groupG=H is a p0-group;
1.2.3. the restriction fromG to H induces a bijection between the sets of all non-
isomorphic simple modules ofKGb andKHc.
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Noticing that Condition 1.2.1 is actually saying thatOGb andOHc is naturally Morita
equivalent of degree 1, we ask ourselves a question: can thisstatement above be gen-
eralized to natural Morita equivalences of degreen? In this paper, we investigate the
question.

1.3. Now we begin with some preparations in order to state our maintheorem.
Let M be anOG-module andN an OK -module. We denote by ResG

K (M) the restric-
tion of M from G to K and by IndGK (N) the induction of N from K to G. Given
a positive integer numbern, we denote bynM the direct sum ofn copies of M.
Obviously the productb � M of b and M is an OG-submodule ofM and b acts on
b � M as the identity homomorphism. Whenb � M D M, then we say that theOG-
module M is associated to the blockb of OG. We denote by IBr(b) the set of all
non-isomorphic simpleOG-modules associated tob. All notations above except IBr(b)
can be slightly modified to apply toKG-modules. In general, we denote by Irr(b) the
set of all non-isomorphic simpleKG-modules associated tob. Given a positive integer
numberm, vp(m) denotes the largest non-negative integer numbert such thatpt j m.

1.4. Assume thatbc ¤ 0 and b and c have a common defect groupP. Since
bc¤ 0, it is well known (refer to [3]) that there exist block idempotentsbP and cP

of kCG(P) and kCH (P) such thatbP BrOG
P (b) D bP, cP BrOH

P (c) D cP and bPcP ¤
0. Since P is a defect group ofb and c, bP and cP have defect groupZ(P), thus
kCG(P)bP and kCH (P)cP are nilpotent (refer to [10]) and have only one simple mod-
ule, sayVbP andVcP . SinceH is normal inG, so isCH (P) in CG(P); then by Clifford
theory, we can conclude that the dimension dimk(VcP ) of VcP over k divides the di-
mension dimk(VbP ) of VbP over k. Note that (P, bP) and (P, cP) actually are max-
imal Brauer pairs ofb and c, which are unique up toG- and H -conjugation (refer
to [1]). Therefore the quotient dimk(VbP )=dimk(VcP ) is independent of the choices of
bP and cP. We denote this quotient byn(b, c). Note that by [10, 1.4.1],n(b, c) Dp

dimk(kCG(P)bP)=dimk(kCH (P)cP); even in order to computen(b, c), it suffices for
us to choosebP and cP of kCG(P) and kCH (P) such thatbP BrOG

P (b) D bP and
cP BrOH

P (c) D cP.

Theorem 1.5. Let G be a finite group and H be a normal subgroup of G such
that CH (R) � Op0, p(H ) for a Sylow p-subgroup R of Op0, p(H ). Let b and c be re-
spective block idempotents ofOG andOH and let n be a positive integer. If c is also
a block idempotent ofOOp0(H ), then the following conditions are equivalent:
1.5.1. OGb andOHc are naturally Morita equivalent of degree n;
1.5.2. for any simpleOG-module S associated to b, there exists a unique simpleOH-
module SH associated to c such thatResGH (S) � nSH and b� IndG

H (SH ) � nS, the cor-
respondenceIBr(b) ! IBr(c), S 7! SH is a bijection, and n� n(b, c).
1.5.3. vp(jG W H j) D vp(n), for any simpleKG-module V associated to b, there exists
a unique simpleKH-module VH associated to c such thatResGH (V) � nVH , and the



NATURAL MORITA EQUIVALENCES OF DEGREE n 3

correspondenceIrr(b) ! Irr(c), V 7! VH is a bijection, and n� n(b, c).
Moreover in this case, n is equal to n(b, c).

REMARK 1.6. 1. Conditions 1.5.2 and 1.5.3 both imply thatb and c have the
same defect groups, son(b, c) makes sense. For details, refer to the proofs of Theo-
rems 3.6 and 3.7.
2. When n D 1, by [4, Chapter IV, Theorem 4.5], it is easily checked that Condi-
tions 1.5.2 and 1.5.3 both imply that the quotient groupG=H is a p0-group; in addition
n � n(b, c) automatically holds. Therefore the theorem above covers the equivalences
between Conditions 1.2.1, 1.2.2 and 1.2.3.
3. There are examples to explain why the conditionn � n(b, c) is necessary.

2. Fong’s reduction

In this section, anO-algebraA that is involved is always associative, unitary and
O-free of finite rank as anO-module; A� and J(A) denote the multiplicative group
of all invertible elements ofA and the Jacobson radical ofA respectively. Occasional-
ly, in order to avoid confusion, we denote by 1A of the identity element ofA. A
homomorphism f W A ! B betweenO-algebras is an embedding iff is injective and
f (A) D f (1A)B f (1A).

2.1. Let K be a finite group andOK be a k�-group with thek�-quotient K en-
dowed with the homomorphism� W k� ! OK . By OK , we can construct twok�-groups:
the group OK endowed with the group homomorphismk� ! OK sending� onto �(��1)
and the opposite group (OK )Æ with the group homomorphism�; in order to differ from
the k�-group OK , we denote the firstk�-group by OK Æ. But the twok�-groups are iso-
morphic: there is an isomorphism ofk�-groups (OK )Æ ! OK Æ, x 7! x�1 (refer to [9]).
For any subgroupL of K , we denote byOL its inverse image in OK and for any el-
ement x 2 L, by Ox a lifting in OK of x. When L is a p-group, OL can be uniquely
decomposed as the direct productk� � L (refer to [9, Lemma 5.5]) and thus we al-
ways regardL as a subgroup ofOK . Let LK be anotherk�-group with thek�-quotient
K . Then the central product ofOK and LK over k� defines ak�-group OK 
 LK with the
k�-quotient isomorphic toK � K and we identify thisk�-quotient with K � K . We
also identify K with the diagonal subgroup inK � K and denote byOK � LK the inverse
image in OK 
 LK of K . Then OK � LK is a newk�-group with thek�-quotient K .

2.2. Obviously the surjective homomorphismO ! k induces a surjective group
homomorphismO� ! k�; sincek is algebraically closed,k is perfect and thus by [14,
Chapter II, Proposition 8], there exists a unique sectionk� ! O� of this group homo-
morphism. Through this section, we can regardO as a right module over the group al-
gebra ofk� overO. Let K be a finite group andOK be ak�-group with thek�-quotient
K . Obviously the inclusionk� � OK induces a leftOk�-module structure on the group
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algebraO OK of OK overO. Now we consider the tensor productO
Ok� O OK and define
a distributive product onO
Ok� O OK by the equality

(a
 x)(b
 y) D ab
 xy

for a, b 2O and x, y 2O OK . Then the tensor productO
Ok� O OK with the above prod-
uct becomes anO-algebra; we call it the twisted group algebra ofOK over O and de-
note it byO� OK . Obviously thek�-group isomorphism (OK )Æ � OK Æ, x 7! x�1 induces an
isomorphism ofO-algebras from the opposite ring (O� OK )Æ to O� OK Æ; moreover since
the mapO�( OK 
 OK Æ) ! O� OK 
O O� OK Æ sending 1
 (x
 y) to (1
 x)
 (1
 y) for
x 
 y 2 OK 
 OK Æ is an isomorphism, we can define a leftO�( OK 
 OK Æ)-module struc-
ture onO� OK by the equality (x
 y)aD xay�1 for x, y 2 OK and a 2 O� OK . The tensor
productK
O O� OK is also what we are concerned below and we denote it byK� OK .

2.3. Recall that anO-algebra A is called a OK -interior algebra (see [9, 5.10]) if
there exists a group homomorphism' W OK ! A�. For anya 2 A and liftings Ox, Oy in OK
of x, y 2 K , we will write '( Ox)a'( Oy) as OxaOy for convenience. Obviously whenOy DOx�1, the productOxaOx�1 is independent of the choice ofOx in OK and therefore we also
often write it asax�1

. Moreover the map'x W A � A, a 7! ax�1
is an automorphism,

the mapK ! Aut(A), x 7! 'x is a group homomorphism, thusA is a K -algebra. Let
C be another OK -interior algebra; anO-algebra homomorphismf W A ! C is called a
homomorphism of OK -interior algebras if f ( OxaOy) D Ox f (a) Oy for any a 2 A and liftingsOx, Oy in OK of x, y 2 K . Let LK be anotherk�-group with thek�-quotient K and A0 be aLK -interior algebra; then theOK -interior algebra structure onA and the LK -interior alge-
bra structure onA0 determine a OK 
 LK -interior algebra structure on the tensor product
A
O A0, which, by restriction, induces aOK � LK -interior algebra structure onA
O A0.

2.4. Let A be a OK -interior algebra andP a p-subgroup ofK . We denote by
AP the subalgebra consisting of allP-fixed elements ofA. Clearly AP is a C OK (P)-
interior algebra with the homomorphismC OK (P) ! (AP)�, Ox 7! Ox1, whereC OK (P) is

the centralizer ofP in OK . For any subgroupQ of P, we denote by TrPQ the relative

trace mapAQ ! AP and by AP
Q its image. We defineA(P) to be the Brauer quotient

k
O

�
AP=PS AP

S

�
, whereS runs over the set of proper subgroups ofP, and denote

by BrA
P the Brauer homomorphismAP ! A(P). Note that A(P) ¤ 0 forces P to be

a p-group. WhenA D O� OK and P is a p-subgroup ofK , by [11, Proposition 2.2],
BrA

P induces an isomorphismk�C OK (P) � A(P); in this case, we always identifyA(P)
with k�C OK (P) through this isomorphism.

2.5. In this paragraph, we generalize the definitions and notations in Introduction
to twisted group algebras. LetL be a subgroup ofK ande andg be block idempotents
of O� OK andO� OL respectively.O� OKe andO� OLg are said to be naturally Morita equiv-
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alent of degreen for a positive integer numbern if there exists a unitaryO-subalgebra
S of O� OKe such thatS is a full matrix algebra overO of degreen and the map

O� OLg
O S! O� OKe, x 
 y 7! xy

is an isomorphism ofO-algebras. LetM be anO� OK -module andN an O� OL-module.
We denote bymM the direct sum ofm copies ofM for a positive integer numberm,

by ResOKOL (M) the restriction ofM from O� OK to O� OL, and by Ind
OKOL (N) the induction of

N from O� OL to O� OK . Let i be an idempotent ofO� OK . We denote byi �M the product
of i and M. Note that if i commutes with a unitary subalgebraB of O� OK , then the
O� OK -module structure onM induces aB-module structure oni � M. So e � M is an
O� OK -module structure and whene � M D M, then we say that theO� OK -module M is
associated to the blocke of O� OK . We denote by IBr(e) the set of all non-isomorphic
simpleO� OK -modules associated toe. All notations above except IBr(e) can be slightly
modified to apply toK� OG-modules. We denote by Irr(e) the set of all non-isomorphic
simpleK� OK -modules associated toe.

2.6. Let K be a finite group, OK a k�-group with thek�-quotient K , L a normal
p0-subgroup ofK and f a K -stable block idempotent ofO� OL. Then K acts on the full
matrix algebraO� OL f over O and thus by the Skolem–Noether theorem, there exists a
group homomorphism

� W K ! Aut(O� OL f ) � (O� OL f )�=O�.

We denote by LK the set of all elements (c, x) such that�(x) is the image ofc in
(O� OL f )�=O�, wherec 2 (O� OL f )� and x 2 K . Obviously LK is anO�-group with the
O�-quotient K with the homomorphismO� ! LK , � 7! (�, 1), the mapOL ! LK , Ox 7!
( Ox, x) is an injective group homomorphism and its image is normal in LK ; in this sense,
we identify OL with a normal subgroup ofLK .

2.7. Now we claim that there exists a subgroupQK of LK which is ak�-group of
k�-quotient K and containsOL. Consider the quotient groupLK= OL. Obviously OLO�= OL
is a central subgroup ofLK= OL isomorphic to 1C J(O) and (LK= OL)=( OLO�= OL) � K=L,
thus we can regardLK= OL as a central extension ofK=L by 1 C J(O). Let P be
a Sylow p-subgroup ofK . Since L is a p0-group, the image ofP in K=L is iso-
morphic to P; so we identify P with its image in K=L. Again since L is a p0-
group, it is well known thatO� OL f is a full matrix algebra overO and has theO-rank
prime to p, thus the action ofP on O� OL f can be lifted to a group homomorphism
P ! (O� OL f )� (see [10, Paragraph 6.2]). This implies that there exists a group homo-
morphism� W P ! LK= OL such that for anyu 2 P, the image of�(u) through the surjec-
tive homomorphismLK= OL ! K=L is u. Since 1C J(O) is a p0-divisible group, the sur-
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jective homomorphismLK= OL ! K=L splits and thus has a sectionK=L ! LK= OL. Then
the inverse image of the image ofK=L in LK= OL in LK is just the desiredk�-group QK .

2.8. Consequently we have a group homomorphism# W QK ! (O� OL f )� and thus
O� OL f becomes aQK -interior algebra. Consider thek�-group MK D OK � QK Æ. ObviouslyML D OL � OLÆ has a normal subgroupf Ox
 Ox�1 j x 2 Lg isomorphic toL; we still denote
this group byL. We claim thatL is normal in MK . Indeed, for anyOy 
 Qy 2 MK andOx 
 Ox�1 2 L, we have (Oy 
 Qy)( Ox 
 Ox�1)( Oy 
 Qy)�1 D ( Oy 
 Qy)( Ox 
 Ox�1)( Oy�1 
 Qy�1) DOy Ox Oy�1 
 Qy Ox�1 Qy�1 D Oxy�1 
 ( Oxy�1

)�1 since the OK - and QK -conjugation induce the same

action of K on OL. Set MNK D MK=L. Then we obtain ak�-group MNK with the k�-quotient

K=L. Through the surjective group homomorphismMK ! MNK , we endow the twisted

group algebraO� MNK of MNK over O with a MK -interior algebra structure.

Theorem 2.9. Keep the notations as inParagraphs 2.6, 2.7and 2.8. Then there
exists an isomorphism ofOK-interior algebras

O� OK f � O� OL f 
O O� MNK .(2.9.1)

In particular, the functors U7! i �U and V 7! O� OLi 
O V are inverse isomorphisms

between the categories of finitely generatedO� OK f - and O� MNK-modules, where i is a
primitive idempotent ofO� OL f .

The above theorem is also called the second Fong’s reductiontheorem.
Proof. SinceO� OL f is a full matrix algebra overO, by [8, Proposition 2.1],

the map

O� OL f 
O CO� OK f (O� OL f ) � O� OK f , x 
 y 7! xy

is an isomorphism ofO-algebras, whereCO� OK f (O� OL f ) is the centralizer ofO� OL f in

O� OK f . Let R be a set of representatives of cosets ofL in K and writeO� OK f as the direct
sum

L
x2R(O� OL f ) Ox. Since OL is normal in OK , it is easily computed thatCO� OK f (O� OL f )

is equal to the direct sum
L

x2R C(O� OL f ) Ox(O� OL f ). For anyx 2 R, since Ox and #( Qx)

have the same action onO� OL f by conjugation, Ox#( Qx�1) 2 C(O� OL f ) Ox(O� OL f ); moreover

by comparing theO-ranks, it is not difficult to findO Ox#( Qx�1) D C(O� OL f ) Ox(O� OL f ) and

thusCO� OK f (O� OL f ) DL
x2R O Ox#( Qx�1). Finally it is easily checked that the mapMK !

(CO� OK f (O� OL f ))�, Ox
 Qx 7! Ox#( Qx�1) is a group homomorphism with the kernelL; in par-

ticular, the group homomorphism induces an isomorphismO� MNK � CO� OK f (O� OL f ).

2.10. Keep the notations in Theorem 2.9. LetN be a subgroup ofK contain-
ing L, NN the quotient group ofN in the quotient groupNK D K=L, ON, QN and MN the
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inverse images ofN in OK , QK and MK respectively, andMNN the inverse image ofNN inMNK . ConsiderO� OL f as an QN-interior algebra through the restriction of the structural

homomorphism of theQK -interior algebraO� OL f to QN and O� MNN as an MN-interior al-

gebra through the homomorphismMN ! MNN � (O� MNN)�. Then the isomorphism (2.9.1)
induces an ON-interior algebra isomorphism

O� ON f � O� OL f 
O O� MNN.(2.10.1)

In particular, the functorsX 7! i � X and Y 7! O� OLi 
O Y are inverse isomorphisms

between the categories of finitely generatedO� ON f - and O� MNN-modules. Leth be a
block idempotent ofO� OK such thath f ¤ 0, Nh the corresponding block idempotent

of O� MNK determined byh through the isomorphism (2.9.1),l a block idempotent of

O� ON and Nl the corresponding block idempotent ofO� MNN determined byl through the
isomorphism (2.10.1). Then by the isomorphisms (2.9.1) and(2.10.1) and the definition
of natural Morita equivalences of degreen, we can easily verify the following:
2.10.2.O� OK h and O� ONl are naturally Morita equivalent of degreen if and only if

O� MNK Nh andO� MNNNl are naturally Morita equivalent of degreen.

2.11. Finally we claim the following:

2.11.1. for anyO� MNK -moduleV , O� OLi 
O Res
MNKMNN (V) � ResOKON (O� OLi 
O V), and for any

O� MNN-moduleY, O� OLi 
O Ind
MNKMNN (Y) � Ind

OKON (O� OLi 
O Y).

The first isomorphism is obvious, so the rest is to prove the second equality. We con-

siderO� MNK as a subalgebra ofO� OK f through the isomorphism (2.9.1) and thusO� MNN
is also a subalgebra ofO� ON f . We claim that the map

O� OLi 
O Ind
MNKMNN (Y) ! Ind

OKON (O� OLi 
O Y)(2.11.2)

sendingx
(y
z) to y
(x
z) is an isomorphism ofO� OK -modules, wherex 2O� OLi ,

y 2 O� MNK and z 2 Y. Note that any element of Ind
OKON (O� OLi 
O Y) can be written as

a sum of elements likey 
 (x 
 z), where x 2 O� OLi , y 2 O� MNK and z 2 Y; that

implies that the homomorphism (2.11.2) is surjective. ThenO� OLi 
O Ind
MNKMNN(Y) and

Ind
OKON (O� OLi 
O Y) having the sameO-rank forces (2.11.2) to be an isomorphism.

2.12. As consequences of Statement 2.11.1, we have the followings:
2.12.1. If S is a simpleO� OK h-module andSON is a simpleO� ONl-module such that

Res
OKON (S) � nSON
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and h � Ind
OKON (SON) � nS for a positive integer numbern, then Res

MNKMNN (i � S) � n(i � SON) and

Nh � Ind
MNKMNN (i � SON) � n(i � S).

2.12.2. If W is a simpleK� OK h-module andW ON is a simpleK� ONl-module such that

Res
OKON (W) � nWON

for a positive integer numbern, then Res
MNKMNN (i �W) � n(i �W ON).

Lemma 2.13. Keep notations as above. If O� OK h coversO� ONl and O� OK h and

O� ONl have common defect groups, thenO� MNK Nh coversO� MNNNl , O� MNK Nh andO� MNNNl have
common defect groups, and n(h, l ) D n( Nh, Nl ).

Proof. By the choices ofh and Nh, the isomorphism (2.9.1) induces an isomorphism

of OK -interior algebrasO� OK h � O� OL f
N

O O� MNK Nh. Let P be a defect group ofh. Then
it follows from [12, Corollary 3.3] that the image ofP in NK , which is isomorphic to
P and we still denote byP, is a defect group ofNh, O� OL f has aP-stable basis and
(O� OL f )(P) ¤ 0. So we can use [10, Proposition 5.6] to obtain the followingC OK (P)-
interior algebra isomorphism

k�C OK (P) BrO� OK
P (h) � (O� OL f )(P)
k k�C MNK (P) BrO� MNK

P ( Nh).(2.13.1)

Fix a block idempotenthP of k�C OK (P) such that BrO� OK
P (h)hP D hP. Since (O� OL f )(P)

is a full matrix algebra overk, there exists a block idempotentNhP of k�C MNK (P) such that

BrO� MNK
P ( Nh) NhP D NhP and the isomorphism (2.13.1) induces an isomorphism

k�C OK (P)hP � (O� OL f )(P)
k k�C MNK (P) NhP.(2.13.2)

Since we are assuming thatO� OK h andO� ONl have common defect groups,P is also
a defect group ofO� ONl. Then similarly, we can find block idempotentsl P and Nl P of

k�C ON(P) and k�C MNN(P) respectively, such that BrO� ON
P (l )l P D l P, BrO� MNN

P (Nl )Nl P D Nl P and
there is an isomorphism

k�C ON(P)l P � (O� OL f )(P)
k k�C MNN(P)Nl P.(2.13.3)

Finally since we are also assuming thatO� OK h coversO� ONl, O� MNK Nh coversO� MNNNl and
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thusn(h, l ) andn( Nh, Nl ) make sense; by isomorphisms (2.13.2) and (2.13.3), we can con-
clude that

n(h, l ) D
s

dimk(k�C OK (P)hP)

dimk(k�C ON(P)l P)

D
vuutdimk(k�C MNK (P) NhP)

dimk(k�C MNN(P)Nl P)
D n( Nh, Nl ).

3. Proof of Theorem 1.5

Lemma 3.1. Let K be a finite group and H a normal subgroup of K. Let OK
be a k�-group with the k�-quotient K and e and f block idempotents ofO� OK and
O� OH respectively. If O� OKe andO� OH f are naturally Morita equivalent of degree m,
then for a common defect group P of e and f, there exists block idempotents eP and

fP of k�C OK (P) and k�C OH (P) such thatBrO� OK
P (e)eP D eP, BrO� OH

P ( f ) fP D fP and
k�C OK (P)eP and k�C OH (P) fP are naturally Morita equivalent of degree m too.

Proof. SinceO� OK e and O� OH f are naturally Morita equivalent of degreem, by
definitions, there exists a unitary subalgebraS of O� OKe, which is a full matrix algebra
over O of degreem, such that the product inO� OK induces an isomorphism

O� OK e� S
O O� OH f .

This isomorphism implies thatP acts trivially on S by conjugation and then by [10,
Proposition 5.6], we obtain an isomorphism

k�C OK (P) BrO� OK
P (e) � S(P)
k k�C OH (P) BrO� OH

P ( f ).

Fix a block idempotenteP of k�C OK (P) such that BrO� OK
P (e)eP D eP. SinceS(P)� k
O

S, eP determines a unique block idempotentfP of k�C OH (P) such that BrO� OH
P ( f ) fP D

fP and k�C OK (P)eP � (k
O S)
k k�C OH (P) fP.

3.2. Let H be a finite group andR a subgroup ofH . We denote by (OH )R the
subalgebra of allR-fixed elements ofOH . Recall that a pointed groupP
 on OH is
a pair (P, 
 ) consisting of a subgroupP of H and a ((OH )P)�-conjugate class
 of
primitive idempotents of (OH )P. Another pointed groupR" is contained inP
 if R�
P and there existsj 2 " and i 2 
 such thatj i D i j D j . P
 is local if BrOH

P (
 )¤ f0g.
Let c be a block idempotent ofOH . Then fcg becomes a point ofH on OH . We
say that P
 is a defect pointed group offcg or simply c if P
 is a maximal local
pointed group contained inHfcg with respect inclusion. By [8, Theorem 1.2],H acts
transitively on the set of all defect pointed groups ofHfcg. Fix i 2 
 and set (OH )
 D
i (OH )i . Then (OH )
 is called a source algebra ofHfcg or simply c.
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3.3. Let P
 be a defect pointed group of a blockc of OH and denote byNH (P
 ) the
stabilizer ofP
 in H and by (OH )(P
 ) the simple factor of (OH )P such that the image of
 through the surjective homomorphism (OH )P ! (OH )(P
 ) is not zero. The obvious
action ofNH (P
 ) on (OH )P induces an action ofNH (P
 ) on (OH )(P
 ). By the Skolem–
Noether theorem, we have a group homomorphism� W NH (P
 ) ! Aut((OH )(P
 )) �
((OH )(P
 ))�=k�. We denote byONH (P
 ) the set of all elements (c, x) such that�(x) is the

image ofc in ((OH )(P
 ))�=k�, wherec 2 ((OH )(P
 ))� andx 2 NH (P
 ). Then ONH (P
 )

is ak�-group with thek�-quotientNH (P
 ) with the homomorphismk� ! ONH (P
 ), � 7!
(�, 1), and the mapPCH (P) ! ONH (P
 ), x 7! (x, x) is an injective homomorphism,

whose image is normal inONH (P
 ) and intersectsk� trivially. We identify PCH (P) with

a normal subgroup ofONH (P
 ) through the injective homomorphism and then the quo-

tient ONH (P
 )=PCH (P) is a k�-group with thek�-quotient NH (P
 )=PCH (P). Let G be
a finite group containingH as a normal subgroup andCG(P
 ) be the stabilizer ofP
 in
CG(P). Then it is very obvious that the conjugation action ofCG(P
 ) on H induces an ac-
tion of CG(P
 ) on NH (P
 ) and actions ofCG(P
 ) on (OH )(P
 ) and ((OH )(P
 ))�=k� and
that the homomorphism�W NH (P
 )! ((OH )(P
 ))�=k� and the surjective homomorphism
((OH )(P
 ))� ! ((OH )(P
 ))�=k� preserve the correspondingCG(P
 )-actions. SoCG(P
 )

acts on ONH (P
 )=PCH (P).

Lemma 3.4. Let H be a finite group fulfilling that CH (Op(H )) � Op(H ), P be

a Sylow p-subgroup of H andOH be a k�-group with the k�-quotient H. Then the unit
element1 of O� OH is the unique block idempotent ofO� OH and Pf1g is a defect pointed
group of Hf1g.

Proof. Consider the Brauer homomorphism BrO� OH
Op(H )W (O� OH )Op(H )!k�C OH (Op(H )).

SinceCH (Op(H ))� Op(H ), C OH (Op(H ))� k� � Z(Op(H )) and thusk�C OH (Op(H ))�
kZ(Op(H )). On the other hand, sinceOp(H ) is normal inH , Ker

�
BrO� OH

Op(H )

�� J(O� OH )\
(O� OH )Op(H )� J((O� OH )Op(H )). Thusf1g is the unique local point ofOp(H ) onO� OH and
then the lemma follows.

Let G be a finite group,H a normal subgroup ofG, OG a k�-group of thek�-group
G and c a G-stable block idempotent ofO� OH . We denote byG[c] the group of all
g 2 G such that there exists somexg 2 (O� OHc)� fulfilling ag D axg for any a 2 O� OHc.

By [2, Proposition 2.7 and Theorem 3.5],G[c] is normal in G and b 2 O�bG[c].

Lemma 3.5. Let G be a finite group, H a normal subgroup of G such that
CH (Op(H )) � Op(H ) and P a Sylow p-subgroup of H. Let OG be a k�-group and

assume thatO� OG has a block with P as a defect group. Then G[1] D CG(P)H .

Here 1 is the block idempotent ofO� OH (see Lemma 3.4).
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Proof. We firstly proveCG(P)H � G[1]. By [9, Lemma 5.5], there exists a
finite subgroupG0 of OG such that OG D k�G0; moreover if we letZ0 be the inter-
section ofk� and G0, H 0 the intersection ofG0 and OH and � the central idempotent
1=jZ0jPz2Z0 �zz�1 of OG0, by [9, Theorem 5.15], the inclusionG0 � OG induces an
isomorphism ofO-algebras

OG0� � O� OG,(3.5.1)

whose restriction toH 0 induces an isomorphism

OH 0� � O� OH .(3.5.2)

SinceCH (OP(H )) � OP(H ), by Lemma 3.4,cD 1 is the unique block idempotent of
O� OH and 
 D f1g is the unique local point ofP on O� OH , thus � is a block idem-
potent ofOH 0, 
 0 D f�g is the unique local point ofP on OH 0� and the P-interior
algebraOH 0� with the homomorphismP ! (OH 0�)�, u 7! u� is a source algebra
of �. For any x 2 CG0(P), we consider the automorphism'x on the source alge-
bra OH 0� induced byx. Clearly CG(P) stabilizesP
 , thus CG0(P) stabilizesP
 0 and

then CG0(P) acts on thek�-group ONH 0(P
 0)=PCH 0(P) (refer to Paragraph 3.3). But

it follows from CH (Op(H )) � Op(H ) that (O� OH )(P
 ) � k, (OH 0)(P
 0) � k and thusONH 0(P
 0)=PCH 0(P)� k��NH 0(P
 0)=PCH 0(P); on the other hand,CG0(P) acts trivially
on the groupNH 0 (P
 0)=PCH 0(P). ConsequentlyCG0(P) acts trivially on thek�-groupONH 0(P
 0)=PCH 0(P). Therefore by [9, Proposition 14.9],'x is induced by some ele-

ment a0 2 (OH 0�)�; in particular, this shows that the automorphism onO� OH induced
by x 2 CG(P) is induced by somea 2 (O� OH )�. Thus x 2 G[1].

In order to proveG[1] D CG(P)H , now we assumeG D G[1] without loss of
generality. SetK D CG(P)H and let b be a block idempotent ofO� OG with P as a
defect group ande be a block idempotent ofO� OK such thatbe¤ 0. Obviously e
also covers the unique block 1 ofO� OH and thusP is also a defect group ofe. By
[6, Theorem 7],O� OGb and O� OH are naturally Morita equivalent of degreen for a
positive integer andO� OKe and O� OH are naturally Morita equivalent of degreem for
a positive integer. We claim thatn is equal tom. Indeed, sincebe¤ 0 and G �
HCG(P), O� OGb andO� OKe at least have a common block idempotentf of k�C OG(P)

such that BrO� OG
P (b) f ¤ f and BrO� OK

P (e) f ¤ f . Then by Lemma 3.1,n is equal to

m; in particular, this shows thatO� OKe andO� OGb have the sameO-rank. SinceP is
a Sylow p-subgroup ofH , by Frattini argument, we haveG D NG(P)H . Thus K is
normal in G[1]. Then by [6, Theorem 1],k
OO� OK e andk
OO� OGb are isomorphic.
Finally by [5, Corollary 4.5],G[1] D CG[1](P)K D CG(P)H .

Theorem 3.6. Let G be a finite group and H a normal subgroup of G such that
CH (R) � Op0, p(H ) for a Sylow p-subgroup R of Op0, p(H ). Let OG be a k�-group with
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the k�-quotient G, b and c block idempotents ofO� OG andO� OH respectively, and n a

positive integer. If c is also a block idempotent ofO�2Op0(H ), then the following two
conditions are equivalent:
3.6.1. O� OGb andO� OHc are naturally Morita equivalent of degree n;
3.6.2. for any simpleO� OG-module S associated to b, there exists a unique simpleO� OH-

module SOH associated to c such thatResOGOH (S) � nSOH and b� Ind
OGOH (S OH ) � nS, the cor-

respondenceIBr(b) ! IBr(c), S 7! S OH is a bijection, and n� n(b, c).
Moreover in this case, n D n(b, c).

Proof. By [5, Proposition 2.6] and Lemma 3.1, Condition 3.6.1 implies Condi-
tion 3.6.2. Now we assume that Condition 3.6.2 holds. By the isomorphism (2.9.1)

applied toO� OGc and O�2Op0(H )c, we can find ak�-group MNG with the k�-quotientNG D G=Op0(H ) such that there exists an isomorphism ofOG-interior algebras

O� OGc� O�2Op0(H )c
O O� MNG(3.6.3)

which, by restriction toO� OHc, induces an isomorphism ofOH -interior algebras

O� OHc� O�2Op0(H )c
O O� MNH
where MNH is the inverse image ofNH D H=Op0(H ) in MNG.

Since O�2Op0(H )c is a full matrix algebra overO and bc D b, b determines a

unique block idempotentNb of O� MNG through (3.6.3) such that

O� OGb� O�2Op0(H )c
O O� MNG Nb.(3.6.4)

But notice that 1 is the unique block idempotent ofO� MNH since we are assuming
CH (R) � Op0, p(H ) for a Sylow p-subgroupR of H and thusC NH (Op( NH )) � Op( NH )

(see Lemma 3.4). Leti be a primitive idempotent ofO�2Op0(H )c. Since we are also

assuming that there exists a unique simpleO� OH -module SH associated toc such that

ResOGOH (S) � nSOH and b � Ind
OGOH (S OH ) � nS for any simpleO� OG-module S associated tob

and that the correspondence IBr(b) ! IBr(c), S 7! SH is a bijection, it follows from

Statement 2.12.1 that we have equalities Res
MNHMNG (i � S) � n(i � S OH ) and Nb � Ind

MNGMNH (i � S OH ) �
n(i �S) and from Theorem 2.9 that the map the correspondence IBr(Nb)! IBr(1), i �S 7!
i � (SH ) is a bijection; here in order to avoid confusion, we remind that IBr(1) is the

set of all simpleO� MNH -modules. Finally by our hypothesis,b and c have common de-
fect groups (refer to [7, Chapter 4, Lemma 3.4] and [4, Chapter IV, Lemma 4.6]), so
n(b, c) makes sense and so doesn(Nb, 1); by Lemma 2.13, we haven(b, c) D n(Nb, 1).

If we can prove thatO� MNG Nb and O� MNH are naturally Morita equivalent of degree
n, by Lemma 2.10.2, so areO� OGb and O� OHc. So in order to prove the theorem,
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we can assumeCH (Op(H )) � Op(H ). Let P be a common defect group ofb and c.
Since H is normal in G and H and G act transitively on the sets of defect groups
of c and b, by Frattini argument, we haveG D NG(P)H . Now consider the obvious
normal subgroupK D CG(P)H of G and let e be a block idempotent ofO� OK such
that be¤ 0 ¤ ce. Then P has to be a defect group ofe. By Lemma 3.5 and [6,
Theorem 7],O� OKe andO� OHc are naturally Morita equivalent of degreem; moreover
by Lemma 3.1 and the definition ofn(b, c), mD n(b, c) � n.

Let S be a simpleO� OGb-module. Sincebe¤ 0 ¤ ce and ResOGOH (S) D nSOH , by

Clifford theorem, there exists a simpleO� OKe-moduleSOK such thatSOK is a direct sum-

mand of ResOGOK (S) and S OH is a direct summand of ResOKOH (SOK ). SinceO� OKe andO� OHc

are naturally Morita equivalent of degreem, by [5, Proposition 2.6], ResOKOH (SOK )DmSOH .

Then the inequalitym � n shows that dimk(SK ) � dimk(S), thus ResOGOK (S) D SOK and
m D n; in particular, this also implies thatG stabilizese and thusbeD b. By Lem-
ma 3.5 and [6, Corollary 4],b 2 O� OK and thusbeD e. ThereforebD e. ThatO� OKe

and O� OHc are naturally Morita equivalent of degreen also impliesb � Ind
OKOH (S OH ) D

nSOK (refer to [5, Proposition 2.6]). We rewriteb � Ind
OGOH (S OH ) as Ind

OGOK (b � Ind
OKOH (S OH )) D

Ind
OGOK (nSOK ) D n Ind

OGOK (SOK ). Then the equalityn Ind
OGOK (SOK ) D nS forces SD Ind

OGOK (SK ).

But we also have ResOGOK (S) D SOK and thereforeG has to be equal toK .

Theorem 3.7. Let G be a finite group and H a normal subgroup of G such that
CH (R) � Op0, p(H ) for a Sylow p-subgroup R of Op0, p(H ). Let OG be a k�-group with

the k�-quotient G, b and c block idempotents ofO� OG and O� OH respectively, and n

be a positive integer. If c is also a block idempotent ofO�2Op0(H ), then the following
two conditions are equivalent:
3.7.1. O� OGb andO� OHc are naturally Morita equivalent of degree n;
3.7.2. vp(jG W H j) D vp(n), for any simpleK� OG-module V associated to b, there ex-

ists a unique simpleK� OH-module VOH associated to c such thatResOGOH (V) � nV OH , the
correspondenceIrr(b) ! Irr(c), V 7! V OH is a bijection, and n(b, c) � n.

Moreover in this case, n D n(b, c).

Proof. By [5, Proposition 2.6] and Lemma 3.1, Condition 3.7.1 implies Condi-
tion 3.7.2. Now assume that Condition 3.7.2 holds. Note thatthe first three statements
imply that b andc have common defect groups (refer to [4, Chapter IV, Theorem 4.5]).
Then by the first and second paragraph in Theorem 3.6, in orderto prove 3.7.1, we
can assumeCH (Op(H )) � Op(H ) without loss of generality. LetP be a common de-
fect group ofb and c. Since H is normal in G and H and G act transitively on the
sets of defect groups ofc and b, by Frattini argument, we haveG D NG(P)H . Now
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consider the obvious normal subgroupK D CG(P)H of G and lete be a block idem-
potent ofO� OK such thatbe¤ 0 ¤ ce. Then P has to be a defect group ofe. By
Lemma 3.5 and [6, Theorem 7],O� OKe andO� OHc are naturally Morita equivalent of
degreem and by Lemma 3.1 and the definition ofn(b, c), mD n(b, c) � n.

Let V be a simpleK� OGb-module. Sincebe¤ 0 ¤ ce and ResOGOH (V) D nV OH , by

Clifford theorem, there exists a simpleK� OKe-moduleV OK such thatV OK is a direct sum-

mand of ResOGOK (V) and V OH is a direct summand of ResOKOH (V OK ). SinceK� OKe andK� OHc

are naturally Morita equivalent of degreem, by [5, Proposition 2.6], ResOKOH (V OK )DmVOH .
Then the inequalitym � n shows that dimK(V OK ) � dimK(V) and then dimK(V OK ) D
dimK(V), thus ResOGOK (V) D V OK and m D n; in particular, this also implies thatG sta-

bilizes e and thusbeD b. By Lemma 3.5 and [6, Corollary 4],b 2 O� OK and thus
beD e D b. Moreover it is easily checked that the mapV ! V OK is a bijection be-

tween the sets of all simpleK� OGb- andK� OKe-modules; in particular, this implies that
O� OGb andO� OKe have the sameO-rank. But obviously theO-rank of O� OGb is equal
to the product ofjG W K j with the O-rank of O� OKe too. So G is forced to equal to
K . We are done.

3.8. Proof of Theorem 1.5. It suffices for us to takeOG and OH to be G � k�
and H � k� and then Theorems 3.6 and 3.7 imply Theorem 1.5.
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