

Title	On multiply transitive groups. III
Author(s)	Nagao, Hirosi; Oyama, Tuyosi
Citation	Osaka Journal of Mathematics. 1965, 2(2), p. 319-326
Version Type	VoR
URL	https://doi.org/10.18910/8573
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nagao, H. and Oyama, T.
Osaka J. Math.
2 (1965), 319-326

ON MULTIPLY TRANSITIVE GROUPS III

HIROSI NAGAO and TUYOSI OYAMA

(Received May 17, 1965)

The main purpose of this paper is to improve Theorem 1 in [4].

Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, $H = G_{1,2,3,4}$ the subgroup of G consisting of all the elements fixing the four letters 1, 2, 3 and 4, and let Δ be the totality of the letters fixed by H . Then the normalizer N of H in G fixes Δ . If we denote by N^Δ the restriction of N on Δ , then by the theorem of Jordan ([2]) and Witt ([5]) N^Δ is one of the following groups: S_4 , S_5 , A_6 or M_{11} .

In the first section, we shall consider the number of fixed letters of an involution. We shall prove especially that if N^Δ is A_6 or M_{11} then the number r of the fixed letters of any involution in G satisfies the relation

$$n = r^2 + 2$$

and consequently all involutions have the same number of fixed letters.

Now let P be a Sylow 2-group of H , Δ' the totality of the letters fixed by P and N' the normalizer of P in G . Then, by the theorem of M. Hall ([1], Theorem 5.8.1), $(N')^{\Delta'}$ is one of the following groups: S_4 , S_5 , A_6 , A_7 or M_{11} . In the second section, we shall first consider the case in which $P \neq 1$ and P is transitive on $\Omega - \Delta'$ and we shall prove that if $n \geq 35$ $(N')^{\Delta'}$ must be S_4 or S_5 . As a corollary we have that if G is not alternating nor symmetric group and if P ($\neq 1$) is transitive and regular on $\Omega - \Delta'$ then G is M_{12} or M_{23} . Since a transitive group which is abelian is regular, this gives an improvement of Theorem 1 in [4].

NOTATION. For a set X let $|X|$ denote the number of elements of X . For a set S of permutations on Ω the totality of the letters fixed by S is denoted by $I(S)$. If a subset Δ of Ω is a fixed block, i.e. if $\Delta^S = \Delta$, then the restriction of S on Δ is denoted by S^Δ . For a permutation group G the subgroup of G consisting of all the elements fixing the letters i, j, \dots, k is denoted by $G_{i,j,\dots,k}$.

1. Number of fixed letters of an involution.

Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, H the subgroup of G fixing four letters, $\Delta = I(H)$ and let N be the normalizer of H in G . Then N^Δ must be one of the following groups: S_4 , S_5 , A_6 or M_{11} .

Proposition 1. *If $N^\Delta = A_6$ or M_{11} , then the number r of the fixed letters of any involution in G satisfies the relation*

$$n = r^2 + 2.$$

Proof. (1) Suppose that $N^\Delta = A_6$. Let α be an arbitrary involution. Since G is 4-fold transitive, taking a conjugate of α if necessary, we may assume that

$$\alpha = (1, 2) \cdots.$$

Let (k, l) be a 2-cycle of α different from $(1, 2)$. Then α normalizes $G_{1,2,k,l}$ and by assumption α is an even permutation on $\Delta_1 = I(G_{1,2,k,l})$. Therefore we have

$$\alpha^{\Delta_1} = (1, 2)(i)(j)(k, l).$$

Thus at least two letters are fixed by α . Now for a subset $\{i, j\}$ of $I(\alpha)$, α normalizes $G_{1,2,i,j}$, therefore for $\Delta_2 = I(G_{1,2,i,j})$ we have

$$\alpha^{\Delta_2} = (1, 2)(i)(j)(k, l).$$

Thus $\{i, j\}$ determines uniquely a 2-cycle (k, l) of α , and then $G_{1,2,i,j} = G_{1,2,k,l}$ and $\{i, j\} = I(\alpha) \cap I(G_{1,2,k,l})$. We consider the map $\varphi: \{i, j\} \rightarrow (k, l)$ from the family of all subsets of $I(\alpha)$ consisting of two letters into the family of all 2-cycles of α different from $(1, 2)$. From above φ is onto. To show that φ is one to one, suppose that $\varphi(\{i, j\}) = \varphi(\{i', j'\}) = (k, l)$. Then $I(\alpha) \cap I(G_{1,2,k,l}) = \{i, j\} = \{i', j'\}$. Hence φ is one to one and the number of 2-cycles of α different from $(1, 2)$ is C_2 . Thus we have

$$n = 2 + r + 2 \cdot C_2 = r^2 + 2.$$

(2) Suppose that $N^\Delta = M_{11}$ and let α be an arbitrary involution. As in (1), we may assume that $\alpha = (1, 2) \cdots$, and we can easily see that at least two letters are fixed by α . If $\{i_1, i_2\}$ is a subset of $I(\alpha)$, then α normalizes $G_{1,2,i_1,i_2}$ and for $\Delta_1 = I(G_{1,2,i_1,i_2})$ α^{Δ_1} is, being an involution of M_{11} , of the following form :

$$\alpha^{\Delta_1} = (1, 2)(i_1)(i_2)(i_3)(k_1, l_1)(k_2, l_2)(k_3, l_3).$$

Then $G_{1,2,i_1,i_2} = G_{1,2,k_1,l_1}$ and thus $\{i_1, i_2\}$ determines uniquely a set of three 2-cycles $(k_1, l_1), (k_2, l_2), (k_3, l_3)$. Now consider the map

$$\varphi: \{i_1, i_2\} \rightarrow \{(k_1, l_1), (k_2, l_2), (k_3, l_3)\}$$

from the family of all subsets of $I(a)$ consisting of two letters into the family of the sets of three 2-cycles of a different from $(1, 2)$. If a 2-cycle (k, l) of a different from $(1, 2)$ is given, then a normalizes $G_{1,2,k,l}$ and for $\Delta_2 = I(G_{1,2,k,l})$ a^{Δ_2} has, being an involution of M_{11} , just three fixed letters $\{i_1, i_2, i_3\}$. Then $I(a) \cap I(G_{1,2,k,l}) = \{i_1, i_2, i_3\}$ and $\varphi(\{i_1, i_2\}) = \varphi(\{i_1, i_3\}) = \varphi(\{i_2, i_3\}) \supset (k, l)$. Now, from the definition of φ , $\varphi(\{i_1, i_2\}) \supset (k, l)$ if and only if $G_{1,2,i_1,i_2} = G_{1,2,k,l}$, i.e. $\{i_1, i_2\} \subset I(a) \cap I(G_{1,2,k,l})$. Hence the set of 2-cycles of a different from $(1, 2)$ is the disjoint union of the images of φ and each inverse image of φ consists of three subsets. Therefore the number of 2-cycles of a different from $(1, 2)$ is rC_2 and we have

$$n = 2 + r + 2 \cdot rC_2 = r^2 + 2.$$

Proposition 2. *If $N^\Delta = S_5$, then the number r of the fixed letters of any involution in G satisfies the following relation:*

$$r(r-1) \equiv 0 \pmod{3}.$$

Proof. We may assume that $r \geq 2$ and the given involution is $a = (1, 2) \dots$. If $\{i_1, i_2\}$ is a subset of $I(a)$, then a normalizes $G_{1,2,i_1,i_2}$ and for $\Delta_1 = I(G_{1,2,i_1,i_2})$ we have

$$a^{\Delta_1} = (1, 2)(i_1)(i_2)(i_3),$$

and $G_{1,2,i_1,i_2} = G_{1,2,i_1,i_3} = G_{1,2,i_2,i_3}$. Now consider the map

$$\varphi: \{i_1, i_2\} \rightarrow G_{1,2,i_1,i_2}$$

from the family of all subsets of $I(a)$ consisting of two letters into the family of the subgroups of G . Then each inverse image of φ consists of three subsets and hence we have

$$rC_2 = \frac{r(r-1)}{2} \equiv 0 \pmod{3}.$$

2. Main theorem.

Let G be again a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$. It is known that the only 4-fold transitive (not alternating nor symmetric) groups on less than 35 letters are the four Mathieu groups M_{11}, M_{12}, M_{23} and M_{24} . Therefore in the following we may assume that $n \geq 35$.

Now let $H=G_{1,2,3,4}$, $\Delta=I(H)$ and let P be a Sylow 2-group of H , $\Delta'=I(P)$. Then $\Delta' \supset \Delta$. We denote the normalizers of H and P by N and N' respectively. Then $(N')^{\Delta'}$ is one of the following groups: S_4 , S_5 , A_6 , A_7 or M_{11} . We first prove the following

Proposition 3. *If P is transitive on $\Omega-\Delta'$ and $n \geq 35$, then $(N')^{\Delta'}$ must be S_4 or S_5 .*

Proof. We first remark that if $i \in \Delta' - \Delta$ the length of the set of transitivity of H containing i is odd since the subgroup of H fixing i contains a Sylow 2-group P of H .

The proof in the following is by contradiction.

(1) Suppose that $(N')^{\Delta'}=A_6$ and $\Delta'=\{1, 2, 3, 4, 5, 6\}$.

Then N^{Δ} must be A_6 , S_5 or S_4 .

(1.1) Suppose $N^{\Delta}=A_6$ and let a be a central involution of P . Then, by Lemma 2 in [3], $|I(a)|=6$ and, by Proposition 1, we have

$$n = 6^2 + 2 = 38.$$

Consider the map $\varphi: i \rightarrow G_{1,2,3,i}$ from the set $\{4, 5, \dots, 38\}$ into the family of subgroups of G . If $I(G_{1,2,3,i})=\{1, 2, 3, i, j, k\}$ then $\varphi^{-1}(G_{1,2,3,i})$ consists of the three letters i, j, k . Hence we have

$$38-3 = 35 \equiv 0 \pmod{3},$$

which is a contradiction.

(1.2) Suppose that $N^{\Delta}=S_5$ and $\Delta=\{1, 2, 3, 4, 5\}$. By the quadruple transitivity G contains an involution $a=(1, 2)(3)(4)\dots$. Since $H=G_{1,2,3,4}$ is normalized by a , Δ is fixed by a and hence a fixes the letter 5, i.e.

$$a = (1, 2)(3)(4)(5)\dots.$$

Now the number of Sylow 2-groups of H is odd. Therefore there is a Sylow 2-group of H which is normalized by a . We may assume that it is P . Then Δ' is fixed by a and we have

$$a^{\Delta'} = (1, 2)(3)(4)(5)(6).$$

But this is a contradiction since $a^{\Delta'}$ must be an even permutation.

(1.3) Suppose that $N^{\Delta}=S_4$ and let $\Gamma=\Omega-\Delta'$. Then the sets of transitivity of H on $\Omega-\Delta=\{5, 6\} \cup \Gamma$ can be assumed to be one of the following :

- (i) $\{5, 6\}$ and Γ ,
- (ii) $\{5, 6\} \cup \Gamma$.

Since Γ is a set of transitivity of the 2-group P $|\Gamma|$ is a power of 2.

Hence in both cases the length of the set of transitivity containing the latter 5 ($\in \Delta' - \Delta$) is even. This is a contradiction by the first remark.

(2) Suppose that $(N')^\Delta = A_7$ and $\Delta' = \{1, 2, \dots, 7\}$. Then N^Δ must be A_6 , S_6 or S_4 .

(2.1) Suppose $N^\Delta = A_6$ and let α be a central involution of P . Then $|I(\alpha)| = 7$ and we have by Proposition 1

$$n = 7^2 + 2 = 51.$$

Since P is transitive on $\Omega - \Delta'$ and $|\Omega - \Delta'| = 51 - 7 = 44$ is not a power of 2 we have a contradiction.

(2.2) Suppose that $N^\Delta = S_6$ and $\Delta = \{1, 2, 3, 4, 5\}$. Then the sets of transitivity of H on $\Omega - \Delta = \{6, 7\} \cup \Gamma$ may be assumed to be one of the following :

- (i) $\{6, 7\}$ and Γ ,
- (ii) $\{6, 7\} \cup \Gamma$.

But in both cases the length of the set of transitivity containing the letter 6 ($\in \Delta' - \Delta$) is even. This is a contradiction by the first remark.

(2.3) Suppose $N^\Delta = S_4$ and let $\Gamma = \Omega - \Delta'$. Then the sets of transitivity of H on $\Omega - \Delta = \{5, 6, 7\} \cup \Gamma$ may be assumed to be one of the following :

- (i) $\{5, 6, 7\}$ and Γ ,
- (ii) $\{5, 6\}$ and $\{7\} \cup \Gamma$,
- (iii) $\{5, 6, 7\} \cup \Gamma$.

The case (ii) does not occur since the length of the set of transitivity containing the letter 5 ($\in \Delta' - \Delta$) is even in this case. In the case (iii), H is transitive on $\Omega - \Delta$. Hence G is 5-fold transitive and then the subgroup G_1 fixing the letter 1 is 4-fold transitive on $\{2, 3, \dots, n\}$ and satisfies the assumption in (1). Thus as in (1) we have a contradiction.

We shall now consider the case (i). Let P' be an arbitrary Sylow 2-group of H . Then there is an element x of H such that $x^{-1}Px = P'$. Since $\{5, 6, 7\}$ is a set of transitivity of H , it is fixed by x . Therefore $H_{5,6,7} \supset P$ implies $x^{-1}H_{5,6,7}x = H_{5,6,7} \supset P'$ and hence we have $I(P') = \{1, 2, \dots, 7\}$. This shows that $I(P')$ is independent of the choice of Sylow 2-group P' of H and is uniquely determined by H . Let $\alpha = (1, 2) \dots$ be an involution of G which is conjugate to a central involution of P . Then $|I(\alpha)| = 7$. If $\{i_1, i_2\}$ is a subset of $I(\alpha)$, then $G_{1,2,i_1,i_2}$ is normalized by α . Therefore there is a Sylow 2-group P'' of $G_{1,2,i_1,i_2}$ which is normalized by α . Let $I(P'') = \{1, 2, i_1, i_2, i_3, k, l\}$. Since α is an even permutation on $I(P'')$, we may assume

$$\alpha = (1, 2)(i_1)(i_2)(i_3)(k, l) \dots.$$

Now $I(P'')$ is uniquely determined by $G_{1,2,i_1,i_2}$, therefore $\{i_1, i_2\}$ determines uniquely a 2-cycle (k, l) of α and we have the map

$$\varphi: \{i_1, i_2\} \rightarrow (k, l)$$

from the family of all the subsets of $I(\alpha)$ consisting of two letters into the family of 2-cycles of α different from $(1, 2)$. By the definition of φ , it is easy to see that $\varphi(\{i_1, i_2\})=(k, l)$ if and only if $G_{1,2,i_1,i_2}$ and $G_{1,2,k,l}$ have a Sylow 2-group in common, and φ is onto. Now suppose that $\varphi(\{i_1, i_2\})=\varphi(\{j_1, j_2\})=(k, l)$. Then $G_{1,2,i_1,i_2}$ and $G_{1,2,k,l}$ have a Sylow 2-group P_1 in common, and $G_{1,2,j_1,j_2}$ and $G_{1,2,k,l}$ have a Sylow 2-group P_2 in common. Since both P_1 and P_2 are Sylow 2-groups of $G_{1,2,k,l}$ we have $I(P_1)=I(P_2)$. Therefore $\{j_1, j_2\} \subset I(\alpha) \cap I(P_1) = \{i_1, i_2, i_3\}$. Thus we have that each inverse image of φ consists of three subsets of $I(\alpha)$ and hence the number of 2-cycles of α different from $(1, 2)$ is $\frac{1}{3} \cdot C_2 = 7$. In this way we have

$$n = 2 + 7 + 14 = 23,$$

which contradicts the assumption.

(3) Suppose that $(N')^{\Delta'}=M_{11}$ and $\Delta'=\{1, 2, \dots, 11\}$. Then N^{Δ} must be one of the following groups: M_{11} , A_6 , S_5 or S_4 .

(3.1) Suppose $N^{\Delta}=M_{11}$ and let α be a central involution of P . Then $|I(\alpha)|=11$ and by Proposition 1 we have $n=11^2+2=123$. Since P is transitive on $\Omega-\Delta'$ and $|\Omega-\Delta'|=123-11=112$ is not a power of 2, we have a contradiction.

(3.2) Suppose $N^{\Delta}=A_6$. In the same way as in (3.1) we have $n=123$, which is a contradiction.

(3.3) Suppose $N^{\Delta}=S_5$ and let α be a central involution of P . Then $|I(\alpha)|=11$ and by Proposition 2 we have

$$11(11-1) = 110 \equiv 0 \pmod{3}.$$

This is a contradiction.

(3.4) Suppose $N^{\Delta}=S_4$. Since the length of a set of transitivity of H containing one of the letters in $\Delta'-\Delta=\{5, 6, \dots, 11\}$ is odd, the sets of transitivity of H may be assumed to be one of the following:

- (i) $\{5, 6, 7\}$, $\{8, 9, 10\}$ and $\{11\} \cup \Gamma$,
- (ii) $\{5, 6, 7, 8, 9, 10, 11\}$ and Γ ,
- (iii) $\{5, 6, 7, 8, 9, 10, 11\} \cup \Gamma$.

First consider the case (i). Since $(N')^{\Delta'}=M_{11}$, there is an element x in N' such that

$$x^{\Delta'} = (1, 2, 3, 4)(i_1, i_2, i_3, i_4)(k)(l)(m).$$

Then x normalizes $H=G_{1,2,3,4}$. Hence x must fix two sets of transitivity $\{5, 6, 7\}$ and $\{8, 9, 10\}$ or interchange them. But, from the form of $x^{\Delta'}$, this is impossible.

In the case (iii), G is 5-fold transitive. Hence $X=G_1$ is 4-fold transitive on $\{2, 3, \dots, n\}$ and P is a Sylow 2-group of $X_{2,3,4,5}$. Since $|I(P)-\{1\}|=10$, we have a contradiction by the theorem of M. Hall ([1], Theorem 5.8.1).

Now consider the case (ii). If P' is an arbitrary Sylow 2-group of H there is an element x of H such that $P'=x^{-1}Px$. Since $\{5, 6, \dots, 11\}$ is a set of transitivity of H , it is left invariant by x . Therefore $H_{5,6,\dots,11} \supset P$ implies $H_{5,6,\dots,11} \supset P'$ and we have $I(P')=\{1, 2, \dots, 11\}$. This shows that $I(P')$ is independent of the choice of P' and is determined uniquely by H . We denote it by $J(H)$. Let $\alpha=(1, 2) \dots$ be an involution which is conjugate to a central involution of P . We consider the map

$$\varphi: \{i_1, i_2\} \rightarrow J(G_{1,2,i_1,i_2})$$

which assigns $J(G_{1,2,i_1,i_2})$ to a subset $\{i_1, i_2\}$ of $I(\alpha)$. Since α normalizes $G_{1,2,i_1,i_2}$, there is a Sylow 2-group P'' of $G_{1,2,i_1,i_2}$ such that $\alpha^{-1}P''\alpha=P''$. Let $\Delta''=I(P'')=J(G_{1,2,i_1,i_2})$. Then $\alpha^{\Delta''}$ is an involution of M_{11} . Hence we have

$$\alpha^{\Delta''} = (1, 2)(i_1)(i_2)(i_3)(k_1, l_1)(k_2, l_2)(k_3, l_3)$$

and $I(\alpha) \cap J(G_{1,2,i_1,i_2}) = \{i_1, i_2, i_3\}$. Now it is easy to see that the inverse image $\varphi^{-1}(J(G_{1,2,i_1,i_2}))$ consists of three subsets $\{i_1, i_2\}$, $\{i_1, i_3\}$, $\{i_2, i_3\}$. Therefore we have

$${}_{11}C_2 = \frac{11 \cdot 10}{2} \equiv 0 \pmod{3},$$

which is a contradiction.

From Proposition 3 we have easily an improvement of Theorem 1 in [4].

Theorem. *Let G be a 4-fold transitive group on $\Omega=\{1, 2, \dots, n\}$, excluding S_n and A_n . If a Sylow 2-group P of the subgroup fixing four letters is not trivial, and transitive and regular on $\Omega-I(P)$, then G must be M_{12} or M_{23} .*

Proof. We use the same notations as before. For $n < 35$ the theorem is trivial. Therefore we may assume $n \geq 35$, and then, by Proposition 3, we need consider only the case in which $(N')^{\Delta'}=S_4$ or S_5 .

(1) Suppose $(N')^{\Delta'}=S_4$. Then G is 5-fold transitive. Hence $X=G_1$

is 4-fold transitive on $\{2, 3, \dots, n\}$. Since $X_{2,3,4}=H$ and a Sylow 2-group P of H is regular on $\{5, 6, \dots, n\}$, $X_{2,3,4,5}$ is of odd order. Therefore, by the theorem of M. Hall, X must be one of the following groups: S_4 , S_5 , A_6 , A_7 , or M_{11} . But this contradicts the assumption $n \geq 35$.

(2) Suppose $(N')^{\Delta'}=S_5$ and let $\Delta'=\{1, 2, 3, 4, 5\}$. Then $N^{\Delta}=S_4$ or S_5 . If $N^{\Delta}=S_4$, then H is transitive on $\{5, 6, \dots, n\}$ and hence G is 5-fold transitive. Then $X=G_1$ is 4-fold transitive on $\{2, 3, \dots, n\}$ and satisfies the assumption in (1). Therefore as in (1) we have a contradiction. On the other hand, if $N^{\Delta}=S_5$, then by Proposition 2 we have

$$5(5-1) \equiv 0 \pmod{3},$$

since for a central involution a of P $|I(a)|=5$. But this is a contradiction.

OSAKA CITY UNIVERSITY
NARA TECHNICAL COLLEGE

References

- [1] M. Hall: *The Theory of Groups*, Macmillan, New York, 1959.
- [2] C. Jordan: *Recherches sur les substitutions*, J. Math. Pure Appl. (2) **17** (1872), 371-363.
- [3] H. Nagao: *On multiply transitive groups* I, Nagoya Math. J.
- [4] H. Nagao and T. Oyama: *On multiply transitive groups* II, Osaka J. Math. **2** (1965), 129-136.
- [5] E. Witt: *Die 5-fach transitiven Gruppen von Mathieu*, Abh. Math. Sem. Univ. Hamburg **12** (1937), 256-264.